1
|
Ota N, Hirose H, Yamazaki Y, Kato H, Ikeo K, Sekiguchi J, Matsubara S, Kawakami H, Shiojiri N. Comparative study on a unique architecture of the brook lamprey liver and that of the hagfish and banded houndshark liver. Cell Tissue Res 2024; 398:93-110. [PMID: 39352478 DOI: 10.1007/s00441-024-03917-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 09/05/2024] [Indexed: 11/01/2024]
Abstract
Although the liver of the lamprey, a group of cyclostomes that diverged the earliest among vertebrates, has abundant bile ducts in the larval stage, which degenerate during metamorphosis, there is no comparative study on its architecture with other early diverged vertebrates in terms of the morphological evolution of vertebrate livers. The present study was undertaken to compare the characteristics of the brook lamprey liver with those of the hagfish and banded houndshark, which have the portal triad type liver architecture, and to discuss its evolution. Although the liver of the brook lamprey had two-cell cords of hepatocytes lined by sinusoids in the ammocoetes larval stage, intrahepatic bile ducts around portal veins penetrated into the liver parenchyma with convolution and gradual reduction in diameter. They also faced dilated sinusoids. The epithelial cells had characteristic intercellular spaces. These characteristics were distinct from those of bile ducts in the hagfish and banded houndshark livers. Although the liver architectures of the hagfish and banded houndshark were similar, the latter penetrated the intrahepatic bile ducts more deeply along the portal veins than the former, in which intrahepatic bile ducts were restricted near the hilum. After metamorphosis, bile ducts degenerated in brook lampreys. These data indicate that the liver architecture of the ammocoetes larva is unique in the parenchymal distribution of bile ducts, their sinusoidal facing, and morphology among extant vertebrates. The periportal distribution of intrahepatic biliary structures may have been established prior to the divergence of the cyclostomes and gnathostomes.
Collapse
Affiliation(s)
- Noriaki Ota
- Graduate School of Science and Technology, Shizuoka University, 836 Oya, Suruga-Ku, Shizuoka City, Shizuoka, 422-8529, Japan
| | - Haruka Hirose
- Department of Biology, Faculty of Science, Shizuoka University, Oya 836, Suruga-Ku, Shizuoka City, Shizuoka, 422-8529, Japan
| | - Yuji Yamazaki
- Department of Biology, Faculty of Science, University of Toyama, Toyama City, 3190, GofukuToyama, 930-8555, Japan
| | - Hideaki Kato
- Department of Science Education, Faculty of Education, Shizuoka University, Shizuoka, Japan
| | - Kazuho Ikeo
- DNA Data Analysis Laboratory, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, Japan
| | - Junri Sekiguchi
- Laboratory for Electron Microscopy and Department of Anatomy, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-Shi, Tokyo, 181-8611, Japan
| | - Sachie Matsubara
- Laboratory for Electron Microscopy and Department of Anatomy, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-Shi, Tokyo, 181-8611, Japan
| | - Hayato Kawakami
- Department of Anatomy, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-Shi, Tokyo, 181-8611, Japan
| | - Nobuyoshi Shiojiri
- Graduate School of Science and Technology, Shizuoka University, 836 Oya, Suruga-Ku, Shizuoka City, Shizuoka, 422-8529, Japan.
- Department of Biology, Faculty of Science, Shizuoka University, Oya 836, Suruga-Ku, Shizuoka City, Shizuoka, 422-8529, Japan.
| |
Collapse
|
2
|
Zhu Y, Zhang Q, Pan J, Li T, Wang H, Liu J, Qian L, Zhu T, Pang Y, Li Q, Chi Y. Evolutionary analysis of SLC10 family members and insights into function and expression regulation of lamprey NTCP. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1109-1122. [PMID: 38429619 DOI: 10.1007/s10695-024-01324-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 02/14/2024] [Indexed: 03/03/2024]
Abstract
The Na ( +)-taurocholate cotransporting polypeptide (NTCP) is a member of the solute carrier family 10 (SLC10), which consists of 7 members (SLC10a1-SLC10a7). NTCP is a transporter localized to the basolateral membrane of hepatocytes and is primarily responsible for the absorption of bile acids. Although mammalian NTCP has been extensively studied, little is known about the lamprey NTCP (L-NTCP). Here we show that L-NTCP follows the biological evolutionary history of vertebrates, with conserved domain, motif, and similar tertiary structure to higher vertebrates. L-NTCP is localized to the cell surface of lamprey primary hepatocytes by immunofluorescence analysis. HepG2 cells overexpressing L-NTCP also showed the distribution of L-NTCP on the cell surface. The expression profile of L-NTCP showed that the expression of NTCP is highest in lamprey liver tissue. L-NTCP also has the ability to transport bile acids, consistent with its higher vertebrate orthologs. Finally, using a farnesoid X receptor (FXR) antagonist, RT-qPCR and flow cytometry results showed that L-NTCP is negatively regulated by the nuclear receptor FXR. This study is important for understanding the adaptive mechanisms of bile acid metabolism after lamprey biliary atresia based on understanding the origin, evolution, expression profile, biological function, and expression regulation of L-NTCP.
Collapse
Affiliation(s)
- Yingying Zhu
- College of Life Sciences, Liaoning Normal University, Dalian116081, China
- Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Qipeng Zhang
- College of Life Sciences, Liaoning Normal University, Dalian116081, China
- Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Jilong Pan
- College of Life Sciences, Liaoning Normal University, Dalian116081, China
- Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Tiesong Li
- College of Life Sciences, Liaoning Normal University, Dalian116081, China
- Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Hao Wang
- College of Life Sciences, Liaoning Normal University, Dalian116081, China
- Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Jindi Liu
- College of Life Sciences, Liaoning Normal University, Dalian116081, China
- Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Lei Qian
- The Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Ting Zhu
- College of Life Sciences, Liaoning Normal University, Dalian116081, China
- Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Yue Pang
- College of Life Sciences, Liaoning Normal University, Dalian116081, China
- Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Qingwei Li
- College of Life Sciences, Liaoning Normal University, Dalian116081, China
- Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Yan Chi
- College of Life Sciences, Liaoning Normal University, Dalian116081, China.
- Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China.
| |
Collapse
|
3
|
Ota N, Kato H, Shiojiri N. Gene expression in the liver of the hagfish (Eptatretus burgeri) belonging to the Cyclostomata is ancestral to that of mammals. Anat Rec (Hoboken) 2024; 307:690-700. [PMID: 37644755 DOI: 10.1002/ar.25313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/28/2023] [Accepted: 08/08/2023] [Indexed: 08/31/2023]
Abstract
Although the liver of the hagfish, an earliest diverged lineage among vertebrates, has a histological architecture similar to that of mammals, its gene expression has not been explored yet. The present study was undertaken to comparatively characterize gene expression in the liver of the hagfish with that of the mouse, using in situ hybridization technique. Expression of alb (albumin) was detectable in all hepatocytes of the hagfish liver, but was negative in intrahepatic bile ducts. Their expression in abundant periportal ductules was weak. The expression pattern basically resembled that in mammalian livers, indicating that the differential expression of hepatocyte markers in hepatocytes and biliary cells may have been acquired in ancestral vertebrates. alb expression was almost homogeneous in the hagfish liver, whereas that in the mouse liver lobule was zonal. The glul (glutamate-ammonia ligase) expression was also homogeneously detectable in hepatocytes without zonation, and weakly so in biliary cells of the hagfish, which contrasted with its restricted pericentral expression in mouse livers. These findings indicated that the hagfish liver did not have mammalian-type zonation. Whereas tetrapods had Hnf (hepatocyte nuclear factor) 1a and Hnf1b genes encoding the transcription factors, the hagfish had a single gene of their orthologue hnf1. Although HNF1α and HNF1β were immunohistochemically detected in hepatocytes and biliary cells of the mouse, respectively, hnf1 was expressed in both hepatocytes and biliary cells of the hagfish. These data indicate that gene expression of hnf1 in the hagfish liver may be ancestral with that of alb and glul during vertebrate evolution.
Collapse
Affiliation(s)
- Noriaki Ota
- Graduate School of Science and Technology, Shizuoka University, Shizuoka City, Shizuoka, Japan
| | - Hideaki Kato
- Department of Biology, Faculty of Education, Shizuoka University, Shizuoka City, Shizuoka, Japan
| | - Nobuyoshi Shiojiri
- Department of Biology, Faculty of Science, Shizuoka University, Shizuoka City, Shizuoka, Japan
| |
Collapse
|
4
|
Shiojiri N, Hirose H, Ota N, Sekiguchi J, Matsubara S, Kawakami H. Changes of biliary cilia, smooth muscle tissue distribution, innervation and extracellular matrices during morphological evolution of hepatic architectures in vertebrates. Ann Anat 2023; 250:152148. [PMID: 37591347 DOI: 10.1016/j.aanat.2023.152148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/10/2023] [Accepted: 07/31/2023] [Indexed: 08/19/2023]
Abstract
BACKGROUND The liver architecture of vertebrates can be classified into two types, the portal triad type (having periportal bile ducts) and the non-portal triad type (having bile ducts independent of the course of portal veins). The former is typically detectable in livers of tetrapods and cartilaginous fish, and its ancestral state is found in the hagfish, an earliest diverged lineage among vertebrates. Teleosts other than osteoglossomorphs have the latter. The aim of the present study is to reveal the changes of the hepatic innervation, biliary cilia and smooth muscle distribution, and extracellular matrices along vertebrate evolution with attention to the two types of liver architectures. METHODS The hepatic innervation, biliary cilia and smooth muscle distribution, and collagen deposition were immunohistochemically and histochemically compared among livers of various vertebrates, using anti-acetylated tubulin and anti-α-smooth muscle actin antibodies, and Sirius red staining. These were also ultrastructurally examined. RESULTS Although the hagfish liver had periportal intrahepatic bile ducts and ductules as detected in mammalian livers, it lacked smooth muscles around bile ducts and portal veins. Extracellular matrices in their connective tissues had thick collagen fibers. Its innervation was restricted to intrahepatic bile ducts and portal veins in the hilum. In livers of other vertebrates, including teleosts, the innervation was broadly detectable, especially around bile ducts, hepatic arteries and portal veins (afferent vessels), but not around central veins (efferent vessels). The chondrichthyans ultrastructurally had smooth muscle tissue around bile ducts. Cilia distribution was confirmed in intrahepatic bile ducts of tetrapods and basal actinopterygians. Teleosts other than osteoglossomorphs lacked cilia in their intrahepatic bile ducts. CONCLUSIONS The liver architecture of the hagfish may be unique for innervation and extracellular matrices. Hepatic innervation may not have occurred in vertebrate ancestors. Hepatic innervation in bile ducts, hepatic arteries and portal veins may have been conserved among the extant jawed vertebrates. Cilia distribution in bile ducts may have changed during evolution of actinopterygians.
Collapse
Affiliation(s)
- Nobuyoshi Shiojiri
- Department of Biology, Faculty of Science, Shizuoka University, 836 Oya, Suruga-ku, Shizuoka 422-8529, Japan; Graduate School of Science and Technology, Shizuoka University, 836 Oya, Suruga-ku, Shizuoka 422-8529, Japan.
| | - Haruka Hirose
- Department of Biology, Faculty of Science, Shizuoka University, 836 Oya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Noriaki Ota
- Graduate School of Science and Technology, Shizuoka University, 836 Oya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Junri Sekiguchi
- Laboratory for Electron Microscopy, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo 181-8611, Japan; Department of Anatomy, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo 181-8611, Japan
| | - Sachie Matsubara
- Laboratory for Electron Microscopy, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo 181-8611, Japan; Department of Anatomy, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo 181-8611, Japan
| | - Hayato Kawakami
- Laboratory for Electron Microscopy, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo 181-8611, Japan; Department of Anatomy, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo 181-8611, Japan
| |
Collapse
|
5
|
Zhang Q, Pan J, Zhu Y, Liu J, Pang Y, Li J, Han P, Gou M, Li J, Su P, Li Q, Chi Y. The metabolic adaptation of bile acids and cholesterol after biliary atresia in lamprey via transcriptome-based analysis. Heliyon 2023; 9:e19107. [PMID: 37636398 PMCID: PMC10450982 DOI: 10.1016/j.heliyon.2023.e19107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 08/02/2023] [Accepted: 08/10/2023] [Indexed: 08/29/2023] Open
Abstract
Lamprey underwent biliary atresia (BA) at its metamorphosis stage. In contrast to patients with BA who develop progressive disease, lamprey can grow and develop normally, suggesting that lamprey has several adaptations for BA. Here we show that adaptive changes in bile acid and cholesterol metabolism are produced after lamprey BA. Among 1102 differentially expressed genes (DGEs) after BA in lamprey, many are enriched in gene ontology (GO) terms and pathways related to steroid metabolism. We find that among the DGEs related to bile acids and cholesterol metabolism, the expression of cytochrome P450 family 7 subfamily A member 1 (CYP7A1), sodium-dependent taurine cotransport polypeptide (NTCP) are significantly downregulated, whereas nuclear receptor farnesoid X receptor (FXR), multidrug resistance-associated protein 3 (MRP3), 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), sterol O-acyltransferase 1 (SOAT1), and ATP binding cassette subfamily A member 1 (ABCA1) are remarkably upregulated. The changes in expression level are also validated by RT-qPCR. Furthermore, the level of high-density lipoprotein-cholesterol (HDL-C) and low-density lipoprotein-cholesterol (LDL-C) in juvenile serum is higher compared to larvae. Taken together, the findings collectively indicate that after BA, lamprey may maintain bile acids and cholesterol homeostasis in liver tissue by inhibiting bile acids synthesis and uptake, promoting its efflux back to circulation, and enhancing cholesterol esterification for storage as lipid droplets and its egress to form nascent HDL (nHDL). Understanding the possible molecular mechanisms of lamprey metabolic adaptation sheds new light on the understanding of the development and treatment of diseases caused by abnormal bile acid and cholesterol metabolism in humans.
Collapse
Affiliation(s)
- Qipeng Zhang
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China
- Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Jilong Pan
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China
- Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Yingying Zhu
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China
- Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Jindi Liu
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China
- Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Yue Pang
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China
- Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Jiarui Li
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China
- Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Pengju Han
- College of Life Sciences, Sichuan University, Sichuan, China
| | - Meng Gou
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China
- Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Jun Li
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China
- Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Peng Su
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China
- Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Qingwei Li
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China
- Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Yan Chi
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China
- Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| |
Collapse
|
6
|
Morii M, Hebiguchi T, Watanabe R, Yoshino H, Mezaki Y. Cloning and Characterization of Cyp7a1 and Cyp27a1 Genes from the Non-Parasitic Japanese Lamprey Lethenteron reissneri. Zoolog Sci 2023; 40:208-218. [PMID: 37256568 DOI: 10.2108/zs220072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/12/2023] [Indexed: 06/01/2023]
Abstract
Two cytochrome P450 genes homologous to human CYP7A1 and CYP27A1 were cloned from the non-parasitic Japanese lamprey Lethenteron reissneri. Lamprey cyp7a1 mRNA had varied expression levels among individuals: about four orders of magnitude differences in larval liver and nearly three orders of magnitude differences in male adult liver. Overexpressed Cyp7a1 protein tagged with green fluorescent protein (GFP) was localized to the endoplasmic reticulum. Lamprey cyp27a1 mRNA had relatively constant expression levels: within two orders of magnitude differences in larvae and adult liver and intestine. GFP-tagged Cyp27a1 protein was localized to mitochondria. The expression profiles of lamprey cyp7a1 and cyp27a1 genes and the cellular localizations of their products were in good agreement with their counterparts in mammals, where these two P450s catalyze initial hydroxylation reactions of cholesterol in classical and alternative pathways of bile acid synthesis, respectively. The cyp7a1 mRNA levels in adult male liver showed significant negative correlations to both body weight and total length of the animal, implying the involvement of the gene in the production of female-attractive pheromones in sexually matured male livers. The lamprey Cyp7a1 contains a long extension of 116 amino acids between helices D and E of the protein. Possible roles of this extension in regulating the enzymatic activity of lamprey Cyp7a1 are discussed.
Collapse
Affiliation(s)
- Mayako Morii
- Department of Pediatric Surgery, Akita University Graduate School of Medicine, Akita-city, Akita 010-8543, Japan
| | - Taku Hebiguchi
- Department of Pediatric Surgery, Akita University Graduate School of Medicine, Akita-city, Akita 010-8543, Japan
| | - Ryo Watanabe
- Department of Pediatric Surgery, Akita University Graduate School of Medicine, Akita-city, Akita 010-8543, Japan
| | - Hiroaki Yoshino
- Department of Pediatric Surgery, Akita University Graduate School of Medicine, Akita-city, Akita 010-8543, Japan
| | - Yoshihiro Mezaki
- Department of Laboratory Medicine, the Jikei University Graduate School of Medicine, Minato-ku, Tokyo 105-8461, Japan,
| |
Collapse
|
7
|
Guo H, Zhu Y, Li J, Zhang Q, Chi Y. LIMP2 gene, evolutionarily conserved regulation by TFE3, relieves lysosomal stress induced by cholesterol. Life Sci 2022; 307:120888. [PMID: 35987341 DOI: 10.1016/j.lfs.2022.120888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/11/2022] [Accepted: 08/14/2022] [Indexed: 11/30/2022]
Abstract
AIM Excess cholesterol deposition in lysosomes may result in lysosomal stress and dysfunction. Here, we focus on the role of lysosome membrane protein 2 (LIMP2) in relieving the lysosomal stress caused by excess cholesterol and the mechanism that regulate its expression. MATERIAL AND METHODS Cholesterol enrichment in lamprey liver tissue was evaluated by RNA transcriptome data analysis, RT-qPCR, H&E, and Oil Red O staining. Gene markers of autophagy and cholesterol synthesis were determined by western blot or RT-qPCR. Lysosomal morphology and pH value was measured by confocal observation or flow cytometry. Dual-Luciferase reporter assay was performed to test the expression regulation relationship. KEY FINDINGS We report that lamprey limp2 (L-limp2) is evolutionarily highly conserved with human LIMP2 (H-LIMP2). The biological function of L-limp2, consistent with H-LIMP2, includes maintaining lysosomal morphology, modulating autophagy, and aiding cholesterol efflux from lysosomes. Furthermore, we find that both L-limp2 and H-limp2 can restore cholesterol-induced elevation of lysosomal pH and impaired autophagic flux. We demonstrate that lamprey transcription factor binding to IGHM enhancer 3 (L-TFE3) can bind with coordinated lysosomal expression and regulation (CLEAR) elements on the L-limp2 promoter and regulate its expression. Moreover, this regulatory relationship is also available in humans. Taken together, the present study demonstrates that the evolutionarily conserved TFE3-LIMP2 axis may have a protective role against the impaired lysosomal function caused by excess cholesterol. SIGNIFICANCE The protective effect of TFE3-LIMP2 axis against cholesterol-triggered lysosomal stress may provide a new target for the treatment of diseases caused by excessive cholesterol accumulation in lysosomes.
Collapse
Affiliation(s)
- Hanze Guo
- College of Life Sciences, Liaoning Normal University, Dalian 116081, China; College of Life Science and Technology, Dalian University, Dalian 116622, China
| | - Yingying Zhu
- College of Life Sciences, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Jiarui Li
- College of Life Sciences, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Qipeng Zhang
- College of Life Sciences, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Yan Chi
- College of Life Sciences, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
8
|
Pal N, Joy PS, Sergi CM. Biliary Atresia Animal Models: Is the Needle in a Haystack? Int J Mol Sci 2022; 23:7838. [PMID: 35887185 PMCID: PMC9324346 DOI: 10.3390/ijms23147838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 02/06/2023] Open
Abstract
Biliary atresia (BA) is a progressive fibro-obliterative process with a variable degree of inflammation involving the hepatobiliary system. Its consequences are incalculable for the patients, the affected families, relatives, and the healthcare system. Scientific communities have identified a rate of about 1 case per 10,000-20,000 live births, but the percentage may be higher, considering the late diagnoses. The etiology is heterogeneous. BA, which is considered in half of the causes leading to orthotopic liver transplantation, occurs in primates and non-primates. To consolidate any model, (1) more transport and cell membrane studies are needed to identify the exact mechanism of noxa-related hepatotoxicity; (2) an online platform may be key to share data from pilot projects and new techniques; and (3) the introduction of differentially expressed genes may be useful in investigating the liver metabolism to target the most intricate bilio-toxic effects of pharmaceutical drugs and toxins. As a challenge, such methodologies are still limited to very few centers, making the identification of highly functional animal models like finding a "needle in a haystack". This review compiles models from the haystack and hopes that a combinatorial search will eventually be the root for a successful pathway.
Collapse
Affiliation(s)
- Nutan Pal
- Jefferson Graduate School of Biomedical Sciences, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Parijat S. Joy
- Department of Internal Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA;
| | - Consolato M. Sergi
- Anatomic Pathology Division, Department of Laboratory Medicine and Pathology, Children’s Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Lab. Medicine and Pathology, Stollery Children’s Hospital, University of Alberta, Edmonton, AB T6G 2B7, Canada
| |
Collapse
|
9
|
Qiu JL, Zhang GF, Chai YN, Han XY, Zheng HT, Li XF, Duan F, Chen LY. Ligustrazine Attenuates Liver Fibrosis by Targeting miR-145 Mediated Transforming Growth Factor- β/Smad Signaling in an Animal Model of Biliary Atresia. J Pharmacol Exp Ther 2022; 381:257-265. [PMID: 35398813 DOI: 10.1124/jpet.121.001020] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/28/2022] [Indexed: 01/03/2025] Open
Abstract
To investigate therapeutic target for ligustrazine during liver fibrosis in an ethanol-induced biliary atresia rat model and transforming growth factor-β (TGF-β) induced hepatic stellate cell activation cell model, and the underlying mechanism, a total of 30 rats were randomly assigned into five groups (n = 6 per group): control, sham, ethanol-induced biliary atresia model, model plus pirfenidone, and model plus ligustrazine groups. The liver changes were assessed using H&E and Masson staining and transmission electron microscopy. Expression of miR-145 and mRNA and protein levels of TGF-β/smads pathway-related proteins were detected. HSC-T6 cells were infected with LV-miR or rLV-miR-145 in the presence or absence of SMAD3 inhibitor SIS3 and treated with 2.5 ng/ml TGF-β1 and then with ligustrazine. Collected cells were subjected to detect the expression of miR-145 and mRNA and protein expression levels of TGF-β/smads pathway-related proteins. Ligustrazine rescued liver fibrogenesis and pathology for ethanol-caused bile duct injury, revealed by decreased α-smooth muscle actin and collagen I expression and liver tissue and cell morphology integrity. Further experiments showed that ligustrazine inhibited intrinsic and phosphorylated Smad2/3 protein expression and modification. Similar results were obtained in cells. In addition, ligustrazine altered miR-145 expression in both animal and cell models. Lentivirus mediated miR-145 overexpression and knockdown recombinant virus showed that miR-145 enhanced the TGF-β/Smad pathway, which led to hepatic stellate cell activation, and ligustrazine blocked this activation. This work validated that ligustrazine-regulated miR-145 mediated TGF-β/Smad signaling to inhibit the progression of liver fibrosis in a biliary atresia rat model and provided a new therapeutic strategy for liver fibrosis. SIGNIFICANCE STATEMENT: With an ethanol-induced biliary atresia rat model, ligustrazine was found to rescue liver fibrogenesis and pathology for ethanol caused bile duct injury, revealed by decreased α-smooth muscle actin and collagen I expression and liver tissue and cell morphology integrity. Furthermore, we found ligustrazine upregulated miR-145 expression and inhibited TGF-β/SMAD signaling pathway both in vivo and in vitro. In addition, overexpression and knockdown of miR-145 confirmed that miR-145 is involved in the ligustrazine inhibition of liver fibrosis through the TGF-β/SMAD signaling pathway.
Collapse
Affiliation(s)
- Jian-Li Qiu
- Department of Pediatrics (J.-L.Q., H.-T.Z., X.-F.L.) and Department of Gastroenterology (F.D.), the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China; Department of Pediatric Surgery (G.-F.Z.) and Department of Pharmacy (Y.-N.C.), the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan University of Chinese Medicine, Zhengzhou, China (X.-Y.H.); and Department of Rehabilitation, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China (L.-Y.C.)
| | - Guo-Feng Zhang
- Department of Pediatrics (J.-L.Q., H.-T.Z., X.-F.L.) and Department of Gastroenterology (F.D.), the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China; Department of Pediatric Surgery (G.-F.Z.) and Department of Pharmacy (Y.-N.C.), the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan University of Chinese Medicine, Zhengzhou, China (X.-Y.H.); and Department of Rehabilitation, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China (L.-Y.C.)
| | - Yu-Na Chai
- Department of Pediatrics (J.-L.Q., H.-T.Z., X.-F.L.) and Department of Gastroenterology (F.D.), the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China; Department of Pediatric Surgery (G.-F.Z.) and Department of Pharmacy (Y.-N.C.), the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan University of Chinese Medicine, Zhengzhou, China (X.-Y.H.); and Department of Rehabilitation, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China (L.-Y.C.)
| | - Xiao-Yan Han
- Department of Pediatrics (J.-L.Q., H.-T.Z., X.-F.L.) and Department of Gastroenterology (F.D.), the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China; Department of Pediatric Surgery (G.-F.Z.) and Department of Pharmacy (Y.-N.C.), the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan University of Chinese Medicine, Zhengzhou, China (X.-Y.H.); and Department of Rehabilitation, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China (L.-Y.C.)
| | - Hai-Tao Zheng
- Department of Pediatrics (J.-L.Q., H.-T.Z., X.-F.L.) and Department of Gastroenterology (F.D.), the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China; Department of Pediatric Surgery (G.-F.Z.) and Department of Pharmacy (Y.-N.C.), the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan University of Chinese Medicine, Zhengzhou, China (X.-Y.H.); and Department of Rehabilitation, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China (L.-Y.C.)
| | - Xiang-Feng Li
- Department of Pediatrics (J.-L.Q., H.-T.Z., X.-F.L.) and Department of Gastroenterology (F.D.), the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China; Department of Pediatric Surgery (G.-F.Z.) and Department of Pharmacy (Y.-N.C.), the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan University of Chinese Medicine, Zhengzhou, China (X.-Y.H.); and Department of Rehabilitation, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China (L.-Y.C.)
| | - Fei Duan
- Department of Pediatrics (J.-L.Q., H.-T.Z., X.-F.L.) and Department of Gastroenterology (F.D.), the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China; Department of Pediatric Surgery (G.-F.Z.) and Department of Pharmacy (Y.-N.C.), the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan University of Chinese Medicine, Zhengzhou, China (X.-Y.H.); and Department of Rehabilitation, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China (L.-Y.C.)
| | - Ling-Yan Chen
- Department of Pediatrics (J.-L.Q., H.-T.Z., X.-F.L.) and Department of Gastroenterology (F.D.), the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China; Department of Pediatric Surgery (G.-F.Z.) and Department of Pharmacy (Y.-N.C.), the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan University of Chinese Medicine, Zhengzhou, China (X.-Y.H.); and Department of Rehabilitation, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China (L.-Y.C.)
| |
Collapse
|
10
|
Pei J, Cong Q. Evolutionary origin and sequence signatures of the heterodimeric ABCG5/ABCG8 transporter. Protein Sci 2022; 31:e4297. [PMID: 35481657 PMCID: PMC8994503 DOI: 10.1002/pro.4297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 11/08/2022]
Abstract
ATP-binding cassette (ABC) systems, characterized by ABC-type nucleotide-binding domains (NBDs), play crucial roles in various aspects of human physiology. Human ABCG5 and ABCG8 form a heterodimeric transporter that functions in the efflux of sterols. We used sequence similarity search, multiple sequence alignment, phylogenetic analysis, and structure comparison to study the evolutionary origin and sequence signatures of ABCG5 and ABCG8. Orthologs of ABCG5 and ABCG8, supported by phylogenetic analysis and signature residues, were identified in bilaterian animals, Filasterea, Fungi, and Amoebozoa. Such a phylogenetic distribution suggests that ABCG5 and ABCG8 could have originated in the last common ancestor of Amorphea (the unikonts), the eukaryotic group including Amoebozoa and Opisthokonta. ABCG5 and ABCG8 were missing in genomes of various lineages such as snakes, jawless vertebrates, non-vertebrate chordates, echinoderms, and basal metazoan groups. Amino-acid changes in key positions in ABCG8 Walker A motif and/or ABCG5 C-loop were observed in most tetrapod organisms, likely resulted in the loss of ATPase activity at one nucleotide-binding site. ABCG5 and ABCG8 in Ecdysozoa (such as insects) exhibit elevated evolutionary rates and accumulate various changes in their NBD functional motifs. Alignment inspection revealed several residue positions that show different amino-acid usages in ABCG5/ABCG8 compared to other ABCG subfamily proteins. These residues were mapped to the structural cores of transmembrane domains (TMDs), the NBD-TMD interface, and the interface between TMDs. They serve as sequence signatures to differentiate ABCG5/ABCG8 from other ABCG subfamily proteins, and some of them may contribute to substrate specificity of the ABCG5/ABCG8 transporter.
Collapse
Affiliation(s)
- Jimin Pei
- Eugene McDermott Center for Human Growth and DevelopmentUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Qian Cong
- Eugene McDermott Center for Human Growth and DevelopmentUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| |
Collapse
|
11
|
Frozandeh F, Shahrokhi N, Khaksari M, Amiresmaili S, AsadiKaram G, Shahrokhi N, Iranpour M. Evaluation of the protective effect of curcumin on encephalopathy caused by intrahepatic and extrahepatic damage in male rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:760-766. [PMID: 34630953 PMCID: PMC8487601 DOI: 10.22038/ijbms.2021.53171.11976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 05/08/2021] [Indexed: 11/21/2022]
Abstract
Objective(s): Along with increased intracranial pressure (ICP) and brain damage, brain edema is the most common cause of death in patients with hepatic encephalopathy. Curcumin can pass the blood-brain barrier and possesses anti-inflammatory and anti-oxidant properties. This study focuses on the curcumin protective effect on intrahepatic and extrahepatic damage in the brain. Materials and Methods: One hundred and forty-four male Albino N-Mary rats were randomly divided into 2 main groups: intrahepatic injury group and extrahepatic cholestasis group. In intra-hepatic injury group intrahepatic damage was induced by intraperitoneal (IP) injection of acetaminophen (500 mg/kg) [19] and included four subgroups: 1. Sham, 2. Acetaminophen (APAP), 3. Normal saline (Veh) which was used as curcumin solvent, and 4. Curcumin (CMN). In extrahepatic cholestasis group intrahepatic damage was caused by common bile duct litigation (BDL) and included four subgroups: 1. Sham, 2. BDL, 3. Vehicle (Veh), and 4. Curcumin (CMN). In both groups, 72 hr after induction of cholestasis, brain water content, blood-brain barrier permeability, serum ammonia, and histopathological indicators were examined and ICP was measured every 24 hr for three days. Results: The results showed that curcumin reduced brain edema, ICP, serum ammonia, and blood-brain barrier permeability after extrahepatic and intrahepatic damage. The maximum effect of curcumin on ICP was observed 72 hr after the injection. Conclusion: According to our findings, it seems that curcumin is an effective therapeutic intervention for treating encephalopathy caused by extrahepatic and intrahepatic damage.
Collapse
Affiliation(s)
- Forouzan Frozandeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Nader Shahrokhi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Khaksari
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Gholamreza AsadiKaram
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Nava Shahrokhi
- Medical School, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Iranpour
- Pathology and Stem Cell Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
12
|
Hepditch SLJ, Tessier LR, Wilson JM, Birceanu O, O’Connor LM, Wilkie MP. Mitigation of lampricide toxicity to juvenile lake sturgeon: the importance of water alkalinity and life stage. CONSERVATION PHYSIOLOGY 2019; 7:coz089. [PMID: 31832194 PMCID: PMC6900748 DOI: 10.1093/conphys/coz089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/19/2019] [Accepted: 09/21/2019] [Indexed: 05/25/2023]
Abstract
The pesticide, 3-trifluoromethyl-4-nitrophenol (TFM), is used to control invasive sea lamprey (Petromyzon marinus) populations in the Laurentian Great Lakes. Applied to infested tributaries, it is most toxic to larval sea lamprey, which have a low capacity to detoxify TFM. However, TFM can be toxic to lake sturgeon (Acipenser fulvescens), whose populations are at risk throughout the basin. They are most vulnerable to TFM in early life stages, with the greatest risk of non-target mortality occurring in waters with high alkalinity. We quantified TFM toxicity and used radio-labelled TFM (14C-TFM) to measure TFM uptake rates in lake sturgeon in waters of different pH and alkalinity. Regardless of pH or alkalinity, TFM uptake was 2-3-fold higher in young-of-the-year (YOY) than in age 1-year-plus (1+) sturgeon, likely due to higher mass-specific metabolic rates in the smaller YOY fish. As expected, TFM uptake was highest at lower (pH 6.5) versus higher (pH 9.0) pH, indicating that it is taken up across the gills by diffusion in its unionized form. Uptake decreased as alkalinity increased from low (~50 mg L-1 as CaCO3) to moderate alkalinity (~150 mg L-1 as CaCO3), before plateauing at high alkalinity (~250 mg L-1 as CaCO3). Toxicity curves revealed that the 12-h LC50 and 12-h LC99.9 of TFM to lake sturgeon were in fact higher (less toxic) than in sea lamprey, regardless of alkalinity. However, in actual treatments, 1.3-1.5 times the minimum lethal TFM concentration (MLC = LC99.9) to lamprey is applied to maximize mortality, disproportionately amplifying TFM toxicity to sturgeon at higher alkalinities. We conclude that limiting TFM treatments to late summer/early fall in waters of moderate-high alkalinity, when lake sturgeon are larger with lower rates of TFM uptake, would mitigate non-target TFM effects and help conserve populations of these ancient, culturally important fishes.
Collapse
Affiliation(s)
- Scott L J Hepditch
- Department of Biology and Institute for Water Science, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON N2L 3C5, Canada
| | - Laura R Tessier
- Department of Biology and Institute for Water Science, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON N2L 3C5, Canada
| | - Jonathan M Wilson
- Department of Biology and Institute for Water Science, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON N2L 3C5, Canada
| | - Oana Birceanu
- Department of Biology and Institute for Water Science, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON N2L 3C5, Canada
| | - Lisa M O’Connor
- Great Lakes Laboratory for Fisheries and Aquatic Sciences, Fisheries and Oceans Canada, 1219 Queen Street East, Sault Ste. Marie, ON P6A 2E5, Canada
| | - Michael P Wilkie
- Department of Biology and Institute for Water Science, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON N2L 3C5, Canada
| |
Collapse
|
13
|
Wilkie MP, Hubert TD, Boogaard MA, Birceanu O. Control of invasive sea lampreys using the piscicides TFM and niclosamide: Toxicology, successes & future prospects. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 211:235-252. [PMID: 30770146 DOI: 10.1016/j.aquatox.2018.12.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/11/2018] [Accepted: 12/14/2018] [Indexed: 06/09/2023]
Abstract
The invasion of the Laurentian Great Lakes of North America by sea lampreys (Petromyzon marinus) in the early 20th century contributed to the depletion of commercial, recreational and culturally important fish populations, devastating the economies of communities that relied on the fishery. Sea lamprey populations were subsequently controlled using an aggressive integrated pest-management program which employed barriers and traps to prevent sea lamprey from migrating to their spawning grounds and the use of the piscicides (lampricides) 3-trifluoromethyl-4-nitrophenol (TFM) and niclosamide to eliminate larval sea lampreys from their nursery streams. Although sea lampreys have not been eradicated from the Great Lakes, populations have been suppressed to less than 10% of their peak numbers in the mid-1900s. The ongoing use of lampricides provides the foundation for sea lamprey control in the Great Lakes, one of the most successful invasive species control programs in the world. Yet, significant gaps remain in our understanding of how lampricides are taken-up and handled by sea lampreys, how lampricides exert their toxic effects, and how they adversely affect non-target invertebrate and vertebrates species. In this review we examine what has been learned about the uptake, handling and elimination, and the mode of TFM and niclosamide toxicity in lampreys and in non-target animals, particularly in the last 10 years. It is now clear that the mode of TFM toxicity is the same in non-target fishes and lampreys, in which TFM interferes with oxidative phosphorylation by the mitochondria leading to decreased ATP production. Vulnerability to TFM is related to abiotic factors such as water pH and alkalinity, which we propose changes the relative amounts of the bioavailable un-ionized form of TFM in the gill microenvironment. Niclosamide, which is also a molluscicide used to control snails in areas prone to schistosomiasis infections of humans, also likely works by uncoupling oxidative phosphorylation, but less is known about other aspects of its toxicology. The effects of TFM include reductions in energy stores, particularly glycogen and high energy phosphagens. However, non-target fishes readily recover from sub-lethal TFM exposure as demonstrated by the rapid restoration of energy stores and clearance of TFM. Although both TFM and niclosamide are non-persistent in the environment and critical for sea lamprey control, increasing public and institutional concerns about pesticides in the environment makes it imperative to explore other means of sea lamprey control. Accordingly, we also address possible "next-generation" strategies of sea lamprey control including genetic tools such as RNA interference and CRISPR-Cas9 to impair critical physiological processes (e.g. reproduction, digestion, metamorphosis) in lamprey, and the use of green chemistry to develop more environmentally benign chemical methods of sea lamprey control.
Collapse
Affiliation(s)
- Michael P Wilkie
- Department of Biology & Laurier Institute for Water Science, Wilfrid Laurier University, Waterloo, Ontario, N2L 3C5, Canada.
| | - Terrance D Hubert
- Upper Midwest Environmental Sciences Center, United States Geological Survey, La Crosse, WI, 54603, USA
| | - Michael A Boogaard
- Upper Midwest Environmental Sciences Center, United States Geological Survey, La Crosse, WI, 54603, USA
| | - Oana Birceanu
- Department of Biology & Laurier Institute for Water Science, Wilfrid Laurier University, Waterloo, Ontario, N2L 3C5, Canada
| |
Collapse
|
14
|
Hormonal regulation of Na +-K +-ATPase from the evolutionary perspective. CURRENT TOPICS IN MEMBRANES 2019; 83:315-351. [PMID: 31196608 DOI: 10.1016/bs.ctm.2019.01.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Na+-K+-ATPase, an α/β heterodimer, is an ancient enzyme that maintains Na+ and K+ gradients, thus preserving cellular ion homeostasis. In multicellular organisms, this basic housekeeping function is integrated to fulfill the needs of specialized organs and preserve whole-body homeostasis. In vertebrates, Na+-K+-ATPase is essential for many fundamental physiological processes, such as nerve conduction, muscle contraction, nutrient absorption, and urine excretion. During vertebrate evolution, three key developments contributed to diversification and integration of Na+-K+-ATPase functions. Generation of novel α- and β-subunits led to formation of multiple Na+-K+-ATPase isoenyzmes with distinct functional characteristics. Development of a complex endocrine system enabled efficient coordination of diverse Na+-K+-ATPase functions. Emergence of FXYDs, small transmembrane proteins that regulate Na+-K+-ATPase, opened new ways to modulate its function. FXYDs are a vertebrate innovation and an important site of hormonal action, suggesting they played an especially prominent role in evolving interaction between Na+-K+-ATPase and the endocrine system in vertebrates.
Collapse
|
15
|
Hlina BL, Tessier LR, Wilkie MP. Effects of water pH on the uptake and elimination of the piscicide, 3-trifluoromethyl-4-nitrophenol (TFM), by larval sea lamprey. Comp Biochem Physiol C Toxicol Pharmacol 2017; 200:9-16. [PMID: 28587838 DOI: 10.1016/j.cbpc.2017.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/25/2017] [Accepted: 05/28/2017] [Indexed: 01/13/2023]
Abstract
Invasive sea lamprey (Petromyzon marinus) populations in the Great Lakes are controlled by applying the piscicide, 3-trifluoromethyl-4-nitrophenol (TFM), to infested streams with larval sea lamprey (ammocoetes). While treatment mortality is >90%, surviving lamprey, called residuals, can undermine control efforts. A key determinant of TFM effectiveness is water pH, which can fluctuate daily and seasonally in surface waters. The objectives of this research were to evaluate the influence of pH on the uptake, elimination, and accumulation of TFM by larval sea lamprey using radio-labeled TFM (14C-TFM), when exposed to a nominal concentration of 4.6mgTFML-1 or 7.6mgTFML-1, 3h or 1h, respectively. TFM uptake rates were approximately 5.5-fold greater at low pH (6.86) compared to the high pH (8.78), most likely due to the unionized, lipophilic form of TFM existing in greater amounts at a lower pH. In contrast, elimination rates following the injection of 85nmolTFMg-1 body mass were 1.7-1.8 fold greater at pH8.96 than at pH6.43 during 2-4h of depuration in TFM-free water. Greater initial excretion rates at pH8.96 were presumably due to predicted increases in outward concentration gradients of un-ionized TFM. The present findings suggest that TFM is mainly taken-up in its un-ionized form, more lipophilic form, but there is also significant uptake of the ionized form of TFM via an unknown mechanism. Moreover, we provide an explanation to how small increases in pH can undermine lampricide treatment success increasing residual lamprey populations.
Collapse
Affiliation(s)
- Benjamin L Hlina
- Department of Biology, Wilfrid Laurier University, 75 University Avenue West, Waterloo, Ontario N2L 3C5, Canada.
| | - Laura R Tessier
- Department of Biology, Wilfrid Laurier University, 75 University Avenue West, Waterloo, Ontario N2L 3C5, Canada
| | - Michael P Wilkie
- Department of Biology, Wilfrid Laurier University, 75 University Avenue West, Waterloo, Ontario N2L 3C5, Canada
| |
Collapse
|
16
|
Pirkmajer S, Kirchner H, Lundell LS, Zelenin PV, Zierath JR, Makarova KS, Wolf YI, Chibalin AV. Early vertebrate origin and diversification of small transmembrane regulators of cellular ion transport. J Physiol 2017; 595:4611-4630. [PMID: 28436536 DOI: 10.1113/jp274254] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 04/19/2017] [Indexed: 12/31/2022] Open
Abstract
KEY POINTS Small transmembrane proteins such as FXYDs, which interact with Na+ ,K+ -ATPase, and the micropeptides that interact with sarco/endoplasmic reticulum Ca2+ -ATPase play fundamental roles in regulation of ion transport in vertebrates. Uncertain evolutionary origins and phylogenetic relationships among these regulators of ion transport have led to inconsistencies in their classification across vertebrate species, thus hampering comparative studies of their functions. We discovered the first FXYD homologue in sea lamprey, a basal jawless vertebrate, which suggests small transmembrane regulators of ion transport emerged early in the vertebrate lineage. We also identified 13 gene subfamilies of FXYDs and propose a revised, phylogeny-based FXYD classification that is consistent across vertebrate species. These findings provide an improved framework for investigating physiological and pathophysiological functions of small transmembrane regulators of ion transport. ABSTRACT Small transmembrane proteins are important for regulation of cellular ion transport. The most prominent among these are members of the FXYD family (FXYD1-12), which regulate Na+ ,K+ -ATPase, and phospholamban, sarcolipin, myoregulin and DWORF, which regulate the sarco/endoplasmic reticulum Ca2+ -ATPase (SERCA). FXYDs and regulators of SERCA are present in fishes, as well as terrestrial vertebrates; however, their evolutionary origins and phylogenetic relationships are obscure, thus hampering comparative physiological studies. Here we discovered that sea lamprey (Petromyzon marinus), a representative of extant jawless vertebrates (Cyclostomata), expresses an FXYD homologue, which strongly suggests that FXYDs predate the emergence of fishes and other jawed vertebrates (Gnathostomata). Using a combination of sequence-based phylogenetic analysis and conservation of local chromosome context, we determined that FXYDs markedly diversified in the lineages leading to cartilaginous fishes (Chondrichthyes) and bony vertebrates (Euteleostomi). Diversification of SERCA regulators was much less extensive, indicating they operate under different evolutionary constraints. Finally, we found that FXYDs in extant vertebrates can be classified into 13 gene subfamilies, which do not always correspond to the established FXYD classification. We therefore propose a revised classification that is based on evolutionary history of FXYDs and that is consistent across vertebrate species. Collectively, our findings provide an improved framework for investigating the function of ion transport in health and disease.
Collapse
Affiliation(s)
- Sergej Pirkmajer
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, SI-1000, Ljubljana, Slovenia
| | - Henriette Kirchner
- Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Leonidas S Lundell
- Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Pavel V Zelenin
- Department of Neuroscience, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Juleen R Zierath
- Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Kira S Makarova
- National Center for Biotechnology Information, NLM, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Yuri I Wolf
- National Center for Biotechnology Information, NLM, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Alexander V Chibalin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| |
Collapse
|
17
|
Blair S, Wilkie M, Edwards S. Rh glycoprotein immunoreactivity in the skin and its role in extrabranchial ammonia excretion by the sea lamprey (Petromyzon marinus) in fresh water. CAN J ZOOL 2017. [DOI: 10.1139/cjz-2016-0120] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aquatic organisms employ various strategies to excrete ammonia across the gills, skin, and (or) renal routes. During three different stages of their life cycle, we hypothesized that the basal vertebrate sea lamprey (Petromyzon marinus L., 1758) used the skin as a route for ammonia excretion. Measurements of ammonia excretion using divided flux chambers revealed that extrabranchial sites (skin plus renal) of ammonia excretion were quantitatively more important in larval sea lampreys, but following metamorphosis, the gills became the dominant route of excretion in juvenile sea lampreys. Despite the greater relative importance of the skin in the larval stage, Rh glycoprotein isoforms Rhbg, Rhcg1, and Rhcg2 were detected in the skin in all three sea lamprey life stages examined, but the patterns of expression were dependent on the life stage. We conclude that, during the relatively sedentary filter-feeding larval stage, extrabranchial routes play an equally important role as the gill in facilitating ammonia excretion. However, the gills by virtue of their extensive branchial vasculature become the dominant route of ammonia excretion following metamorphosis because of the need to offload greater amounts of ammonia arising from higher rates of basal ammonia production and the potential to excrete higher amounts of ammonia following ingestion of protein-rich blood in the parasitic stage.
Collapse
Affiliation(s)
- S.D. Blair
- Department of Biology, Appalachian State University, Boone, NC 28608, USA
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - M.P. Wilkie
- Department of Biology, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
- Department of Biology, Mount Allison University, Sackville, NB E4L 1G7, Canada
| | - S.L. Edwards
- Department of Biology, Appalachian State University, Boone, NC 28608, USA
| |
Collapse
|
18
|
Abstract
This review is based upon an invited lecture for the 52nd Annual Meeting of the British Association of Paediatric Surgeons, July 2015. The aetiology of biliary atresia (BA) is at best obscure, but it is probable that a number of causes or pathophysiological mechanisms may be involved leading to the final common phenotype we recognise clinically. By way of illustration, similar conditions to human BA are described, including biliary agenesis, which is the normal state and peculiar final pattern of bile duct development in the jawless fish, the lamprey. Furthermore, there have been remarkable outbreaks in the Australian outback of BA in newborn lambs whose mothers were exposed to and grazed upon a particular plant species (Dysphania glomulifera) during gestation. More recent work using a zebrafish model has isolated a toxic isoflavonoid, now named Biliatresone, thought to be responsible for these outbreaks. Normal development of the bile ducts is reviewed and parallels drawn with two clinical variants thought to definitively have their origins in intrauterine life: Biliary Atresia Splenic Malformation syndrome (BASM) and Cystic Biliary Atresia (CBA). For both variants there is sufficient clinical evidence, including associated anomalies and antenatal detection, respectively, to warrant their aetiological attribution as developmental BA. CMV IgM +ve associated BA is a further variant that appears separate with distinct clinical, histological, and immunohistochemical features. In these it seems possible that this involves perinatal obliteration of a normally formed duct system. Although still circumstantial, this evidence appears convincing enough to perhaps warrant a different treatment strategy. This then still leaves the most common (more than 60% in Western series) variant, now termed Isolated BA, whereby origins can only be alluded to.
Collapse
Affiliation(s)
- Mark Davenport
- Department of Paediatric Surgery, King's College Hospital, London, UK.
| |
Collapse
|
19
|
Buchinger TJ, Siefkes MJ, Zielinski BS, Brant CO, Li W. Chemical cues and pheromones in the sea lamprey (Petromyzon marinus). Front Zool 2015; 12:32. [PMID: 26609313 PMCID: PMC4658815 DOI: 10.1186/s12983-015-0126-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/16/2015] [Indexed: 01/21/2023] Open
Abstract
Chemical cues and pheromones guide decisions in organisms throughout the animal kingdom. The neurobiology, function, and evolution of olfaction are particularly well described in insects, and resulting concepts have driven novel approaches to pest control. However, aside from several exceptions, the olfactory biology of vertebrates remains poorly understood. One exception is the sea lamprey (Petromyzon marinus), which relies heavily upon olfaction during reproduction. Here, we provide a broad review of the chemical cues and pheromones used by the sea lamprey during reproduction, including overviews of the sea lamprey olfactory system, chemical cues and pheromones, and potential applications to population management. The critical role of olfaction in mediating the sea lamprey life cycle is evident by a well-developed olfactory system. Sea lamprey use chemical cues and pheromones to identify productive spawning habitat, coordinate spawning behaviors, and avoid risk. Manipulation of olfactory biology offers opportunities for management of populations in the Laurentian Great Lakes, where the sea lamprey is a destructive invader. We suggest that the sea lamprey is a broadly useful organism with which to study vertebrate olfaction because of its simple but well-developed olfactory organ, the dominant role of olfaction in guiding behaviors during reproduction, and the direct implications for vertebrate pest management.
Collapse
Affiliation(s)
- Tyler J Buchinger
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI USA
| | | | - Barbara S Zielinski
- Department of Biological Sciences, University of Windsor, Windsor, ON Canada
| | - Cory O Brant
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI USA
| | - Weiming Li
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI USA
| |
Collapse
|
20
|
Ren J, Chung-Davidson YW, Yeh CY, Scott C, Brown T, Li W. Genome-wide analysis of the ATP-binding cassette (ABC) transporter gene family in sea lamprey and Japanese lamprey. BMC Genomics 2015; 16:436. [PMID: 26047617 PMCID: PMC4458048 DOI: 10.1186/s12864-015-1677-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 06/01/2015] [Indexed: 11/26/2022] Open
Abstract
Background Lampreys are extant representatives of the jawless vertebrate lineage that diverged from jawed vertebrates around 500 million years ago. Lamprey genomes contain information crucial for understanding the evolution of gene families in vertebrates. The ATP-binding cassette (ABC) gene family is found from prokaryotes to eukaryotes. The recent availability of two lamprey draft genomes from sea lamprey Petromyzon marinus and Japanese lamprey Lethenteron japonicum presents an opportunity to infer early evolutionary events of ABC genes in vertebrates. Results We conducted a genome-wide survey of the ABC gene family in two lamprey draft genomes. A total of 37 ABC transporters were identified and classified into seven subfamilies; namely seven ABCA genes, 10 ABCB genes, 10 ABCC genes, three ABCD genes, one ABCE gene, three ABCF genes, and three ABCG genes. The ABCA subfamily has expanded from three genes in sea squirts, seven and nine in lampreys and zebrafish, to 13 and 16 in human and mouse. Conversely, the multiple copies of ABCB1-, ABCG1-, and ABCG2-like genes found in sea squirts have contracted in the other species examined. ABCB2 and ABCB3 seem to be new additions in gnathostomes (not in sea squirts or lampreys), which coincides with the emergence of the gnathostome-specific adaptive immune system. All the genes in the ABCD, ABCE and ABCF subfamilies were conserved and had undergone limited duplication and loss events. In the sea lamprey transcriptomes, the ABCE and ABCF gene subfamilies were ubiquitously and highly expressed in all tissues while the members in other gene subfamilies were differentially expressed. Conclusions Thirteen more lamprey ABC transporter genes were identified in this study compared with a previous study. By concatenating the same gene sequences from the two lampreys, more full length sequences were obtained, which significantly improved both the assignment of gene names and the phylogenetic trees compared with a previous analysis using partial sequences. The ABC gene subfamilies in chordates have undergone obvious expansion or contraction. The ABCA subfamily showed the highest gene expansion rate during chordate evolution. The evolution of ABC transporters in lampreys requires further evaluation because the present results are based on a draft genome. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1677-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jianfeng Ren
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, 201306, China.
| | - Yu-Wen Chung-Davidson
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, 48824, USA.
| | - Chu-Yin Yeh
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, 48824, USA.
| | - Camille Scott
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA.
| | - Titus Brown
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA. .,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA.
| | - Weiming Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, 201306, China. .,Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
21
|
Abstract
Biliary atresia is a severe cholangiopathy of early infancy that destroys extrahepatic bile ducts and disrupts bile flow. With a poorly defined disease pathogenesis, treatment consists of the surgical removal of duct remnants followed by hepatoportoenterostomy. Although this approach can improve the short-term outcome, the liver disease progresses to end-stage cirrhosis in most children. Further improvement in outcome will require a greater understanding of the mechanisms of biliary injury and fibrosis. Here, we review progress in the field, which has been fuelled by collaborative studies in larger patient cohorts and the development of cell culture and animal model systems to directly test hypotheses. Advances include the identification of phenotypic subgroups and stages of disease based on clinical, pathological and molecular features. Stronger evidence exists for viruses, toxins and gene sequence variations in the aetiology of biliary atresia, triggering a proinflammatory response that injures the duct epithelium and produces a rapidly progressive cholangiopathy. The immune response also activates the expression of type 2 cytokines that promote epithelial cell proliferation and extracellular matrix production by nonparenchymal cells. These advances provide insight into phenotype variability and might be relevant to the design of personalized trials to block progression of liver disease.
Collapse
|
22
|
Chung-Davidson YW, Yeh CY, Li W. The Sea Lamprey as an Etiological Model for Biliary Atresia. BIOMED RESEARCH INTERNATIONAL 2015; 2015:832943. [PMID: 26101777 PMCID: PMC4460204 DOI: 10.1155/2015/832943] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 05/17/2015] [Indexed: 12/14/2022]
Abstract
Biliary atresia (BA) is a progressive, inflammatory, and fibrosclerosing cholangiopathy in infants that results in obstruction of both extrahepatic and intrahepatic bile ducts. It is the most common cause for pediatric liver transplantation. In contrast, the sea lamprey undergoes developmental BA with transient cholestasis and fibrosis during metamorphosis, but emerges as a fecund adult with steatohepatitis and fibrosis in the liver. In this paper, we present new histological evidence and compare the sea lamprey to existing animal models to highlight the advantages and possible limitations of using the sea lamprey to study the etiology and compensatory mechanisms of BA and other liver diseases. Understanding the signaling factors and genetic networks underlying lamprey BA can provide insights into BA etiology and possible targets to prevent biliary degeneration and to clear fibrosis. In addition, information from lamprey BA can be used to develop adjunct treatments for patients awaiting or receiving surgical treatments. Furthermore, the cholestatic adult lamprey has unique adaptive mechanisms that can be used to explore potential treatments for cholestasis and nonalcoholic steatohepatitis (NASH).
Collapse
Affiliation(s)
- Yu-Wen Chung-Davidson
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824, USA
| | - Chu-Yin Yeh
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Weiming Li
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824, USA
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
23
|
Dawson PA, Karpen SJ. Intestinal transport and metabolism of bile acids. J Lipid Res 2014; 56:1085-99. [PMID: 25210150 DOI: 10.1194/jlr.r054114] [Citation(s) in RCA: 379] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Indexed: 12/17/2022] Open
Abstract
In addition to their classical roles as detergents to aid in the process of digestion, bile acids have been identified as important signaling molecules that function through various nuclear and G protein-coupled receptors to regulate a myriad of cellular and molecular functions across both metabolic and nonmetabolic pathways. Signaling via these pathways will vary depending on the tissue and the concentration and chemical structure of the bile acid species. Important determinants of the size and composition of the bile acid pool are their efficient enterohepatic recirculation, their host and microbial metabolism, and the homeostatic feedback mechanisms connecting hepatocytes, enterocytes, and the luminal microbiota. This review focuses on the mammalian intestine, discussing the physiology of bile acid transport, the metabolism of bile acids in the gut, and new developments in our understanding of how intestinal metabolism, particularly by the gut microbiota, affects bile acid signaling.
Collapse
Affiliation(s)
- Paul A Dawson
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Emory University, Atlanta, GA 30322
| | - Saul J Karpen
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Emory University, Atlanta, GA 30322
| |
Collapse
|
24
|
Soroka CJ, Boyer JL. Biosynthesis and trafficking of the bile salt export pump, BSEP: therapeutic implications of BSEP mutations. Mol Aspects Med 2014; 37:3-14. [PMID: 23685087 PMCID: PMC3784619 DOI: 10.1016/j.mam.2013.05.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 04/25/2013] [Accepted: 05/07/2013] [Indexed: 12/17/2022]
Abstract
The bile salt export pump (BSEP, ABCB11) is the primary transporter of bile acids from the hepatocyte to the biliary system. This rate-limiting step in bile formation is essential to the formation of bile salt dependent bile flow, the enterohepatic circulation of bile acids, and the digestion of dietary fats. Mutations in BSEP are associated with cholestatic diseases such as progressive familial intrahepatic cholestasis type 2 (PFIC2), benign recurrent intrahepatic cholestasis type 2 (BRIC2), drug-induced cholestasis, and intrahepatic cholestasis of pregnancy. Development of clinical therapies for these conditions necessitates a clear understanding of the cell biology of biosynthesis, trafficking, and transcriptional and translational regulation of BSEP. This chapter will focus on the molecular and cell biological aspects of this critical hepatic membrane transporter.
Collapse
Affiliation(s)
- Carol J Soroka
- Yale University School of Medicine, Department of Internal Medicine, New Haven, CT 06520, United States.
| | - James L Boyer
- Yale University School of Medicine, Department of Internal Medicine, New Haven, CT 06520, United States.
| |
Collapse
|
25
|
Raveenthiran V. Long-Term Survival of Biliary Atresia without any Surgery: Lessons Learnt from Lamprey. J Neonatal Surg 2014; 3:19. [PMID: 26023490 PMCID: PMC4420324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 04/05/2014] [Indexed: 11/09/2022] Open
|
26
|
|