1
|
Bu W, Sun X, Xue X, Geng S, Yang T, Zhang J, Li Y, Feng C, Liu Q, Zhang X, Li P, Liu Z, Shi Y, Shao C. Early onset of pathological polyploidization and cellular senescence in hepatocytes lacking RAD51 creates a pro-fibrotic and pro-tumorigenic inflammatory microenvironment. Hepatology 2025; 81:491-508. [PMID: 38466833 PMCID: PMC11737125 DOI: 10.1097/hep.0000000000000821] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 02/06/2024] [Indexed: 03/13/2024]
Abstract
BACKGROUND AND AIMS RAD51 recombinase (RAD51) is a highly conserved DNA repair protein and is indispensable for embryonic viability. As a result, the role of RAD51 in liver development and function is unknown. Our aim was to characterize the function of RAD51 in postnatal liver development. APPROACH AND RESULTS RAD51 is highly expressed during liver development and during regeneration following hepatectomy and hepatic injury, and is also elevated in chronic liver diseases. We generated a hepatocyte-specific Rad51 deletion mouse model using Alb -Cre ( Rad51 -conditional knockout (CKO)) and Adeno-associated virus 8-thyroxine-binding globulin-cyclization recombination enzyme to evaluate the function of RAD51 in liver development and regeneration. The phenotype in Rad51 -CKO mice is dependent on CRE dosage, with Rad51fl/fl ; Alb -Cre +/+ manifesting a more severe phenotype than the Rad51fl/fl ; Alb -Cre +/- mice. RAD51 deletion in postnatal hepatocytes results in aborted mitosis and early onset of pathological polyploidization that is associated with oxidative stress and cellular senescence. Remarkable liver fibrosis occurs spontaneously as early as in 3-month-old Rad51fl/fl ; Alb -Cre +/+ mice. While liver regeneration is compromised in Rad51 -CKO mice, they are more tolerant of carbon tetrachloride-induced hepatic injury and resistant to diethylnitrosamine/carbon tetrachloride-induced HCC. A chronic inflammatory microenvironment created by the senescent hepatocytes appears to activate ductular reaction the transdifferentiation of cholangiocytes to hepatocytes. The newly derived RAD51 functional immature hepatocytes proliferate vigorously, acquire increased malignancy, and eventually give rise to HCC. CONCLUSIONS Our results demonstrate a novel function of RAD51 in liver development, homeostasis, and tumorigenesis. The Rad51 -CKO mice represent a unique genetic model for premature liver senescence, fibrosis, and hepatocellular carcinogenesis.
Collapse
Affiliation(s)
- Wenqing Bu
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, Jiangsu, China
| | - Xue Sun
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, Jiangsu, China
| | - Xiaotong Xue
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, Jiangsu, China
| | - Shengmiao Geng
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, Jiangsu, China
| | - Tingting Yang
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, Jiangsu, China
| | - Jia Zhang
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, Jiangsu, China
| | - Yanan Li
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, Jiangsu, China
| | - Chao Feng
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, Jiangsu, China
| | - Qiao Liu
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiyu Zhang
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Peishan Li
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, Jiangsu, China
| | - Zhaojian Liu
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yufang Shi
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, Jiangsu, China
| | - Changshun Shao
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, Jiangsu, China
| |
Collapse
|
2
|
Han X, Jiang Z, Hou Y, Zhou X, Hu B. Myocardial ischemia-reperfusion injury upregulates nucleostemin expression via HIF-1α and c-Jun pathways and alleviates apoptosis by promoting autophagy. Cell Death Discov 2024; 10:461. [PMID: 39477962 PMCID: PMC11525682 DOI: 10.1038/s41420-024-02221-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 10/06/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024] Open
Abstract
Myocardial ischemia-reperfusion (I/R) injury, often arising from interventional therapy for acute myocardial infarction, leads to irreversible myocardial cell death. While previous studies indicate that nucleostemin (NS) is induced by myocardial I/R injury and mitigates myocardial cell apoptosis, the underlying mechanisms are poorly understood. Here, our study reveals that NS upregulation is critical for preventing cardiomyocyte death following myocardial I/R injury. Elevated NS protein levels were observed in myocardial I/R injury mouse and rat models, as well as Hypoxia/reoxygenation (H/R) cardiac cell lines (H9C2 cells). We identified binding sites for c-Jun and HIF-1α in the NS promoter region. Inhibition of JNK and HIF-1α led to a significant decrease in NS transcription and protein expression. Furthermore, inhibition of autophagy and NS expression promoted myocardial cell apoptosis in H/R. Notably, the cell model showed reduced LC3I transformation to LC3II, downregulated Beclin1, upregulated p62, and altered expression of autophagy-related proteins upon NS interference in H/R cells. These findings suggest that NS expression, driven by c-Jun and HIF-1α pathways, facilitates autophagy, providing protection against both myocardial I/R injury and H/R-induced cardiomyocyte apoptosis.
Collapse
Affiliation(s)
- Xiao Han
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University & Department of Immunology, Medical School of Nantong University, Nantong, 226001, People's Republic of China
| | - Zhicheng Jiang
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University & Department of Immunology, Medical School of Nantong University, Nantong, 226001, People's Republic of China
| | - Yufeng Hou
- Department of Immunology, Medical School of Nantong University, Nantong, 226001, People's Republic of China
| | - Xiaorong Zhou
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University & Department of Immunology, Medical School of Nantong University, Nantong, 226001, People's Republic of China.
- Department of Immunology, Medical School of Nantong University, Nantong, 226001, People's Republic of China.
| | - Baoying Hu
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University & Department of Immunology, Medical School of Nantong University, Nantong, 226001, People's Republic of China.
- Department of Immunology, Medical School of Nantong University, Nantong, 226001, People's Republic of China.
| |
Collapse
|
3
|
Liu X, Wang J, Li F, Timchenko N, Tsai RYL. Transcriptional control of a stem cell factor nucleostemin in liver regeneration and aging. PLoS One 2024; 19:e0310219. [PMID: 39259742 PMCID: PMC11389944 DOI: 10.1371/journal.pone.0310219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/27/2024] [Indexed: 09/13/2024] Open
Abstract
Nucleostemin (NS) plays a role in liver regeneration, and aging reduces its expression in the baseline and regenerating livers following 70% partial hepatectomy (PHx). Here we interrogate the mechanism controlling NS expression during liver regeneration and aging. The NS promoter was analyzed by TRANSFAC. Functional studies were performed using cell-based luciferase assay, endogenous NS expression in Hep3B cells, mouse livers with a gain-of-function mutation of C/EBPα (S193D), and mouse livers with C/EBPα knockdown. We found a CAAT box with four C/EBPα binding sites (-1216 to -735) and a GC box with consensus binding sites for c-Myc, E2F1, and p300-associated protein complex (-633 to -1). Age-related changes in NS expression correlated positively with the expression of c-Myc, E2F1, and p300, and negatively with that of C/EBPα and C/EBPβ. PHx upregulated NS expression at 1d, coinciding with an increase in E2F1 and a decrease in C/EBPα. C/EBPα bound to the consensus sequences found in the NS promoter in vitro and in vivo, inhibited its transactivational activity in a binding site-dependent manner, and decreased the expression of endogenous NS in Hep3B cells. In vivo activation of C/EBPα by the S193D mutation resulted in a 4th-day post-PHx reduction of NS, a feature shared by 16-m/o livers. Finally, C/EBPα knockdown increased its expression in aged (24-m/o) livers under both baseline and regeneration conditions. This study reports the C/EBPα suppression of NS expression in aged livers, providing a new perspective on the mechanistic orchestration of tissue homeostasis in aging.
Collapse
Affiliation(s)
- Xiaoqin Liu
- Institute of Biosciences and Technology, Texas A&M Health, Houston, TX, United States of America
- Department of Translational Medical Sciences, Texas A&M University School of Medicine, Bryan, TX, United States of America
| | - Junying Wang
- Institute of Biosciences and Technology, Texas A&M Health, Houston, TX, United States of America
| | - Fang Li
- Institute of Biosciences and Technology, Texas A&M Health, Houston, TX, United States of America
| | - Nikolai Timchenko
- Department of Surgery, Cincinnati Children Hospital Medical Center, University of Cincinnati, Cincinnati, OH, United States of America
| | - Robert Y L Tsai
- Institute of Biosciences and Technology, Texas A&M Health, Houston, TX, United States of America
- Department of Translational Medical Sciences, Texas A&M University School of Medicine, Bryan, TX, United States of America
| |
Collapse
|
4
|
Wang L, Yang X, Xie Y, Xu C, Dai X, Wang M, Liu Y. Nanoparticle-Protein Corona-Based Tissue Proteomics for the Aging Mouse Proteome Atlas. Anal Chem 2024; 96:14363-14371. [PMID: 39192740 DOI: 10.1021/acs.analchem.4c00932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Highly abundant proteins present in biological fluids and tissues significantly interfere with low-abundance protein identification by mass spectrometry (MS), limiting proteomic depth and hindering protein biomarker discovery. Herein, to enhance the coverage of tissue proteomics, we developed a nanoparticle-protein corona (NP-PC)-based method for the aging mouse proteome atlas. Based on this method, we investigated the complexity of life process of 5 major organs, including the heart, liver, spleen, lungs, and kidneys, from 4 groups of mice at different ages. Compared with the conventional strategy, NP-PC-based proteomics significantly increased the number of identified protein groups in the heart (from 3007 to 3927; increase of 30.6%), liver (from 2982 to 4610; increase of 54.6%), spleen (from 5047 to 7351; increase of 45.7%), lungs (from 4984 to 6903; increase of 38.5%), and kidneys (from 3550 to 5739; increase of 61.7%), and we identified a total of 10 104 protein groups. The overall data indicated that 3-week-old mice showed more differences compared with the other three age groups. The proteins of amino acid-related metabolism were increased in aged mice compared with those in the 3-week-old mice. Protein-related infections were increased in the spleen of the aged mice. Interestingly, the spliceosome-related pathway significantly changed from youth to elders in the liver, spleen, and lungs, indicating the vital role of the spliceosome during the aging process. Our established aging mouse organ proteome atlas provides comprehensive insights into understanding the aging process, and it may help in prevention and treatment of age-related diseases.
Collapse
Affiliation(s)
- Lichao Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Xu Yang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Yueli Xie
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Chenlu Xu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| | - Xin Dai
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Mengjie Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yuan Liu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
5
|
Tong Y, Wang F, Li S, Guo W, Li Q, Qian Y, Li L, Zhao H, Zhang Y, Gao WQ, Liu Y. Histone methyltransferase KMT5C drives liver cancer progression and directs therapeutic response to PARP inhibitors. Hepatology 2024; 80:38-54. [PMID: 37556368 DOI: 10.1097/hep.0000000000000559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 07/30/2023] [Indexed: 08/11/2023]
Abstract
BACKGROUND AND AIMS Epigenetic plasticity is a major challenge in cancer-targeted therapy. However, the molecular basis governing this process has not yet been clearly defined. Despite the considerable success of poly(ADP-ribose) polymerase inhibitors (PARPi) in cancer therapy, the limited response to PARPi, especially in HCC, has been a bottleneck in its clinical implications. Herein, we investigated the molecular basis of the histone methyltransferase KMT5C (lysine methyltransferase 5C) that governs PARPi sensitivity and explored a potential therapeutic strategy for enhancing PARPi efficacy. APPROACH AND RESULTS We identified KMT5C, a trimethyltransferase of H4K20, as a targetable epigenetic factor that promoted liver tumor growth in mouse de novo MYC/Trp53-/- and xenograft liver tumor models. Notably, induction of KMT5C by environmental stress was crucial for DNA repair and HCC cell survival. Mechanistically, KMT5C interacted with the pivotal component of homologous recombination repair, RAD51, and promoted RAD51/RAD54 complex formation, which was essential for the activation of dsDNA breaks repair. This effect depended on the methyltransferase activity of KMT5C. We further demonstrated that the function of KMT5C in promoting HCC progression was dependent on RAD51. Importantly, either a pharmacological inhibitor (A196) or genetic inhibition of KMT5C sensitized liver cancer cells to PARPi. CONCLUSIONS KMT5C played a vital role in promoting liver cancer progression by activating the DNA repair response. Our results revealed a novel therapeutic approach using the KMT5C inhibitor A196, concurrent with olaparib, as a potential HCC therapy.
Collapse
Affiliation(s)
- Yu Tong
- State Key Laboratory of Systems Medicine for Cancer, Department of Liver Surgery, Renji-Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fan Wang
- State Key Laboratory of Systems Medicine for Cancer, Department of Liver Surgery, Renji-Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Songling Li
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Wenyun Guo
- State Key Laboratory of Systems Medicine for Cancer, Department of Liver Surgery, Renji-Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qianyu Li
- State Key Laboratory of Systems Medicine for Cancer, Department of Liver Surgery, Renji-Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yifei Qian
- State Key Laboratory of Systems Medicine for Cancer, Department of Liver Surgery, Renji-Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Linfeng Li
- State Key Laboratory of Systems Medicine for Cancer, Department of Liver Surgery, Renji-Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Huifang Zhao
- State Key Laboratory of Systems Medicine for Cancer, Department of Liver Surgery, Renji-Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yonglong Zhang
- Central Laboratory, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Wei-Qiang Gao
- State Key Laboratory of Systems Medicine for Cancer, Department of Liver Surgery, Renji-Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Yanfeng Liu
- State Key Laboratory of Systems Medicine for Cancer, Department of Liver Surgery, Renji-Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai Institute of Transplantation, Shanghai, China
| |
Collapse
|
6
|
Lebdy R, Canut M, Patouillard J, Cadoret JC, Letessier A, Ammar J, Basbous J, Urbach S, Miotto B, Constantinou A, Abou Merhi R, Ribeyre C. The nucleolar protein GNL3 prevents resection of stalled replication forks. EMBO Rep 2023; 24:e57585. [PMID: 37965896 DOI: 10.15252/embr.202357585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/16/2023] Open
Abstract
Faithful DNA replication requires specific proteins that protect replication forks and so prevent the formation of DNA lesions that may damage the genome. Identification of new proteins involved in this process is essential to understand how DNA lesions accumulate in cancer cells and how they tolerate them. Here, we show that human GNL3/nucleostemin, a GTP-binding protein localized mostly in the nucleolus and highly expressed in cancer cells, prevents nuclease-dependent resection of nascent DNA in response to replication stress. We demonstrate that inhibiting origin firing reduces resection. This suggests that the heightened replication origin activation observed upon GNL3 depletion largely drives the observed DNA resection probably due to the exhaustion of the available RPA pool. We show that GNL3 and DNA replication initiation factor ORC2 interact in the nucleolus and that the concentration of GNL3 in the nucleolus is required to limit DNA resection. We propose that the control of origin firing by GNL3 through the sequestration of ORC2 in the nucleolus is critical to prevent nascent DNA resection in response to replication stress.
Collapse
Affiliation(s)
- Rana Lebdy
- Institut de Génétique Humaine (UMR9002), CNRS, Université de Montpellier, Montpellier Cedex 5, France
- Faculty of Sciences, Genomics and Surveillance Biotherapy (GSBT) Laboratory, R. Hariri Campus, Lebanese University, Hadath, Lebanon
| | - Marine Canut
- Institut de Génétique Humaine (UMR9002), CNRS, Université de Montpellier, Montpellier Cedex 5, France
| | - Julie Patouillard
- Institut de Génétique Humaine (UMR9002), CNRS, Université de Montpellier, Montpellier Cedex 5, France
| | | | - Anne Letessier
- Université Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| | - Josiane Ammar
- Institut de Génétique Humaine (UMR9002), CNRS, Université de Montpellier, Montpellier Cedex 5, France
| | - Jihane Basbous
- Institut de Génétique Humaine (UMR9002), CNRS, Université de Montpellier, Montpellier Cedex 5, France
| | - Serge Urbach
- Institut de Génomique Fonctionnelle, CNRS UMR 5203, Inserm U1191, Université de Montpellier, Montpellier Cedex 5, France
| | - Benoit Miotto
- Université Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| | - Angelos Constantinou
- Institut de Génétique Humaine (UMR9002), CNRS, Université de Montpellier, Montpellier Cedex 5, France
| | - Raghida Abou Merhi
- Faculty of Sciences, Genomics and Surveillance Biotherapy (GSBT) Laboratory, R. Hariri Campus, Lebanese University, Hadath, Lebanon
| | - Cyril Ribeyre
- Institut de Génétique Humaine (UMR9002), CNRS, Université de Montpellier, Montpellier Cedex 5, France
| |
Collapse
|
7
|
Wang J, Zhang W, Liu X, Kim M, Zhang K, Tsai RYL. Epigenome-wide analysis of aging effects on liver regeneration. BMC Biol 2023; 21:30. [PMID: 36782243 PMCID: PMC9926786 DOI: 10.1186/s12915-023-01533-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 02/01/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND Aging is known to exert an effect on liver regeneration, with the ability of liver to regenerate displaying a significant decline over time. Liver physiological parameters such as liver volume, blood flow, and metabolism, as well as the ability to regenerate after injury have all been shown to decrease at old age in humans and model systems, with a number of molecular mechanisms proposed to be involved, including DNA methylation-dependent genome remodeling. To address how changes in DNA methylation mediate the adverse aging effect on liver regeneration, we searched for differentially methylated genomic regions (DMRs) in mouse livers co-regulated by aging and regeneration and determined their associated genes and enriched pathways. RESULTS DMRs were identified using whole-genome bisulfite sequencing (WGBS). Pathway analysis of aging DMR-mapped genes revealed two distinct phases of aging, 2-to-8 and 8-to-16 months old (m/o). Regenerative DMR-mapped differentially expressed genes (DEGs) were enriched in pathways controlling cell proliferation and differentiation. Most DMRs shared by both aging and regeneration changed in the same methylation direction between 2 and 8 m/o but in the opposite direction between 8 and 16 m/o. Regenerative DMRs inversely affected by aging during 8-to-16 m/o were found in the promoter/gene regions of 12 genes. Four regenerative DEGs were synchronously regulated by early aging and inversely regulated by mid-to-late aging DMRs. Lead DMR-mapped genes were validated by their expression profiles in liver aging and regeneration. CONCLUSIONS Our study has uncovered new DMRs and gene targets inversely affected by liver aging and regeneration to explain the adverse aging effect on liver regeneration. These findings will be of fundamental importance to understand the epigenomic changes underlying the biology of aging on liver regeneration.
Collapse
Affiliation(s)
- Junying Wang
- grid.412408.bInstitute of Biosciences and Technology, Texas A&M Health Science Center, 2121 W. Holcombe Blvd, Houston, TX 77030 USA
| | - Wen Zhang
- grid.412408.bInstitute of Biosciences and Technology, Texas A&M Health Science Center, 2121 W. Holcombe Blvd, Houston, TX 77030 USA
| | - Xiaoqin Liu
- grid.412408.bInstitute of Biosciences and Technology, Texas A&M Health Science Center, 2121 W. Holcombe Blvd, Houston, TX 77030 USA
| | - Minjee Kim
- grid.412408.bInstitute of Biosciences and Technology, Texas A&M Health Science Center, 2121 W. Holcombe Blvd, Houston, TX 77030 USA
| | - Ke Zhang
- grid.412408.bInstitute of Biosciences and Technology, Texas A&M Health Science Center, 2121 W. Holcombe Blvd, Houston, TX 77030 USA ,grid.412408.bDepartment of Translational Medical Sciences, Texas A&M Health Science Center, 2121 W. Holcombe Blvd, Houston, TX 77030 USA
| | - Robert Y. L. Tsai
- grid.412408.bInstitute of Biosciences and Technology, Texas A&M Health Science Center, 2121 W. Holcombe Blvd, Houston, TX 77030 USA ,grid.412408.bDepartment of Translational Medical Sciences, Texas A&M Health Science Center, 2121 W. Holcombe Blvd, Houston, TX 77030 USA
| |
Collapse
|
8
|
Tomiyama T, Shimokawa M, Harada N, Toshida K, Morinaga A, Kosai-Fujimoto Y, Tomino T, Kurihara T, Nagao Y, Toshima T, Morita K, Itoh S, Yoshizumi T. Low syntaxin 17 expression in donor liver is associated with poor graft prognosis in recipients of living donor liver transplantation. Hepatol Res 2022; 52:872-881. [PMID: 35792062 DOI: 10.1111/hepr.13809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/12/2022] [Accepted: 06/30/2022] [Indexed: 02/08/2023]
Abstract
AIM Liver transplantation (LT) is the only curative therapy for decompensated liver cirrhosis. For recipients of living donor LT (LDLT), restoration of liver function after transplantation is highly dependent on liver regenerative capacity, which requires large amounts of intracellular energy. Mitochondrial metabolism provides a stable supply of adenosine 5'-triphosphate (ATP) for liver regeneration. Mitophagy is a selective process in which damaged, non-functional mitochondria are degraded and replaced with new functional mitochondria. We investigated the relationship between expression of Syntaxin17 (STX17), a key protein in mitophagy regulation, in donor livers and graft survival. METHODS We examined STX17 expression in grafts from 143 LDLT donors who underwent right lobe resection and investigated the relationship between STX17 expression and graft function. We investigated the correlations among STX17 expression, mitochondrial membrane potential and cell proliferation, using a STX17-knockdown hepatocyte cell line. RESULTS Recipients transplanted with low STX17-expression grafts had significantly lower graft survival rates than recipients transplanted with high STX17-expression grafts (88.9% vs. 100%, p < 0.01). Multivariate analysis showed that low STX17 expression (HR: 10.7, CI: 1.29-88.0, p < 0.05) and the absence of splenectomy (HR: 6.27, CI: 1.59-24.8, p < 0.01) were independent predictive factors for small-for-size graft syndrome, which is the severe complication in LDLT. In the vitro experiments, the percentage of depolarized damaged mitochondria was increased in the STX17-knockdown hepatocyte cell line, suggesting decreased mitophagy and ATP synthesis. Cell proliferation was significantly decreased in the STX17-knockdown hepatocyte cell line. CONCLUSION STX17 contributes to mitophagy and maintenance of mitochondrial function in hepatocytes and may be a predictor of graft dysfunction in LDLT patients.
Collapse
Affiliation(s)
- Takahiro Tomiyama
- Department of Surgery and Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masahiro Shimokawa
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Noboru Harada
- Department of Surgery and Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Katsuya Toshida
- Department of Surgery and Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akinari Morinaga
- Department of Surgery and Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yukiko Kosai-Fujimoto
- Department of Surgery and Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takahiro Tomino
- Department of Surgery and Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takeshi Kurihara
- Department of Surgery and Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Nagao
- Department of Surgery and Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takeo Toshima
- Department of Surgery and Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazutoyo Morita
- Department of Surgery and Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shinji Itoh
- Department of Surgery and Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomoharu Yoshizumi
- Department of Surgery and Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
9
|
Cela I, Cufaro MC, Fucito M, Pieragostino D, Lanuti P, Sallese M, Del Boccio P, Di Matteo A, Allocati N, De Laurenzi V, Federici L. Proteomic Investigation of the Role of Nucleostemin in Nucleophosmin-Mutated OCI-AML 3 Cell Line. Int J Mol Sci 2022; 23:ijms23147655. [PMID: 35886999 PMCID: PMC9317519 DOI: 10.3390/ijms23147655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 02/06/2023] Open
Abstract
Nucleostemin (NS; a product of the GNL3 gene) is a nucleolar–nucleoplasm shuttling GTPase whose levels are high in stem cells and rapidly decrease upon differentiation. NS levels are also high in several solid and hematological neoplasms, including acute myeloid leukaemia (AML). While a role in telomere maintenance, response to stress stimuli and favoring DNA repair has been proposed in solid cancers, little or no information is available as to the role of nucleostemin in AML. Here, we investigate this issue via a proteomics approach. We use as a model system the OCI-AML 3 cell line harboring a heterozygous mutation at the NPM1 gene, which is the most frequent driver mutation in AML (approximately 30% of total AML cases). We show that NS is highly expressed in this cell line, and, contrary to what has previously been shown in other cancers, that its presence is dispensable for cell growth and viability. However, proteomics analysis of the OCI-AML 3 cell line before and after nucleostemin (NS) silencing showed several effects on different biological functions, as highlighted by ingenuity pathway analysis (IPA). In particular, we report an effect of down-regulating DNA repair through homologous recombination, and we confirmed a higher DNA damage rate in OCI-AML 3 cells when NS is depleted, which considerably increases upon stress induced by the topoisomerase II inhibitor etoposide. The data used are available via ProteomeXchange with the identifier PXD034012.
Collapse
Affiliation(s)
- Ilaria Cela
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (I.C.); (M.F.); (D.P.); (M.S.); (N.A.); (V.D.L.)
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.C.C.); (P.L.); (P.D.B.)
| | - Maria Concetta Cufaro
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.C.C.); (P.L.); (P.D.B.)
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Maurine Fucito
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (I.C.); (M.F.); (D.P.); (M.S.); (N.A.); (V.D.L.)
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.C.C.); (P.L.); (P.D.B.)
| | - Damiana Pieragostino
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (I.C.); (M.F.); (D.P.); (M.S.); (N.A.); (V.D.L.)
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.C.C.); (P.L.); (P.D.B.)
| | - Paola Lanuti
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.C.C.); (P.L.); (P.D.B.)
- Department of Medicine and Aging Science, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Michele Sallese
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (I.C.); (M.F.); (D.P.); (M.S.); (N.A.); (V.D.L.)
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.C.C.); (P.L.); (P.D.B.)
| | - Piero Del Boccio
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.C.C.); (P.L.); (P.D.B.)
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Adele Di Matteo
- Institute of Molecular Biology and Pathology, National Research Council of Italy, P.le Aldo Moro 5, 00185 Rome, Italy;
| | - Nerino Allocati
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (I.C.); (M.F.); (D.P.); (M.S.); (N.A.); (V.D.L.)
| | - Vincenzo De Laurenzi
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (I.C.); (M.F.); (D.P.); (M.S.); (N.A.); (V.D.L.)
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.C.C.); (P.L.); (P.D.B.)
| | - Luca Federici
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (I.C.); (M.F.); (D.P.); (M.S.); (N.A.); (V.D.L.)
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.C.C.); (P.L.); (P.D.B.)
- Correspondence:
| |
Collapse
|
10
|
Li J, Xu J, Wang Y, Li Q, Sun X, Fu W, Zhang B. Association of Nucleostemin Polymorphisms with Chronic Hepatitis B Virus Infection in Chinese Han Population. Genet Test Mol Biomarkers 2022; 26:255-262. [PMID: 35638911 PMCID: PMC9150128 DOI: 10.1089/gtmb.2021.0181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: Chronic hepatitis B virus infection (CHB) is a common infectious disease that poses a global economic and health burden due to its high morbidity and mortality. Studies have demonstrated that host genetic factors play critical roles in the susceptibility and outcome of CHB. Aims: In this study, we aimed to assess the potential role of genetic variants of the nucleostemin (NS) gene with respect to CHB susceptibility. Materials and Methods: Four single nucleotide polymorphisms (SNPs) in the NS gene were genotyped in 446 patients with CHB and 399 healthy controls all of Chinese Han origin using the polymerase chain reaction-ligation detection reaction method. Results: The results showed that the three SNPs, rs3733039, rs1866268, and rs11177, were significantly associated with CHB. After a Bonferroni correction, the positive association of the rs3733039 SNP with CHB remained significant. Further analyses based on gender demonstrated that these SNPs are associated with CHB in both the female and male subgroups. After correction for multiple comparisons, all three SNPs in the female group were associated with CHB, whereas only the rs1866268 SNP in the male group was associated with CHB. Haplotype analysis showed that the C-C-G and T-T-T haplotypes in the block consisting of rs3733039-rs1866268-rs11177 were significantly associated with CHB. Conclusion: Our study demonstrated a genetic association between SNPs in the NS gene and the risk of CHB in the Chinese Han population for the first time. Thus, variations in the NS gene might serve as potential genetic biomarkers of CHB.
Collapse
Affiliation(s)
- Jixia Li
- Department of Clinical Laboratory, Yantaishan Hospital, Yantai, China
| | - Jinya Xu
- Department of Clinical Laboratory, Yantai Qishan Hospital, Yantai, China
| | - Yangui Wang
- Department of Clinical Laboratory, Yantaishan Hospital, Yantai, China
| | - Qin Li
- Department of Clinical Laboratory, Yantai Yuhuangding Hospital, Yantai, China
| | - Xilian Sun
- Department of Nursing, Yantaishan Hospital, Yantai, China
| | - Wen Fu
- Department of Clinical Laboratory, Yantaishan Hospital, Yantai, China
| | - Bo Zhang
- Department of Gastroenterology, Yantai Yuhuangding Hospital, Yantai, China
| |
Collapse
|
11
|
On the Cutting Edge of Oral Cancer Prevention: Finding Risk-Predictive Markers in Precancerous Lesions by Longitudinal Studies. Cells 2022; 11:cells11061033. [PMID: 35326482 PMCID: PMC8947091 DOI: 10.3390/cells11061033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/11/2022] [Accepted: 03/13/2022] [Indexed: 02/06/2023] Open
Abstract
Early identification and management of precancerous lesions at high risk of developing cancers is the most effective and economical way to reduce the incidence, mortality, and morbidity of cancers as well as minimizing treatment-related complications, including pain, impaired functions, and disfiguration. Reliable cancer-risk-predictive markers play an important role in enabling evidence-based decision making as well as providing mechanistic insight into the malignant conversion of precancerous lesions. The focus of this article is to review updates on markers that may predict the risk of oral premalignant lesions (OPLs) in developing into oral squamous cell carcinomas (OSCCs), which can logically be discovered only by prospective or retrospective longitudinal studies that analyze pre-progression OPL samples with long-term follow-up outcomes. These risk-predictive markers are different from those that prognosticate the survival outcome of cancers after they have been diagnosed and treated, or those that differentiate between different lesion types and stages. Up-to-date knowledge on cancer-risk-predictive markers discovered by longitudinally followed studies will be reviewed. The goal of this endeavor is to use this information as a starting point to address some key challenges limiting our progress in this area in the hope of achieving effective translation of research discoveries into new clinical interventions.
Collapse
|
12
|
Crawford M, Liu X, Cheng YSL, Tsai RY. Nucleostemin upregulation and STAT3 activation as early events in oral epithelial dysplasia progression to squamous cell carcinoma. Neoplasia 2021; 23:1289-1299. [PMID: 34785448 PMCID: PMC8605099 DOI: 10.1016/j.neo.2021.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/27/2021] [Accepted: 11/01/2021] [Indexed: 11/29/2022] Open
Abstract
Most low-grade oral epithelial dysplasia remains static or regress, but a significant minority of them (4-11%) advances to oral squamous cell carcinoma (OSCC) within a few years. To monitor the progression of epithelial dysplasia for early cancer detection, we investigated the expression profiles of nucleostemin (NS) and phospho-STAT3 (p-STAT3) in rodent and human samples of dysplasia and OSCCs. In a 4NQO-induced rat oral carcinogenesis model, the number and distribution of NS and p-STAT3-positive cells increased in hyperplastic, dysplastic, and neoplastic lesions compared to normal epithelium. In human samples, the NS signal significantly increased in high-grade dysplasia and poorly differentiated OSCC, whereas p-STAT3 was more ubiquitously expressed than NS and showed increased intensity in high-grade dysplasia and both well and poorly differentiated OSCC. Analyses of human dysplastic samples with longitudinally followed outcomes revealed that cells with prominent nucleolar NS signals were more abundant in low-grade dysplasia that advanced to OSCC in 2 or 3 years than those remaining static for 7-14 years. These results suggest that NS upregulation and STAT3 activation are early events in the progression of low-grade dysplasia to OSCC.
Collapse
Affiliation(s)
- Madeleine Crawford
- Institute of Biosciences and Technology, Texas A&M Health Science Center, 2121 W Holcombe Blvd, Rm 517, Houston, Texas 77030, USA
| | - Xiaoqin Liu
- Institute of Biosciences and Technology, Texas A&M Health Science Center, 2121 W Holcombe Blvd, Rm 517, Houston, Texas 77030, USA
| | - Yi-Shing L Cheng
- Department of Diagnostic Sciences, Texas A&M University College of Dentistry, 3302 Gaston Ave, Dallas, Texas 75246, USA.
| | - Robert Yl Tsai
- Institute of Biosciences and Technology, Texas A&M Health Science Center, 2121 W Holcombe Blvd, Rm 517, Houston, Texas 77030, USA; Department of Translational Medical Sciences, Texas A&M Health Science Center, Houston, Texas 77030, USA.
| |
Collapse
|
13
|
Mobility of Nucleostemin in Live Cells Is Specifically Related to Transcription Inhibition by Actinomycin D and GTP-Binding Motif. Int J Mol Sci 2021; 22:ijms22158293. [PMID: 34361059 PMCID: PMC8347349 DOI: 10.3390/ijms22158293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/24/2021] [Accepted: 07/29/2021] [Indexed: 12/04/2022] Open
Abstract
In vertebrates, nucleostemin (NS) is an important marker of proliferation in several types of stem and cancer cells, and it can also interact with the tumor-suppressing transcription factor p53. In the present study, the intra-nuclear diffusional dynamics of native NS tagged with GFP and two GFP-tagged NS mutants with deleted guanosine triphosphate (GTP)-binding domains were analyzed by fluorescence correlation spectroscopy. Free and slow binding diffusion coefficients were evaluated, either under normal culture conditions or under treatment with specific cellular proliferation inhibitors actinomycin D (ActD), 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB), or trichostatin A (TSA). When treated with ActD, the fractional ratio of the slow diffusion was significantly decreased in the nucleoplasm. The decrease was proportional to ActD treatment duration. In contrast, DRB or TSA treatment did not affect NS diffusion. Interestingly, it was also found that the rate of diffusion of two NS mutants increased significantly even under normal conditions. These results suggest that the mobility of NS in the nucleoplasm is related to the initiation of DNA or RNA replication, and that the GTP-binding motif is also related to the large change of mobility.
Collapse
|
14
|
Wang J, McGrail DJ, Bhupal PK, Zhang W, Lin KY, Ku YH, Lin T, Wu H, Tsai KC, Li K, Peng CY, Finegold MJ, Lin SY, Tsai RYL. Nucleostemin Modulates Outcomes of Hepatocellular Carcinoma via a Tumor Adaptive Mechanism to Genomic Stress. Mol Cancer Res 2020; 18:723-734. [PMID: 32051231 PMCID: PMC7202947 DOI: 10.1158/1541-7786.mcr-19-0777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 01/03/2020] [Accepted: 02/05/2020] [Indexed: 12/14/2022]
Abstract
Hepatocellular carcinomas (HCC) are adapted to survive extreme genomic stress conditions imposed by hyperactive DNA replication and genotoxic drug treatment. The underlying mechanisms remain unclear, but may involve intensified DNA damage response/repair programs. Here, we investigate a new role of nucleostemin (NS) in allowing HCC to survive its own malignancy, as NS was previously shown to promote liver regeneration via a damage repair mechanism. We first established that a higher NS transcript level correlates with high-HCC grades and poor prognostic signatures, and is an independent predictor of shorter overall and progression-free survival specifically for HCC and kidney cancer but not for others. Immunostaining confirmed that NS is most abundantly expressed in high-grade and metastatic HCCs. Genome-wide analyses revealed that NS is coenriched with MYC target and homologous recombination (HR) repair genes in human HCC samples and functionally intersects with those involved in replication stress response and HR repair in yeasts. In support, NS-high HCCs are more reliant on the replicative/oxidative stress response pathways, whereas NS-low HCCs depend more on the mTOR pathway. Perturbation studies showed NS function in protecting human HCC cells from replication- and drug-induced DNA damage. Notably, NS depletion in HCC cells increases the amounts of physical DNA damage and cytosolic double-stranded DNA, leading to a reactive increase of cytokines and PD-L1. This study shows that NS provides an essential mechanism for HCC to adapt to high genomic stress for oncogenic maintenance and propagation. NS deficiency sensitizes HCC cells to chemotherapy but also triggers tumor immune responses. IMPLICATIONS: HCC employs a novel, nucleostemin (NS)-mediated-mediated adaptive mechanism to survive high genomic stress conditions, a deficiency of which sensitizes HCC cells to chemotherapy but also triggers tumor immune responses.
Collapse
Affiliation(s)
- Junying Wang
- Institute of Biosciences and Technology, Texas A&M University, Houston, Texas
| | - Daniel J McGrail
- Department of Systems Biology, MD Anderson Cancer Center, Houston, Texas
| | - Parnit K Bhupal
- Institute of Biosciences and Technology, Texas A&M University, Houston, Texas
| | - Wen Zhang
- Institute of Biosciences and Technology, Texas A&M University, Houston, Texas
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Kuan-Yu Lin
- Institute of Biosciences and Technology, Texas A&M University, Houston, Texas
| | - Yi-Hsuan Ku
- Institute of Biosciences and Technology, Texas A&M University, Houston, Texas
| | - Tao Lin
- Institute of Biosciences and Technology, Texas A&M University, Houston, Texas
| | - Hongfu Wu
- Institute of Biosciences and Technology, Texas A&M University, Houston, Texas
| | - Kyle C Tsai
- Michael E. DeBakey High School for Health Professions, Houston, Texas
| | - Kaiyi Li
- Department of Surgery, Baylor College of Medicine, Houston, Texas
| | - Cheng-Yuan Peng
- Division of Hepatogastroenterology, Department of Internal Medicine, China Medical University Hospital, School of Medicine, China Medical University, Taichung, Taiwan
| | - Milton J Finegold
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas
| | - Shiaw-Yih Lin
- Department of Systems Biology, MD Anderson Cancer Center, Houston, Texas
| | - Robert Y L Tsai
- Institute of Biosciences and Technology, Texas A&M University, Houston, Texas.
| |
Collapse
|
15
|
Zhang X, Lv J, Luo H, Liu Z, Xu C, Zhou D, Tang L, Zhang Z, Liu J, Xiao M, Yao Y, Qu L, Lu C. Nucleostemin promotes hepatocellular carcinoma by regulating the function of STAT3. Exp Cell Res 2020; 387:111748. [PMID: 31785228 DOI: 10.1016/j.yexcr.2019.111748] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 11/19/2019] [Accepted: 11/26/2019] [Indexed: 01/31/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common primary malignant tumor in the liver and the second leading cause of cancer-related death worldwide. The collaborative function between Nucleostemin (NS) and STAT3 has been reported but not well studied in HCC. Here, we found a significant correlation between NS expression and STAT3 phosphorylation, not only in HCC cancers but also in HCC tissues. Patients with high expression of both NS and p-STAT3 show a very poor survival rate. High expression of both NS and p-STAT3 is also associated with tumor size and microvascular invasion. Knocking down the expression of NS greatly reduces the phosphorylation of STAT3. Conversely, overexpression of NS significantly promotes STAT3 phosphorylation. NS and p-STAT3 are located in the nucleus and physiologically interact with each other. Furthermore, NS greatly enhances cell migration and invasion by promoting the epithelial-mesenchymal transition (EMT). NS also supports cell proliferation and colony formation. The importance of NS in HCC was further demonstrated by evaluating tumor formation in vivo. Therefore, we demonstrate a critical collaborative function between NS and STAT3 in HCC, providing an invaluable insight into the mechanism of HCC. The concomitant expression of NS and p-STAT3 might be a potential prognostic indicator and therapeutic target in patients with HCC.
Collapse
Affiliation(s)
- Xuening Zhang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, 226000, China; Medical College, Nantong University, Nantong, 226000, China
| | - Jiale Lv
- Department of Gastroenterology, Wuxi People's Hospital, Wuxi, 214000, China
| | - Honglai Luo
- Department of Gastroenterology, The 82nd Hospital of the People's Liberation Army, Huaian, 223001, China
| | - Zhaoxiu Liu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, 226000, China
| | - Chenzhou Xu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, 226000, China; Medical College, Nantong University, Nantong, 226000, China
| | - Danhua Zhou
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, 226000, China; Medical College, Nantong University, Nantong, 226000, China
| | - Lei Tang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, 226000, China; Medical College, Nantong University, Nantong, 226000, China
| | - Zijuan Zhang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, 226000, China; Medical College, Nantong University, Nantong, 226000, China
| | - Jinxia Liu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, 226000, China
| | - Mingbing Xiao
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, 226000, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226000, China
| | - Yebin Yao
- Department of Infectious Disease, Affiliated Hospital of Nantong University, Nantong, 226000, China
| | - Lishuai Qu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, 226000, China.
| | - Cuihua Lu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, 226000, China.
| |
Collapse
|
16
|
Matsumoto Y, Yoshizumi T, Toshima T, Takeishi K, Fukuhara T, Itoh S, Ikegami T, Soejima Y, Mori M. Ectopic localization of autophagosome in fatty liver is a key factor for liver regeneration. Organogenesis 2019; 15:24-34. [PMID: 31280650 DOI: 10.1080/15476278.2019.1633872] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Autophagy has a critical role in liver regeneration. However, no studies have demonstrated autophagic flux in the regenerating fatty liver. The aim of this study was to clarify the dynamics of autophagy in the regeneration of the fatty liver. Following 70% partial hepatectomy (PH) in db/db fatty mice, which is a non-alcoholic fatty liver disease (NAFLD) model, we investigated the survival rate and recovery of liver volume. Histological examination of the regenerating liver was examined using electron microscopy. The 7-day survival rate after PH in db/db mice was 20%, which was significantly lower than that in control mice (P< .01). Liver regeneration within 48 h after PH was significantly impaired in db/db mice (P< .05). The number of proliferating cell nuclear antigen (PCNA) positive cells and the expression levels of cell-cycle markers cyclins D, E, and A were lower in db/db mice compared with controls. In the regenerating liver, LC3-II level was higher in db/db mice, but p62 expression was increased and cathepsin D expression, a marker of autophagolysosome proteolysis, was decreased compared with controls. Additionally, electronic microscopy revealed that autophagosomes during liver regeneration in db/db mice were mainly located in lipid droplets. Our findings indicate that the different localization of autophagosomes in db/db mice compared with controls led to impairment of liver regeneration in the fatty liver.
Collapse
Affiliation(s)
- Yoshihiro Matsumoto
- a Department of Surgery and Science, Graduate School of Medical Sciences , Kyushu University , Fukuoka , Japan
| | - Tomoharu Yoshizumi
- a Department of Surgery and Science, Graduate School of Medical Sciences , Kyushu University , Fukuoka , Japan
| | - Takeo Toshima
- a Department of Surgery and Science, Graduate School of Medical Sciences , Kyushu University , Fukuoka , Japan
| | - Kazuki Takeishi
- a Department of Surgery and Science, Graduate School of Medical Sciences , Kyushu University , Fukuoka , Japan
| | - Takasuke Fukuhara
- a Department of Surgery and Science, Graduate School of Medical Sciences , Kyushu University , Fukuoka , Japan
| | - Shinji Itoh
- a Department of Surgery and Science, Graduate School of Medical Sciences , Kyushu University , Fukuoka , Japan
| | - Toru Ikegami
- a Department of Surgery and Science, Graduate School of Medical Sciences , Kyushu University , Fukuoka , Japan
| | - Yuji Soejima
- a Department of Surgery and Science, Graduate School of Medical Sciences , Kyushu University , Fukuoka , Japan
| | - Masaki Mori
- a Department of Surgery and Science, Graduate School of Medical Sciences , Kyushu University , Fukuoka , Japan
| |
Collapse
|
17
|
Lin T, Lin TC, McGrail DJ, Bhupal PK, Ku YH, Zhang W, Meng L, Lin SY, Peng G, Tsai RYL. Nucleostemin reveals a dichotomous nature of genome maintenance in mammary tumor progression. Oncogene 2019; 38:3919-3931. [PMID: 30692636 PMCID: PMC6525051 DOI: 10.1038/s41388-019-0710-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 01/11/2019] [Accepted: 01/15/2019] [Indexed: 12/17/2022]
Abstract
A defective homologous recombination (HR) repair program increases tumor incidence as well as providing a survival advantage in patients with breast and ovarian cancers. Here, we hypothesize that the tumor-promoting side of genome maintenance programs may be contributed by a self-renewal protein, nucleostemin (NS). To address this issue, we established its functional importance in mammary tumor progression in mice and showed that mammary tumor cells become highly susceptible to replicative DNA damage following NS depletion and are protected from hydroxyurea-induced damage by NS overexpression. Breast cancer cells with basal-like characters display more reliance on NS for genome maintenance than those with luminal characters. Mechanistically, NS-deficient cells demonstrate a significantly reduced HR repair activity. TCGA analyses of human breast cancers revealed that NS is co-enriched positively with HR repair proteins and that high NS expression correlates with low HR defects and predicts poor progression-free survival and resistance to knockdown of cell cycle checkpoint genes in triple-negative/basal-like breast cancers. This work indicates that NS constitutes a tumor-promoting genome maintenance program required for mammary tumor progression.
Collapse
Affiliation(s)
- Tao Lin
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Tsung-Chin Lin
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Daniel J McGrail
- Department of Systems Biology, MD Anderson Cancer Center, Houston, TX, USA
| | - Parnit K Bhupal
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Yi-Hsuan Ku
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Wen Zhang
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Lingjun Meng
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Shiaw-Yih Lin
- Department of Systems Biology, MD Anderson Cancer Center, Houston, TX, USA
| | - Guang Peng
- Department of Clinical Cancer Prevention, MD Anderson Cancer Center, Houston, TX, USA
| | - Robert Y L Tsai
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA. .,Department of Molecular and Cellular Medicine, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
18
|
Kavyasudha C, Joel JP, Devi A. Differential expression of nucleostemin in the cytoplasm and nuclei of normal and cancerous cell lines. Turk J Biol 2018; 42:250-258. [PMID: 30814887 DOI: 10.3906/biy-1712-10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Studies conducted in the past decade have reported nucleostemin (NS) as a nucleolar protein that has a role in self-renewal and cell cycle regulation in cancer/stem cells, but is absent in differentiated cells. The localization and expression patterns of NS have always been disputed, as reports indicate its varied levels among tissues and cells. This study evaluates the expression and localization pattern of NS in normal cells, cancer cell lines, and stem cells. Our findings revealed that the expression of NS was high in cancers originating from the skin and liver compared to the normal cell lines. NS knockdown effects the proliferation of normal cell lines, similar to cancerous cell lines. The localization pattern of NS was analyzed by immunofluorescence, which showed that NS was localized in the nuclei of normal cell lines but is present both in the nucleus and the cytoplasm of cancerous/stem cell lines. Interestingly, we observed that siNS cancerous cell lines had lower NS in the cytoplasm, which did not salvage the reduction in proliferation caused by siNS. We postulate that the loss of NS in the nucleus inhibits the proliferative ability of both normal and cancerous cells at similar rates, although the role of NS in the cytoplasm apart from proliferation needs to be further explored.
Collapse
Affiliation(s)
- Chavali Kavyasudha
- Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM University , Kattankulathur , India
| | - Joseph P Joel
- Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM University , Kattankulathur , India
| | - Arikketh Devi
- Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM University , Kattankulathur , India
| |
Collapse
|
19
|
Zhang QY, Zhao LP, Tian XX, Yan CH, Li Y, Liu YX, Wang PX, Zhang XJ, Han YL. The novel intracellular protein CREG inhibits hepatic steatosis, obesity, and insulin resistance. Hepatology 2017; 66:834-854. [PMID: 28508477 DOI: 10.1002/hep.29257] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 04/02/2017] [Accepted: 05/08/2017] [Indexed: 12/12/2022]
Abstract
UNLABELLED Cellular repressor of E1A-stimulated genes (CREG), a novel cellular glycoprotein, has been identified as a suppressor of various cardiovascular diseases because of its capacity to reduce hyperplasia, maintain vascular homeostasis, and promote endothelial restoration. However, the effects and mechanism of CREG in metabolic disorder and hepatic steatosis remain unknown. Here, we report that hepatocyte-specific CREG deletion dramatically exacerbates high-fat diet and leptin deficiency-induced (ob/ob) adverse effects such as obesity, hepatic steatosis, and metabolic disorders, whereas a beneficial effect is conferred by CREG overexpression. Additional experiments demonstrated that c-Jun N-terminal kinase 1 (JNK1) but not JNK2 is largely responsible for the protective effect of CREG on the aforementioned pathologies. Notably, JNK1 inhibition strongly prevents the adverse effects of CREG deletion on steatosis and related metabolic disorders. Mechanistically, CREG interacts directly with apoptosis signal-regulating kinase 1 (ASK1) and inhibits its phosphorylation, thereby blocking the downstream MKK4/7-JNK1 signaling pathway and leading to significantly alleviated obesity, insulin resistance, and hepatic steatosis. Importantly, dramatically reduced CREG expression and hyperactivated JNK1 signaling was observed in the livers of nonalcoholic fatty liver disease (NAFLD) patients, suggesting that CREG might be a promising therapeutic target for NAFLD and related metabolic diseases. CONCLUSION The results of our study provides evidence that CREG is a robust suppressor of hepatic steatosis and metabolic disorders through its direct interaction with ASK1 and the resultant inactivation of ASK1-JNK1 signaling. This study offers insights into NAFLD pathogenesis and its complicated pathologies, such as obesity and insulin resistance, and paves the way for disease treatment through targeting CREG. (Hepatology 2017;66:834-854).
Collapse
Affiliation(s)
- Quan-Yu Zhang
- Graduate School of Third Military Medical University, Chongqing, China.,Department of Cardiology, General Hospital of Shenyang Military Region, Shenyang, China
| | - Ling-Ping Zhao
- Institute of Model Animals of Wuhan University, Wuhan, China
| | - Xiao-Xiang Tian
- Department of Cardiology, General Hospital of Shenyang Military Region, Shenyang, China
| | - Cheng-Hui Yan
- Department of Cardiology, General Hospital of Shenyang Military Region, Shenyang, China
| | - Yang Li
- Department of Cardiology, General Hospital of Shenyang Military Region, Shenyang, China
| | - Yan-Xia Liu
- Department of Cardiology, General Hospital of Shenyang Military Region, Shenyang, China
| | - Pi-Xiao Wang
- Institute of Model Animals of Wuhan University, Wuhan, China
| | - Xiao-Jing Zhang
- Institute of Model Animals of Wuhan University, Wuhan, China
| | - Ya-Ling Han
- Department of Cardiology, General Hospital of Shenyang Military Region, Shenyang, China
| |
Collapse
|
20
|
Tang X, Zha L, Li H, Liao G, Huang Z, Peng X, Wang Z. Upregulation of GNL3 expression promotes colon cancer cell proliferation, migration, invasion and epithelial-mesenchymal transition via the Wnt/β-catenin signaling pathway. Oncol Rep 2017; 38:2023-2032. [PMID: 28849076 PMCID: PMC5652940 DOI: 10.3892/or.2017.5923] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/03/2017] [Indexed: 11/09/2022] Open
Abstract
G protein nucleolar 3 (GNL3), a nucleolar GTP-binding protein, is highly expressed in progenitor cells, stem cells, and various types of cancer cells. Therefore, it is considered to have an important role in cancer pathogenesis. GNL3 has been reported to play crucial roles in cell proliferation, cell cycle regulation, inhibition of differentiation, ribosome biogenesis, and the maintenance of stemness, genome stability and telomere integrity. Furthermore, GNL3 has recently been shown to be involved in cancer invasion and metastasis. However, the biological significance of GNL3 in the invasion and metastasis of colon cancer remains unclear. This study was performed to address this gap in knowledge. GNL3 expression was upregulated in colon cancer tissue specimens and correlated with tumor differentiation, invasion and metastasis. GNL3 overexpression promoted cell proliferation, invasion, migration and the epithelial-mesenchymal transition (EMT) in colon cancer cells. Moreover, inhibition of the EMT and the Wnt/β-catenin signaling pathway induced by GNL3 knockdown was partially reversed by lithium chloride (LiCl). Based on these data, GNL3 promotes the EMT in colon cancer by activating the Wnt/β-catenin signaling pathway. In summary, GNL3 is upregulated in colon cancer and plays an important role in tumor growth, invasion and metastasis. Strategies targeting GNL3 are potential treatments for colon cancer.
Collapse
Affiliation(s)
- Xi Tang
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Lang Zha
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Hui Li
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Gang Liao
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Zhen Huang
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xudong Peng
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Ziwei Wang
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
21
|
Zhao S, Xia Y, Zhang F, Xiong Z, Li Y, Yan W, Chen X, Wang W, Wang H, Gao E, Lee Y, Li C, Wang S, Zhang L, Tao L. Nucleostemin dysregulation contributes to ischemic vulnerability of diabetic hearts: Role of ribosomal biogenesis. J Mol Cell Cardiol 2017; 108:106-113. [PMID: 28549781 DOI: 10.1016/j.yjmcc.2017.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/29/2017] [Accepted: 05/22/2017] [Indexed: 01/20/2023]
Abstract
Diabetes is a major health problem worldwide. As well-known, diabetes greatly increases cardiac vulnerability to ischemia/reperfusion (I/R) injury, but the underlying mechanisms remain elusive. Nucleostemin (NS) is a nucleolar protein that controls ribosomal biogenesis and exerts cardioprotective effects against I/R injury. However, whether NS-mediated ribosomal biogenesis regulates ischemic vulnerability of diabetic hearts remains unanswered. Utilizing myocardial I/R mouse models, we found that cardiac NS expression significantly increased in response to I/R in normal diet (ND)-fed mice. Surprisingly, cardiac NS failed to be upregulated in high fat diet (HFD)-induced diabetic mice, accompanied by obvious ribosomal dysfunction. Compared with ND group, cardiac specific overexpression of NS by adenovirus (AV) injection significantly restored I/R-induced ribosomal function enhancement, reduced cardiomyocyte apoptosis, improved cardiac function, and decreased infarct sizes in diabetic mice. Notably, co-treatment of homoharringtonine (HHT), a selective inhibitor of ribosomal function, totally blocked NS-mediated cardioprotective effects against I/R injury. Furthermore, in cultured cardiomyocytes, saturated fatty acids treatment, but not high glucose exposure, significantly inhibited simulated I/R-induced NS upregulation and ribosomal function improvement. In conclusion, these data for the first time demonstrate that NS dysregulation induced by saturated fatty acids exposure might be an important cause of increased ischemic vulnerability to I/R injury in diabetic hearts. Targeting NS dysregulation and subsequent ribosomal dysfunction could be a promising therapeutic strategy for diabetic I/R injury management.
Collapse
Affiliation(s)
- Shihao Zhao
- Department of Cardiology, Xijing Hospital, the Fourth Military Medical University, China
| | - Yunlong Xia
- Department of Cardiology, Xijing Hospital, the Fourth Military Medical University, China
| | - Fuyang Zhang
- Department of Cardiology, Xijing Hospital, the Fourth Military Medical University, China; Department of Physiology, the Fourth Military Medical University, China; Department of Cardiology, the 201st Hospital of People's Liberation Army, China
| | - Zhenyu Xiong
- Department of Cardiology, Xijing Hospital, the Fourth Military Medical University, China
| | - Yueyang Li
- Department of Cardiology, Xijing Hospital, the Fourth Military Medical University, China
| | - Wenjun Yan
- Department of Cardiology, Xijing Hospital, the Fourth Military Medical University, China
| | - Xiyao Chen
- Department of Geriatrics, Xijing Hospital, the Fourth Military Medical University, China
| | - Wei Wang
- Department of Cardiology, Xijing Hospital, the Fourth Military Medical University, China
| | - Helin Wang
- Department of Cardiology, Xijing Hospital, the Fourth Military Medical University, China
| | - Erhe Gao
- Center for Translational Medicine, Temple University, United States
| | - Yan Lee
- Department of Cardiology, Xijing Hospital, the Fourth Military Medical University, China
| | - Congye Li
- Department of Cardiology, Xijing Hospital, the Fourth Military Medical University, China
| | - Shan Wang
- Department of Cardiology, Xijing Hospital, the Fourth Military Medical University, China
| | - Ling Zhang
- Department of Cardiology, Xijing Hospital, the Fourth Military Medical University, China
| | - Ling Tao
- Department of Cardiology, Xijing Hospital, the Fourth Military Medical University, China.
| |
Collapse
|
22
|
Batmunkh B, Choijookhuu N, Srisowanna N, Byambatsogt U, Synn Oo P, Noor Ali M, Yamaguchi Y, Hishikawa Y. Estrogen Accelerates Cell Proliferation through Estrogen Receptor α during Rat Liver Regeneration after Partial Hepatectomy. Acta Histochem Cytochem 2017; 50:39-48. [PMID: 28386149 PMCID: PMC5374102 DOI: 10.1267/ahc.17003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 01/23/2017] [Indexed: 12/18/2022] Open
Abstract
Although estrogen is implicated in the regulation of cell growth and differentiation in many organs, the exact mechanism for liver regeneration is not completely understood. We investigated the effect of estrogen on liver regeneration in male and female Wistar rats after 70% partial hepatectomy (PHx) and performed immunohistochemistry, western blotting and Southwestern histochemistry. 17β-estradiol (E2) and ICI 182,780 were injected into male rats on the day before PHx. The proliferating cell nuclear antigen (PCNA) labeling index reached a maximum at 48 hr after PHx in males, and at 36 hr in females and E2-treated male rats. Estrogen receptor α (ERα) was expressed in zones 1 and 2 in male rats, but was found in all zones in female rats. Interestingly, ERα was not detected at 6-12 hr after PHx but was found at 24-168 hr in male rats. However, ERα expression was found at all sampling time-points in female and E2-treated male rats. The activity of estrogen responsive element binding proteins was detected from 12 hr after PHx in male rats but was found from 6 hr in female and E2-treated male rats. ERα was co-expressed with PCNA during liver regeneration. These results indicate that estrogen may play an important role in liver regeneration through ERα.
Collapse
Affiliation(s)
- Baatarsuren Batmunkh
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki
| | - Narantsog Choijookhuu
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki
| | - Naparee Srisowanna
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki
| | - Uugantsetseg Byambatsogt
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki
| | - Phyu Synn Oo
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki
| | - Mohmand Noor Ali
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki
| | - Yuya Yamaguchi
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki
| | - Yoshitaka Hishikawa
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki
| |
Collapse
|
23
|
Grigoryan EN, Markitantova YV. Cellular and Molecular Preconditions for Retinal Pigment Epithelium (RPE) Natural Reprogramming during Retinal Regeneration in Urodela. Biomedicines 2016; 4:E28. [PMID: 28536395 PMCID: PMC5344269 DOI: 10.3390/biomedicines4040028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 11/26/2016] [Accepted: 11/26/2016] [Indexed: 12/25/2022] Open
Abstract
Many regeneration processes in animals are based on the phenomenon of cell reprogramming followed by proliferation and differentiation in a different specialization direction. An insight into what makes natural (in vivo) cell reprogramming possible can help to solve a number of biomedical problems. In particular, the first problem is to reveal the intrinsic properties of the cells that are necessary and sufficient for reprogramming; the second, to evaluate these properties and, on this basis, to reveal potential endogenous sources for cell substitution in damaged tissues; and the third, to use the acquired data for developing approaches to in vitro cell reprogramming in order to obtain a cell reserve for damaged tissue repair. Normal cells of the retinal pigment epithelium (RPE) in newts (Urodela) can change their specialization and transform into retinal neurons and ganglion cells (i.e., actualize their retinogenic potential). Therefore, they can serve as a model that provides the possibility to identify factors of the initial competence of vertebrate cells for reprogramming in vivo. This review deals mainly with the endogenous properties of native newt RPE cells themselves and, to a lesser extent, with exogenous mechanisms regulating the process of reprogramming, which are actively discussed.
Collapse
Affiliation(s)
- Eleonora N Grigoryan
- Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia.
| | - Yuliya V Markitantova
- Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia.
| |
Collapse
|
24
|
Scott DD, Oeffinger M. Nucleolin and nucleophosmin: nucleolar proteins with multiple functions in DNA repair. Biochem Cell Biol 2016; 94:419-432. [PMID: 27673355 DOI: 10.1139/bcb-2016-0068] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The nucleolus represents a highly multifunctional intranuclear organelle in which, in addition to the canonical ribosome assembly, numerous processes such as transcription, DNA repair and replication, the cell cycle, and apoptosis are coordinated. The nucleolus is further a key hub in the sensing of cellular stress and undergoes major structural and compositional changes in response to cellular perturbations. Numerous nucleolar proteins have been identified that, upon sensing nucleolar stress, deploy additional, non-ribosomal roles in the regulation of varied cell processes including cell cycle arrest, arrest of DNA replication, induction of DNA repair, and apoptosis, among others. The highly abundant proteins nucleophosmin (NPM1) and nucleolin (NCL) are two such factors that transit to the nucleoplasm in response to stress, and participate directly in the repair of numerous different DNA damages. This review discusses the contributions made by NCL and (or) NPM1 to the different DNA repair pathways employed by mammalian cells to repair DNA insults, and examines the implications of such activities for the regulation, pathogenesis, and therapeutic targeting of NPM1 and NCL.
Collapse
Affiliation(s)
- Daniel D Scott
- a Laboratory of RNP Biochemistry, Institut de recherches cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada
- b Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, QC H3A 2A3, Canada
| | - Marlene Oeffinger
- a Laboratory of RNP Biochemistry, Institut de recherches cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada
- b Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, QC H3A 2A3, Canada
- c Département de biochimie et médecine moléculaire, Faculté de Médecine, Université de Montréal, QC H3T 1J4, Canada
| |
Collapse
|
25
|
Tsai RYL. Balancing self-renewal against genome preservation in stem cells: How do they manage to have the cake and eat it too? Cell Mol Life Sci 2016; 73:1803-23. [PMID: 26886024 PMCID: PMC5040593 DOI: 10.1007/s00018-016-2152-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 01/18/2016] [Accepted: 01/28/2016] [Indexed: 01/22/2023]
Abstract
Stem cells are endowed with the awesome power of self-renewal and multi-lineage differentiation that allows them to be major contributors to tissue homeostasis. Owing to their longevity and self-renewal capacity, they are also faced with a higher risk of genomic damage compared to differentiated cells. Damage on the genome, if not prevented or repaired properly, will threaten the survival of stem cells and culminate in organ failure, premature aging, or cancer formation. It is therefore of paramount importance that stem cells remain genomically stable throughout life. Given their unique biological and functional requirement, stem cells are thought to manage genotoxic stress somewhat differently from non-stem cells. The focus of this article is to review the current knowledge on how stem cells escape the barrage of oxidative and replicative DNA damage to stay in self-renewal. A clear statement on this subject should help us better understand tissue regeneration, aging, and cancer.
Collapse
Affiliation(s)
- Robert Y L Tsai
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University Health Science Center, 2121 W. Holcombe Blvd, Houston, TX, 77030, USA.
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, TX, 77843, USA.
| |
Collapse
|
26
|
Katano M, Ema M, Nakachi Y, Mizuno Y, Hirasaki M, Suzuki A, Ueda A, Nishimoto M, Takahashi S, Okazaki Y, Okuda A. Forced expression of Nanog or Esrrb preserves the ESC status in the absence of nucleostemin expression. Stem Cells 2016; 33:1089-101. [PMID: 25522312 PMCID: PMC4409032 DOI: 10.1002/stem.1918] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 11/04/2014] [Accepted: 11/21/2014] [Indexed: 12/21/2022]
Abstract
Nucleostemin (NS) is a nucleolar GTP-binding protein that is involved in a plethora of functions including ribosomal biogenesis and maintenance of telomere integrity. In addition to its expression in cancerous cells, the NS gene is expressed in stem cells including embryonic stem cells (ESCs). Previous knockdown and knockout studies have demonstrated that NS is important to preserve the self-renewality and high expression levels of pluripotency marker genes in ESCs. Here, we found that forced expression of Nanog or Esrrb, but not other pluripotency factors, resulted in the dispensability of NS expression in ESCs. However, the detrimental phenotypes of ESCs associated with ablation of NS expression were not mitigated by forced expression of Rad51 or a nucleolar localization-defective NS mutant that counteracts the damage associated with loss of NS expression in other NS-expressing cells such as neural stem/progenitor cells. Thus, our results indicate that NS participates in preservation of the viability and integrity of ESCs, which is distinct from that in other NS-expressing cells. Stem Cells2015;33:1089–1101
Collapse
Affiliation(s)
- Miyuki Katano
- Division of Developmental Biology, Saitama Medical University, Yamane, Hidaka, Saitama, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Affiliation(s)
- R Y L Tsai
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX, USA
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, TX, USA
| |
Collapse
|
28
|
Abstract
Nucleostemin (NS) protects the genome from replication-induced DNA damage and has an indispensable role in maintaining the continuous proliferation of both p53-wild-type and mutant cells. Yet, some outcomes of NS-deficient cells appear to be shaped by their p53 status, which stimulates conflicting claims on the role of p53 in executing the NS function. This disparity was conveniently attributed to the usual suspect of cell-type variations. To provide a definitive resolution, we investigated the interplay between NS and p53 in two pairs of isogenic cells, that is, genetically modified mouse embryonic fibroblast (MEF) cells and HCT116 human colon cancer cells. In MEF cells, p53 deletion further compromises rather than rescues the proliferative potential of NS-depleted cells without changing their G2/M arrest fate before prophase entry. The detrimental effect of p53 loss in NS-depleted MEF cells correlates with a dramatic increase of polyploid giant cells (PGCs) (up to 24%), which indicates aberrant mitosis. To determine how p53 shapes the response of cells to NS depletion at the molecular level, we showed that p53 turns on the expression of reprimo and MDM2 in NS-deficient MEF cells. In absence of p53, NS-deficient MEF cells exhibit increased levels of phosphorylated cdc2 (Y15) protein and cyclin B1. In cancer (HCT116) cells, NS loss leads to G2/M arrest under both p53wt and p53ko conditions and increases phosphorylated cdc2 more in p53ko than in p53wt cells, as it does in MEF cells. Unlike its effect in MEF cells, NS depletion decreases tumor growth and increases the expression of reprimo and cyclin B1 in a p53-independent manner in HCT116 cells. Our data indicate that the p53 status of NS-deficient cells orchestrates how they respond to G2/M arrest in a normal versus cancer cell distinct fashion.
Collapse
Affiliation(s)
- Guanqun Huang
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA; Department of general surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510700, China
| | - Lingjun Meng
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA
| | - Robert Y L Tsai
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA; Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, TX 77054, USA
| |
Collapse
|
29
|
Markitantova YV, Avdonin PP, Grigoryan EN. Identification of the gene encoding nucleostemin in the eye tissues of Pleurodeles waltl. BIOL BULL+ 2015. [DOI: 10.1134/s1062359015050088] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Hu M, Zou Y, Nambiar SM, Lee J, Yang Y, Dai G. Keap1 modulates the redox cycle and hepatocyte cell cycle in regenerating liver. Cell Cycle 2015; 13:2349-58. [PMID: 25483186 DOI: 10.4161/cc.29298] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Keap1 negatively controls the activity of transcription factor Nrf2. This Keap1/Nrf2 pathway plays a critical role in combating oxidative stress. We aimed at determining whether and how Keap1 modulates the cell cycle of replicating hepatocytes during liver regeneration. Two-thirds partial hepatectomy (PH) was performed on wild-type mice and Keap1+/- (Keap1 knockdown) mice. We found that, following PH, Keap1 knockdown resulted in a delay in S-phase entry, disruption of S-phase progression, and loss of mitotic rhythm of replicating hepatocytes. These events are associated with dysregulation of c-Met, EGFR, Akt1, p70S6K, Cyclin A2, and Cyclin B1 in regenerating livers. Astonishingly, normal regenerating livers exhibited the redox fluctuation coupled with hepatocyte cell cycle progression, while keeping Nrf2 quiescent. Keap1 knockdown caused severe disruption in both the redox cycle and the cell cycle of replicating hepatocytes. Thus, we demonstrate that Keap1 is a potent regulator of hepatic redox cycle and hepatocyte cell cycle during liver regeneration.
Collapse
Affiliation(s)
- Min Hu
- a Department of Pharmacology; Anhui Medical University; Hefei, China
| | | | | | | | | | | |
Collapse
|
31
|
Tsai RYL. Pluripotency Versus Self-Renewal of ES Cells: Two Sides of the Same Coin or More? Stem Cells 2015; 33:2358-9. [PMID: 25809666 DOI: 10.1002/stem.2008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 02/28/2015] [Indexed: 12/22/2022]
Affiliation(s)
- Robert Y L Tsai
- Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas, 77030, USA.,Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, Texas, 77843, USA
| |
Collapse
|
32
|
Bae WK, Kang K, Yu JH, Yoo KH, Factor VM, Kaji K, Matter M, Thorgeirsson S, Hennighausen L. The methyltransferases enhancer of zeste homolog (EZH) 1 and EZH2 control hepatocyte homeostasis and regeneration. FASEB J 2014; 29:1653-62. [PMID: 25477280 DOI: 10.1096/fj.14-261537] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 11/17/2014] [Indexed: 12/15/2022]
Abstract
To investigate the role of enhancer of zeste homolog (EZH) 1 and EZH2 in liver homeostasis, mice were generated that carried Ezh1(-/-) and EZH2(fl/fl) alleles and an Alb-Cre transgene. Only the combined loss of EZH1 and EZH2 in mouse hepatocytes caused a depletion of global trimethylation on Lys 27 of histone H3 (H3K27me3) marks and the specific loss of over ∼1900 genes at 3 mo of age. Ezh1(-/-),Ezh2(fl/fl)Alb-Cre mice exhibited progressive liver abnormalities manifested by the development of regenerative nodules and concomitant periportal fibrosis, inflammatory infiltration, and activation of A6-positive hepatic progenitor cells at 8 mo of age. In response to chronic treatment with carbon tetrachloride, all experimental mice, but none of the controls (n = 27 each), showed increased hepatic degeneration associated with liver dysfunction and reduced ability to proliferate. After two-thirds partial hepatectomy, mutant mice (n = 5) displayed increased liver injury and a blunted regenerative response. Genome-wide analyses at 3 mo of age identified 51 genes that had lost H3K27me3 marks, and their expression was significantly increased. These genes were involved in regulation of cell survival, fibrosis, and proliferation. H3K27me3 levels and liver physiology were unaffected in mice lacking either EZH1 globally or EZH2 specifically in hepatocytes. This work demonstrates a critical redundancy of EZH1 and EZH2 in maintaining hepatic homeostasis and regeneration.
Collapse
Affiliation(s)
- Woo Kyun Bae
- *Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, and Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA; Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea; Department of Microbiology, Dankook University, Cheonan, Korea; and New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Korea
| | - Keunsoo Kang
- *Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, and Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA; Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea; Department of Microbiology, Dankook University, Cheonan, Korea; and New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Korea
| | - Ji Hoon Yu
- *Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, and Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA; Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea; Department of Microbiology, Dankook University, Cheonan, Korea; and New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Korea
| | - Kyung Hyun Yoo
- *Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, and Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA; Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea; Department of Microbiology, Dankook University, Cheonan, Korea; and New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Korea
| | - Valentina M Factor
- *Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, and Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA; Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea; Department of Microbiology, Dankook University, Cheonan, Korea; and New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Korea
| | - Kosuke Kaji
- *Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, and Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA; Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea; Department of Microbiology, Dankook University, Cheonan, Korea; and New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Korea
| | - Matthias Matter
- *Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, and Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA; Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea; Department of Microbiology, Dankook University, Cheonan, Korea; and New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Korea
| | - Snorri Thorgeirsson
- *Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, and Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA; Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea; Department of Microbiology, Dankook University, Cheonan, Korea; and New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Korea
| | - Lothar Hennighausen
- *Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, and Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA; Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea; Department of Microbiology, Dankook University, Cheonan, Korea; and New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Korea
| |
Collapse
|
33
|
Abstract
A quintessential trait of stem cells is embedded in their ability to self-renew without incurring DNA damage as a result of genome replication. One key self-renewal factor is the nucleolar GTP-binding protein nucleostemin (also known as guanine-nucleotide-binding protein-like 3, GNL3, in invertebrate species). Several studies have recently pointed to an unexpected role of nucleostemin in safeguarding the genome integrity of stem and cancer cells. Since its discovery, the predominant presence of nucleostemin in the nucleolus has led to the notion that it might function in the card-carrying event of the nucleolus--the biogenesis of ribosomes. As tantalizing as this might be, a ribosomal role of nucleostemin is refuted by evidence from recent studies, which argues that nucleostemin depletion triggers a primary event of DNA damage in S phase cells that then leads to ribosomal perturbation. Furthermore, there have been conflicting reports regarding the p53 dependency of nucleostemin activity and the cell cycle arrest profile of nucleostemin-depleted cells. In this Commentary, I propose a model that explains how the many contradictory observations surrounding nucleostemin can be reconciled and suggest that this protein might not be as multi-tasking as has been previously perceived. The story of nucleostemin highlights the complexity of the underlying molecular events associated with the appearance of any cell biological phenotype and also signifies a new understanding of the genome maintenance program in stem cells.
Collapse
Affiliation(s)
- Robert Y L Tsai
- Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA
| |
Collapse
|
34
|
Toshima T, Shirabe K, Fukuhara T, Ikegami T, Yoshizumi T, Soejima Y, Ikeda T, Okano S, Maehara Y. Suppression of autophagy during liver regeneration impairs energy charge and hepatocyte senescence in mice. Hepatology 2014; 60:290-300. [PMID: 24668739 DOI: 10.1002/hep.27140] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 03/11/2014] [Accepted: 03/20/2014] [Indexed: 12/25/2022]
Abstract
UNLABELLED Autophagy is a homeostatic mechanism that regulates protein and organelle turnover and uses the amino acids from degraded proteins to produce adenosine 5'-triphosphate (ATP). We investigated the activity of autophagy-associated pathways in liver regeneration after partial hepatectomy (PHx) in liver-specific autophagy-related gene 5 (Atg5) knockout (KO) mice. Liver regeneration was severely impaired by 70% PHx, with a reduction in postoperative mitosis, but a compensating increase in hepatocyte size. PHx induced intracellular adenosine triphosphate and β-oxidation reduction as well as injured cellular mitochondria. Furthermore, PHx in Atg5 KO mice enhanced hepatic accumulation of p62 and ubiquitinated proteins. These results indicated that reorganization of intracellular proteins and organelles during autophagy was impaired in the regenerating liver of these mice. Up-regulation of p21 was associated with hepatocyte senescence, senescence-associated β-galactosidase expression, irreversible growth arrest, and secretion of senescence-associated molecules, including interleukin (IL)-6 and IL-8. CONCLUSION These findings indicate that autophagy plays a critical role in liver regeneration and in the preservation of cellular quality, preventing hepatocytes from becoming fully senescent and hypertrophic.
Collapse
Affiliation(s)
- Takeo Toshima
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Long known as the center of ribosome synthesis, the nucleolus is connected to cell cycle regulation in more subtle ways. One is a surveillance system that reacts promptly when rRNA synthesis or processing is impaired, halting cell cycle progression. Conversely, the nucleolus also acts as a first-responder to growth-related stress signals. Here we review emerging concepts on how these "infraribosomal" links between the nucleolus and cell cycle progression operate in both forward and reverse gears. We offer perspectives on how new cancer therapeutic designs that target this infraribosomal mode of cell growth control may shape future clinical progress.
Collapse
Affiliation(s)
- Robert Y L Tsai
- Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, USA; and
| | - Thoru Pederson
- Program in Cell and Developmental Dynamics, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
36
|
Lin T, Meng L, Lin TC, Wu LJ, Pederson T, Tsai RYL. Nucleostemin and GNL3L exercise distinct functions in genome protection and ribosome synthesis, respectively. J Cell Sci 2014; 127:2302-12. [PMID: 24610951 DOI: 10.1242/jcs.143842] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The mammalian nucleolar proteins nucleostemin and GNL3-like (GNL3L) are encoded by paralogous genes that arose from an ancestral invertebrate gene, GNL3. Invertebrate GNL3 has been implicated in ribosome biosynthesis, as has its mammalian descendent, GNL3L. The paralogous mammalian nucleostemin protein has, instead, been implicated in cell renewal. Here, we found that depletion of nucleostemin in a human breast carcinoma cell line triggers prompt and significant DNA damage in S-phase cells without perturbing the initial step of ribosomal (r)RNA synthesis and only mildly affects the total ribosome production. By contrast, GNL3L depletion markedly impairs ribosome production without inducing appreciable DNA damage. These results indicate that, during vertebrate evolution, GNL3L retained the role of the ancestral gene in ribosome biosynthesis, whereas the paralogous nucleostemin acquired a novel genome-protective function. Our results provide a coherent explanation for what had seemed to be contradictory findings about the functions of the invertebrate versus vertebrate genes and are suggestive of how the nucleolus was fine-tuned for a role in genome protection and cell-cycle control as the vertebrates evolved.
Collapse
Affiliation(s)
- Tao Lin
- Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA
| | - Lingjun Meng
- Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA
| | - Tsung-Chin Lin
- Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA
| | - Laura J Wu
- Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA
| | - Thoru Pederson
- Program in Cell and Developmental Dynamics, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Robert Y L Tsai
- Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA
| |
Collapse
|
37
|
Yamashita M, Nitta E, Nagamatsu G, Ikushima YM, Hosokawa K, Arai F, Suda T. Nucleostemin is indispensable for the maintenance and genetic stability of hematopoietic stem cells. Biochem Biophys Res Commun 2013; 441:196-201. [DOI: 10.1016/j.bbrc.2013.10.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 10/08/2013] [Indexed: 01/10/2023]
|