1
|
Moreno-Navarrete JM, Fernández-Real JM. Iron: The silent culprit in your adipose tissue. Obes Rev 2024; 25:e13647. [PMID: 37789591 DOI: 10.1111/obr.13647] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/27/2023] [Accepted: 09/09/2023] [Indexed: 10/05/2023]
Abstract
Iron plays a vital role in essential biological processes and requires precise regulation within the body. Dysregulation of iron homeostasis, characterized by increased serum ferritin levels and excessive accumulation of iron in the liver, adipose tissue, and skeletal muscle, is associated with obesity and insulin resistance. Notably, iron excess in adipose tissue promotes adipose tissue dysfunction. As optimal adipose tissue function is crucial for maintaining a healthy phenotype in obesity, a comprehensive understanding of iron homeostasis in adipose tissue is imperative for designing new therapeutic approaches to improve and prevent adipose tissue dysfunction. Here, we conducted a review of relevant studies, focusing on and providing valuable insights into the intricate interplay between iron and adipose tissue. It sheds light on the impact of iron on adipogenesis and the physiology of both white and brown adipose tissue. Furthermore, we highlight the critical role of key modulators, such as cytosolic aconitase, mitochondria, and macrophages, in maintaining iron homeostasis within adipose tissue.
Collapse
Affiliation(s)
- José María Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), Girona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - José Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), Girona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Medical Sciences, University of Girona, Girona, Spain
| |
Collapse
|
2
|
Ryan E, Mulready K, Wiegerinck E, Russell J, Swinkels DW, Stewart S. NTBI levels in C282Y homozygotes after therapeutic phlebotomy. EJHAEM 2022; 3:644-652. [PMID: 36051052 PMCID: PMC9422009 DOI: 10.1002/jha2.507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 05/31/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022]
Abstract
C282Y homozygotes exposed to sustained elevated transferrin saturation (TS) may develop worsening clinical symptoms. This might be related to the appearance of non-transferrin bound iron (NTBI) when TS≥50% and labile plasma iron (LPI) when TS levels reach 75-80%. In this study, NTBI levels were examined in 219 randomly selected untreated and treated C282Y homozygotes. Overall, 161 of 219 had TS ≥ 50%, 124 of whom had detectable NTBI (≥0.47 µM, 1.81 µM [0.92-2.46 µM]) with a median serum ferritin 320 µg/L (226-442 µg/L). Ninety of 219 homozygotes had TS ≥ 75%, and all had detectable NTBI (2.21 µM [1.53-2.59 µM] with a median ferritin 338 µg/L [230-447 µg/L]). Of 125 homozygotes who last had phlebotomy ≥12 months ago (42 months [25-74 months], 92 had TS levels ≥ 50%, and 70 of these had NTBI ≥ 0.47 µM (2.06 µM [1.23-2.61µM]). Twenty-six of these 70 had a normal ferritin. Fifty-five of 125 had TS ≥ 75%, and NTBI was detected in all of these (2.32 µM [1.57-2.77 µM]) with a median ferritin 344 µg/L (255-418 µg/L). Eighteen of these 55 had a normal ferritin. In summary, NTBI is frequently found in C282Y homozygotes with TS ≥ 50%. Furthermore, C282Y homozygotes in the maintenance phase often have TS ≥ 50% together with a normal ferritin. Therefore, monitoring the TS level during the maintenance phase is recommended as an accessible clinical marker of the presence of NTBI.
Collapse
Affiliation(s)
- Eleanor Ryan
- Liver CentreMater Misericordiae University HospitalDublinIreland
| | - Keith Mulready
- Department of Biochemistry and Diagnostic EndocrinologyMater Misericordiae University HospitalDublinIreland
| | - Erwin Wiegerinck
- Laboratory of Genetic, Endocrine and Metabolic Diseases, Department of Laboratory MedicineRadboud University Medical CentreNijmegenThe Netherlands
| | - Jennifer Russell
- Liver CentreMater Misericordiae University HospitalDublinIreland
| | - Dorine W. Swinkels
- Laboratory of Genetic, Endocrine and Metabolic Diseases, Department of Laboratory MedicineRadboud University Medical CentreNijmegenThe Netherlands
| | - Stephen Stewart
- Liver CentreMater Misericordiae University HospitalDublinIreland
| |
Collapse
|
3
|
Landemaine A, Hamdi-Roze H, Cunat S, Loustaud-Ratti V, Causse X, Si Ahmed SN, Drénou B, Bureau C, Pelletier G, De Kerguenec C, Ganne-Carrie N, Durupt S, Laine F, Loréal O, Ropert M, Detivaud L, Morcet J, Aguilar-Martinez P, Deugnier YM, Bardou-Jacquet E. A simple clinical score to promote and enhance ferroportin disease screening. J Hepatol 2022; 76:568-576. [PMID: 34748893 DOI: 10.1016/j.jhep.2021.10.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/27/2021] [Accepted: 10/25/2021] [Indexed: 12/04/2022]
Abstract
BACKGROUND & AIMS Ferroportin disease is a rare genetic iron overload disorder which may be underdiagnosed, with recent data suggesting it occurs at a higher prevalence than suspected. Costs and the lack of defined criteria to prompt genetic testing preclude large-scale molecular screening. Hence, we aimed to develop a readily available scoring system to promote and enhance ferroportin disease screening. METHODS Our derivation cohort included probands tested for ferroportin disease from 2008 to 2016 in our rare disease network. Data were prospectively recorded. Univariate and multivariate logistic regression were used to determine significant criteria, and odds ratios were used to build a weighted score. A cut-off value was defined using a ROC curve with a predefined aim of 90% sensitivity. An independent cohort was used for cross validation. RESULTS Our derivation cohort included 1,306 patients. Mean age was 55±14 years, ferritin 1,351±1,357 μg/L, and liver iron concentration (LIC) 166±77 μmol/g. Pathogenic variants (n = 32) were identified in 71 patients. In multivariate analysis: female sex, younger age, higher ferritin, higher LIC and the absence of hypertension or diabetes were significantly associated with the diagnosis of ferroportin disease (AUROC in whole derivation cohort 0.83 [0.78-0.88]). The weighted score was based on sex, age, the presence of hypertension or diabetes, ferritin level and LIC. An AUROC of 0.83 (0.77-0.88) was obtained in the derivation cohort without missing values. Using 9.5 as a cut-off, sensitivity was 93.6 (91.7-98.3) %, specificity 49.5 (45.5-53.6) %, positive likelihood ratio 1.8 (1.6-2.0) and negative likelihood ratio 0.17 (0.04-0.37). CONCLUSION We describe a readily available score with simple criteria and good diagnostic performance that could be used to screen patients for ferroportin disease in routine clinical practice. LAY SUMMARY Increased iron burden associated with metabolic syndrome is a very common condition. Ferroportin disease is a dominant genetic iron overload disorder whose prevalence is higher than initially thought. They can be difficult to distinguish from each other, but the limited availability of genetic testing and the lack of definitive guidelines prevent adequate screening. We herein describe a simple and definitive clinical score to help clinicians decide whether to perform genetic testing.
Collapse
Affiliation(s)
- Amandine Landemaine
- Univ Rennes, CHU Rennes, INSERM CIC1414, F-35000, Rennes, France; National Reference Center for Hemochromatosis and iron metabolism disorder, CHU Rennes, F-35000, Rennes, France.
| | - Houda Hamdi-Roze
- Univ Rennes, CHU Rennes, INSERM CIC1414, F-35000, Rennes, France; National Reference Center for Hemochromatosis and iron metabolism disorder, CHU Rennes, F-35000, Rennes, France
| | - Séverine Cunat
- CHU Montpellier, Competence Center for Hemochromatosis and Iron Metabolism Disorder, Reference Center on Rare Red Cell Disorders, Montpellier, France
| | | | - Xavier Causse
- Department of Hepatology and Gastroenterology, Centre Hospitalier Régional (CHR), Orléans, France
| | - Si Nafa Si Ahmed
- Department of Hepatology and Gastroenterology, Centre Hospitalier Régional (CHR), Orléans, France
| | - Bernard Drénou
- CH Emile Muller, Department of Hematology, F-68100 Mulhouse, France
| | - Christophe Bureau
- CHU Toulouse, Liver Unit, University Hospital of Toulouse and University Paul Sabatier, Toulouse, France
| | - Gilles Pelletier
- AH-HP, Hôpital Paul Brousse, Centre Hépato-Biliaire, Villejuif, France
| | | | - Nathalie Ganne-Carrie
- AP-HP Hopitaux Universitaire Paris Saine Saint-Denis, APHP, Liver Unit, University Paris 13, Sorbonne Paris Cité; INSE RM, S1138 FunGeST F-75006, Paris, France
| | - Stéphane Durupt
- Department of Internal and Vascular Medicine, Hôpital Lyon Sud, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Fabrice Laine
- Univ Rennes, CHU Rennes, INSERM CIC1414, F-35000, Rennes, France; National Reference Center for Hemochromatosis and iron metabolism disorder, CHU Rennes, F-35000, Rennes, France
| | - Olivier Loréal
- National Reference Center for Hemochromatosis and iron metabolism disorder, CHU Rennes, F-35000, Rennes, France; INSERM, Univ Rennes, CHU Rennes, UMR1241, Institut NuMeCan, Rennes, France
| | - Martine Ropert
- Univ Rennes, CHU Rennes, INSERM CIC1414, F-35000, Rennes, France; National Reference Center for Hemochromatosis and iron metabolism disorder, CHU Rennes, F-35000, Rennes, France
| | - Lenaick Detivaud
- Univ Rennes, CHU Rennes, INSERM CIC1414, F-35000, Rennes, France; National Reference Center for Hemochromatosis and iron metabolism disorder, CHU Rennes, F-35000, Rennes, France
| | - Jeff Morcet
- Univ Rennes, CHU Rennes, INSERM CIC1414, F-35000, Rennes, France
| | - Patricia Aguilar-Martinez
- CHU Montpellier, Competence Center for Hemochromatosis and Iron Metabolism Disorder, Reference Center on Rare Red Cell Disorders, Montpellier, France
| | - Yves M Deugnier
- Univ Rennes, CHU Rennes, INSERM CIC1414, F-35000, Rennes, France; National Reference Center for Hemochromatosis and iron metabolism disorder, CHU Rennes, F-35000, Rennes, France
| | - Edouard Bardou-Jacquet
- Univ Rennes, CHU Rennes, INSERM CIC1414, F-35000, Rennes, France; National Reference Center for Hemochromatosis and iron metabolism disorder, CHU Rennes, F-35000, Rennes, France; INSERM, Univ Rennes, CHU Rennes, UMR1241, Institut NuMeCan, Rennes, France
| |
Collapse
|
4
|
Reduced phenotypic expression in genetic hemochromatosis with time: Role of exposure to non-genetic modifiers. J Hepatol 2019; 70:118-125. [PMID: 30244162 DOI: 10.1016/j.jhep.2018.09.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/24/2018] [Accepted: 09/04/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND & AIMS Genetic hemochromatosis is mainly related to the homozygous p.Cys282Tyr (C282Y) mutation in the HFE gene, which causes hepcidin deficiency. Its low penetrance suggests the involvement of cofactors that modulate its expression. We aimed to describe the evolution of disease presentation and of non-genetic factors liable to impact hepcidin production in the long term. METHODS Clinical symptoms, markers of iron load, and risk factors according to the year of diagnosis were recorded over 30 years in a cohort of adult C282Y homozygotes. A total of 2,050 patients (1,460 probands [804 males and 656 females] and 542 relatives [244 males and 346 females]) were studied. RESULTS Over time: (i) the proband-to-relative ratio remained roughly stable; (ii) the gender ratio tended towards equilibrium among probands; (iii) age at diagnosis did not change among males and increased among females; (iv) the frequency of diabetes and hepatic fibrosis steadily decreased while that of chronic fatigue and distal joint symptoms remained stable; (v) transferrin saturation, serum ferritin and the amount of iron removed decreased; and (vi) the prevalence of excessive alcohol consumption decreased while that of patients who were overweight increased. Tobacco smoking was associated with increased transferrin saturation. CONCLUSION Genetic testing did not alter the age at diagnosis, which contrasts with the dramatic decrease in iron load in both genders. Tobacco smoking could be involved in the extent of iron loading. Besides HFE testing, which enables the diagnosis of minor forms of the disease, the reduction of alcohol consumption and the increased frequency of overweight patients may have played a role in the decreased long-term iron load, as these factors are likely to improve hepcidin production. LAY SUMMARY Genetic hemochromatosis is an inherited disorder that leads to progressive iron overload in the body. It results in chronic fatigue and in potential liver (cirrhosis), pancreas (diabetes) and joint (arthritis) damage in adulthood. The present study showed that tobacco smoking may aggravate iron loading, but that hemochromatosis has become less and less severe over the last 30 years despite patients being older at diagnosis, likely because of the protective effects of lower alcohol consumption and of increased weight in the French population.
Collapse
|
5
|
Scotet V, Saliou P, Uguen M, L'Hostis C, Merour MC, Triponey C, Chanu B, Nousbaum JB, Le Gac G, Ferec C. Do pregnancies reduce iron overload in HFE hemochromatosis women? results from an observational prospective study. BMC Pregnancy Childbirth 2018; 18:53. [PMID: 29454332 PMCID: PMC5816504 DOI: 10.1186/s12884-018-1684-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 02/06/2018] [Indexed: 12/17/2022] Open
Abstract
Background HFE hemochromatosis is an inborn error of iron metabolism linked to a defect in the regulation of hepcidin synthesis. This autosomal recessive disease typically manifests later in women than men. Although it is commonly stated that pregnancy is, with menses, one of the factors that offsets iron accumulation in women, no epidemiological study has yet supported this hypothesis. The aim of our study was to evaluate the influence of pregnancy on expression of the predominant HFE p.[Cys282Tyr];[Cys282Tyr] genotype. Methods One hundred and forty p.Cys282Tyr homozygous women enrolled in a phlebotomy program between 2004 and 2011 at a blood centre in western Brittany (France) were included in the study. After checking whether the disease expression was delayed in women than in men in our study, the association between pregnancy and iron overload was assessed using multivariable regression analysis. Results Our study confirms that women with HFE hemochromatosis were diagnosed later than men cared for during the same period (52.6 vs. 47.4 y., P < 0.001). Compared to no pregnancy, having at least one pregnancy was not associated with lower iron markers. In contrast, the amount of iron removed by phlebotomies appeared significantly higher in women who had at least one pregnancy (eβ = 1.50, P = 0.047). This relationship disappeared after adjustment for confounding factors (eβ = 1.35, P = 0.088). Conclusions Our study shows that pregnancy status has no impact on iron markers level, and is not in favour of pregnancy being a protective factor in progressive iron accumulation. Our results are consistent with recent experimental data suggesting that the difference in disease expression observed between men and women may be explained by other factors such as hormones.
Collapse
Affiliation(s)
- Virginie Scotet
- UMR1078 "Génétique, Génomique Fonctionnelle et Biotechnologies", Inserm, EFS, Université de Brest, ISBAM, 22 avenue Camille Desmoulins, 29200, Brest, France.
| | - Philippe Saliou
- UMR1078 "Génétique, Génomique Fonctionnelle et Biotechnologies", Inserm, EFS, Université de Brest, ISBAM, 22 avenue Camille Desmoulins, 29200, Brest, France.,Laboratoire d'Hygiene et de Sante Publique, Hopital Morvan, Brest, France
| | - Marianne Uguen
- UMR1078 "Génétique, Génomique Fonctionnelle et Biotechnologies", Inserm, EFS, Université de Brest, ISBAM, 22 avenue Camille Desmoulins, 29200, Brest, France
| | - Carine L'Hostis
- UMR1078 "Génétique, Génomique Fonctionnelle et Biotechnologies", Inserm, EFS, Université de Brest, ISBAM, 22 avenue Camille Desmoulins, 29200, Brest, France
| | | | - Céline Triponey
- Etablissement Français du Sang - Bretagne, Site de Brest, Brest, France
| | - Brigitte Chanu
- Etablissement Français du Sang - Bretagne, Site de Brest, Brest, France
| | - Jean-Baptiste Nousbaum
- UMR1078 "Génétique, Génomique Fonctionnelle et Biotechnologies", Inserm, EFS, Université de Brest, ISBAM, 22 avenue Camille Desmoulins, 29200, Brest, France.,Service d'Hepato-Gastroenterologie, Hopital La Cavale Blanche, Brest, France
| | - Gerald Le Gac
- UMR1078 "Génétique, Génomique Fonctionnelle et Biotechnologies", Inserm, EFS, Université de Brest, ISBAM, 22 avenue Camille Desmoulins, 29200, Brest, France.,Laboratoire de Genetique Moleculaire et d'Histocompatibilite, Hopital Morvan, Brest, France
| | - Claude Ferec
- UMR1078 "Génétique, Génomique Fonctionnelle et Biotechnologies", Inserm, EFS, Université de Brest, ISBAM, 22 avenue Camille Desmoulins, 29200, Brest, France.,Etablissement Français du Sang - Bretagne, Site de Brest, Brest, France.,Laboratoire de Genetique Moleculaire et d'Histocompatibilite, Hopital Morvan, Brest, France
| |
Collapse
|
6
|
Brissot P, Cavey T, Ropert M, Gaboriau F, Loréal O. Hemochromatosis: a model of metal-related human toxicosis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:2007-2013. [PMID: 27628916 DOI: 10.1007/s11356-016-7576-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 09/01/2016] [Indexed: 06/06/2023]
Abstract
Many environmental agents, such as excessive alcohol intake, xenobiotics, and virus, are able to damage the human body, targeting especially the liver. Metal excess may also assault the liver. Thus, chronic iron overload may cause, especially when associated with cofactors, diffuse organ damage that is a source of significant morbidity and mortality. Iron excess can be either of acquired (mostly transfusional) or of genetic origin. Hemochromatosis is the archetype of genetic iron overload diseases and represents a serious health problem. A better understanding of iron metabolism has deeply modified the hemochromatosis field which today benefits from much more efficient diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Pierre Brissot
- Hepatology, Faculty of Medicine, University of Rennes1, 2, avenue Pr. Léon BERNARD, 35043, Rennes, France.
- Department of Biochemistry, Pontchaillou University Hospital, Rennes, France.
- Inserm-UMR 991, University of Rennes1, Rennes, France.
| | - Thibault Cavey
- Department of Biochemistry, Pontchaillou University Hospital, Rennes, France
- Inserm-UMR 991, University of Rennes1, Rennes, France
| | - Martine Ropert
- Department of Biochemistry, Pontchaillou University Hospital, Rennes, France
- Inserm-UMR 991, University of Rennes1, Rennes, France
| | | | | |
Collapse
|
7
|
Brissot P, Cavey T, Ropert M, Guggenbuhl P, Loréal O. Genetic hemochromatosis: Pathophysiology, diagnostic and therapeutic management. Presse Med 2017; 46:e288-e295. [PMID: 29158016 DOI: 10.1016/j.lpm.2017.05.037] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 05/18/2017] [Indexed: 12/15/2022] Open
Abstract
The term hemochromatosis (HC) corresponds to several diseases characterized by systemic iron overload of genetic origin and affecting both the quality of life and life expectancy. Major improvement in the knowledge of iron metabolism permits to divide these diseases into two main pathophysiological categories. For most HC forms (types 1, 2, 3 and 4B HC) iron overload is related to cellular hepcidin deprivation which causes an increase of plasma iron concentration and the appearance of plasma non-transferrin bound iron. In contrast, iron excess in type 4A ferroportin disease is related to decreased cellular iron export. Whatever the HC type, the diagnosis rests on a non-invasive strategy, combining clinical, biological and imaging data. The mainstay of the treatment remains venesection therapy with the perspective of hepcidin supplementation for hepcidin deprivation-related HC. Prevention of HC is critical at the family level and, for type 1 HC, remains a major goal, although still debated, at the population level.
Collapse
Affiliation(s)
- Pierre Brissot
- University of Rennes 1, Hepatology, Faculty of Medicine, 2, avenue du Pr. Léon-Bernard, 35000 Rennes, France; Inserm-UMR 991, 2, rue Henri-Le-Guilloux, 35033 Rennes, France.
| | - Thibault Cavey
- Inserm-UMR 991, 2, rue Henri-Le-Guilloux, 35033 Rennes, France; CHU Rennes, Department of Specialized Biochemistry, 2, rue Henri-Le-Guilloux, 35033 Rennes, France
| | - Martine Ropert
- Inserm-UMR 991, 2, rue Henri-Le-Guilloux, 35033 Rennes, France; CHU Rennes, Department of Specialized Biochemistry, 2, rue Henri-Le-Guilloux, 35033 Rennes, France
| | - Pascal Guggenbuhl
- Inserm-UMR 991, 2, rue Henri-Le-Guilloux, 35033 Rennes, France; CHU Rennes, Department of Rheumatology, 2, rue Henri-Le-Guilloux, Rennes, France
| | - Olivier Loréal
- Inserm-UMR 991, 2, rue Henri-Le-Guilloux, 35033 Rennes, France
| |
Collapse
|
8
|
Bardou-Jacquet E, Lainé F, Guggenbuhl P, Morcet J, Jézéquel C, Guyader D, Moirand R, Deugnier Y. Worse Outcomes of Patients With HFE Hemochromatosis With Persistent Increases in Transferrin Saturation During Maintenance Therapy. Clin Gastroenterol Hepatol 2017; 15:1620-1627. [PMID: 28111337 DOI: 10.1016/j.cgh.2016.12.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 12/19/2016] [Accepted: 12/19/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Even if patients with hemochromatosis maintain low serum levels of ferritin, they still have an increased risk of general and joint symptoms, which reduce quality of life. This could be related to persistently increased transferrin saturation. We assessed whether duration of exposure to increased transferrin saturation during maintenance therapy is associated with more severe general and joint symptoms. METHODS We performed a longitudinal cohort study of 266 individuals homozygous for the C282Y substitution in HFE, seen at a tertiary reference center in Rennes, France, and followed for 3 or more years after initial iron removal. Serum ferritin and transferrin saturation were measured at the same time points; values were used to calculate duration of exposure to serum ferritin 50 μg/L or more (FRT50exp) and to determine transferrin saturation 50% or greater (SAT50exp). Clinical and biochemical follow-up data were recorded from log books completed during maintenance therapy. The primary outcome was change in general and joint symptoms, determined from answers to a self-administered questionnaire. RESULTS Patients were followed for 13.5 ± 5.9 years. FRT50exp (3.2 ± 3.5 years) and SAT50exp (4.5 ± 3.4 years) values correlated (r = 0.38; P < .0001), but each associated with different variables in multivariate analysis. We found independent associations, regardless of follow-up time, between SAT50exp ≥6 years and worsened joint symptoms (odds ratio [OR], 4.19; 95% confidence interval [CI], 1.88-9.31), and between SAT50exp ≥6 years and decreased athletic ability (OR, 2.35; 95% CI, 1.16-4.73). SAT50exp ≥8 years associated independently with decreased work ability (OR, 3.20; 95% CI, 1.40-7.30) and decreased libido (OR, 3.49; 95% CI, 1.56-7.80). CONCLUSIONS In a longitudinal study of patients treated for hemochromatosis, we associated duration of exposure to increased transferrin saturation (longer than 6 years) with more severe general and joint symptoms. Maintenance of serum levels of ferritin at 50 μg/L or less does not indicate control of transferrin saturation, so guidelines on the management of hemochromatosis require revision.
Collapse
Affiliation(s)
- Edouard Bardou-Jacquet
- CHU Rennes, Service des Maladies du Foie and Centre National de Référence des Surcharges en Fer Rares, Rennes, France; INSERM, CIC 1414, Rennes, France; University of Rennes 1, Faculty of Medicine, Rennes, France.
| | - Fabrice Lainé
- CHU Rennes, Service des Maladies du Foie and Centre National de Référence des Surcharges en Fer Rares, Rennes, France; INSERM, CIC 1414, Rennes, France
| | - Pascal Guggenbuhl
- University of Rennes 1, Faculty of Medicine, Rennes, France; CHU Rennes, Service de Rhumatologie, Rennes, France; INSERM UMR 991, Rennes, France
| | | | - Caroline Jézéquel
- CHU Rennes, Service des Maladies du Foie and Centre National de Référence des Surcharges en Fer Rares, Rennes, France; INSERM, CIC 1414, Rennes, France
| | - Dominique Guyader
- CHU Rennes, Service des Maladies du Foie and Centre National de Référence des Surcharges en Fer Rares, Rennes, France; University of Rennes 1, Faculty of Medicine, Rennes, France
| | - Romain Moirand
- CHU Rennes, Service des Maladies du Foie and Centre National de Référence des Surcharges en Fer Rares, Rennes, France; University of Rennes 1, Faculty of Medicine, Rennes, France
| | - Yves Deugnier
- CHU Rennes, Service des Maladies du Foie and Centre National de Référence des Surcharges en Fer Rares, Rennes, France; INSERM, CIC 1414, Rennes, France; University of Rennes 1, Faculty of Medicine, Rennes, France
| |
Collapse
|
9
|
Rombout-Sestrienkova E, van Kraaij MGJ, Koek GH. How we manage patients with hereditary haemochromatosis. Br J Haematol 2016; 175:759-770. [PMID: 27723100 DOI: 10.1111/bjh.14376] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A number of disorders cause iron overload: some are of genetic origin, such as hereditary haemochromatosis, while others are acquired, for instance due to repeated transfusions. This article reviews the treatment options for hereditary haemochromatosis, with special attention to the use of erythrocytapheresis. In general, therapy is based on the removal of excess body iron, for which ferritin levels are used to monitor the effectiveness of treatment. For many decades phlebotomy has been widely accepted as the standard treatment. Recent publications suggest that erythrocytapheresis, as a more individualized treatment, can provide a good balance between effectiveness, tolerability and costs. Other treatments like oral chelators and proton pomp inhibitors, which are used in selected patients, create the possibility to further individualize treatment of hereditary haemochromatosis. In the future, hepcidin-targeted therapy could provide a more fundamental approach to treatment.
Collapse
Affiliation(s)
- Eva Rombout-Sestrienkova
- Division of Gastroenterology & Hepatology, Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands.,Department of Transfusion Medicine, Sanquin Blood Supply, Amsterdam, the Netherlands
| | - Marian G J van Kraaij
- Department of Transfusion Medicine, Sanquin Blood Supply, Amsterdam, the Netherlands
| | - Ger H Koek
- Division of Gastroenterology & Hepatology, Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands
| |
Collapse
|
10
|
Iron metabolism and related genetic diseases: A cleared land, keeping mysteries. J Hepatol 2016; 64:505-515. [PMID: 26596411 DOI: 10.1016/j.jhep.2015.11.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/06/2015] [Accepted: 11/09/2015] [Indexed: 12/14/2022]
Abstract
Body iron has a very close relationship with the liver. Physiologically, the liver synthesizes transferrin, in charge of blood iron transport; ceruloplasmin, acting through its ferroxidase activity; and hepcidin, the master regulator of systemic iron. It also stores iron inside ferritin and serves as an iron reservoir, both protecting the cell from free iron toxicity and ensuring iron delivery to the body whenever needed. The liver is first in line for receiving iron from the gut and the spleen, and is, therefore, highly exposed to iron overload when plasma iron is in excess, especially through its high affinity for plasma non-transferrin bound iron. The liver is strongly involved when iron excess is related either to hepcidin deficiency, as in HFE, hemojuvelin, hepcidin, and transferrin receptor 2 related haemochromatosis, or to hepcidin resistance, as in type B ferroportin disease. It is less involved in the usual (type A) form of ferroportin disease which targets primarily the macrophagic system. Hereditary aceruloplasminemia raises important pathophysiological issues in light of its peculiar organ iron distribution.
Collapse
|
11
|
Ryan E, Ryan JD, Russell J, Coughlan B, Tjalsma H, Swinkels DW, Stewart S, Crowe JP. Correlates of hepcidin and NTBI according to HFE status in patients referred to a liver centre. Acta Haematol 2014; 133:155-61. [PMID: 25277871 DOI: 10.1159/000363490] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 05/08/2014] [Indexed: 12/21/2022]
Abstract
BACKGROUND/AIMS Innately low hepcidin levels lead to iron overload in HFE-associated hereditary haemochromatosis. METHODS This study compared hepcidin and non-transferrin bound iron (NTBI) levels in untreated iron-loaded and non-iron-loaded C282Y homozygotes to levels in C282Y/H63D compound heterozygotes and individuals with other HFE genotypes associated with less risk of iron overload. RESULTS As the genotypic risk for iron overload increased, transferrin saturation and serum NTBI levels increased while serum hepcidin levels decreased. Overweight and obese male C282Y homozygotes had significantly higher hepcidin levels than male C282Y homozygotes with a normal BMI. Pearson product-moment analysis showed that serum hepcidin levels significantly correlated with HFE status, serum ferritin, age, NTBI, transferrin saturation, gender and BMI. Subsequent multiple regression analysis showed that HFE status and serum ferritin were significant independent correlates of serum hepcidin levels. CONCLUSIONS In summary, this study has shown that while serum ferritin and HFE status are the most important determinants of hepcidin levels, factors such age, gender, BMI, transferrin saturation and NTBI all interact closely in the matrix of homeostatic iron balance.
Collapse
Affiliation(s)
- Eleanor Ryan
- Liver Centre, Mater Misericordiae University Hospital, Dublin, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Loréal O, Cavey T, Bardou-Jacquet E, Guggenbuhl P, Ropert M, Brissot P. Iron, hepcidin, and the metal connection. Front Pharmacol 2014; 5:128. [PMID: 24926268 PMCID: PMC4045255 DOI: 10.3389/fphar.2014.00128] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 05/13/2014] [Indexed: 12/20/2022] Open
Abstract
Identification of new players in iron metabolism, such as hepcidin, which regulates ferroportin and divalent metal transporter 1 expression, has improved our knowledge of iron metabolism and iron-related diseases. However, from both experimental data and clinical findings, "iron-related proteins" appear to also be involved in the metabolism of other metals, especially divalent cations. Reports have demonstrated that some metals may affect, directly or indirectly, the expression of proteins involved in iron metabolism. Throughout their lives, individuals are exposed to various metals during personal and/or occupational activities. Therefore, better knowledge of the connections between iron and other metals could improve our understanding of iron-related diseases, especially the variability in phenotypic expression, as well as a variety of diseases in which iron metabolism is secondarily affected. Controlling the metabolism of other metals could represent a promising innovative therapeutic approach.
Collapse
Affiliation(s)
- Olivier Loréal
- INSERM UMR 991, Iron and the Liver Team Rennes, France ; Faculty of Medicine, University of Rennes1 Rennes, France ; CHU Pontchaillou, French Reference Centre for Rare Iron Overload Diseases of Genetic Origin, University Hospital-Rennes Rennes, France
| | - Thibault Cavey
- INSERM UMR 991, Iron and the Liver Team Rennes, France ; Faculty of Medicine, University of Rennes1 Rennes, France ; Biochemistry and Enzymology Laboratory, Centre Hospitalier Universitaire Rennes, France
| | - Edouard Bardou-Jacquet
- INSERM UMR 991, Iron and the Liver Team Rennes, France ; Faculty of Medicine, University of Rennes1 Rennes, France ; CHU Pontchaillou, French Reference Centre for Rare Iron Overload Diseases of Genetic Origin, University Hospital-Rennes Rennes, France
| | - Pascal Guggenbuhl
- INSERM UMR 991, Iron and the Liver Team Rennes, France ; Faculty of Medicine, University of Rennes1 Rennes, France ; Department of Rheumatology, Centre Hospitalier Universitaire Rennes, France
| | - Martine Ropert
- INSERM UMR 991, Iron and the Liver Team Rennes, France ; CHU Pontchaillou, French Reference Centre for Rare Iron Overload Diseases of Genetic Origin, University Hospital-Rennes Rennes, France ; Biochemistry and Enzymology Laboratory, Centre Hospitalier Universitaire Rennes, France
| | - Pierre Brissot
- INSERM UMR 991, Iron and the Liver Team Rennes, France ; Faculty of Medicine, University of Rennes1 Rennes, France ; CHU Pontchaillou, French Reference Centre for Rare Iron Overload Diseases of Genetic Origin, University Hospital-Rennes Rennes, France
| |
Collapse
|
13
|
Abstract
The management and understanding of hereditary hemochromatosis have evolved with recent advances in iron biology and the associated discovery of numerous genes involved in iron metabolism. HFE-related (type 1) hemochromatosis remains the most frequent form, characterized by C282Y mutation homozygosity. Rare forms of hereditary hemochromatosis include type 2 (A and B, juvenile hemochromatosis caused by HJV and HAMP mutation), type 3 (related to TFR2 mutation), and type 4 (A and B, ferroportin disease). The diagnostic evaluation relies on comprehension of the involved pathophysiologic defect, and careful characterization of the phenotype, which gives clues to guide appropriate genetic testing.
Collapse
|
14
|
Bardou-Jacquet E, Ben Ali Z, Beaumont-Epinette MP, Loreal O, Jouanolle AM, Brissot P. Non-HFE hemochromatosis: pathophysiological and diagnostic aspects. Clin Res Hepatol Gastroenterol 2014; 38:143-54. [PMID: 24321703 DOI: 10.1016/j.clinre.2013.11.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 11/04/2013] [Accepted: 11/13/2013] [Indexed: 02/04/2023]
Abstract
Rare genetic iron overload diseases are an evolving field due to major advances in genetics and molecular biology. Genetic iron overload has long been confined to the classical type 1 hemochromatosis related to the HFE C282Y mutation. Breakthroughs in the understanding of iron metabolism biology and molecular mechanisms led to the discovery of new genes and subsequently, new types of hemochromatosis. To date, four types of hemochromatosis have been identified: HFE-related or type1 hemochromatosis, the most frequent form in Caucasians, and four rare types, named type 2 (A and B) hemochromatosis (juvenile hemochromatosis due to hemojuvelin and hepcidin mutation), type 3 hemochromatosis (related to transferrin receptor 2 mutation), and type 4 (A and B) hemochromatosis (ferroportin disease). The diagnosis relies on the comprehension of the involved physiological defect that can now be explored by biological and imaging tools, which allow non-invasive assessment of iron metabolism. A multidisciplinary approach is essential to support the physicians in the diagnosis and management of those rare diseases.
Collapse
Affiliation(s)
- Edouard Bardou-Jacquet
- University Hospital of Rennes, French reference center for rare iron overload diseases of genetic origin, Rennes, France; University of Rennes1, Inserm UMR 991, 35000 Rennes, France; University Hospital of Rennes, Liver disease department, Rennes, France.
| | - Zeineb Ben Ali
- University Hospital of Rennes, French reference center for rare iron overload diseases of genetic origin, Rennes, France; University Hospital of Rennes, Liver disease department, Rennes, France
| | - Marie-Pascale Beaumont-Epinette
- University Hospital of Rennes, French reference center for rare iron overload diseases of genetic origin, Rennes, France; University Hospital of Rennes, Molecular Genetics Department, Rennes, France
| | - Olivier Loreal
- University Hospital of Rennes, French reference center for rare iron overload diseases of genetic origin, Rennes, France; University of Rennes1, Inserm UMR 991, 35000 Rennes, France
| | - Anne-Marie Jouanolle
- University Hospital of Rennes, French reference center for rare iron overload diseases of genetic origin, Rennes, France; University Hospital of Rennes, Molecular Genetics Department, Rennes, France
| | - Pierre Brissot
- University Hospital of Rennes, French reference center for rare iron overload diseases of genetic origin, Rennes, France; University of Rennes1, Inserm UMR 991, 35000 Rennes, France; University Hospital of Rennes, Liver disease department, Rennes, France
| |
Collapse
|