1
|
Hamidah B, Pakpahan C, Wulandari L, Tinduh D, Wibawa T, Prakoeswa CRS, Oceandy D. Expression of interferon-stimulated genes, but not polymorphisms in the interferon α/β receptor 2 gene, is associated with coronavirus disease 2019 mortality. Heliyon 2024; 10:e39002. [PMID: 39435115 PMCID: PMC11492585 DOI: 10.1016/j.heliyon.2024.e39002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 09/16/2024] [Accepted: 10/04/2024] [Indexed: 10/23/2024] Open
Abstract
Excessive inflammatory response is a hallmark of severe COVID-19. This study investigated the associations between interferon-stimulated genes (ISGs) expression, genetic variation in the interferon α/β receptor 2 (IFNAR2) gene, and COVID-19 mortality. We investigated 67 patients with moderate-to-severe COVID-19. Of them, 22 patients (32.8 %) died because of COVID-19. We examined the expression of ISGs in total RNA of peripheral whole blood. We observed a significant increase in the expression of all ISGs examined in non-surviving patients, indicating a heightened interferon type I signaling activation in non-survived patients. Subsequently, we analyzed whether the increase in ISGs expression was correlated with polymorphism within the IFNAR2 gene. Intriguingly, no significant association was observed between IFNAR2 gene polymorphism and COVID-19 mortality. Similarly, no association was noted between the IFNAR2 and ISGs expression levels. Overall, our data showed that higher ISGs expression, which presumably indicates heightened interferon type I activation, is associated with COVID-19 mortality.
Collapse
Affiliation(s)
- Berliana Hamidah
- Department of Biomedical Science, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Cennikon Pakpahan
- Department of Biomedical Science, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Laksmi Wulandari
- Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Universitas Airlangga/Dr Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Damayanti Tinduh
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Universitas Airlangga/Dr Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Tri Wibawa
- Department of Microbiology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Cita Rosita Sigit Prakoeswa
- Department of Dermatology, Venerology and Aesthetics, Faculty of Medicine, Universitas Airlangga / Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Delvac Oceandy
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
2
|
Zhang P, Li H, Zhang A, Wang X, Song Q, Li Z, Wang W, Xu J, Hou Y, Zhang Y. Mechanism of myocardial fibrosis regulation by IGF-1R in atrial fibrillation through the PI3K/Akt/FoxO3a pathway. Biochem Cell Biol 2023; 101:432-442. [PMID: 37018819 DOI: 10.1139/bcb-2022-0199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023] Open
Abstract
Atrial structural remodeling takes on a critical significance to the occurrence and maintenance of atrial fibrillation (AF). As revealed by recent data, insulin-like growth factor-1 receptor (IGF-1R) plays a certain role in tissue fibrosis. In this study, the mechanism of IGF-1R in atrial structural remodeling was examined based on in vivo and in vitro experiments. First, cluster analysis of AF hub genes was conducted, and then the molecular mechanism was proposed by which IGF-1R regulates myocardial fibrosis via the PI3K/Akt/FoxO3a pathway. Subsequently, the mentioned mechanism was verified in human cardiac fibroblasts (HCFs) and rats transduced with IGF-1 overexpression type 9 adeno-associated viruses. The results indicated that IGF-1R activation up-regulated collagen Ⅰ protein expression and Akt phosphorylation in HCFs and rat atrium. The administration of LY294002 reversed the above phenomenon, improved the shortening of atrial effective refractory period, and reduced the increased incidence of AF and atrial fibrosis in rats. The transfection of FoxO3a siRNA reduced the anti-fibrotic effect of LY294002 in HCFs. The above data revealed that activation of IGF-1R takes on a vital significance to atrial structural remodeling by facilitating myocardial fibrosis and expediting the occurrence and maintenance of AF through the regulation of the PI3K/Akt/FoxO3a signaling pathway.
Collapse
Affiliation(s)
- Pei Zhang
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital. Ji'nan City, Shandong Province, China
| | - Huilin Li
- Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University. Ji'nan City, Shandong Province, China
| | - An Zhang
- Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University. Ji'nan City, Shandong Province, China
| | - Xiao Wang
- Department of Health Management Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital. Ji'nan City, Shandong Province, China
| | - Qiyuan Song
- Shandong First Medical University, The First Affiliated Hospital of Shandong First Medical University. Ji'nan City, Shandong Province, China
| | - Zhan Li
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital. Ji'nan City, Shandong Province, China
| | - Weizong Wang
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital. Ji'nan City, Shandong Province, China
| | - Jingwen Xu
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital. Ji'nan City, Shandong Province, China
| | - Yinglong Hou
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital. Ji'nan City, Shandong Province, China
| | - Yong Zhang
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital. Ji'nan City, Shandong Province, China
| |
Collapse
|
3
|
Osman AS, Abu-Risha SE, Bakr SM, Altyar AE, Fayad E, El-Sawi MR, El-Kholy WM. Comparative study between effects of ginkgo biloba extract and extract loaded on gold nanoparticles on hepatotoxicity induced by potassium bromate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:5027-5036. [PMID: 35978237 DOI: 10.1007/s11356-022-22324-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
In human organs, potassium bromate (KBrO3) produces toxicity. The main causes of KBrO3 hepatotoxicity are the formation of reactive oxygen species (ROS) and DNA damage. The purpose of this study is to show how ginkgo biloba extract (GBE) and extract loaded with nanogold particles (GBE@AuNPs) affect hepatotoxicity caused by KBrO3. The rats were separated into eight groups: control (group I), GBE (group II), AuNPs (group III), GBE@AuNPs (group IV), KBrO3 (group V), KBrO3 and GBE (group VI), KBrO3 and AuNPS (group VII), and KBrO3 and GBE@AuNPs (group VIII). KBrO3 generated DNA damage spots in a comet assay, which were associated with increased inflammatory indicators (IL-6), decreased anti-apoptotic Bcl-2, and increased apoptotic markers (Bax and caspase-3). The inflammatory, apoptotic, and ultrastructural alterations in liver tissue produced by KBrO3 were reduced in treated groups VI, VII, or VIII. The hepatotoxic effects of KBrO3 were reduced when GBE, AuNPs, or GBE@AuNPs were used; the particular GBE@AuNPs were the most effective.
Collapse
Affiliation(s)
- Amr S Osman
- Department of Zoology, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Sally E Abu-Risha
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Samaa M Bakr
- Department of Zoology, Faculty of Science, Kafr El-Sheikh University, Kafr El-sheikh, Egypt
| | - Ahmed E Altyar
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Eman Fayad
- Department of Biotechnology, Faculty of Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
| | - Mamdouh R El-Sawi
- Department of Zoology, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Wafaa M El-Kholy
- Department of Zoology, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
4
|
Chen Y, Ye B, Wang C, Nie Y, Qin J, Shen Z. PLOD3 contributes to HER-2 therapy resistance in gastric cancer through FoxO3/Survivin pathway. Cell Death Dis 2022; 8:321. [PMID: 35835735 PMCID: PMC9283410 DOI: 10.1038/s41420-022-01103-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 12/05/2022]
Abstract
Human epidermal growth factor receptor 2 (HER-2), a famous therapeutic target for breast cancer, is also associated with an increased risk of recurrence and poor outcomes of other malignancies, including gastric cancer. Yet the mechanism of HER-2 therapy resistance remains controversial due to the heterogeneity of gastric adenocarcinoma. We know, Procollagen-Lysine,2-Oxoglutarate 5-Dioxygenase 3 (PLOD3), a key gene coding enzymes that catalyze the lysyl hydroxylation of extracellular matrix collagen, plays an important contributor to HER-2 targeting agent Trastuzumab resistance in gastric cancer. Herein, we analyzed clinical samples of gastric cancer patients and gastric cancer cell lines and identified PLOD3, unveiled that depletion of PLOD3 leads to decreased cell proliferation, tumor growth and Trastuzumab sensitivity in these Trastuzumab resistant GC cell lines. Clinically, increased PLOD3 expression correlates with decreased Trastuzumab therapy responsiveness in GC patients. Mechanistically, we show that PLOD3 represses tumor suppressor FoxO3 expression, therefore upregulating Survivin protein expression that contributes to Trastuzumab resistance in GC. Therefore, our study identifies a new signaling axis PLOD3-FoxO3- Survivin pathway that may be therapeutically targeted in HER-2 positive gastric cancer.
Collapse
Affiliation(s)
- Yueda Chen
- Department of General Surgery, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, Fujian, 361015, China
| | - Botian Ye
- Department of General Surgery, Gastric Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Chunyan Wang
- Department of Obstetrics and Gynecology, Tenth People's Hospital of Tongji University, Shanghai, 200072, China
| | - Yanyan Nie
- Shanghai Lab, Animal Research Center, Shanghai, 201203, China
| | - Jing Qin
- Department of General Surgery, Gastric Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhenbin Shen
- Department of General Surgery, Gastric Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
5
|
FoxO3 restricts liver regeneration by suppressing the proliferation of hepatocytes. NPJ Regen Med 2022; 7:33. [PMID: 35750775 PMCID: PMC9232540 DOI: 10.1038/s41536-022-00227-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 05/20/2022] [Indexed: 12/05/2022] Open
Abstract
Upon injury, the liver is capable of substantial regeneration from the original tissue until an appropriate functional size. The underlying mechanisms controlling the liver regeneration processes are not well elucidated. Previous studies have proposed that the transcription factor FoxO3 is involved in various liver diseases, but its exact role in the regulation of liver regeneration remains largely unclear. To directly test the detailed role of FoxO3 in liver regeneration, both a constitutive Albumin-Cre driver line and adeno-associated virus serotype 8 (AAV8)-Tbg-Cre (AAV-Cre)-injected adult FoxO3fl/fl mice were subjected to 70% partial hepatectomy (PH). Our data demonstrate that FoxO3 deletion accelerates liver regeneration primarily by limiting polyploidization and promoting the proliferation of hepatocytes during liver regeneration. RNA-seq analysis indicates that FoxO3 deficiency greatly alters the expression of gene sets associated with cell proliferation and apoptosis during liver regeneration. Chromatin immunoprecipitation-PCR (ChIP-PCR) and luciferase reporter assays reveal that FoxO3 promotes the expression of Nox4 but suppresses the expression of Nr4a1 in hepatocytes. AAV8 virus-mediated overexpression of Nox4 and knockdown of Nr4a1 significantly suppressed hepatocyte proliferation and liver regeneration in FoxO3-deficient mice. We demonstrate that FoxO3 negatively controls hepatocyte proliferation through Nox4 upregulation and Nr4a1 downregulation, thereby ensuring appropriate functional regeneration of the liver. Our findings provide novel mechanistic insight into the therapeutic mechanisms of FoxO3 in liver damage and repair.
Collapse
|
6
|
Neferine Exerts Antioxidant and Anti-Inflammatory Effects on Carbon Tetrachloride-Induced Liver Fibrosis by Inhibiting the MAPK and NF- κB/I κB α Pathways. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:4136019. [PMID: 33680053 PMCID: PMC7929649 DOI: 10.1155/2021/4136019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 12/24/2020] [Accepted: 02/07/2021] [Indexed: 12/27/2022]
Abstract
Reversible liver fibrosis is the consequence of diverse liver injuries. Oxidative stress combined with inflammation is the primary cause of carbon tetrachloride- (CCl4-) induced liver fibrosis. Neferine is a bibenzyl isoquinoline alkaloid, which has strong anti-inflammatory and antioxidant properties. The present study attempted to find its antiliver fibrosis effect and explore the potential mechanism to relieve oxidative stress and inflammation in rats with CCl4-induced liver fibrosis. Herein, we found that neferine noticeably mitigated fibrosis and improved liver function. Furthermore, neferine increased the activity of antioxidant enzymes, such as superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), and catalase (CAT), but decreased the level of malondialdehyde (MDA). Neferine also decreased the levels of alpha-smooth muscle actin (α-SMA), transforming growth factor β1 (TGF-β1), and inflammatory factors. These results may demonstrate that neferine could effectively inhibit oxidative stress and inflammation in liver fibrosis. To account for the potential mechanism by which neferine relieves oxidative stress and inflammation in liver fibrosis rats, immunohistochemistry analyses and western blotting were performed. The results showed that neferine inhibited the mitogen-activated protein kinase (MAPK) pathway, as evidenced by the reduced phosphorylation of p38 MAPK, ERK 1/2, and JNK. And it inhibited the nuclear factor- (NF-) κB/IκBα pathway, as evidenced by preventing the translocation of NF-κB into nuclei. Our findings indicated a protective role for neferine, acting as an antioxidant and anti-inflammatory agent in CCl4-induced liver fibrosis.
Collapse
|
7
|
Zhou L, He X, Cai P, Li T, Peng R, Dang J, Li Y, Li H, Huang F, Shi G, Xie C, Lu Y, Chen Y. Induced regulatory T cells suppress Tc1 cells through TGF-β signaling to ameliorate STZ-induced type 1 diabetes mellitus. Cell Mol Immunol 2021; 18:698-710. [PMID: 33446887 DOI: 10.1038/s41423-020-00623-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/10/2020] [Indexed: 12/18/2022] Open
Abstract
Type 1 diabetes mellitus (T1D) is a chronic autoimmune condition in which the immune system destroys insulin-producing pancreatic β cells. In addition to well-established pathogenic effector T cells, regulatory T cells (Tregs) have also been shown to be defective in T1D. Thus, an increasing number of therapeutic approaches are being developed to target Tregs. However, the role and mechanisms of TGF-β-induced Tregs (iTregs) in T1D remain poorly understood. Here, using a streptozotocin (STZ)-induced preclinical T1D mouse model, we found that iTregs could ameliorate the development of T1D and preserve β cell function. The preventive effect was associated with the inhibition of type 1 cytotoxic T (Tc1) cell function and rebalancing the Treg/Tc1 cell ratio in recipients. Furthermore, we showed that the underlying mechanisms were due to the TGF-β-mediated combinatorial actions of mTOR and TCF1. In addition to the preventive role, the therapeutic effects of iTregs on the established STZ-T1D and nonobese diabetic (NOD) mouse models were tested, which revealed improved β cell function. Our findings therefore provide key new insights into the basic mechanisms involved in the therapeutic role of iTregs in T1D.
Collapse
Affiliation(s)
- Li Zhou
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China.,Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
| | - Xuemin He
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
| | - Peihong Cai
- Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
| | - Ting Li
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
| | - Rongdong Peng
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
| | - Junlong Dang
- Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
| | - Yue Li
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
| | - Haicheng Li
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
| | - Feng Huang
- Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
| | - Guojun Shi
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
| | - Chichu Xie
- Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
| | - Yan Lu
- Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China.
| | - Yanming Chen
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China.
| |
Collapse
|
8
|
Dropmann A, Dooley S, Dewidar B, Hammad S, Dediulia T, Werle J, Hartwig V, Ghafoory S, Woelfl S, Korhonen H, Janicot M, Wosikowski K, Itzel T, Teufel A, Schuppan D, Stojanovic A, Cerwenka A, Nittka S, Piiper A, Gaiser T, Beraza N, Milkiewicz M, Milkiewicz P, Brain JG, Jones DEJ, Weiss TS, Zanger UM, Ebert M, Meindl-Beinker NM. TGF-β2 silencing to target biliary-derived liver diseases. Gut 2020; 69:1677-1690. [PMID: 31992593 PMCID: PMC7456737 DOI: 10.1136/gutjnl-2019-319091] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 12/13/2022]
Abstract
OBJECTIVE TGF-β2 (TGF-β, transforming growth factor beta), the less-investigated sibling of TGF-β1, is deregulated in rodent and human liver diseases. Former data from bile duct ligated and MDR2 knockout (KO) mouse models for human cholestatic liver disease suggested an involvement of TGF-β2 in biliary-derived liver diseases. DESIGN As we also found upregulated TGFB2 in liver tissue of patients with primary sclerosing cholangitis (PSC) and primary biliary cholangitis (PBC), we now fathomed the positive prospects of targeting TGF-β2 in early stage biliary liver disease using the MDR2-KO mice. Specifically, the influence of TgfB2 silencing on the fibrotic and inflammatory niche was analysed on molecular, cellular and tissue levels. RESULTS TgfB2-induced expression of fibrotic genes in cholangiocytes and hepatic stellate cellswas detected. TgfB2 expression in MDR2-KO mice was blunted using TgfB2-directed antisense oligonucleotides (AON). Upon AON treatment, reduced collagen deposition, hydroxyproline content and αSMA expression as well as induced PparG expression reflected a significant reduction of fibrogenesis without adverse effects on healthy livers. Expression analyses of fibrotic and inflammatory genes revealed AON-specific regulatory effects on Ccl3, Ccl4, Ccl5, Mki67 and Notch3 expression. Further, AON treatment of MDR2-KO mice increased tissue infiltration by F4/80-positive cells including eosinophils, whereas the number of CD45-positive inflammatory cells decreased. In line, TGFB2 and CD45 expression correlated positively in PSC/PBC patients and localised in similar areas of the diseased liver tissue. CONCLUSIONS Taken together, our data suggest a new mechanistic explanation for amelioration of fibrogenesis by TGF-β2 silencing and provide a direct rationale for TGF-β2-directed drug development.
Collapse
Affiliation(s)
- Anne Dropmann
- Molecular Hepatology-Alcohol Associated Diseases, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Steven Dooley
- Molecular Hepatology-Alcohol Associated Diseases, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Bedair Dewidar
- Molecular Hepatology-Alcohol Associated Diseases, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Seddik Hammad
- Molecular Hepatology-Alcohol Associated Diseases, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Tatjana Dediulia
- Molecular Hepatology-Alcohol Associated Diseases, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Julia Werle
- Molecular Hepatology-Alcohol Associated Diseases, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Vanessa Hartwig
- Molecular Hepatology-Alcohol Associated Diseases, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Shahrouz Ghafoory
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Stefan Woelfl
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | | | | | | | - Timo Itzel
- Hepatology and Clinical Bioinformatics, Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Andreas Teufel
- Hepatology and Clinical Bioinformatics, Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Detlef Schuppan
- Research Center for Immunotherapy, University Medical Center, Johannes Gutenberg University, Mainz, Germany
- Institute of Translational Immunology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Ana Stojanovic
- Department of Immunobiochemistry, Centre for Biomedicine and Medical Technology (CBTM) and European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Adelheid Cerwenka
- Department of Immunobiochemistry, Centre for Biomedicine and Medical Technology (CBTM) and European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stefanie Nittka
- Institute for Clinical Chemistry, Medical Faculty Mannheim of the University of Heidelberg, University Hospital Mannheim, Mannheim, Germany
| | - Albrecht Piiper
- Medizinische Klinik 1, Klinikum der Goethe-Universität, Frankfurt am Main, Germany
| | - Timo Gaiser
- Institute of Pathology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Naiara Beraza
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute, Norwich, UK
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Derio, Spain
| | | | - Piotr Milkiewicz
- Liver and Internal Medicine Unit, Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - John G Brain
- NIHR Applied Immunobiology and Transplant Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - David E J Jones
- NIHR Applied Immunobiology and Transplant Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Thomas S Weiss
- Department of Pediatrics and Juvenile Medicine, Center for Liver Cell Research, University of Regensburg Hospital, Regensburg, Germany
| | - Ulrich M Zanger
- Department of Molecular and Cell Biology, Dr Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- Eberhard-Karls-University Tübingen, Tübingen, Germany
| | - Matthias Ebert
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Nadja M Meindl-Beinker
- Molecular Hepatology-Alcohol Associated Diseases, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
9
|
Kitabayashi J, Shirasaki T, Shimakami T, Nishiyama T, Welsch C, Funaki M, Murai K, Sumiyadorj A, Takatori H, Kitamura K, Kawaguchi K, Arai K, Yamashita T, Sakai Y, Yamashita T, Mizukoshi E, Honda M, Kaneko S. Upregulation of the Long Non-Coding RNA HULC by Hepatitis C Virus and its Regulation of Viral Replication. J Infect Dis 2020; 226:407-419. [PMID: 32515477 PMCID: PMC9417122 DOI: 10.1093/infdis/jiaa325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 06/05/2020] [Indexed: 12/11/2022] Open
Abstract
Background Many long noncoding RNAs (lncRNAs) have important roles in biological processes. The lncRNA HULC was found to be upregulated in human hepatoma tissues. HULC is thought to be involved in multiple steps of hepatoma development and progression; however, the relationship between HULC and hepatitis C virus (HCV) infection, which is a leading cause of hepatoma, remains unclear. Methods We examined the effect of HCV replication on HULC expression and the underlying mechanism using cell culture systems. Subsequently, we tested the effect of HULC suppression and overexpression on HCV replication. Finally, we examined the impact of HCV eradication on HULC expression using human liver tissue and blood samples. Results HCV replication increased HULC expression in cell cultures. A promoter assay showed that an HCV nonstructural protein, NS5A, increased HULC transcription. HULC suppression inhibited HCV replication; conversely, its overexpression enhanced HCV replication. These effects on HCV replication seemed to occur by the modification of HCV translation. Measurements from human liver and blood samples showed that HCV eradication significantly reduced HULC levels in the liver and blood. Conclusions HCV infection increases HULC expression in vitro and in vivo. HULC modulates HCV replication through an HCV internal ribosome entry site–directed translation step.
Collapse
Affiliation(s)
- Juria Kitabayashi
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Takara-machi, Kanazawa, Ishikawa, Japan
| | - Takayoshi Shirasaki
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Takara-machi, Kanazawa, Ishikawa, Japan
| | - Tetsuro Shimakami
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Takara-machi, Kanazawa, Ishikawa, Japan
| | - Tomoaki Nishiyama
- Advanced Science Research Center, Kanazawa University, Takara-machi, Kanazawa, Japan
| | - Christoph Welsch
- Department of Internal Medicine I, University Hospital Frankfurt, Goethe University, Germany
| | - Masaya Funaki
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Takara-machi, Kanazawa, Ishikawa, Japan
| | - Kazuhisa Murai
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Takara-machi, Kanazawa, Ishikawa, Japan
| | - Ariunaa Sumiyadorj
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Takara-machi, Kanazawa, Ishikawa, Japan
| | - Hajime Takatori
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Takara-machi, Kanazawa, Ishikawa, Japan
| | - Kazuya Kitamura
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Takara-machi, Kanazawa, Ishikawa, Japan
| | - Kazunori Kawaguchi
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Takara-machi, Kanazawa, Ishikawa, Japan
| | - Kuniaki Arai
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Takara-machi, Kanazawa, Ishikawa, Japan
| | - Taro Yamashita
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Takara-machi, Kanazawa, Ishikawa, Japan
| | - Yoshio Sakai
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Takara-machi, Kanazawa, Ishikawa, Japan
| | - Tatsuya Yamashita
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Takara-machi, Kanazawa, Ishikawa, Japan
| | - Eishiro Mizukoshi
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Takara-machi, Kanazawa, Ishikawa, Japan
| | - Masao Honda
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Takara-machi, Kanazawa, Ishikawa, Japan
| | - Shuichi Kaneko
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Takara-machi, Kanazawa, Ishikawa, Japan
| | | |
Collapse
|
10
|
Jie M, Wu Y, Gao M, Li X, Liu C, Ouyang Q, Tang Q, Shan C, Lv Y, Zhang K, Dai Q, Chen Y, Zeng S, Li C, Wang L, He F, Hu C, Yang S. CircMRPS35 suppresses gastric cancer progression via recruiting KAT7 to govern histone modification. Mol Cancer 2020; 19:56. [PMID: 32164722 PMCID: PMC7066857 DOI: 10.1186/s12943-020-01160-2] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/13/2020] [Indexed: 12/29/2022] Open
Abstract
Background Aberrant expression of circular RNAs contributes to the initiation and progression of cancers, but the underlying mechanism remains elusive. Methods RNA-seq and qRT-PCR were performed to screen differential expressed circRNAs between gastric cancer tissues and adjacent normal tissues. Candidate circRNA (circMRPS35) was screened out and validated by qRT-PCR. Cell proliferation and invasion ability were determined by CCK-8 and cell invasion assays. RNA-seq, GO-pathway, RNA pull-down and ChIRP were further applied to search for detailed mechanism. Results Here, a novel circRNA named circMRPS35, was screened out by RNA-seq in gastric cancer tissues, whose expression is related to clinicopathological characteristics and prognosis in gastric cancer patients. Biologically, circMRPS35 suppresses the proliferation and invasion of gastric cancer cells in vitro and in vivo. Mechanistically, circMRPS35 acts as a modular scaffold to recruit histone acetyltransferase KAT7 to the promoters of FOXO1 and FOXO3a genes, which elicits acetylation of H4K5 in their promoters. Particularly, circMRPS35 specifically binds to FOXO1/3a promoter regions directly. Thus, it dramatically activates the transcription of FOXO1/3a and triggers subsequent response of their downstream target genes expression, including p21, p27, Twist1 and E-cadherin, resulting in the inhibition of cell proliferation and invasion. Moreover, circMRPS35 expression positively correlates with that of FOXO1/3a in gastric cancer tissues. Conclusions Our findings not only reveal the pivotal roles of circMRPS35 in governing histone modification in anticancer treatment, but also advocate for triggering circMRPS35/KAT7/FOXO1/3a pathway to combat gastric cancer.
Collapse
Affiliation(s)
- Mengmeng Jie
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Yaran Wu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Mengyuan Gao
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Xinzhe Li
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Cheng Liu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Qin Ouyang
- Department of Medicinal Chemistry, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Qingyun Tang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Changyu Shan
- Department of Medicinal Chemistry, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Yangfan Lv
- Department of Pathology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Kebin Zhang
- Central Laboratory, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Qian Dai
- Central Laboratory, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Yang Chen
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Shuo Zeng
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Chenglin Li
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Liting Wang
- Biomedical Analysis Center, Third Military Medical University, Chongqing, 400038, China
| | - Fengtian He
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, 400038, China
| | - Changjiang Hu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.
| | - Shiming Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.
| |
Collapse
|
11
|
Vivar R, Humeres C, Anfossi R, Bolivar S, Catalán M, Hill J, Lavandero S, Diaz-Araya G. Role of FoxO3a as a negative regulator of the cardiac myofibroblast conversion induced by TGF-β1. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118695. [PMID: 32169420 DOI: 10.1016/j.bbamcr.2020.118695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 03/05/2020] [Accepted: 03/08/2020] [Indexed: 02/08/2023]
Abstract
Cardiac fibroblasts (CFs) are necessary to maintain extracellular matrix (ECM) homeostasis in the heart. Normally, CFs are quiescent and secrete small amounts of ECM components, whereas, in pathological conditions, they differentiate into more active cells called cardiac myofibroblasts (CMF). CMF conversion is characteristic of cardiac fibrotic diseases, such as heart failure and diabetic cardiomyopathy. TGF-β1 is a key protein involved in CMF conversion. SMADs are nuclear factor proteins activated by TGF-β1 that need other proteins, such as forkhead box type O (FoxO) family members, to promote CMF conversion. FoxO1, a member of this family protein, is necessary for TGF-β1-induced CMF conversion, whereas the role of FoxO3a, another FoxO family member, is unknown. FoxO3a plays an important role in many fibrotic processes in the kidney and lung. However, the participation of FoxO3a in the conversion of CFs into CMF is not clear. In this paper, we demonstrate that TGF-β1 decreases the activation and expression of FoxO3a in CFs. FoxO3a regulation by TGF-β1 requires activated SMAD3, ERK1/2 and Akt. Furthermore, we show that FoxO1 is crucial in the FoxO3a regulation induced by TGF-β1, as shown by overexpressed FoxO1 enhancing and silenced FoxO1 suppressing the effects of TGF-β1 on FoxO3a. Finally, the regulation of TGF-β1-induced CMF conversion was enhanced by FoxO3a silencing and suppressed by inhibited FoxO3a degradation. Considering these collective findings, we suggest that FoxO3a acts as a negative regulator of the CMF conversion that is induced by TGF-β1.
Collapse
Affiliation(s)
- Raúl Vivar
- Molecular and Clinical Pharmacology Program, Biomedical Science Institute, Faculty of Medicine, University of Chile, Santiago, Chile.
| | - Claudio Humeres
- Molecular and Clinical Pharmacology Program, Biomedical Science Institute, Faculty of Medicine, University of Chile, Santiago, Chile.
| | - Renatto Anfossi
- Department of Pharmacological & Toxicological Chemistry, Faculty of Chemical & Pharmaceutical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Samir Bolivar
- Department of Pharmacological & Toxicological Chemistry, Faculty of Chemical & Pharmaceutical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Mabel Catalán
- Molecular and Clinical Pharmacology Program, Biomedical Science Institute, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Joseph Hill
- Departments of Internal Medicine (Division of Cardiology) and Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile; Departments of Internal Medicine (Division of Cardiology) and Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Guillermo Diaz-Araya
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile; Department of Pharmacological & Toxicological Chemistry, Faculty of Chemical & Pharmaceutical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile.
| |
Collapse
|
12
|
Abstract
Fibrosis is a highly conserved and coordinated wound healing response to injury. In the liver, injury is promoted by immune effector mechanisms that are common across various disease etiologies and even between organs such as lungs, kidneys, heart, and other organs. Thus, the liver represents a useful model to study inflammation and repair, particularly as it is frequently biopsied in clinical contexts. Currently, strong evidence implicates IFNL3/4 polymorphisms and interferon (IFN)-λ3 levels as determinants of the extent of hepatic inflammation and fibrosis in viral and nonviral liver diseases, as well as in governing the severity of nonhepatotropic viral diseases. Interestingly, IFNL3/4 polymorphisms and IFN-λ3 levels correlate with fibrosis extent in other organs such as the lung and kidney. In this review, we discuss the association between IFN-λ and tissue inflammation and fibrosis in human disease and the potential clinical utility of the findings.
Collapse
Affiliation(s)
- Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, Australia
| | - Golo Ahlenstiel
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, Australia
- Blacktown Medical School, Western Sydney University, Blacktown, Australia
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, Australia
| |
Collapse
|
13
|
Horii R, Honda M, Shirasaki T, Shimakami T, Shimizu R, Yamanaka S, Murai K, Kawaguchi K, Arai K, Yamashita T, Sakai Y, Yamashita T, Okada H, Nakamura M, Mizukoshi E, Kaneko S. MicroRNA-10a Impairs Liver Metabolism in Hepatitis C Virus-Related Cirrhosis Through Deregulation of the Circadian Clock Gene Brain and Muscle Aryl Hydrocarbon Receptor Nuclear Translocator-Like 1. Hepatol Commun 2019; 3:1687-1703. [PMID: 31832575 PMCID: PMC6887665 DOI: 10.1002/hep4.1431] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 09/04/2019] [Indexed: 12/13/2022] Open
Abstract
The circadian rhythm of the liver plays an important role in maintaining its metabolic homeostasis. We performed comprehensive expression analysis of microRNAs (miRNAs) using TaqMan polymerase chain reaction of liver biopsy tissues to identify the miRNAs that are significantly up‐regulated in advanced chronic hepatitis C (CHC). We found miR‐10a regulated various liver metabolism genes and was markedly up‐regulated by hepatitis C virus infection and poor nutritional conditions. The expression of miR‐10a was rhythmic and down‐regulated the expression of the circadian rhythm gene brain and muscle aryl hydrocarbon receptor nuclear translocator‐like 1 (Bmal1) by directly suppressing the expression of RA receptor‐related orphan receptor alpha (RORA). Overexpression of miR‐10a in hepatocytes blunted circadian rhythm of Bmal1 and inhibited the expression of lipid synthesis genes (sterol regulatory element binding protein [SREBP]1, fatty acid synthase [FASN], and SREBP2), gluconeogenesis (peroxisome proliferator‐activated receptor gamma coactivator 1 alpha [PGC1α]), protein synthesis (mammalian target of rapamycin [mTOR] and ribosomal protein S6 kinase [S6K]) and bile acid synthesis (liver receptor homolog 1 [LRH1]). The expression of Bmal1 was significantly correlated with the expression of mitochondrial biogenesis‐related genes and reduced Bmal1 was associated with increased serum alanine aminotransferase levels and progression of liver fibrosis in CHC. Thus, impaired circadian rhythm expression of Bmal1 by miR‐10a disturbs metabolic adaptations, leading to liver damage, and is closely associated with the exacerbation of abnormal liver metabolism in patients with advanced CHC. In patients with hepatitis C‐related liver cirrhosis, liver tissue miR‐10a levels were significantly associated with hepatic reserve, fibrosis markers, esophageal varix complications, and hepatitis C‐related hepatocellular carcinoma recurrence. Conclusion: MiRNA‐10a is involved in abnormal liver metabolism in cirrhotic liver through down‐regulation of the expression of the circadian rhythm gene Bmal1. Therefore, miR‐10a is a possible useful biomarker for estimating the prognosis of liver cirrhosis.
Collapse
Affiliation(s)
- Rika Horii
- Department of Gastroenterology Kanazawa University Graduate School of Medicine Kanazawa Japan
| | - Masao Honda
- Department of Gastroenterology Kanazawa University Graduate School of Medicine Kanazawa Japan.,Department of Laboratory Medicine Kanazawa University Graduate School of Health Medicine Kanazawa Japan
| | - Takayoshi Shirasaki
- Department of Laboratory Medicine Kanazawa University Graduate School of Health Medicine Kanazawa Japan
| | - Tetsuro Shimakami
- Department of Gastroenterology Kanazawa University Graduate School of Medicine Kanazawa Japan
| | - Ryogo Shimizu
- Department of Laboratory Medicine Kanazawa University Graduate School of Health Medicine Kanazawa Japan
| | - Souma Yamanaka
- Department of Laboratory Medicine Kanazawa University Graduate School of Health Medicine Kanazawa Japan
| | - Kazuhisa Murai
- Department of Laboratory Medicine Kanazawa University Graduate School of Health Medicine Kanazawa Japan
| | - Kazunori Kawaguchi
- Department of Gastroenterology Kanazawa University Graduate School of Medicine Kanazawa Japan
| | - Kuniaki Arai
- Department of Gastroenterology Kanazawa University Graduate School of Medicine Kanazawa Japan
| | - Tatsuya Yamashita
- Department of Gastroenterology Kanazawa University Graduate School of Medicine Kanazawa Japan
| | - Yoshio Sakai
- Department of Gastroenterology Kanazawa University Graduate School of Medicine Kanazawa Japan
| | - Taro Yamashita
- Department of Gastroenterology Kanazawa University Graduate School of Medicine Kanazawa Japan
| | - Hikari Okada
- Department of Gastroenterology Kanazawa University Graduate School of Medicine Kanazawa Japan
| | - Mikiko Nakamura
- Department of Gastroenterology Kanazawa University Graduate School of Medicine Kanazawa Japan
| | - Eishiro Mizukoshi
- Department of Gastroenterology Kanazawa University Graduate School of Medicine Kanazawa Japan
| | - Shuichi Kaneko
- Department of Gastroenterology Kanazawa University Graduate School of Medicine Kanazawa Japan
| |
Collapse
|
14
|
Abstract
Fibrosis is the abnormal deposition of extracellular matrix, which can lead to organ dysfunction, morbidity, and death. The disease burden caused by fibrosis is substantial, and there are currently no therapies that can prevent or reverse fibrosis. Metabolic alterations are increasingly recognized as an important pathogenic process that underlies fibrosis across many organ types. As a result, metabolically targeted therapies could become important strategies for fibrosis reduction. Indeed, some of the pathways targeted by antifibrotic drugs in development - such as the activation of transforming growth factor-β and the deposition of extracellular matrix - have metabolic implications. This Review summarizes the evidence to date and describes novel opportunities for the discovery and development of drugs for metabolic reprogramming, their associated challenges, and their utility in reducing fibrosis. Fibrotic therapies are potentially relevant to numerous common diseases such as cirrhosis, non-alcoholic steatohepatitis, chronic renal disease, heart failure, diabetes, idiopathic pulmonary fibrosis, and scleroderma.
Collapse
|
15
|
Ma M, Yin X, Zhao X, Guo C, Zhu X, Liu T, Yang M, Zhang Z, Fu Y, Liu J, Xu J, Ding H, Han X, Chu Z, Shang H, Jiang Y. CD56 - CD16 + NK cells from HIV-infected individuals negatively regulate IFN-γ production by autologous CD8 + T cells. J Leukoc Biol 2019; 106:1313-1323. [PMID: 31483071 DOI: 10.1002/jlb.3a0819-171rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/18/2019] [Accepted: 08/20/2019] [Indexed: 12/14/2022] Open
Abstract
The percentage of human CD56- CD16+ NK cells increases during chronic infection with human HIV; however, the biologic role of CD56- CD16+ NK cells in HIV infection is unclear. Our results demonstrate that the percentage of CD56- CD16+ NK cells producing IL-10 and TGF-β was higher than CD56dim CD16+ NK cells. CD56- CD16+ NK cells could inhibit IFN-γ production by autologous CD8+ T cells, and this inhibition could be partially reversed by anti-IL-10, anti-TGF-β, or anti-PD-L1 mAbs. CD56- CD16+ NK cells are potential targets for the development of novel immune therapies against HIV infection.
Collapse
Affiliation(s)
- Meichen Ma
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Xiaowan Yin
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Xue Zhao
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Chenxi Guo
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Xiaoyu Zhu
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Tingting Liu
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Mei Yang
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Zining Zhang
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Yajing Fu
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Jing Liu
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Junjie Xu
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Haibo Ding
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Xiaoxu Han
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Zhenxing Chu
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Hong Shang
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Yongjun Jiang
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| |
Collapse
|
16
|
Zhu GQ, Jeon SH, Lee KW, Tian WJ, Cho HJ, Ha US, Hong SH, Lee JY, Moon MK, Moon SH, Kim SW, Bae WJ. Electric Stimulation Hyperthermia Relieves Inflammation via the Suppressor of Cytokine Signaling 3-Toll Like Receptor 4 Pathway in a Prostatitis Rat Model. World J Mens Health 2019; 38:359-369. [PMID: 31385476 PMCID: PMC7308236 DOI: 10.5534/wjmh.190078] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 06/24/2019] [Indexed: 12/15/2022] Open
Abstract
Purpose Chronic prostatitis (CP), including chronic pelvic pain syndrome (CPPS), is the most commonly encountered manifestation of prostatitis. The aim of this study was to evaluate the effect of electric stimulation hyperthermia treatment (ESHT) on CP/CPPS and to explore the underlying mechanism. Materials and Methods RWPE-2 cells with lipopolysaccharide-induced inflammation and a prostatitis rat model induced by 17β-estradiol and dihydrotestosterone underwent sham, electric stimulation, or ESHT treatment. Four weeks later, cells, supernatants, and rat prostates were collected for analysis using immunohistochemistry, Western blots, and enzyme-linked immunosorbent assays. Results We found that ESHT improved prostatitis in vivo and attenuated inflammation in vitro. ESHT significantly induced suppressor of cytokine signaling 3 (SOCS3) expression and subsequently promoted HSP70. It attenuated inflammation through decreased expression of toll-like receptor 4 (TLR4), nuclear factor kappa B, and subsequent inflammatory cytokines. ESHT also inhibited apoptosis and released growth factor in tissue affected by prostatitis. Conclusions ESHT improved CP/CPPS and reversed pathologic changes of prostatitis by inhibiting the SOCS3-TLR4 pathway.
Collapse
Affiliation(s)
- Guan Qun Zhu
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Catholic Integrative Medicine Research Institute, The Catholic University of Korea, Seoul, Korea
| | - Seung Hwan Jeon
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Catholic Integrative Medicine Research Institute, The Catholic University of Korea, Seoul, Korea
| | - Kyu Won Lee
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Catholic Integrative Medicine Research Institute, The Catholic University of Korea, Seoul, Korea
| | - Wen Jie Tian
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Catholic Integrative Medicine Research Institute, The Catholic University of Korea, Seoul, Korea
| | - Hyuk Jin Cho
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - U Syn Ha
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sung Hoo Hong
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ji Youl Lee
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | | | - Sae Woong Kim
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Catholic Integrative Medicine Research Institute, The Catholic University of Korea, Seoul, Korea.
| | - Woong Jin Bae
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Catholic Integrative Medicine Research Institute, The Catholic University of Korea, Seoul, Korea.
| |
Collapse
|
17
|
Yokoyama H, Masaki T, Inoue I, Nakamura M, Mezaki Y, Saeki C, Oikawa T, Saruta M, Takahashi H, Ikegami M, Hano H, Ikejima K, Kojima S, Matsuura T. Histological and biochemical evaluation of transforming growth factor-β activation and its clinical significance in patients with chronic liver disease. Heliyon 2019; 5:e01231. [PMID: 30815603 PMCID: PMC6378908 DOI: 10.1016/j.heliyon.2019.e01231] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 01/26/2019] [Accepted: 02/11/2019] [Indexed: 12/14/2022] Open
Abstract
Transforming growth factor-β (TGF-β) is a key driver for liver fibrogenesis. TGF-β must be activated in order to function. Plasma kallikrein (PLK) is a TGF-β activator that cleaves the latency-associated protein (LAP) between arginine58 and lysine59 residues and releases active TGF-β from the latent TGF-β-LAP complex. Thus, the generation of two LAP degradation products, ending at arginine58 (R58/LAP-DPs) and beginning from lysine59 (L59/LAP-DPs), reflects PLK-dependent TGF-β activation. However, the significance and details of TGF-β activation in patients with chronic liver disease (CLD) remain uncertain. We herein examined the PLK-dependent TGF-β activation in patients by detecting R58 and L59/LAP-DPs. A total of 234 patients with CLD were included in this study. Liver biopsy specimens were used for immunostaining to detect R58/LAP-DPs, while plasma samples were subjected to an enzyme-linked immunosorbent assay to measure the L59/LAP-DP concentration. R58/LAP-DP was robustly expressed in and around the sinusoidal cells before the development of the fibrous regions. The R58/LAP-DP expression at fibrosis stage 1 was higher than at any other stages, and the relationship between the plasma L59/LAP-DP level and the stage of fibrosis also showed a similar trend. The abundance of plasma L59/LAP-DP showed no correlation with the levels of direct serum biomarkers of liver fibrosis; however, its changes during interferon-based therapy for chronic hepatitis C were significantly associated with virological responses. Our results suggest that PLK-dependent TGF-β activation occurs in the early stages of fibrosis and that its unique surrogate markers, R58 and L59/LAP-DPs, are useful for monitoring the clinical course of CLD.
Collapse
Affiliation(s)
- Hiroshi Yokoyama
- Department of Laboratory Medicine, The Jikei University School of Medicine, Tokyo, Japan.,Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Takahiro Masaki
- Department of Laboratory Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Ikuyo Inoue
- Liver Cancer Prevention Research Unit, RIKEN Center for Integrative Medical Sciences, Saitama, Japan
| | - Mariko Nakamura
- Department of Laboratory Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Yoshihiro Mezaki
- Department of Laboratory Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Chisato Saeki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Tsunekazu Oikawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Masayuki Saruta
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Hiroyuki Takahashi
- Department of Pathology, The Jikei University School of Medicine, Tokyo, Japan
| | - Masahiro Ikegami
- Department of Pathology, The Jikei University School of Medicine, Tokyo, Japan
| | - Hiroshi Hano
- Department of Pathology, The Jikei University School of Medicine, Tokyo, Japan
| | - Kenichi Ikejima
- Department of Gastroenterology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Soichi Kojima
- Liver Cancer Prevention Research Unit, RIKEN Center for Integrative Medical Sciences, Saitama, Japan
| | - Tomokazu Matsuura
- Department of Laboratory Medicine, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
18
|
Yao C, Hu K, Xi C, Li N, Wei Y. Transcriptomic analysis of cells in response to EV71 infection and 2Apro as a trigger for apoptosis via TXNIP gene. Genes Genomics 2018; 41:343-357. [DOI: 10.1007/s13258-018-0760-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/30/2018] [Indexed: 02/07/2023]
|
19
|
Shirasaki T, Honda M, Yamashita T, Nio K, Shimakami T, Shimizu R, Nakasyo S, Murai K, Shirasaki N, Okada H, Sakai Y, Sato T, Suzuki T, Yoshioka K, Kaneko S. The osteopontin-CD44 axis in hepatic cancer stem cells regulates IFN signaling and HCV replication. Sci Rep 2018; 8:13143. [PMID: 30177680 PMCID: PMC6120883 DOI: 10.1038/s41598-018-31421-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 08/15/2018] [Indexed: 12/17/2022] Open
Abstract
Osteopontin (OPN) is involved in cell proliferation, migration, inflammation, and tumor progression in various tissues. OPN induces stemness by interacting with CD44, but the functional relevance of OPN-mediated interferon (IFN) signaling and hepatitis C virus (HCV) replication in stem cell populations remains unclear. In this study, we investigated the effect of OPN on HCV replication and IFN signaling in cancer stem cells (CSCs) positive for epithelial cell adhesion molecule (EpCAM) and CD44. We show that the EpCAM+/CD44+ CSCs show marked HCV replication when compared to EpCAM−/CD44− cells. In addition, OPN significantly enhances this HCV replication in EpCAM+/CD44+ CSCs and markedly suppresses IFN-stimulated gene expression. The GSK-3β inhibitor BIO increases the EpCAM+/CD44+ CSC population and OPN expression and impairs IFN signaling via STAT1 degradation. Taken together, our data suggest that OPN enhances HCV replication in the EpCAM+/CD44+ CSCs, while it also negatively regulates the IFN signaling pathway via inhibition of STAT1 phosphorylation and degradation. Therefore, OPN may represent a novel therapeutic target for treating HCV-related hepatocellular carcinoma.
Collapse
Affiliation(s)
- Takayoshi Shirasaki
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan.,Department of Advanced Medical Technology, Kanazawa University Graduate School of Health Medicine, Kanazawa, Japan
| | - Masao Honda
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan. .,Department of Advanced Medical Technology, Kanazawa University Graduate School of Health Medicine, Kanazawa, Japan.
| | - Taro Yamashita
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan.,Department of General Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Kouki Nio
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Tetsuro Shimakami
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Ryougo Shimizu
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan.,Department of Advanced Medical Technology, Kanazawa University Graduate School of Health Medicine, Kanazawa, Japan
| | - Saki Nakasyo
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan.,Department of Advanced Medical Technology, Kanazawa University Graduate School of Health Medicine, Kanazawa, Japan
| | - Kazuhisa Murai
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan.,Department of Advanced Medical Technology, Kanazawa University Graduate School of Health Medicine, Kanazawa, Japan
| | - Natsumi Shirasaki
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Hikari Okada
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Yoshio Sakai
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Tokiharu Sato
- Division of Molecular Cell Signaling, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Tetsuro Suzuki
- Department of Virology and Parasitology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Katsuji Yoshioka
- Division of Molecular Cell Signaling, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Shuichi Kaneko
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| |
Collapse
|
20
|
Ye X, He L, Ma J, Li Y, Zhang M, Yang J, Zhang J, Xiao F, Wei H. Downregulation of Glt25d1 aggravates carbon tetrachloride‑induced acute hepatic injury through activation of the TGF‑β1/Smad2 signaling pathway. Mol Med Rep 2018; 18:3611-3618. [PMID: 30132521 PMCID: PMC6131360 DOI: 10.3892/mmr.2018.9392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 05/16/2018] [Indexed: 12/25/2022] Open
Abstract
Collagen β (1-O) galactosyltransferase 1 (GLT25D1) has been reported to transfer galactose to hydroxylysine residues via β (1-O) linkages in collagen. The present study investigated the function of the collagen galactosyltransferase activity of GLT25D1 against carbon tetrachloride (CCl4)-induced acute liver injury in vitro. Glt25d1+/− mice and wild-type (WT) mice were injected intraperitoneally with the same dose of CCl4. The grade of hepatic injury and the extent of hepatocyte necrosis in the acute phase were assessed 48 h following CCl4 injection. Hepatocyte necrosis was evaluated by histological examination and by serum alanine aminotransferase and aspartate aminotransferase levels, which were higher in the Glt25d1+/− mice compared with those in the WT mice. Reverse transcription-quantitative polymerase chain reaction was performed, and the results demonstrated that the mRNA expression levels of inflammatory cytokines, including tumor necrosis factor-α and interleukin-6 were significantly increased in the Glt25d1+/− mice. Furthermore, western blot analyses were performed, and the results demonstrated that the protein levels of cleaved caspase-3 and −9 were also markedly increased in the Glt25d1+/− liver, indicating that hepatocyte apoptosis was induced. Additionally, the expression levels of transforming growth factor (TGF)-β1 and phosphorylated small mothers against decapentaplegic (Smad)2 were markedly upregulated, indicating activation of the TGF-β1/Smad2 signaling pathway during CCl4-induced acute liver injury in Glt25d1+/− mice. CCl4 administration also resulted in severe damage to Glt25d1+/− primary hepatocytes in vitro. Taken together, the downregulation of Glt25d1 deteriorated CCl4-induced liver injury in mice, which may involve triggering inflammatory responses, apoptosis and TGF-β1/Smad2 signaling pathway activation.
Collapse
Affiliation(s)
- Xiaohui Ye
- Department of Gastroenterology, Peking University Ditan Teaching Hospital, Beijing 100015, P.R. China
| | - Lingling He
- Department of Gastroenterology, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P.R. China
| | - Jiali Ma
- Department of Gastroenterology, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P.R. China
| | - Yufeng Li
- Department of Gastroenterology, Beijing Changping Hospital, Beijing 100085, P.R. China
| | - Manka Zhang
- Department of Center of Integrated Traditional Chinese and Western Medicine, Peking University Ditan Teaching Hospital, Beijing 100015, P.R. China
| | - Junru Yang
- Department of Gastroenterology, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P.R. China
| | - Jian Zhang
- Department of Center of Integrated Traditional Chinese and Western Medicine, Peking University Ditan Teaching Hospital, Beijing 100015, P.R. China
| | - Fan Xiao
- Department of Institute of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P.R. China
| | - Hongshan Wei
- Department of Gastroenterology, Peking University Ditan Teaching Hospital, Beijing 100015, P.R. China
| |
Collapse
|
21
|
Abd El-Meguid M, Dawood RM, Mokhles MA, El Awady MK. Extrahepatic Upregulation of Transforming Growth Factor Beta 2 in HCV Genotype 4-Induced Liver Fibrosis. J Interferon Cytokine Res 2018; 38:341-347. [PMID: 30130153 DOI: 10.1089/jir.2018.0045] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Elevated levels of transforming growth factor-β (TGF-β) family mediate myofibroblast generation and extracellular matrix deposition, thus making TGF-β recognized as major profibrogenic cytokines. In this article, we provide evidence that extrahepatic TGF-β2 expression at RNA and protein levels in peripheral leucocytes and serum, respectively, correlate with hepatic fibrogenesis. Current study includes a total of 110 subjects [89 naive hepatitis C virus (HCV)-infected patients (f0-f4) and 21 healthy controls]. Array profiling of 84 fibrosis-related transcripts revealed that TGF-β2 RNA was significantly upregulated compared with controls. Transcription results were confirmed by specific qRT-PCR on TGF-β2 RNA in peripheral leucocytes and TGF-β2 protein by ELISA in serum. PCR array and qRT-PCR for TGF-β2 RNA in peripheral leucocytes revealed that HCV-infected patients, regardless of the degree of fibrosis, had significantly elevated TGF-β2 RNA levels compared with controls (P = 0.018 and 0.047, respectively). This extrahepatic upregulation of TGF-β2 RNA was confirmed by elevated levels of secretory TGF-β2 protein in infected sera (P = 0.001). The Area Under the Curve of the receiver operating characteristic curve for the TGF-β2 protein between patients and controls was 0.80, a value that renders serum TGF-β2 protein a promising biomarker for liver fibrosis.
Collapse
Affiliation(s)
- Mai Abd El-Meguid
- 1 Genetic Engineering Division, Department of Microbial Biotechnology, National Research Centre , Giza, Egypt
| | - Reham M Dawood
- 1 Genetic Engineering Division, Department of Microbial Biotechnology, National Research Centre , Giza, Egypt
| | | | - Mostafa K El Awady
- 1 Genetic Engineering Division, Department of Microbial Biotechnology, National Research Centre , Giza, Egypt
| |
Collapse
|
22
|
Liao KF, Tsai SM, Ma CL, Kuo YH, Chen WC, Chuang HY, Lai SW. Effect of a vegetarian diet on the treatment efficacy of peginterferon plus ribavirin in chronic hepatitis C patients: A retrospective cohort study. ADVANCES IN DIGESTIVE MEDICINE 2018. [DOI: 10.1002/aid2.13069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kuan-Fu Liao
- Department of Internal Medicine; Taichung Tzu Chi General Hospital; Taichung Taiwan
- College of Medicine; Tzu Chi University; Hualien Taiwan
- Graduate Institute of Integrated Medicine; China Medical University; Taichung Taiwan
| | - Sung-Mao Tsai
- Department of Internal Medicine; Taichung Tzu Chi General Hospital; Taichung Taiwan
| | - Chia-Liang Ma
- Department of Internal Medicine; Taichung Tzu Chi General Hospital; Taichung Taiwan
| | - Yu-Hung Kuo
- University of the East Ramon Magsaysay Memorial Medical Center; Quezon City Philippines
- Department of Public Health; National Taiwan University; Taipei Taiwan
| | - Wen-Chi Chen
- Graduate Institute of Integrated Medicine; China Medical University; Taichung Taiwan
- Department of Urology; China Medical University Hospital; Taichung Taiwan
| | - Hsun-Yang Chuang
- Department of Internal Medicine; Taichung Tzu Chi General Hospital; Taichung Taiwan
| | - Shih-Wei Lai
- College of Medicine; China Medical University; Taichung Taiwan
- Department of Family Medicine; China Medical University Hospital; Taichung Taiwan
| |
Collapse
|
23
|
Kuwashiro T, Iwane S, Jinghe X, Matsuhashi S, Eguchi Y, Anzai K, Fujimoto K, Mizuta T, Sakamoto N, Ikeda M, Kato N, Ozaki I. Regulation of interferon signaling and HCV‑RNA replication by extracellular matrix. Int J Mol Med 2018; 42:957-965. [PMID: 29786754 PMCID: PMC6034922 DOI: 10.3892/ijmm.2018.3693] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 05/09/2018] [Indexed: 01/08/2023] Open
Abstract
Although interferon (IFN)‑based treatment of patients with chronic hepatitis C virus (HCV) infection is widely applied, treatment resistance is often observed in patients with advanced liver fibrosis. Given that the molecular mechanisms of IFN resistance in liver fibrosis remain elusive, the present study investigated the effects of extracellular matrix (ECM) on IFN signaling in hepatic cells. The native HuH‑7 human hepatoma cell line and HuH‑7 cells were stably transfected with full‑length HCV‑RNA fused with Renilla luciferase (OR6 cells) were cultured on ECM‑coated dishes or non‑coated plastic dishes (NDs), and treated with human IFN‑α. In Huh‑7 cells cultured on coated dishes, the IFN‑stimulated response element (ISRE) luciferase activity was measured following ISRE plasmid transfection and the expression of IFN‑stimulated genes (ISG) were significantly lower than those in cells cultured on NDs. In addition, after IFN‑α treatment, the amount of HCV‑RNA and viral protein produced by OR6 cells cultured on coated dishes was higher than that produced by cells cultured on NDs. When cells were treated with β1‑integrin‑blocking antibody to disrupt the cell‑matrix interaction, the ISRE luciferase activity was restored, and the protein expression of ISG was increased, while that of HCV proteins was suppressed. Treatment of cells with integrin‑linked kinase (ILK) inhibitor or focal adhesion kinase (FAK) inhibitor restored the ISRE luciferase activity and expression of ISG proteins. These results suggested that β1‑integrin‑mediated signals affected the IFN signaling and promoted HCV replication. Therefore, the accumulation of ECM in liver fibrosis may impair IFN signaling through β1‑integrin‑mediated signaling involving ILK and FAK.
Collapse
Affiliation(s)
- Takuya Kuwashiro
- Department of Internal Medicine, Saga Medical School, Saga University, Saga 849‑8501, Japan
| | - Shinji Iwane
- Department of Internal Medicine, Saga Medical School, Saga University, Saga 849‑8501, Japan
| | - Xia Jinghe
- Department of Internal Medicine, Saga Medical School, Saga University, Saga 849‑8501, Japan
| | - Sachiko Matsuhashi
- Department of Internal Medicine, Saga Medical School, Saga University, Saga 849‑8501, Japan
| | - Yuichiro Eguchi
- Department of Internal Medicine, Saga Medical School, Saga University, Saga 849‑8501, Japan
| | - Keizo Anzai
- Department of Internal Medicine, Saga Medical School, Saga University, Saga 849‑8501, Japan
| | - Kazuma Fujimoto
- Department of Internal Medicine, Saga Medical School, Saga University, Saga 849‑8501, Japan
| | - Toshihiko Mizuta
- Department of Internal Medicine, Saga Medical School, Saga University, Saga 849‑8501, Japan
| | - Naoya Sakamoto
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido 060‑8638, Japan
| | - Masanori Ikeda
- Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700‑8558, Japan
| | - Nobuyuki Kato
- Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700‑8558, Japan
| | - Iwata Ozaki
- Department of Internal Medicine, Saga Medical School, Saga University, Saga 849‑8501, Japan
| |
Collapse
|
24
|
Xin Z, Ma Z, Hu W, Jiang S, Yang Z, Li T, Chen F, Jia G, Yang Y. FOXO1/3: Potential suppressors of fibrosis. Ageing Res Rev 2018; 41:42-52. [PMID: 29138094 DOI: 10.1016/j.arr.2017.11.002] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/07/2017] [Accepted: 11/08/2017] [Indexed: 02/06/2023]
Abstract
Fibrosis is a universally age-related disease that involves nearly all organs. It is typically initiated by organic injury and eventually results in organ failure. There are still few effective therapeutic strategy targets for fibrogenesis. Forkhead box proteins O1 and O3 (FOXO1/3) have been shown to have favorable inhibitory effects on fibroblast activation and subsequent extracellular matrix production and can ameliorate fibrosis levels in numerous organs, including the heart, liver, lung, and kidney; they are therefore promising targets for anti-fibrosis therapy. Moreover, we can develop appropriate strategies to make the best use of FOXO1/3's anti-fibrosis properties. The information reviewed here should be significant for understanding the roles of FOXO1/3 in fibrosis and should contribute to the design of further studies related to FOXO1/3 and the fibrotic response and shed light on a potential treatment for fibrosis.
Collapse
Affiliation(s)
- Zhenlong Xin
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Department of Occupational and Environmental Health and The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Zhiqiang Ma
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Wei Hu
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Shuai Jiang
- Department of Aerospace Medicine, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Zhi Yang
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Tian Li
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Fulin Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Guozhan Jia
- Department of General Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China.
| |
Collapse
|
25
|
Wang X, Oishi N, Shimakami T, Yamashita T, Honda M, Murakami S, Kaneko S. Hepatitis B virus X protein induces hepatic stem cell-like features in hepatocellular carcinoma by activating KDM5B. World J Gastroenterol 2017; 23:3252-3261. [PMID: 28566884 PMCID: PMC5434430 DOI: 10.3748/wjg.v23.i18.3252] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 02/28/2017] [Accepted: 03/31/2017] [Indexed: 02/07/2023] Open
Abstract
AIM To determine the role of hepatitis B virus X protein (HBx), HBx in regulating hepatic progenitor cell (HPC)-like features in hepatocellular carcinoma (HCC) and the underlying molecular mechanisms.
METHODS We used a retrovirus vector to introduce wild type HBx or empty vector into HepG2 cells. We then used these cells to analyze cell proliferation, senescence, transformation, and stem-like features. Gene expression profiling was carried out on Affymetrix GeneChip Human U133A2.0 ver.2 arrays according to the manufacturer’s protocol. Unsupervised hierarchical clustering analysis and Class Comparison analysis were performed by BRB-Array Tools software Version 4.2.2. A total of 238 hepatitis B virus (HBV)-related HCC patients’ array data were used for analyzing clinical features.
RESULTS The histone demethylase KDM5B was significantly highly expressed in HBV-related HCC cases (P < 0.01). In HBV proteins, only HBx up-regulated KDM5B by activating c-myc. Hepatic stem cell (HpSC) markers (EpCAM, AFP, PROM1, and NANOG) were significantly highly expressed in KDM5B-high HCC cases (P < 0.01). KDM5B played an important role in maintaining HpSC-like features and was associated with a poor prognosis. Moreover, inhibition of KDM5B suppressed spheroid formation and cell invasion in vitro.
CONCLUSION HBx activates the histone demethylase KDM5B and induces HPC-like features in HCC. Histone demethylases KDM5B may be an important therapeutic target against HBV-related HCC cases.
Collapse
|
26
|
Systematic Identification and Bioinformatic Analysis of MicroRNAs in Response to Infections of Coxsackievirus A16 and Enterovirus 71. BIOMED RESEARCH INTERNATIONAL 2016; 2016:4302470. [PMID: 27843944 PMCID: PMC5098103 DOI: 10.1155/2016/4302470] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/29/2016] [Indexed: 12/18/2022]
Abstract
Hand, foot, and mouth disease (HFMD), mainly caused by coxsackievirus A16 (CVA16) and enterovirus 71 (EV71) infections, remains a serious public health issue with thousands of newly diagnostic cases each year since 2008 in China. The mechanisms underlying viral infection, however, are elusive to date. In the present study, we systematically investigated the host cellular microRNA (miRNA) expression patterns in response to CVA16 and EV71 infections. Through microarray examination, 27 miRNAs (15 upregulated and 12 downregulated) were found to be coassociated with the replication process of two viruses, while the expression levels of 15 and 5 miRNAs were significantly changed in CVA16- and EV71-infected cells, respectively. A great number of target genes of 27 common differentially expressed miRNAs were predicted by combined use of two computational target prediction algorithms, TargetScan and MiRanda. Comprehensive bioinformatic analysis of target genes in GO categories and KEGG pathways indicated the involvement of diverse biological functions and signaling pathways during viral infection. These results provide an overview of the roles of miRNAs in virus-host interaction, which will contribute to further understanding of HFMD pathological mechanisms.
Collapse
|
27
|
Xiao C, Wang C, Cheng S, Lai C, Zhang P, Wang Z, Zhang T, Zhang S, Liu R. The significance of low levels of LINC RP1130-1 expression in human hepatocellular carcinoma. Biosci Trends 2016; 10:378-385. [PMID: 27773892 DOI: 10.5582/bst.2016.01123] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most common neoplasms. Little progress has been made in the diagnosis and treatment of HCC and its prognosis remains poor. Studies have increasingly found that long non-coding RNA (lncRNA) is involved in the regulation of the occurrence and development of HCC. To investigate the diagnostic and prognostic value of lncRNA in HCC, the current study examined 25 lncRNAs with differing levels of expression (according to the fold change) in microarray databases. Expression of LINC RP1130-1 was found to be markedly down-regulated in 51 HCC tissues compared to matching adjacent non-tumor liver tissues. The pattern of expression and clinical significance of LINC RP1130-1 were examined in HCC. The area under the receiver operating characteristic (ROC) curve was 0.74 for LINC RP1130-1. The expression of LINC RP1130-1 was associated with clinical stage, the number of tumors, portal vein tumor thrombus (PVTT), and microvascular invasion (MVI). More importantly, patients with a low level of LINC RP1130-1 expression had a shorter recurrence-free survival (RFS) (n = 51, p < 0.05) than those with a high level of LINC RP1130-1 expression. Taken together, these findings indicate that a low level of LINC RP1130-1 expression in patients with HCC may be a powerful tumor biomarker, with potential clinical use in diagnosing and predicting the prognosis for patients with HCC.
Collapse
Affiliation(s)
- Chaohui Xiao
- Departments of Surgical Oncology, Chinese People's Liberation Army (PLA) General Hospital
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Tang WP, Akahoshi T, Piao JS, Narahara S, Murata M, Kawano T, Hamano N, Ikeda T, Hashizume M. Splenectomy enhances the therapeutic effect of adipose tissue-derived mesenchymal stem cell infusion on cirrhosis rats. Liver Int 2016; 36:1151-9. [PMID: 26353075 DOI: 10.1111/liv.12962] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 08/21/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Clinical studies suggest that splenectomy improves liver function in cirrhotic patients, but the influence of splenectomy on stem cell transplantation is poorly understood. This study investigated the effect of splenectomy on stem cell infusion and elucidated its mechanism. METHODS Rat adipose tissue-derived mesenchymal stem cells were infused into cirrhosis rats with or without splenectomy, followed by the assessment of the in vivo distribution of stem cells and pathological changes. Stromal cell-derived factor-1 and hepatocyte growth factor expression were also investigated in splenectomized cirrhosis patients and rats. RESULTS Splenectomy, prior to cell infusion, improved liver function and suppressed fibrosis progression more efficiently than cell infusion alone in the experimental cirrhosis model. Stromal cell-derived factor-1 and hepatocyte growth factor levels after splenectomy were increased in patients and rats. These upregulated cytokines significantly facilitated stem cell motility, migration and proliferation in vitro. C-X-C chemokine receptor type 4 neutralization weakened the promotion of cell migration by these cytokines. The infused cells integrated into liver fibrosis septa and participated in regeneration more efficiently in splenectomized rats. Direct coculture with stem cells led to inhibition of hepatic stellate cell proliferation. In addition, hepatocyte growth factor induced hepatic stellate cell apoptosis via the c-jun N-terminal kinase-p53 pathway. CONCLUSIONS Splenectomy prior to cell infusion enhanced the therapeutic effect of stem cells on cirrhosis, which involved upregulation of stromal cell-derived factor-1 and hepatocyte growth factor after splenectomy.
Collapse
Affiliation(s)
- Wei-Ping Tang
- Department of Disaster and Emergency Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomohiko Akahoshi
- Department of Disaster and Emergency Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Advanced Medical Initiatives, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Jing-Shu Piao
- Department of Disaster and Emergency Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Sayoko Narahara
- Department of Disaster and Emergency Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masaharu Murata
- Department of Disaster and Emergency Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takahito Kawano
- Department of Disaster and Emergency Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Nobuhito Hamano
- Department of Disaster and Emergency Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tetsuo Ikeda
- Department of Advanced Medical Initiatives, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Makoto Hashizume
- Department of Disaster and Emergency Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Advanced Medical Initiatives, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
29
|
Dropmann A, Dediulia T, Breitkopf-Heinlein K, Korhonen H, Janicot M, Weber SN, Thomas M, Piiper A, Bertran E, Fabregat I, Abshagen K, Hess J, Angel P, Coulouarn C, Dooley S, Meindl-Beinker NM. TGF-β1 and TGF-β2 abundance in liver diseases of mice and men. Oncotarget 2016; 7:19499-19518. [PMID: 26799667 PMCID: PMC4991397 DOI: 10.18632/oncotarget.6967] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 01/01/2016] [Indexed: 01/11/2023] Open
Abstract
TGF-β1 is a major player in chronic liver diseases promoting fibrogenesis and tumorigenesis through various mechanisms. The expression and function of TGF-β2 have not been investigated thoroughly in liver disease to date. In this paper, we provide evidence that TGF-β2 expression correlates with fibrogenesis and liver cancer development.Using quantitative realtime PCR and ELISA, we show that TGF-β2 mRNA expression and secretion increased in murine HSCs and hepatocytes over time in culture and were found in the human-derived HSC cell line LX-2. TGF-β2 stimulation of the LX-2 cells led to upregulation of the TGF-β receptors 1, 2, and 3, whereas TGF-β1 treatment did not alter or decrease their expression. In liver regeneration and fibrosis upon CCl4 challenge, the transient increase of TGF-β2 expression was accompanied by TGF-β1 and collagen expression. In bile duct ligation-induced fibrosis, TGF-β2 upregulation correlated with fibrotic markers and was more prominent than TGF-β1 expression. Accordingly, MDR2-KO mice showed significant TGF-β2 upregulation within 3 to 15 months but minor TGF-β1 expression changes. In 5 of 8 hepatocellular carcinoma (HCC)/hepatoblastoma cell lines, relatively high TGF-β2 expression and secretion were observed, with some cell lines even secreting more TGF-β2 than TGF-β1. TGF-β2 was also upregulated in tumors of TGFα/cMyc and DEN-treated mice. The analysis of publically available microarray data of 13 human HCC collectives revealed considerable upregulation of TGF-β2 as compared to normal liver.Our study demonstrates upregulation of TGF-β2 in liver disease and suggests TGF-β2 as a promising therapeutic target for tackling fibrosis and HCC.
Collapse
Affiliation(s)
- Anne Dropmann
- Molecular Hepatology, Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Tatjana Dediulia
- Molecular Hepatology, Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Katja Breitkopf-Heinlein
- Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | | | | | - Susanne N. Weber
- Department of Medicine II, Saarland University Medical Center, Homburg, Germany
| | - Maria Thomas
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tuebingen, Tuebingen, Germany
| | - Albrecht Piiper
- Medizinische Klinik 1, Klinikum der Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany
| | - Esther Bertran
- Bellvitge Biomedical Research Institute (IDIBELL) and University of Barcelona. L'Hospitalet, Barcelona, Spain
| | - Isabel Fabregat
- Bellvitge Biomedical Research Institute (IDIBELL) and University of Barcelona. L'Hospitalet, Barcelona, Spain
| | - Kerstin Abshagen
- Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| | - Jochen Hess
- Research Group Molecular Mechanisms of Head and Neck Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Section Experimental and Translational Head and Neck Oncology, Department of Otolaryngology, Head and Neck Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Peter Angel
- Division of Signal Transduction and Growth Control, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Cédric Coulouarn
- Institut National de la Santé et de la Recherche Médicale UMR991, University of Rennes, Pontchaillou University Hospital, Rennes, France
| | - Steven Dooley
- Molecular Hepatology, Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Nadja M. Meindl-Beinker
- Molecular Hepatology, Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
30
|
Saha B, Kodys K, Szabo G. Hepatitis C Virus-Induced Monocyte Differentiation Into Polarized M2 Macrophages Promotes Stellate Cell Activation via TGF-β. Cell Mol Gastroenterol Hepatol 2016; 2:302-316.e8. [PMID: 28090562 PMCID: PMC5042356 DOI: 10.1016/j.jcmgh.2015.12.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 12/22/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Monocyte and macrophage (MΦ) activation contributes to the pathogenesis of chronic hepatitis C virus (HCV) infection. Disease pathogenesis is regulated by both liver-resident MΦs and monocytes recruited as precursors of MΦs into the damaged liver. Monocytes differentiate into M1 (classic/proinflammatory) or M2 (alternative/anti-inflammatory) polarized MΦs in response to tissue microenvironment. We hypothesized that HCV-infected hepatoma cells (infected with Japanese fulminant hepatitis-1 [Huh7.5/JFH-1]) induce monocyte differentiation into polarized MΦs. METHODS Healthy human monocytes were co-cultured with Huh7.5/JFH-1 cells or cell-free virus for 7 days and analyzed for MΦ markers and cytokine levels. A similar analysis was performed on circulating monocytes and liver MΦs from HCV-infected patients and controls. RESULTS Huh7.5/JFH-1 cells induced monocytes to differentiate into MΦs with increased expression of CD14 and CD68. HCV-MΦs showed M2 surface markers (CD206, CD163, and Dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN)) and produced both proinflammatory and anti-inflammatory cytokines. HCV-induced early interleukin 1β production promoted transforming growth factor (TGF)β production and MΦ polarization to an M2 phenotype. TGF-β secreted by M2-MΦ led to hepatic stellate cell activation indicated by increased expression of collagen, tissue inhibitor of metalloproteinase 1, and α-smooth muscle actin. In vivo, we observed a significant increase in M2 marker (CD206) expression on circulating monocytes and in the liver of chronic HCV-infected patients. Furthermore, we observed the presence of a unique collagen-expressing CD14+CD206+ monocyte population in HCV patients that correlated with liver fibrosis. CONCLUSIONS We show an important role for HCV in induction of monocyte differentiation into MΦs with a mixed M1/M2 cytokine profile and M2 surface phenotype that promote stellate cell activation via TGF-β. We also identified circulating monocytes expressing M2 marker and collagen in chronic HCV infection that can be explored as a biomarker.
Collapse
Key Words
- APC, antigen-presenting cell
- Biomarkers
- CD206
- COL, collagen
- Collagen
- FITC, fluorescein isothiocyanate
- Fibrocytes
- HCV, hepatitis C virus
- HSC, hepatic stellate cell
- Huh7.5/JFH-1, Huh7.5 cells infected with JFH-1 (HCV)
- IL, interleukin
- IL1RA, IL1-receptor antagonist
- JFH-1, Japanese fulminant hepatitis-1
- MFI, mean fluorescence intensity
- MΦ, macrophage
- NEAA, nonessential amino acid
- PBMC, peripheral blood mononuclear cell
- PE, Phycoerythrin
- TGF, transforming growth factor
- TIMP, tissue inhibitor of metalloproteinase
- TNF, tumor necrosis factor
- mRNA, messenger RNA
- α-SMA, α-smooth muscle actin
Collapse
Affiliation(s)
| | | | - Gyongyi Szabo
- Correspondence Address correspondence to: Gyongyi Szabo, MD, PhD, Department of Medicine, University of Massachusetts Medical School, LRB-208, 364 Plantation Street, Worcester, Massachusetts 01605. fax: (508) 856-4770.Department of MedicineUniversity of Massachusetts Medical SchoolLRB-208364 Plantation StreetWorcesterMassachusetts 01605
| |
Collapse
|
31
|
Wang Y, Wang R, Wang Y, Peng R, Wu Y, Yuan Y. Ginkgo biloba extract mitigates liver fibrosis and apoptosis by regulating p38 MAPK, NF-κB/IκBα, and Bcl-2/Bax signaling. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:6303-17. [PMID: 26664050 PMCID: PMC4671772 DOI: 10.2147/dddt.s93732] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background Liver fibrosis is the consequence of diverse liver injuries and can eventually develop into liver cirrhosis. Ginkgo biloba extract (GBE) is an extract from dried ginkgo leaves that has many pharmacological effects because of its various ingredients and has been shown to be hepatoprotective. Purpose and methods Aimed to investigate the underlying protective mechanisms of GBE on carbon tetrachloride (CCl4)-induced liver fibrosis in rats. Male Sprague Dawley rats were randomly divided into four groups: control group (C), model group (M), low-dose group (L), and high-dose group (H). Liver fibrosis was induced by CCl4 groups M, L, and H: group C was administered saline. In addition, GBE at different doses was used to treat groups L and H. Results The results of hematoxylin and eosin staining, Masson’s trichrome staining, a liver function index, and a liver fibrosis index showed that GBE application noticeably mitigated fibrosis and improved the function of the liver. The western blotting and immunohistochemistry analyses indicated that GBE reduced liver fibrosis not only by inhibiting p38 MAPK and NF-κBp65 via inhibition of IκBα degradation but also by inhibiting hepatocyte apoptosis via downregulation of Bax, upregulation of Bcl-2, and subsequent inhibition of caspase-3 activation. Inflammation-associated factors and hepatic stellate cell (HSC)-activation markers further demonstrated that GBE could effectively inhibit HSC activation and inflammation as a result of its regulation of p38 MAPK and nuclear factor-kappa B/IκBα signaling. Conclusion Our findings indicated a novel role for GBE in the treatment of liver fibrosis. The potential mechanisms may be associated with the following signaling pathways: 1) the p38 MAPK and nuclear factor-kappa B/IκBα signaling pathways (inhibiting inflammation and HSCs activation) and 2) the Bcl-2/Bax signaling pathway (inhibiting the apoptosis of hepatocytes).
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Rong Wang
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yujie Wang
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Ruqin Peng
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yan Wu
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yongfang Yuan
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
32
|
Costilla V, Mathur N, Gutierrez JA. Mechanisms of Virologic Failure with Direct-Acting Antivirals in Hepatitis C and Strategies for Retreatment. Clin Liver Dis 2015; 19:641-56, vi. [PMID: 26466653 DOI: 10.1016/j.cld.2015.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The current standard of care for hepatitis C therapy is the combination of direct-acting antiviral (DAA) agents. These orally administered medications target the viral proteins and halt the hepatitis C virus lifecycle. Despite high cure rates with these novel drugs, virologic failure with DAAs are of mounting concern as real-world sustained virologic response 12 rates seem lower than expected. The mechanisms of virologic failure to DAAs are likely multifactorial, including baseline resistance variants, the efficacy of the agents used, and host factors. Salvage therapy for DAA virologic failures is an area of emerging research.
Collapse
Affiliation(s)
- Vanessa Costilla
- Department of Hepatology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Neha Mathur
- Department of Hepatology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Julio A Gutierrez
- Department of Hepatology, The Texas Liver Institute, University of Texas Health Science Center at San Antonio, 607 Camden, San Antonio, TX 78215, USA.
| |
Collapse
|
33
|
Al Marzooqi SH, Feld JJ. Sorting out cirrhosis: mechanisms of non-response to hepatitis C therapy. Liver Int 2015; 35:1923-33. [PMID: 25939775 DOI: 10.1111/liv.12861] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 04/26/2015] [Indexed: 12/14/2022]
Abstract
Although cirrhosis has long been recognized as an important negative predictor of treatment response for hepatitis C virus (HCV) therapy, the mechanisms underlying this association remain relatively poorly understood. Treatment has progressed rapidly with the introduction of highly effective all-oral therapies, with promising outcomes even in patients with advanced cirrhosis. However, even with the new therapies, it is clear that patients with cirrhosis require special attention. Efficacy continues to be somewhat reduced compared to non-cirrhotic patients and safety is an important concern. In this review, we explore the reasons for treatment non-response in patients with cirrhosis. We focus on how cirrhosis impacts on four important areas including drug delivery, drug uptake and metabolism, immune responses and drug toxicity with examples from the clinical and basic literature. Fortunately, as treatment continues to progress, many of the challenges of treating patients with cirrhosis will become less and less problematic.
Collapse
Affiliation(s)
- Saeed H Al Marzooqi
- Toronto Centre for Liver Disease, University of Toronto, Toronto, ON, Canada
| | - Jordan J Feld
- Toronto Centre for Liver Disease, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
34
|
Refaat B, Ashshi AM, El-Shemi AG, Azhar E. Activins and Follistatin in Chronic Hepatitis C and Its Treatment with Pegylated-Interferon-α Based Therapy. Mediators Inflamm 2015; 2015:287640. [PMID: 25969625 PMCID: PMC4417604 DOI: 10.1155/2015/287640] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 02/27/2015] [Accepted: 02/27/2015] [Indexed: 12/12/2022] Open
Abstract
Pegylated-interferon-α based therapy for the treatment of chronic hepatitis C (CHC) is considered suboptimal as not all patients respond to the treatment and it is associated with several side effects that could lead to dose reduction and/or termination of therapy. The currently used markers to monitor the response to treatment are based on viral kinetics and their performance in the prediction of treatment outcome is moderate and does not combine accuracy and their values have several limitations. Hence, the development of new sensitive and specific predictor markers could provide a useful tool for the clinicians and healthcare providers, especially in the new era of interferon-free therapy, for the classification of patients according to their response to the standard therapy and only subscribing the novel directly acting antiviral drugs to those who are anticipated not to respond to the conventional therapy and/or have absolute contraindications for its use. The importance of activins and follistatin in the regulation of immune system, liver biology, and pathology has recently emerged. This review appraises the up-to-date knowledge regarding the role of activins and follistatin in liver biology and immune system and their role in the pathophysiology of CHC.
Collapse
Affiliation(s)
- Bassem Refaat
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al-'Abdiyah Campus, P. O. Box 7607, Makkah, Saudi Arabia
| | - Ahmed Mohamed Ashshi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al-'Abdiyah Campus, P. O. Box 7607, Makkah, Saudi Arabia
| | - Adel Galal El-Shemi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al-'Abdiyah Campus, P. O. Box 7607, Makkah, Saudi Arabia
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut 6515, Egypt
| | - Esam Azhar
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia
| |
Collapse
|