1
|
Tong X, Sun Y, Wang Q, Zhao X, Chen W, Zhang M, Ren Y, Zhao X, Wu X, Zhao J, Sun C, Zheng M, Ren H, Yang Z, Ou X, Jia J, You H. Delicate and thin fibrous septa indicate a regression tendency in metabolic dysfunction-associated steatohepatitis patients with advanced fibrosis. Hepatol Int 2025; 19:166-180. [PMID: 39152361 DOI: 10.1007/s12072-024-10719-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/02/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND AND AIMS Metabolic dysfunction-associated steatohepatitis (MASH)-related fibrosis is reversible. However, the dynamic morphology change in fibrosis regression remains unclear. We aim to explore the morphological characteristics of fibrosis regression in advanced MASH patients. METHODS Clinical and histological data of 79 biopsy-proved MASH patients with advanced fibrosis (F3-F4) were reviewed. The second harmonic generation/two-photon excitation fluorescence (SHG/TPEF) image technology was used to quantitatively identify the R (regressive) septa from P (progressive) septa and PS (perisinusoidal) fibrosis. Non-invasive tests were used to compare the fibrosis level with and without R septa groups. Transcriptomics was used to explore hub genes and the underlying mechanism of the formation of R septa. RESULTS The R septa were different from the P septa and PS fibrosis in detail collagen quantitation identified by SHG/TPEF technology. The R septa were found in MASH fibrosis-regressed patients, which met the definition of the "Beijing classification". Therefore, patients were divided into two groups according to septa morphology: with R septa (n = 10, 12.7%), and without R septa (n = 69, 87.3%). Patients with R septa had lower values in most non-invasive tests, especially for liver stiffness assessed by TE (12.3 vs. 19.4 kPa, p = 0.010) and FAST (FibroScan®-AST) score (0.43 vs. 0.70, p = 0.003). Transcriptomics analysis showed that the expressions of five hub fibrogenic genes, including Col3A1, BGN, Col4A1, THBS2, and Col4A2 in the R septa group, were significantly lower. CONCLUSIONS The R septa can be differentiated from the P septa and PS fibrosis by quantitative assessment of SHG/TPEF, and it represents a tendency of fibrosis regression in MASH patients. TRIAL REGISTRATION NCT03386890, 29/12/2017.
Collapse
Affiliation(s)
- Xiaofei Tong
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, 95 Yong-An Road, Xi-Cheng District, Beijing, 100050, China
| | - Yameng Sun
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, 95 Yong-An Road, Xi-Cheng District, Beijing, 100050, China
| | - Qianyi Wang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, 95 Yong-An Road, Xi-Cheng District, Beijing, 100050, China
| | - Xinyan Zhao
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, 95 Yong-An Road, Xi-Cheng District, Beijing, 100050, China
| | - Wei Chen
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, 95 Yong-An Road, Xi-Cheng District, Beijing, 100050, China
| | - Mengyang Zhang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, 95 Yong-An Road, Xi-Cheng District, Beijing, 100050, China
| | - Yayun Ren
- HistoIndex Pte Ltd, Singapore, Singapore
| | - Xinyu Zhao
- Clinical Epidemiology and EBM Unit, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, 95 Yong-An Road, Xi-Cheng District, Beijing, 100050, China
| | - Xiaoning Wu
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, 95 Yong-An Road, Xi-Cheng District, Beijing, 100050, China
| | - Jingjie Zhao
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, 95 Yong-An Road, Xi-Cheng District, Beijing, 100050, China
| | - Chenglin Sun
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, 95 Yong-An Road, Xi-Cheng District, Beijing, 100050, China
| | - Minghua Zheng
- MAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment for The Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
| | - Hao Ren
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhenghan Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaojuan Ou
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, 95 Yong-An Road, Xi-Cheng District, Beijing, 100050, China
| | - Jidong Jia
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, 95 Yong-An Road, Xi-Cheng District, Beijing, 100050, China
| | - Hong You
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, 95 Yong-An Road, Xi-Cheng District, Beijing, 100050, China.
| |
Collapse
|
2
|
Li Z, Sun X, Zhao Z, Yang Q, Ren Y, Teng X, Tai DCS, Wanless IR, Schattenberg JM, Liu C. A machine learning based algorithm accurately stages liver disease by quantification of arteries. Sci Rep 2025; 15:3143. [PMID: 39856155 PMCID: PMC11759706 DOI: 10.1038/s41598-025-87427-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 01/20/2025] [Indexed: 01/27/2025] Open
Abstract
A major histologic feature of cirrhosis is the loss of liver architecture with collapse of tissue and vascular changes per unit. We developed qVessel to quantify the arterial density (AD) in liver biopsies with chronic disease of varied etiology and stage. 46 needle liver biopsy samples with chronic hepatitis B (CHB), 48 with primary biliary cholangitis (PBC) and 43 with metabolic dysfunction-associated steatotic liver disease (MASLD) were collected at the Shuguang Hospital. The METAVIR system was used to assess stage. The second harmonic generation (SHG)/two-photon images were generated from unstained slides. Collagen proportionate area (CPA) using SHG. AD was counted using qVessel (previously trained on manually labeled vessels by stained slides (CD34/a-SMA/CK19) and developed by a decision tree algorithm). As liver fibrosis progressed from F1 to F4, we observed that both AD and CPA gradually increases among the three etiologies (P < 0.05). However, at each stage of liver fibrosis, there was no significant difference in AD or CPA between CHB and PBC compared to MASLD (P > 0.05). AD and CPA performed similar diagnostic efficacy in liver cirrhosis (P > 0.05). Using the qVessel algorithm, we discovered a significant correlation between AD, CPA and METAVIR stages in all three etiologies. This suggests that AD could underpin a novel staging system.
Collapse
Affiliation(s)
- Zhengxin Li
- Gongli Hospital of Shanghai Pudong New Area, Shanghai, China
| | - Xin Sun
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Pudong New Area, Shanghai, 201203, China
| | - Zhimin Zhao
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Pudong New Area, Shanghai, 201203, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| | - Qiang Yang
- Hangzhou Choutu Tech. Co., Ltd., Hangzhou, China
| | - Yayun Ren
- Hangzhou Choutu Tech. Co., Ltd., Hangzhou, China
| | - Xiao Teng
- Histoindex Pte. Ltd, Singapore, Singapore
| | | | - Ian R Wanless
- Department of Pathology, Queen Elizabeth II Health Sciences Centre, Dalhousie University, Halifax, Canada
| | - Jörn M Schattenberg
- Department of Internal Medicine II, Saarland University Medical Center, Homburg, Germany
- Saarland University, Saarbrücken, Germany
| | - Chenghai Liu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Pudong New Area, Shanghai, 201203, China.
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China.
| |
Collapse
|
3
|
Lu Z, Sun YM, Chen S, Meng T, Wang B, Zhou J, Wu X, Zhao X, Ou X, Kong YY, Jia J, Zhao X, You H. Multiple Low-Level Viraemia Suggest Hindered Liver Fibrosis Regression in Chronic Hepatitis B Patients During Antiviral Therapy. J Viral Hepat 2024; 31:898-902. [PMID: 39373164 DOI: 10.1111/jvh.14012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/16/2024] [Accepted: 09/19/2024] [Indexed: 10/08/2024]
Abstract
Low-level viraemia (LLV) occurs in chronic hepatitis B (CHB) patients despite antiviral treatment, which may cause failed histological regression. Our study aimed to investigate the impact of different LLV types on fibrosis regression. The prospective study enrolled CHB patients with paired liver biopsies before and after 260 weeks of entecavir treatment. Fibrosis regression was defined by the Ishak score or P-I-R system. Patients were grouped as the SVR (HBV DNA < 20 IU/mL persistently) or LLV (HBV DNA between 20 and 2000 IU/mL), which were further grouped as very low-level viraemia (VLLV, HBV DNA < 50 IU/mL), occasionally LLV (OLLV, HBV DNA ≥ 50 IU/mL only once) and multiple LLV (MLLV, HBV DNA ≥ 50 IU/mL more than once). Logistic regression models were used to calculate the adjusted odds ratios (aORs) and 95% confidence intervals (CIs). The analysis included 111 CHB patients. In the SVR group (n = 54), 39 (72.2%) patients had fibrosis regression, which was higher than the LLV (56.1%, p = 0.080). The fibrosis regression rates for VLLV (30 patients), OLLV (17 patients) and MLLV (10 patients) were 70.0%, 52.9% and 30.0%, respectively. Compared with SVR, VLLV (aOR = 0.78; 95% CI: 0.28-2.21; p = 0.644) was not associated with fibrosis regression, but patients with non-VLLV (aOR = 0.27; 95% CI: 0.09-0.85; p = 0.025), especially with MLLV (aOR = 0.19; 95% CI: 0.04-0.97; p = 0.046) is significantly associated with hindered fibrosis regression. Our study suggests that patients with detectable serum HBV DNA levels higher than 50 IU/mL need to be monitored carefully, especially in those with more than once. Trial Registration: ClinicalTrials.gov identifiers NCT01938781 and NCT01938820.
Collapse
Affiliation(s)
- Zhengzhao Lu
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Ya-Meng Sun
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Shuyan Chen
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Tongtong Meng
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Bingqiong Wang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Jialing Zhou
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Xiaoning Wu
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Xinyan Zhao
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Xiaojuan Ou
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Yuan-Yuan Kong
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Jidong Jia
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Xinyu Zhao
- Clinical Epidemiology & EBM Unit, Beijing Friendship Hospital, Capital Medical University; National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Hong You
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| |
Collapse
|
4
|
Naoumov NV, Kleiner DE, Chng E, Brees D, Saravanan C, Ren Y, Tai D, Sanyal AJ. Digital quantitation of bridging fibrosis and septa reveals changes in natural history and treatment not seen with conventional histology. Liver Int 2024; 44:3214-3228. [PMID: 39248039 PMCID: PMC11586893 DOI: 10.1111/liv.16092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/31/2024] [Accepted: 08/22/2024] [Indexed: 09/10/2024]
Abstract
BACKGROUND AND AIMS Metabolic dysfunction-associated steatohepatitis (MASH) with bridging fibrosis is a critical stage in the evolution of fatty liver disease. Second harmonic generation/two-photon excitation fluorescence (SHG/TPEF) microscopy with artificial intelligence (AI) provides sensitive and reproducible quantitation of liver fibrosis. This methodology was applied to gain an in-depth understanding of intra-stage fibrosis changes and septa analyses in a homogenous, well-characterised group with MASH F3 fibrosis. METHODS Paired liver biopsies (baseline [BL] and end of treatment [EOT]) of 57 patients (placebo, n = 17 and tropifexor n = 40), with F3 fibrosis stage at BL according to the clinical research network (CRN) scoring, were included. Unstained sections were examined using SHG/TPEF microscopy with AI. Changes in liver fibrosis overall and in five areas of liver lobules were quantitatively assessed by qFibrosis. Progressive, regressive septa, and 12 septa parameters were quantitatively analysed. RESULTS qFibrosis demonstrated fibrosis progression or regression in 14/17 (82%) patients receiving placebo, while the CRN scoring categorised 11/17 (65%) as 'no change'. Radar maps with qFibrosis readouts visualised quantitative fibrosis dynamics in different areas of liver lobules even in cases categorised as 'No Change'. Measurement of septa parameters objectively differentiated regressive and progressive septa (p < .001). Quantitative changes in individual septa parameters (BL to EOT) were observed both in the 'no change' and the 'regression' subgroups, as defined by the CRN scoring. CONCLUSION SHG/TPEF microscopy with AI provides greater granularity and precision in assessing fibrosis dynamics in patients with bridging fibrosis, thus advancing knowledge development of fibrosis evolution in natural history and in clinical trials.
Collapse
Affiliation(s)
| | - David E. Kleiner
- Laboratory of Pathology, Post‐Mortem SectionNational Cancer InstituteBethesdaMarylandUSA
| | | | | | | | - Yayun Ren
- Histoindex Pte. Ltd.SingaporeSingapore
| | - Dean Tai
- Histoindex Pte. Ltd.SingaporeSingapore
| | - Arun J. Sanyal
- Stravitz‐Sanyal Institute of Liver Disease and Metabolic HealthVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| |
Collapse
|
5
|
Jusufi AH, Trajkovska M. Correlation Between Real-Time Shear Wave Elastography and Liver Serum Markers in Determining the Stage of Liver Fibrosis in Patients with Chronic Liver Diseases. Pril (Makedon Akad Nauk Umet Odd Med Nauki) 2024; 45:85-106. [PMID: 39667001 DOI: 10.2478/prilozi-2024-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Introduction: Non-invasive methods aim to predict the stage of liver fibrosis in line with histological findings via biopsy. Shear wave elastography and serum markers are proven as accurate non-invasive methods for determining liver fibrosis as a modern non-invasive methods compared to liver biopsy in staging hepatic fibrosis. Aims: This study aims to determine the correlation between Shear Wave Elastography and indirect and direct serum markers of fibrosis when staging liver fibrosis. Material and methods: The study was conducted in the Clinic of Gastroenterohepatology, the Institute of Immunology and Human Genetics, and the Institute of Pathology between 2021 and 2023. The study comprises 70 patients with liver lesions, diagnosed based on clinical results, laboratory tests, and ultra-sound imaging. All patients underwent liver biopsy, classified according to Ishak and Metavir score as a reference method for diagnosing liver fibrosis. Real-time shear wave elastography was also performed as a non-invasive method and serum markers were checked for liver fibrosis. Findings: The statistical analysis indicated a positive correlation between the values of direct and indirect liver fibrosis markers and Shear Wave Elastography results. Conclusion: Our study has demonstrated that shear wave elastography has a significant positive correlation with biochemical markers of liver lesions and serum markers of liver fibrosis, whereas it has a negative correlation with platelets.
Collapse
Affiliation(s)
- Arzana Hasani Jusufi
- Clinic of Gastroenterohepatology, Ss. Cyril and Methodius University of Skopje, Republic of North Macedonia
| | - Meri Trajkovska
- Clinic of Gastroenterohepatology, Ss. Cyril and Methodius University of Skopje, Republic of North Macedonia
| |
Collapse
|
6
|
Zou J, Jiang Y, Fan F, Yang P, Gan T, Yang T, Li M, Ding Y, Wang S, Zhang J. The application of B1 inhomogeneity-corrected variable flip angle T1 mapping for assessing liver fibrosis. Magn Reson Imaging 2024; 113:110215. [PMID: 39047851 DOI: 10.1016/j.mri.2024.110215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/21/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
PURPOSE The aim of this study was to evaluate the diagnostic accuracy of the B1 inhomogeneity-corrected variable flip angle (VFA) method using native T1 values in the staging of liver fibrosis. METHODS Eighty-three patients who presented for liver biopsy due to varying degrees of liver damage, underwent MR examinations and had T1-mapping images of the liver acquired using the B1 inhomogeneity-corrected VFA VIBE method. Among them, 65 patients underwent Fibroscan, and their results were used to evaluate the elasticity of liver tissue. Additionally, T1-mapping images were collected from 19 normal control patients. Independent sample t-tests were used to analyze the correlation between T1 mapping and Fibroscan. The diagnostic efficacy of T1 mapping in patients with different stages of liver fibrosis was evaluated using receiver operating characteristic (ROC) curves. RESULTS The consistency between different observer groups was intraclass correlation coefficient (ICC) =0.802. T1 mapping demonstrated significant differences between mid-stage liver fibrosis (S = 2) and late-stage liver fibrosis (S = 3), as well as moderate inflammation (G = 2) and severe inflammation (G = 3), P < 0.05. The Area Under Curve(AUC) values of T1 mapping for early liver fibrosis (S ≥ 1), significant liver fibrosis (S ≥ 2), advanced liver fibrosis (S ≥ 3), and end-stage liver fibrosis (S = 4) were 0.760, 0.709, 0.790, and 0.768, respectively. T1 mapping combined with Fibroscan had an AUC value of 0.860. CONCLUSIONS The B1 inhomogeneity-corrected VFA T1 mapping may be useful for the staging of liver fibrosis. It has a superior diagnostic efficiency for diagnosing advanced fibrosis (≥S3), while native T1 values combined with Fibroscan have potential value for the staging of liver fibrosis.
Collapse
Affiliation(s)
- Jie Zou
- Department of Magnetic Resonance, The Second Hospital & Clinical Medical School, Lanzhou University, PR China; Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| | - Yanli Jiang
- Department of Magnetic Resonance, The Second Hospital & Clinical Medical School, Lanzhou University, PR China; Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| | - Fengxian Fan
- Department of Magnetic Resonance, The Second Hospital & Clinical Medical School, Lanzhou University, PR China; Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| | - Pin Yang
- Department of Magnetic Resonance, The Second Hospital & Clinical Medical School, Lanzhou University, PR China; Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| | - Tiejun Gan
- Department of Magnetic Resonance, The Second Hospital & Clinical Medical School, Lanzhou University, PR China; Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| | - Tingli Yang
- Department of Magnetic Resonance, The Second Hospital & Clinical Medical School, Lanzhou University, PR China; Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| | - Min Li
- Department of Magnetic Resonance, The Second Hospital & Clinical Medical School, Lanzhou University, PR China; Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| | - Yuan Ding
- Department of Magnetic Resonance, The Second Hospital & Clinical Medical School, Lanzhou University, PR China; Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| | - Shaoyu Wang
- MR Scientific Marketing, Siemens Healthineers, Xi'an 710065, PR China
| | - Jing Zhang
- Department of Magnetic Resonance, The Second Hospital & Clinical Medical School, Lanzhou University, PR China; Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China.
| |
Collapse
|
7
|
Song Y, Qin C, Chen Y, Ruan W, Gai Y, Song W, Gao Y, Hu W, Qiao P, Song X, Lv X, Zheng D, Chu H, Jiang D, Yang L, Lan X. Non-invasive visualization of liver fibrosis with [ 68Ga]Ga-DOTA-FAPI-04 PET from preclinical insights to clinical translation. Eur J Nucl Med Mol Imaging 2024; 51:3572-3584. [PMID: 38850311 DOI: 10.1007/s00259-024-06773-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/26/2024] [Indexed: 06/10/2024]
Abstract
PURPOSE The reversibility of early liver fibrosis highlights the need for improved early detection and monitoring techniques. Fibroblast activation protein (FAP) is a promising theranostics target significantly upregulated during fibrosis. This preclinical and preliminary clinical study investigated a FAP-targeted probe, gallium-68-labeled FAP inhibitor 04 ([68Ga]Ga-DOTA-FAPI-04), for its capability to visualize liver fibrosis. METHODS The preclinical study employed [68Ga]Ga-DOTA-FAPI-04 micro-positron emission tomography (PET)/computed tomography (CT) on carbon tetrachloride-induced mice model (n = 34) and olive oil-treated control group (n = 26), followed by validation of the probe's biodistribution. Hepatic uptake was correlated with fibrosis and inflammation levels, quantified through histology and serum assays. FAP and α-smooth muscle actin expression were determined by immunohistochemistry, as well as immunofluorescence. The subsequent clinical trial enrolled 26 patients with suspected or confirmed liver fibrosis to undergo [68Ga]Ga-DOTA-FAPI-04 PET/magnetic resonance imaging or PET/CT. Key endpoints included correlating [68Ga]Ga-DOTA-FAPI-04 uptake with histological inflammation grades and fibrosis stages, and evaluating its diagnostic and differential efficacy compared to established serum markers and liver stiffness measurement (LSM). RESULTS [68Ga]Ga-DOTA-FAPI-04 mean uptake in mice livers was notably higher than in control mice, increasing from week 6 [0.70 ± 0.11 percentage injected dose per cubic centimeter (%ID/cc)], peaking at week 10 (0.97 ± 0.15%ID/cc) and slightly reducing at week 12 (0.89 ± 0.28%ID/cc). The hepatic biodistribution and FAP expression showed a consistent trend. In the patient cohort, hepatic [68Ga]Ga-DOTA-FAPI-04 uptake presented moderate correlations with inflammation grades (r = 0.517 to 0.584, all P < 0.05) and fibrosis stages (r = 0.653 to 0.698, all P < 0.01). The average SUVmax to background ratio in the liver showed superior discriminative ability, especially between stage 0 and stage 1, outperforming LSM (area under curve 0.984 vs. 0.865). CONCLUSION [68Ga]Ga-DOTA-FAPI-04 PET shows significant potential for non-invasive visualization and dynamic monitoring of liver fibrosis in both preclinical experiment and preliminary clinical trial, especially outperforming other common clinical indicators in the early stage. TRIAL REGISTRATION NCT04605939. Registered October 25, 2020, https://clinicaltrials.gov/study/NCT04605939.
Collapse
Affiliation(s)
- Yangmeihui Song
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China
- Hubei Key Laboratory of Molecular Imaging, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China
| | - Chunxia Qin
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China
- Hubei Key Laboratory of Molecular Imaging, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China
- Key Laboratory of Biological Targeting Therapy, Ministry of Education, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China
| | - Yixiong Chen
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China
| | - Weiwei Ruan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China
- Hubei Key Laboratory of Molecular Imaging, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China
- Key Laboratory of Biological Targeting Therapy, Ministry of Education, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China
| | - Yongkang Gai
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China
- Hubei Key Laboratory of Molecular Imaging, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China
- Key Laboratory of Biological Targeting Therapy, Ministry of Education, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China
| | - Wenyu Song
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China
- Hubei Key Laboratory of Molecular Imaging, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China
| | - Yu Gao
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China
- Hubei Key Laboratory of Molecular Imaging, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China
| | - Wenzhu Hu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China
- Hubei Key Laboratory of Molecular Imaging, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China
| | - Pengxin Qiao
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China
- Hubei Key Laboratory of Molecular Imaging, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China
| | - Xiangming Song
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China
- Hubei Key Laboratory of Molecular Imaging, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China
| | - Xiaoying Lv
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China
- Hubei Key Laboratory of Molecular Imaging, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China
| | - Danzha Zheng
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China
- Hubei Key Laboratory of Molecular Imaging, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China
| | - Huikuan Chu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China
| | - Dawei Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China
- Hubei Key Laboratory of Molecular Imaging, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China
- Key Laboratory of Biological Targeting Therapy, Ministry of Education, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China
| | - Ling Yang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China.
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China.
- Hubei Key Laboratory of Molecular Imaging, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China.
- Key Laboratory of Biological Targeting Therapy, Ministry of Education, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China.
| |
Collapse
|
8
|
Zhang Y, Liu H, Xiong Q, Zhong Y, Liu D, Chen W, Yang Y. Application of liver biopsy in etiological diagnosis of unexplained portal hypertension: Porto-sinusoidal vascular disease should not be ignored. Medicine (Baltimore) 2024; 103:e39819. [PMID: 39331914 PMCID: PMC11441879 DOI: 10.1097/md.0000000000039819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 09/02/2024] [Indexed: 09/29/2024] Open
Abstract
The diagnostic value of liver biopsy has been confirmed in patients with abnormal liver test results; however, little data are available on its application in patients with portal hypertension. This study aimed to investigate the utility of liver biopsy for the etiological diagnosis of unexplained portal hypertension, and explore the clinical and pathological characteristics of each etiology. A retrospective observational analysis was conducted on 1367 patients who underwent liver biopsy at the Second Hospital of Nanjing from 2017 to 2019. Of these, 188 patients with unexplained portal hypertension were enrolled. The clinical and pathological characteristics were collected and reassessed in a multidisciplinary team meeting. Among these patients, 174 (92.6%, 174/188) had a definite etiological diagnosis through liver biopsy. The main etiologies were autoimmune hepatitis in 47 patients (25%, 47/188), autoimmune hepatitis-primary biliary cirrhosis overlap syndrome in 41 patients (21.8%, 41/188), and porto-sinusoidal vascular disease (PSVD) in 40 patients (21.3%, 40/188). Compared to liver cirrhosis, PSVD patients were younger and the liver function damage of which was subtler. The widths of portal vein diameter were widest in PSVD but the liver stiffness measurement were almost normal. Splenomegaly was common in PSVD, but ascites were less frequent than in autoimmune hepatitis (25.0% vs 51.1%, P = .013). Based on the histological patterns, we found that cholestatic liver diseases such as primary biliary cirrhosis, autoimmune hepatitis-primary biliary cirrhosis overlap syndrome, and progressive familial intrahepatic cholestasis could lead to non-cirrhotic portal hypertension, while vascular liver diseases such as PSVD and Budd-Chiari syndrome could also show fibrous proliferation as the disease progresses. Liver biopsy is safe and valuable for etiological diagnosis of unexplained portal hypertension. Cirrhosis is the leading cause of portal hypertension, and porto-sinusoidal vascular diseases should also be considered. Clinical features may be helpful in suggesting the cause; however, pathological examination is still indispensable for disease diagnosis and progression assessment.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Medicine, Southeast University, Nanjing, China
- Department of Infectious and Liver Diseases, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hongli Liu
- Department of Medicine, Southeast University, Nanjing, China
| | - Qingfang Xiong
- Department of Infectious and Liver Diseases, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yandan Zhong
- Department of Infectious and Liver Diseases, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Duxian Liu
- Department of Pathology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Chen
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yongfeng Yang
- Department of Infectious and Liver Diseases, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
- The Clinical Infectious Disease Center of Nanjing, Nanjing, China
| |
Collapse
|
9
|
Huang W, Peng Y, Kang L. Advancements of non‐invasive imaging technologies for the diagnosis and staging of liver fibrosis: Present and future. VIEW 2024; 5. [DOI: 10.1002/viw.20240010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 06/28/2024] [Indexed: 01/04/2025] Open
Abstract
AbstractLiver fibrosis is a reparative response triggered by liver injury. Non‐invasive assessment and staging of liver fibrosis in patients with chronic liver disease are of paramount importance, as treatment strategies and prognoses depend significantly on the degree of fibrosis. Although liver fibrosis has traditionally been staged through invasive liver biopsy, this method is prone to sampling errors, particularly when biopsy sizes are inadequate. Consequently, there is an urgent clinical need for an alternative to biopsy, one that ensures precise, sensitive, and non‐invasive diagnosis and staging of liver fibrosis. Non‐invasive imaging assessments have assumed a pivotal role in clinical practice, enjoying growing popularity and acceptance due to their potential for diagnosing, staging, and monitoring liver fibrosis. In this comprehensive review, we first delved into the current landscape of non‐invasive imaging technologies, assessing their accuracy and the transformative impact they have had on the diagnosis and management of liver fibrosis in both clinical practice and animal models. Additionally, we provided an in‐depth exploration of recent advancements in ultrasound imaging, computed tomography imaging, magnetic resonance imaging, nuclear medicine imaging, radiomics, and artificial intelligence within the field of liver fibrosis research. We summarized the key concepts, advantages, limitations, and diagnostic performance of each technique. Finally, we discussed the challenges associated with clinical implementation and offer our perspective on advancing the field, hoping to provide alternative directions for the future research.
Collapse
Affiliation(s)
- Wenpeng Huang
- Department of Nuclear Medicine Peking University First Hospital Beijing China
| | - Yushuo Peng
- Department of Nuclear Medicine Peking University First Hospital Beijing China
| | - Lei Kang
- Department of Nuclear Medicine Peking University First Hospital Beijing China
| |
Collapse
|
10
|
Ding C, Wang Z, Dou X, Yang Q, Ning Y, Kao S, Sang X, Hao M, Wang K, Peng M, Zhang S, Han X, Cao G. Farnesoid X receptor: From Structure to Function and Its Pharmacology in Liver Fibrosis. Aging Dis 2024; 15:1508-1536. [PMID: 37815898 PMCID: PMC11272191 DOI: 10.14336/ad.2023.0830] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/30/2023] [Indexed: 10/12/2023] Open
Abstract
The farnesoid X receptor (FXR), a ligand-activated transcription factor, plays a crucial role in regulating bile acid metabolism within the enterohepatic circulation. Beyond its involvement in metabolic disorders and immune imbalances affecting various tissues, FXR is implicated in microbiota modulation, gut-to-brain communication, and liver disease. The liver, as a pivotal metabolic and detoxification organ, is susceptible to damage from factors such as alcohol, viruses, drugs, and high-fat diets. Chronic or recurrent liver injury can culminate in liver fibrosis, which, if left untreated, may progress to cirrhosis and even liver cancer, posing significant health risks. However, therapeutic options for liver fibrosis remain limited in terms of FDA-approved drugs. Recent insights into the structure of FXR, coupled with animal and clinical investigations, have shed light on its potential pharmacological role in hepatic fibrosis. Progress has been achieved in both fundamental research and clinical applications. This review critically examines recent advancements in FXR research, highlighting challenges and potential mechanisms underlying its role in liver fibrosis treatment.
Collapse
Affiliation(s)
- Chuan Ding
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
- Jinhua Institute, Zhejiang Chinese Medical University, Jinhua, China.
| | - Zeping Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Xinyue Dou
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Qiao Yang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Yan Ning
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Shi Kao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Xianan Sang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Min Hao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Kuilong Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Mengyun Peng
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Shuosheng Zhang
- College of Chinese Materia Medica and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, China.
| | - Xin Han
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
- Jinhua Institute, Zhejiang Chinese Medical University, Jinhua, China.
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
- Jinhua Institute, Zhejiang Chinese Medical University, Jinhua, China.
| |
Collapse
|
11
|
Zhang H, Hang JT, Chang Z, Yu S, Yang H, Xu GK. Scaling-law mechanical marker for liver fibrosis diagnosis and drug screening through machine learning. Front Bioeng Biotechnol 2024; 12:1404508. [PMID: 39081332 PMCID: PMC11286496 DOI: 10.3389/fbioe.2024.1404508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/28/2024] [Indexed: 08/02/2024] Open
Abstract
Studies of cell and tissue mechanics have shown that significant changes in cell and tissue mechanics during lesions and cancers are observed, which provides new mechanical markers for disease diagnosis based on machine learning. However, due to the lack of effective mechanic markers, only elastic modulus and iconographic features are currently used as markers, which greatly limits the application of cell and tissue mechanics in disease diagnosis. Here, we develop a liver pathological state classifier through a support vector machine method, based on high dimensional viscoelastic mechanical data. Accurate diagnosis and grading of hepatic fibrosis facilitates early detection and treatment and may provide an assessment tool for drug development. To this end, we used the viscoelastic parameters obtained from the analysis of creep responses of liver tissues by a self-similar hierarchical model and built a liver state classifier based on machine learning. Using this classifier, we implemented a fast classification of healthy, diseased, and mesenchymal stem cells (MSCs)-treated fibrotic live tissues, and our results showed that the classification accuracy of healthy and diseased livers can reach 0.99, and the classification accuracy of the three liver tissues mixed also reached 0.82. Finally, we provide screening methods for markers in the context of massive data as well as high-dimensional viscoelastic variables based on feature ablation for drug development and accurate grading of liver fibrosis. We propose a novel classifier that uses the dynamical mechanical variables as input markers, which can identify healthy, diseased, and post-treatment liver tissues.
Collapse
Affiliation(s)
- Honghao Zhang
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an, China
| | - Jiu-Tao Hang
- Department of Engineering Mechanics, SVL, School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Zhuo Chang
- Department of Engineering Mechanics, SVL, School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Suihuai Yu
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an, China
| | - Hui Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Guang-Kui Xu
- Department of Engineering Mechanics, SVL, School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
12
|
Wen X, Wu X, Sun Y, Zhou J, Guan G, Chen S, Shan S, Ma H, Zhao X, Wang Y, Ou X, You H, Guo JT, Lu F, Jia J. Long-term antiviral therapy is associated with changes in the profile of transcriptionally active HBV integration in the livers of patients with CHB. J Med Virol 2024; 96:e29606. [PMID: 38818708 DOI: 10.1002/jmv.29606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/10/2024] [Accepted: 04/05/2024] [Indexed: 06/01/2024]
Abstract
Hepatitis B virus (HBV) integration exists throughout the clinical course of chronic hepatitis B (CHB). This study investigated the effects of long-term antiviral therapy on the level and profiles of transcriptionally active HBV integration. Serial liver biopsies and paired blood samples were obtained from 16, 16, and 22 patients with CHB at baseline, 78, and 260 weeks of entecavir monotherapy or combined with pegylated interferon alfa, respectively. Serum HBV biomarkers were longitudinally assessed. RNA-seq and HIVID2 program was used to identify HBV-host chimeric RNAs transcribed from integrated DNA. The counts of HBV integration reads were positively related to both serum HBV DNA levels (r = 0.695, p = 0.004) and HBeAg titers (r = 0.724, p = 0.021) at baseline, but the positive correlation exited only to the serum HBsAg levels after 260 weeks of antiviral therapy (r = 0.662, p = 0.001). After 78 weeks of antiviral therapy, the levels of HBV integration expression decreased by 12.25 folds from baseline. The viral junction points were enriched at the S and HBx genes after the long-term antiviral therapy. HBs-FN1 became one of the main transcripts, with the mean proportion of HBs-FN1 in all integrated expression increased from 2.79% at baseline to 10.54% at Week 260 of antiviral treatment. Antiviral therapy may reduce but not eliminate the HBV integration events and integration expression. Certain integration events, such as HBs-FN1 can persist in long-term antiviral treatment.
Collapse
Affiliation(s)
- Xiajie Wen
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing, P.R. China
| | - Xiaoning Wu
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing, P.R. China
| | - Yameng Sun
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing, P.R. China
| | - Jialing Zhou
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing, P.R. China
| | - Guiwen Guan
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Science, Peking University Health Science Center, Beijing, P.R. China
| | - Shuyan Chen
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing, P.R. China
| | - Shan Shan
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing, P.R. China
| | - Hong Ma
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing, P.R. China
| | - Xinyan Zhao
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing, P.R. China
| | - Yu Wang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing, P.R. China
| | - Xiaojuan Ou
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing, P.R. China
| | - Hong You
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing, P.R. China
| | - Ju-Tao Guo
- Baruch S. Blumberg Institute, Doylestown, PA, USA
| | - Fengmin Lu
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Science, Peking University Health Science Center, Beijing, P.R. China
| | - Jidong Jia
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing, P.R. China
| |
Collapse
|
13
|
Chen S, Zhou J, Wu X, Meng T, Wang B, Liu H, Wang T, Zhao X, Zhao X, Kong Y, Ou X, Jia J, Sun Y, You H. Liver fibrosis showed a two-phase regression rate during long-term anti-HBV therapy by three-time biopsies assessments. Hepatol Int 2024; 18:904-916. [PMID: 38565833 DOI: 10.1007/s12072-024-10643-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/12/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Evidence has proven that liver fibrosis or even cirrhosis can be reversed by anti-HBV treatment. However, the difference of fibrosis regression rates in short-term and long-term antiviral therapy remain unclear. Therefore, we aimed to identify the dynamic changes in fibrosis regression rate in patients with three-time liver biopsies during 5 years antiviral therapy. METHODS CHB patients with three times of liver biopsies (baseline, after 1.5-year and 5-year antiviral therapy) from a prospective cohort were enrolled. All patients were biopsy-proved Ishak stage ≥ 3 at baseline (n = 92). Fibrosis regression was defined as Ishak stage decreased ≥ 1 or predominantly regressive categorized by P-I-R score. RESULTS Totals of 65.2% (60/92) and 80.4% (74/92) patients attained fibrosis regression after 1.5-year and 5-year therapy, respectively. Median HBV DNA level declined from 6.5 log IU/ml (baseline) to 0 log IU/ml (1.5 years and 5 years, P < 0.001). The mean level of Ishak fibrosis stage in all patients decreased from stage 4.1 (baseline) to 3.7 (1.5 years) then 3.2 (5 years). Fibrosis regression rates were 0.27 stage/year between baseline to year 1.5 and 0.14 stage/year between year 1.5 and year 5. Furthermore, for patients who attained fibrosis regression after 5-year antiviral therapy, the two-phase regression rates were 0.39 stage/year (0 year-1.5 years) and 0.20 stage/year (1.5 years-5 years). This two-phase feature of regression rate was further confirmed by fully-quantification assessment of liver fibrosis based on SHG/TPEF. CONCLUSION During the 5 years of long-term antiviral treatment, liver fibrosis rapidly regresses in the first 1.5 years before slowing down in the following 3.5 years.
Collapse
Affiliation(s)
- Shuyan Chen
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Jialing Zhou
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Xiaoning Wu
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Tongtong Meng
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Bingqiong Wang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Hui Liu
- Department of Pathology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Tailing Wang
- Department of Pathology, China-Japan Friendship Hospital, Beijing, China
| | - Xinyan Zhao
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Xinyu Zhao
- Clinical Epidemiology and EBM Unit, Beijing Friendship Hospital, Capital Medical University, Beijing Clinical Research Institute, Beijing, China
| | - Yuanyuan Kong
- Clinical Epidemiology and EBM Unit, Beijing Friendship Hospital, Capital Medical University, Beijing Clinical Research Institute, Beijing, China
| | - Xiaojuan Ou
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Jidong Jia
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Yameng Sun
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China.
| | - Hong You
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China.
| |
Collapse
|
14
|
Du T, Yu B, Luo W. Liver cirrhosis reversal and recompensation: Existing evidence and future prospects. WORLD CHINESE JOURNAL OF DIGESTOLOGY 2024; 32:320-326. [DOI: 10.11569/wcjd.v32.i5.320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
|
15
|
Chen P, Yao L, Yuan M, Wang Z, Zhang Q, Jiang Y, Li L. Mitochondrial dysfunction: A promising therapeutic target for liver diseases. Genes Dis 2024; 11:101115. [PMID: 38299199 PMCID: PMC10828599 DOI: 10.1016/j.gendis.2023.101115] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/15/2023] [Accepted: 08/10/2023] [Indexed: 02/02/2024] Open
Abstract
The liver is an important metabolic and detoxification organ and hence demands a large amount of energy, which is mainly produced by the mitochondria. Liver tissues of patients with alcohol-related or non-alcohol-related liver diseases contain ultrastructural mitochondrial lesions, mitochondrial DNA damage, disturbed mitochondrial dynamics, and compromised ATP production. Overproduction of mitochondrial reactive oxygen species induces oxidative damage to mitochondrial proteins and mitochondrial DNA, decreases mitochondrial membrane potential, triggers hepatocyte inflammation, and promotes programmed cell death, all of which impair liver function. Mitochondrial DNA may be a potential novel non-invasive biomarker of the risk of progression to liver cirrhosis and hepatocellular carcinoma in patients infected with the hepatitis B virus. We herein present a review of the mechanisms of mitochondrial dysfunction in the development of acute liver injury and chronic liver diseases, such as hepatocellular carcinoma, viral hepatitis, drug-induced liver injury, alcoholic liver disease, and non-alcoholic fatty liver disease. This review also discusses mitochondrion-centric therapies for treating liver diseases.
Collapse
Affiliation(s)
- Ping Chen
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Lichao Yao
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Mengqin Yuan
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Zheng Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Qiuling Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Yingan Jiang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Lanjuan Li
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| |
Collapse
|
16
|
Shan S, Zhao X, Jia J. Comprehensive approach to controlling chronic hepatitis B in China. Clin Mol Hepatol 2024; 30:135-143. [PMID: 38176692 PMCID: PMC11016498 DOI: 10.3350/cmh.2023.0412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/06/2024] Open
Abstract
Hepatitis B virus (HBV) infection was highly endemic in China, where the prevalence of HBsAg was 9.7% in 1992. Comprehensive strategies, including universal infant hepatitis B vaccination with emphasis on timely birth-dose and 3-dose coverage, dramatically reduced the mother-to-infant transmission and early childhood acquisition of HBV, resulting in estimated HBsAg prevalence rates of 5.6% and 0.1% in the general population and among children aged <5 years in 2022, respectively. Clinical guidelines on the prevention and treatment of chronic hepatitis B have been periodically updated based on emerging evidence from clinical research. The continuously improved reimbursement policy and the massively reduced price of antiviral drugs through government negotiation and central procurement have increased treatment accessibility and affordability. However, due to the low rates of diagnosis and treatment, China still faces a large challenge in achieving the 2030 goal of lowering HBV-related mortality by 65%. A public health approach involving concerted efforts from the government, medical community, industry, and society as a whole would be necessary to increase the uptake of HBV tests and treatment to achieve the global goal of eliminating viral hepatitis as a public health threat by 2030.
Collapse
Affiliation(s)
- Shan Shan
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, The National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Xinyan Zhao
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, The National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Jidong Jia
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, The National Clinical Research Center for Digestive Diseases, Beijing, China
| |
Collapse
|
17
|
Meroueh C, Warasnhe K, Tizhoosh HR, Shah VH, Ibrahim SH. Digital pathology and spatial omics in steatohepatitis: Clinical applications and discovery potentials. Hepatology 2024:01515467-990000000-00815. [PMID: 38517078 PMCID: PMC11669472 DOI: 10.1097/hep.0000000000000866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 02/26/2024] [Indexed: 03/23/2024]
Abstract
Steatohepatitis with diverse etiologies is the most common histological manifestation in patients with liver disease. However, there are currently no specific histopathological features pathognomonic for metabolic dysfunction-associated steatotic liver disease, alcohol-associated liver disease, or metabolic dysfunction-associated steatotic liver disease with increased alcohol intake. Digitizing traditional pathology slides has created an emerging field of digital pathology, allowing for easier access, storage, sharing, and analysis of whole-slide images. Artificial intelligence (AI) algorithms have been developed for whole-slide images to enhance the accuracy and speed of the histological interpretation of steatohepatitis and are currently employed in biomarker development. Spatial biology is a novel field that enables investigators to map gene and protein expression within a specific region of interest on liver histological sections, examine disease heterogeneity within tissues, and understand the relationship between molecular changes and distinct tissue morphology. Here, we review the utility of digital pathology (using linear and nonlinear microscopy) augmented with AI analysis to improve the accuracy of histological interpretation. We will also discuss the spatial omics landscape with special emphasis on the strengths and limitations of established spatial transcriptomics and proteomics technologies and their application in steatohepatitis. We then highlight the power of multimodal integration of digital pathology augmented by machine learning (ML)algorithms with spatial biology. The review concludes with a discussion of the current gaps in knowledge, the limitations and premises of these tools and technologies, and the areas of future research.
Collapse
Affiliation(s)
- Chady Meroueh
- Department of Laboratory Medicine & Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Khaled Warasnhe
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - H. R. Tizhoosh
- Department of Artificial Intelligence & Informatics, Mayo Clinic, Rochester, Minnesota, USA
| | - Vijay H. Shah
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Samar H. Ibrahim
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, Minnesota, USA
- Division of Pediatric Gastroenterology & Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
18
|
Sun Y, Chen W, Chen S, Wu X, Zhang X, Zhang L, Zhao H, Xu M, Chen Y, Piao H, Li P, Li L, Jiang W, Li X, Xing H, Liu X, Zhang Y, Wang B, Zhou J, Meng T, Zhao X, Shao C, Kong Y, Zhao X, Ou X, Liu C, Jia J, You H. Regression of Liver Fibrosis in Patients on Hepatitis B Therapy Is Associated With Decreased Liver-Related Events. Clin Gastroenterol Hepatol 2024; 22:591-601.e3. [PMID: 38040276 DOI: 10.1016/j.cgh.2023.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/09/2023] [Accepted: 11/16/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND & AIMS Liver fibrosis in patients with chronic hepatitis B can regress with successful antiviral therapy. However, the long-term clinical benefits of fibrosis regression have not been fully elucidated. This study investigated the association between biopsy-proven fibrosis regression by predominantly progressive, indeterminate, and predominantly regressive (P-I-R) score and liver-related events (LREs) in chronic hepatitis B patients. METHODS Patients with on-treatment liver biopsy and significant fibrosis/cirrhosis (Ishak stage ≥3) were included in this analysis. Fibrosis regression was evaluated according to the P-I-R score of the Beijing Classification. LREs were defined as decompensations, hepatocellular carcinoma, liver transplantation, or death. The Cox proportional hazards model was used to determine associations of fibrosis regression with LREs. RESULTS A total of 733 patients with Ishak stages 3/4 (n = 456; 62.2%) and cirrhosis (Ishak stages 5/6; n = 277; 37.8%) by on-treatment liver biopsy were enrolled. According to the P-I-R score, fibrosis regression, indeterminate, and progression were observed in 314 (42.8%), 230 (31.4%), and 189 (25.8%) patients, respectively. The 7-year cumulative incidence of LREs was 4.1%, 8.7%, and 18.1% in regression, indeterminate, and progression, respectively (log-rank, P < .001). Compared with patients with fibrosis progression, those with fibrosis regression had a lower risk of LREs (adjusted hazard ratio, 0.40; 95% CI, 0.16-0.99; P = .047), followed by the indeterminate group (adjusted hazard ratio, 0.86; 95% CI, 0.40-1.85; P = .691). Notably, this favorable association also was observed in patients with cirrhosis or low platelet counts (<150 × 109/L). CONCLUSIONS Antiviral therapy-induced liver fibrosis regression assessed by P-I-R score is associated with reduced LREs. This shows the utility of histologic fibrosis regression assessed by on-treatment P-I-R score as a surrogate endpoint for clinical events in patients with hepatitis B virus-related fibrosis or early cirrhosis.
Collapse
Affiliation(s)
- Yameng Sun
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Wei Chen
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shuyan Chen
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Xiaoning Wu
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Xinxin Zhang
- Department of Infectious Diseases, Research Laboratory of Clinical Virology, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingyi Zhang
- Department of Hepatology, Second Hospital, Lanzhou University, Lanzhou, China
| | - Hong Zhao
- Center of Liver Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Mingyi Xu
- Department of Gastroenterology and Hepatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongpeng Chen
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Hongxin Piao
- Infectious Department, Affiliated Hospital of Yanbian University, Yanji, Jilin, China
| | - Ping Li
- Department of Hepatology, Tianjin Second People's Hospital, Tianjin, China
| | - Lei Li
- Department of Gastroenterology and Hepatology, Beijing You-an Hospital, Capital Medical University, Beijing, China
| | - Wei Jiang
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaodong Li
- Hepatic Disease Institute, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Huichun Xing
- Department of Hepatology, Division 3, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xudong Liu
- Department of Liver Diseases, Ruikang Hospital, Guangxi Traditional Chinese Medicine University, Nanning, China
| | - Yuxi Zhang
- Department of Infectious Diseases, Ningxia People's Hospital, Yinchuan, China
| | - Bingqiong Wang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Jialing Zhou
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Tongtong Meng
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Xinyan Zhao
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Chen Shao
- Department of Pathology, Beijing You-an Hospital, Capital Medical University, Beijing, China
| | - Yuanyuan Kong
- Clinical Epidemiology and Evidence-based Medicine Unit, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xinyu Zhao
- Clinical Epidemiology and Evidence-based Medicine Unit, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaojuan Ou
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Chenghai Liu
- Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Jidong Jia
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China.
| | - Hong You
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China.
| |
Collapse
|
19
|
Zhang N, Wu X, Zhang W, Sun Y, Yan X, Xu A, Han Q, Yang A, You H, Chen W. Targeting thrombospondin-2 retards liver fibrosis by inhibiting TLR4-FAK/TGF-β signaling. JHEP Rep 2024; 6:101014. [PMID: 38379585 PMCID: PMC10877131 DOI: 10.1016/j.jhepr.2024.101014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 12/13/2023] [Accepted: 01/08/2024] [Indexed: 02/22/2024] Open
Abstract
Background & Aims Thrombospondin-2 (THBS2) expression is associated with liver fibrosis regardless of etiology. However, the role of THBS2 in the pathogenesis of liver fibrosis has yet to be elucidated. Methods The in vivo effects of silencing Thbs2 in hepatic stellate cells (HSCs) were examined using an adeno-associated virus vector (serotype 6, AAV6) containing short-hairpin RNAs targeting Thbs2, under the regulatory control of cytomegalovirus, U6 or the α-smooth muscle promoter, in mouse models of carbon tetrachloride or methionine-choline deficient (MCD) diet-induced liver fibrosis. Crosstalk between THBS2 and toll-like receptor 4 (TLR4), as well as the cascaded signaling, was systematically investigated using mouse models, primary HSCs, and human HSC cell lines. Results THBS2 was predominantly expressed in activated HSCs and dynamically increased with liver fibrosis progression and decreased with regression. Selective interference of Thbs2 in HSCs retarded intrahepatic inflammatory infiltration, steatosis accumulation, and fibrosis progression following carbon tetrachloride challenge or in a dietary model of metabolic dysfunction-associated steatohepatitis. Mechanically, extracellular THBS2, as a dimer, specifically recognized and directly bound to TLR4, activating HSCs by stimulating downstream profibrotic focal adhesion kinase (FAK)/transforming growth factor beta (TGF-β) pathways. Disruption of the THBS2-TLR4-FAK/TGF-β signaling axis notably alleviated HSC activation and liver fibrosis aggravation. Conclusions THBS2 plays a crucial role in HSC activation and liver fibrosis progression through TLR4-FAK/TGF-β signaling in an autocrine manner, representing an attractive potential therapeutic target for liver fibrosis. Impact and implications Thrombospondin-2 (THBS2) is emerging as a factor closely associated with liver fibrosis regardless of etiology. However, the mechanisms by which THBS2 is involved in liver fibrosis remain unclear. Here, we showed that THBS2 plays a prominent role in the pathogenesis of liver fibrosis by activating the TLR4-TGF-β/FAK signaling axis and hepatic stellate cells in an autocrine manner, providing a potential therapeutic target for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Ning Zhang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong’an Road, Xicheng District, Beijing 100050, China
- State Key Lab of Digestive Health, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong’an Road, Xicheng District, Beijing 100050, China
- National Clinical Research Center of Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong’an Road, Xicheng District, Beijing 100050, China
| | - Xiaoning Wu
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong’an Road, Xicheng District, Beijing 100050, China
- State Key Lab of Digestive Health, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong’an Road, Xicheng District, Beijing 100050, China
- National Clinical Research Center of Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong’an Road, Xicheng District, Beijing 100050, China
| | - Wen Zhang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong’an Road, Xicheng District, Beijing 100050, China
- State Key Lab of Digestive Health, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong’an Road, Xicheng District, Beijing 100050, China
- National Clinical Research Center of Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong’an Road, Xicheng District, Beijing 100050, China
| | - Yameng Sun
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong’an Road, Xicheng District, Beijing 100050, China
- State Key Lab of Digestive Health, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong’an Road, Xicheng District, Beijing 100050, China
- National Clinical Research Center of Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong’an Road, Xicheng District, Beijing 100050, China
| | - Xuzhen Yan
- State Key Lab of Digestive Health, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong’an Road, Xicheng District, Beijing 100050, China
- National Clinical Research Center of Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong’an Road, Xicheng District, Beijing 100050, China
- Beijing Clinical Research Institute, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong’an Road, Xicheng District, Beijing 100050, China
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong’an Road, Xicheng District, Beijing 100050, China
| | - Anjian Xu
- State Key Lab of Digestive Health, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong’an Road, Xicheng District, Beijing 100050, China
- National Clinical Research Center of Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong’an Road, Xicheng District, Beijing 100050, China
- Beijing Clinical Research Institute, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong’an Road, Xicheng District, Beijing 100050, China
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong’an Road, Xicheng District, Beijing 100050, China
| | - Qi Han
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong’an Road, Xicheng District, Beijing 100050, China
- State Key Lab of Digestive Health, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong’an Road, Xicheng District, Beijing 100050, China
- National Clinical Research Center of Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong’an Road, Xicheng District, Beijing 100050, China
| | - Aiting Yang
- State Key Lab of Digestive Health, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong’an Road, Xicheng District, Beijing 100050, China
- National Clinical Research Center of Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong’an Road, Xicheng District, Beijing 100050, China
- Beijing Clinical Research Institute, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong’an Road, Xicheng District, Beijing 100050, China
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong’an Road, Xicheng District, Beijing 100050, China
| | - Hong You
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong’an Road, Xicheng District, Beijing 100050, China
- State Key Lab of Digestive Health, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong’an Road, Xicheng District, Beijing 100050, China
- National Clinical Research Center of Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong’an Road, Xicheng District, Beijing 100050, China
| | - Wei Chen
- State Key Lab of Digestive Health, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong’an Road, Xicheng District, Beijing 100050, China
- National Clinical Research Center of Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong’an Road, Xicheng District, Beijing 100050, China
- Beijing Clinical Research Institute, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong’an Road, Xicheng District, Beijing 100050, China
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong’an Road, Xicheng District, Beijing 100050, China
| |
Collapse
|
20
|
Chang X, Lv C, Wang B, Wang J, Song Z, An L, Chen S, Chen Y, Shang Q, Yu Z, Tan L, Li Q, Liu H, Jiang L, Xiao G, Chen L, Lu W, Hu X, Dong Z, Chen Y, Sun Y, Wang X, Li Z, Chen D, You H, Jia J, Yang Y. The utility of P-I-R classification in predicting the on-treatment histological and clinical outcomes of patients with hepatitis B and advanced liver fibrosis. Hepatology 2024; 79:425-437. [PMID: 37611260 PMCID: PMC10789381 DOI: 10.1097/hep.0000000000000563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 07/01/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND AND AIMS The predominantly progressive, indeterminate, and predominantly regressive (P-I-R) classification extends beyond staging and provides information on dynamic changes of liver fibrosis. However, the prognostic implication of P-I-R classification is not elucidated. Therefore, in the present research, we investigated the utility of P-I-R classification in predicting the on-treatment clinical outcomes. APPROACH AND RESULTS In an extension study on a randomized controlled trial, we originally enrolled 1000 patients with chronic hepatitis B and biopsy-proven histological significant fibrosis, and treated them for more than 7 years with entecavir-based therapy. Among the 727 patients with a second biopsy at treatment week 72, we compared P-I-R classification and Ishak score changes in 646 patients with adequate liver sections for the histological evaluation. Progressive, indeterminate, and regressive cases were observed in 70%, 17%, and 13% of patients before treatments and 20%, 14%, and 64% after 72-week treatment, respectively, which could further differentiate the histological outcomes of patients with stable Ishak scores. The 7-year cumulative incidence of HCC was 1.5% for the regressive cases, 4.3% for the indeterminate cases, and 22.8% for the progressive cases ( p <0.001). After adjusting for age, treatment regimen, platelet counts, cirrhosis, Ishak fibrosis score changes, and Laennec staging, the posttreatment progressive had a HR of 17.77 (vs. posttreatment regressive; 95% CI: 5.55-56.88) for the incidence of liver-related events (decompensation, HCC, and death/liver transplantation). CONCLUSIONS The P-I-R classification can be a meaningful complement to the Ishak fibrosis score not only in evaluating the histological changes but also in predicting the clinical outcomes.
Collapse
Affiliation(s)
- Xiujuan Chang
- Department of Liver Disease, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Caihong Lv
- Department of Liver Disease, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- Peking University 302 Clinical Medical School, Beijing, China
| | - Bingqiong Wang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University; Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis; National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Jing Wang
- Department of Hepatobiliary Disease, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Zheng Song
- Department of Liver Disease, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- Peking University 302 Clinical Medical School, Beijing, China
| | - Linjing An
- Department of Liver Disease, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shuyan Chen
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University; Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis; National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Yongping Chen
- Department of Infectious and Liver Diseases, Liver Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Qinghua Shang
- Department of Liver Diseases, the 960th Hospital of Chinese PLA Joint Logistics Support Force, Jinan, Shandong Province, China
| | - Zujiang Yu
- Department of Infectious Disease, the First Affiliated Hospital of Zhengzhou, University, Zhengzhou, Henan Province, China
| | - Lin Tan
- Department of Liver Disease, Fuyang 2nd People’s Hospital, Fuyang, Anhui Province, China
| | - Qin Li
- Fuzhou Infectious Diseases Hospital, Fuzhou, Fujian Province, China
| | - Huabao Liu
- Traditional Chinese Medicine Hospital of Chongqing, Chongqing, China
| | - Li Jiang
- Department of Infectious Diseases, Southwest Hospital, Army Military Medical University, Chongqing, China
| | - Guangming Xiao
- Guangzhou 8th People's Hospital, Guangzhou, Guangdong Province, China
| | - Liang Chen
- Department of Hepatic Diseases, Shanghai Public Health Clinical Center, Shanghai, China
| | - Wei Lu
- Tianjin Second People's Hospital, Tianjin Institute of Hepatology, Tianjin, China
| | - Xiaoyu Hu
- National Integrative Medicine Clinical Base for Infectious Diseases and Department of Infectious Diseases, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Zheng Dong
- Department of Liver Disease, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yan Chen
- Department of Liver Disease, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yameng Sun
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University; Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis; National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Xiaodong Wang
- Department of Infectious and Liver Diseases, Liver Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zhiqin Li
- Department of Infectious Disease, the First Affiliated Hospital of Zhengzhou, University, Zhengzhou, Henan Province, China
| | - Da Chen
- Fuzhou Infectious Diseases Hospital, Fuzhou, Fujian Province, China
| | - Hong You
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University; Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis; National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Jidong Jia
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University; Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis; National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Yongping Yang
- Department of Liver Disease, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- Peking University 302 Clinical Medical School, Beijing, China
| |
Collapse
|
21
|
Sanyal AJ, Jha P, Kleiner DE. Digital pathology for nonalcoholic steatohepatitis assessment. Nat Rev Gastroenterol Hepatol 2024; 21:57-69. [PMID: 37789057 DOI: 10.1038/s41575-023-00843-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/23/2023] [Indexed: 10/05/2023]
Abstract
Histological assessment of nonalcoholic fatty liver disease (NAFLD) has anchored knowledge development about the phenotypes of the condition, their natural history and their clinical course. This fact has led to the use of histological assessment as a reference standard for the evaluation of efficacy of drug interventions for nonalcoholic steatohepatitis (NASH) - the more histologically active form of NAFLD. However, certain limitations of conventional histological assessment systems pose challenges in drug development. These limitations have spurred intense scientific and commercial development of machine learning and digital approaches towards the assessment of liver histology in patients with NAFLD. This research field remains an area in rapid evolution. In this Perspective article, we summarize the current conventional assessment of NASH and its limitations, the use of specific digital approaches for histological assessment, and their application to the study of NASH and its response to therapy. Although this is not a comprehensive review, the leading tools currently used to assess therapeutic efficacy in drug development are specifically discussed. The potential translation of these approaches to support routine clinical assessment of NAFLD and an agenda for future research are also discussed.
Collapse
Affiliation(s)
- Arun J Sanyal
- Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
| | - Prakash Jha
- Food and Drug Administration, Silver Spring, MD, USA
| | - David E Kleiner
- Post-Mortem Section Laboratory of Pathology Center for Cancer Research National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
22
|
Sanyal AJ, Loomba R, Anstee QM, Ratziu V, Kowdley KV, Rinella ME, Harrison SA, Resnick MB, Capozza T, Sawhney S, Shelat N, Younossi ZM. Utility of pathologist panels for achieving consensus in NASH histologic scoring in clinical trials: Data from a phase 3 study. Hepatol Commun 2024; 8:e0325. [PMID: 38126958 PMCID: PMC10749704 DOI: 10.1097/hc9.0000000000000325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/21/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Liver histopathologic assessment is the accepted surrogate endpoint in NASH trials; however, the scoring of NASH Clinical Research Network (CRN) histologic parameters is limited by intraobserver and interobserver variability. We designed a consensus panel approach to minimize variability when using this scoring system. We assessed agreement between readers, estimated linear weighted kappas between 2 panels, compared them with published pairwise kappa estimates, and addressed how agreement or disagreement might impact the precision and validity of the surrogate efficacy endpoint in NASH trials. METHODS Two panels, each comprising 3 liver fellowship-trained pathologists who underwent NASH histology training, independently evaluated scanned whole slide images, scoring fibrosis, inflammation, hepatocyte ballooning, and steatosis from baseline and month 18 biopsies for 100 patients from the precirrhotic NASH study REGENERATE. The consensus score for each parameter was defined as agreement by ≥2 pathologists. If consensus was not reached, all 3 pathologists read the slide jointly to achieve a consensus score. RESULTS Between the 2 panels, the consensus was 97%-99% for steatosis, 91%-93% for fibrosis, 88%-92% for hepatocyte ballooning, and 84%-91% for inflammation. Linear weighted kappa scores between panels were similar to published NASH CRN values. CONCLUSIONS A panel of 3 trained pathologists independently scoring 4 NASH CRN histology parameters produced high consensus rates. Interpanel kappa values were comparable to NASH CRN metrics, supporting the accuracy and reproducibility of this method. The high concordance for fibrosis scoring was reassuring, as fibrosis is predictive of liver-specific outcomes and all-cause mortality.
Collapse
Affiliation(s)
- Arun J. Sanyal
- Department of Internal Medicine, Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Rohit Loomba
- Division of Gastroenterology and Hepatology, Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Quentin M. Anstee
- Translational & Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Vlad Ratziu
- Sorbonne Université, Institute of Cardiometabolism and Nutrition, Pitié Salpêtriére University Hospital, Paris, France
| | | | - Mary E. Rinella
- Pritzker School of Medicine, University of Chicago, Chicago, Illinois, USA
| | | | - Murray B. Resnick
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Thomas Capozza
- Intercept Pharmaceuticals, Inc., Morristown, New Jersey, USA
| | | | - Nirav Shelat
- Intercept Pharmaceuticals, Inc., Morristown, New Jersey, USA
| | | |
Collapse
|
23
|
Fan HN, Zhao ZM, Huang K, Wang XN, Dai YK, Liu CH. Serum metabolomics characteristics and fatty-acid-related mechanism of cirrhosis with histological response in chronic hepatitis B. Front Pharmacol 2023; 14:1329266. [PMID: 38178856 PMCID: PMC10764421 DOI: 10.3389/fphar.2023.1329266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 12/06/2023] [Indexed: 01/06/2024] Open
Abstract
Background and aims: The serum metabolites changes in patients with hepatitis B virus (HBV)-related cirrhosis as progression. Peroxisome proliferator-activated receptor gamma (PPARγ) is closely related to lipid metabolism in cirrhotic liver. However, the relationship between fatty acids and the expression of hepatic PPARγ during cirrhosis regression remains unknown. In this study, we explored the serum metabolic characteristics and expression of PPARγ in patients with histological response to treatment with entecavir. Methods: Sixty patients with HBV-related cirrhosis were selected as the training cohort with thirty patients each in the regression (R) group and non-regression (NR) group based on their pathological changes after 48-week treatment with entecavir. Another 72 patients with HBV-related cirrhosis and treated with entecavir were collected as the validation cohort. All of the serum samples were tested using ultra-performance liquid chromatography coupled to tandem mass spectrometry. Data were processed through principal component analysis and orthogonal partial least square discriminant analysis. Hepatic PPARγ expression was observed using immunohistochemistry. The relationship between serum fatty acids and PPARγ was calculated using Pearson's or Spearman's correlation analysis. Results: A total of 189 metabolites were identified and 13 differential metabolites were screened. Compared to the non-regression group, the serum level of fatty acids was higher in the R group. At baseline, the expression of PPARγ in hepatic stellate cells was positively correlated with adrenic acid (r 2 = 0.451, p = 0.046). The expression of PPARγ in both groups increased after treatment, and the expression of PPARγ in the R group was restored in HSCs much more than that in the NR group (p = 0.042). The adrenic acid and arachidonic acid (AA) in the R group also upgraded more than the NR group after treatment (p = 0.037 and 0.014). Conclusion: Baseline serum differential metabolites, especially fatty acids, were identified in patients with HBV-related cirrhosis patients who achieved cirrhosis regression. Upregulation of adrenic acid and arachidonic acid in serum and re-expression of PPARγ in HSCs may play a crucial role in liver fibrosis improvement.
Collapse
Affiliation(s)
- Hai-Na Fan
- Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhi-Min Zhao
- Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital, Shanghai, China
| | - Kai Huang
- Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital, Shanghai, China
| | - Xiao-Ning Wang
- Institute of Interdisciplinary Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yun-Kai Dai
- Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng-Hai Liu
- Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital, Shanghai, China
| |
Collapse
|
24
|
You H, Wang F, Li T, Xu X, Sun Y, Nan Y, Wang G, Hou J, Duan Z, Wei L, Jia J, Zhuang H. Guidelines for the Prevention and Treatment of Chronic Hepatitis B (version 2022). J Clin Transl Hepatol 2023; 11:1425-1442. [PMID: 37719965 PMCID: PMC10500285 DOI: 10.14218/jcth.2023.00320] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 09/19/2023] Open
Abstract
To facilitate the achieving of the goal of "eliminating viral hepatitis as a major public health threat by 2030" set by the World Health Organization, the Chinese Society of Hepatology together with the Chinese Society of Infectious Diseases (both are branches of the Chinese Medical Association) organized a panel of experts and updated the guidelines for prevention and treatment of chronic hepatitis B in China (version 2022). With the support of available evidence, this revision of the guidelines focuses on active prevention, large scale testing, and expansion of therapeutic indication of chronic hepatitis B with the aim of reducing the hepatitis B related disease burden.
Collapse
Affiliation(s)
- Hong You
- Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Fusheng Wang
- The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Taisheng Li
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaoyuan Xu
- Peking University First Hospital, Beijing, China
| | - Yameng Sun
- Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yuemin Nan
- Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | | | - Jinlin Hou
- Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhongping Duan
- Beijing You-An Hospital, Capital Medical University, Beijing, China
| | - Lai Wei
- Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Jidong Jia
- Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hui Zhuang
- Peking University Health Science Center, Beijing, China
| |
Collapse
|
25
|
Nguyen ED, Ding CKC, Umetsu SE, Choi WT, Ferrell LD, Wen KW. Use of orcein as an adjunct stain in the evaluation of advanced liver fibrosis. Histopathology 2023; 83:538-545. [PMID: 37222207 DOI: 10.1111/his.14962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/24/2023] [Accepted: 05/10/2023] [Indexed: 05/25/2023]
Abstract
AIMS Advanced liver fibrosis can regress following the elimination of causative injuries. Trichrome (TC) stain has traditionally been used to evaluate the degree of fibrosis in liver, although it is rarely helpful in assessing quality of fibrosis (i.e. progression and regression). Orcein (OR) stain highlights established elastic fibres, but its use in examining fibrosis is not well recognised. This study assessed the potential utility of comparing OR and TC staining patterns to evaluate the quality of fibrosis in various settings of advanced fibrosis. METHODS AND RESULTS The haematoxylin and eosin and TC stains of 65 liver resection/explant specimens with advanced fibrosis caused by different elements were reviewed. Twenty-two cases were scored as progressive (P), 16 as indeterminate (I) and 27 as regressive (R) using TC stain based on the Beijing criteria. The OR stains confirmed 18 of 22 P cases. The remaining P cases showed either stable fibrosis or mixed P and R. Of the 27 R cases, 26 were supported by OR stain, with many showing thin perforated septa typically seen in adequately treated viral hepatitis cases. The 16 I cases showed a variety of OR staining patterns, which allowed for further subclassification than using TC stain alone. Viral hepatitis cases were enriched for regressive features (17 of 27). CONCLUSIONS Our data demonstrated the utility of OR as an adjunctive stain to evaluate the changes in fibrosis in cases of cirrhosis.
Collapse
Affiliation(s)
- Eric D Nguyen
- Department of Pathology, University of California, San Francisco, CA, USA
| | | | - Sarah E Umetsu
- Department of Pathology, University of California, San Francisco, CA, USA
| | - Won-Tak Choi
- Department of Pathology, University of California, San Francisco, CA, USA
| | - Linda D Ferrell
- Department of Pathology, University of California, San Francisco, CA, USA
| | - Kwun Wah Wen
- Department of Pathology, University of California, San Francisco, CA, USA
| |
Collapse
|
26
|
Chen W, Sun Y, Chen S, Ge X, Zhang W, Zhang N, Wu X, Song Z, Han H, Desert R, Yan X, Yang A, Das S, Athavale D, Nieto N, You H. Matrisome gene-based subclassification of patients with liver fibrosis identifies clinical and molecular heterogeneities. Hepatology 2023; 78:1118-1132. [PMID: 37098756 PMCID: PMC10524702 DOI: 10.1097/hep.0000000000000423] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/27/2023] [Indexed: 04/27/2023]
Abstract
BACKGROUND AIMS Excessive deposition and crosslinking of extracellular matrix increases liver density and stiffness, promotes fibrogenesis, and increases resistance to fibrinolysis. An emerging therapeutic opportunity in liver fibrosis is to target the composition of the extracellular matrix or block pathogenic communication with surrounding cells. However, the type and extent of extracellular changes triggering liver fibrosis depend on the underlying etiology. Our aim was to unveil matrisome genes not dependent on etiology, which are clinically relevant to liver fibrosis. APPROACH RESULTS We used transcriptomic profiles from liver fibrosis cases of different etiologies to identify and validate liver fibrosis-specific matrisome genes (LFMGs) and their clinical and biological relevance. Dysregulation patterns and cellular landscapes of LFMGs were further explored in mouse models of liver fibrosis progression and regression by bulk and single-cell RNA sequencing. We identified 35 LFMGs, independent of etiology, representing an LFMG signature defining liver fibrosis. Expression of the LFMG signature depended on histological severity and was reduced in regressive livers. Patients with liver fibrosis, even with identical pathological scores, could be subclassified into LFMG Low and LFMG High , with distinguishable clinical, cellular, and molecular features. Single-cell RNA sequencing revealed that microfibrillar-associated protein 4 + activated HSC increased in LFMG High patients and were primarily responsible for the LFMG signature expression and dysregulation. CONCLUSIONS The microfibrillar-associated protein 4 + -activated HSC-derived LFMG signature classifies patients with liver fibrosis with distinct clinical and biological characteristics. Our findings unveil hidden information from liver biopsies undetectable using traditional histologic assessments.
Collapse
Affiliation(s)
- Wei Chen
- Beijing Clinical Research Institute, No. 95 Yong’an Road, Xicheng District, Beijing 100050, China
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong’an Road, Xicheng District, Beijing 100050, China
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Yameng Sun
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong’an Road, Xicheng District, Beijing 100050, China
- Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, No. 95 Yong’an Road, Xicheng District, Beijing 100050, China
| | - Shuyan Chen
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong’an Road, Xicheng District, Beijing 100050, China
- Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, No. 95 Yong’an Road, Xicheng District, Beijing 100050, China
| | - Xiaodong Ge
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Wen Zhang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong’an Road, Xicheng District, Beijing 100050, China
- Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, No. 95 Yong’an Road, Xicheng District, Beijing 100050, China
| | - Ning Zhang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong’an Road, Xicheng District, Beijing 100050, China
- Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, No. 95 Yong’an Road, Xicheng District, Beijing 100050, China
| | - Xiaoning Wu
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong’an Road, Xicheng District, Beijing 100050, China
- Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, No. 95 Yong’an Road, Xicheng District, Beijing 100050, China
| | - Zhuolun Song
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Hui Han
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Romain Desert
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Xuzhen Yan
- Beijing Clinical Research Institute, No. 95 Yong’an Road, Xicheng District, Beijing 100050, China
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong’an Road, Xicheng District, Beijing 100050, China
| | - Aiting Yang
- Beijing Clinical Research Institute, No. 95 Yong’an Road, Xicheng District, Beijing 100050, China
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong’an Road, Xicheng District, Beijing 100050, China
| | - Sukanta Das
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Dipti Athavale
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Natalia Nieto
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois at Chicago, 840 S. Wood St., Suite 1020N, MC 787, Chicago, IL 60612, USA
| | - Hong You
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong’an Road, Xicheng District, Beijing 100050, China
- Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, No. 95 Yong’an Road, Xicheng District, Beijing 100050, China
| |
Collapse
|
27
|
Zhang M, Chen S, Wu X, Zhou J, Wang T, Liu H, Zhao X, Wang B, Zhao X, Kong Y, Soon GST, Ou X, Jia J, Chen W, Sun Y, You H. Persistent steatosis correlates with decreased fibrosis regression during anti-HBV treatment in patients with chronic HBV infection. J Med Virol 2023; 95:e29156. [PMID: 37822064 DOI: 10.1002/jmv.29156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/23/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023]
Abstract
Despite the increasing prevalence of steatosis in patients with chronic hepatitis B (CHB), whether the changes in steatosis impact fibrosis regression during antiviral therapy remain unclear. We aimed to identify the association between histological changes of steatosis and fibrosis in patients undergone antiviral treatment. Patients with paired liver biopsies before and after 78 weeks of antiviral therapy were enrolled in this study. Liver fibrosis was assessed by the Ishak score combined with Beijing Classification predominantly progressive, indeterminate, and predominately regressive score. Steatosis was evaluated by the nonalcoholic fatty liver disease activity score. Collagen in each site was quantitated by second harmonic generation/two photon excitation fluorescence technology. Serum proteomic changes after treatment were characterized by mass-based spectrometry. A total of 239 CHB patients were included and divided into four groups according to the changes in steatosis: 162 (67.8%) had no steatosis throughout, 24 (10.0%) developed new-onset steatosis, 21 (8.8%) had initial steatosis which disappeared, and 32 (13.4%) had persistent steatosis. The persistent steatosis group showed the lowest rate of fibrosis regression (14/32, 43.8%). Persistent steatosis correlated with decreased fibrosis regression significantly after adjusting for age, sex, fibrosis stage, and metabolic factors at baseline, as well as the viral response (adjusted odds ratio = 0.380, 95% confidence interval 0.145-0.996, p = 0.049). This decreased fibrosis regression was associated with accumulated collagen in the perisinusoidal area. Patients with persistent steatosis showed unique changes in glycolipid metabolism according to the serum proteomic atlas. Persistent steatosis correlated with decreased fibrosis regression during antiviral therapy in patients with CHB.
Collapse
Affiliation(s)
- Mengyang Zhang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Shuyan Chen
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Xiaoning Wu
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Jialing Zhou
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Tailing Wang
- Department of Pathology, China-Japan Friendship Hospital, Beijing, China
| | - Hui Liu
- Department of Pathology, Beijing You-an Hospital, Capital Medical University, Beijing, China
| | - Xinyan Zhao
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Bingqiong Wang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Xinyu Zhao
- Clinical Epidemiology and EBM Unit, Beijing Friendship Hospital, Capital Medical University, Beijing Clinical Research Institute, Beijing, China
| | - Yuanyuan Kong
- Clinical Epidemiology and EBM Unit, Beijing Friendship Hospital, Capital Medical University, Beijing Clinical Research Institute, Beijing, China
| | | | - Xiaojuan Ou
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Jidong Jia
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Wei Chen
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Clinical Research Institute, Beijing, China
| | - Yameng Sun
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Hong You
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| |
Collapse
|
28
|
Gu J, Liang BY, Zhang EL, Zhang ZY, Chen XP, Huang ZY. Scientific Hepatectomy for Hepatocellular Carcinoma. Curr Med Sci 2023; 43:897-907. [PMID: 37347369 DOI: 10.1007/s11596-023-2761-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/31/2023] [Indexed: 06/23/2023]
Abstract
With advances in imaging technology and surgical instruments, hepatectomy can be perfectly performed with technical precision for hepatocellular carcinoma (HCC). However, the 5-year tumor recurrence rates remain greater than 70%. Thus, the strategy for hepatectomy needs to be reappraised based on insights of scientific advances. Scientific evidence has suggested that the main causes of recurrence after hepatectomy for HCC are mainly related to underlying cirrhosis and the vascular spread of tumor cells that basically cannot be eradicated by hepatectomy. Liver transplantation and systemic therapy could be the solution to prevent postoperative recurrence in this regard. Therefore, determining the severity of liver cirrhosis for choosing the appropriate surgical modality, such as liver transplantation or hepatectomy, for HCC and integrating newly emerging immune-related adjuvant and/or neoadjuvant therapy into the strategy of hepatectomy for HCC have become new aspects of exploration to optimize the strategy of hepatectomy. In this new area, hepatectomy for HCC has evolved from a pure technical concept emphasizing anatomic resection into a scientific concept embracing technical considerations and scientific advances in underlying liver cirrhosis, vascular invasion, and systemic therapy. By introducing the concept of scientific hepatectomy, the indications, timing, and surgical techniques of hepatectomy will be further scientifically optimized for individual patients, and recurrence rates will be decreased and long-term survival will be further prolonged.
Collapse
Affiliation(s)
- Jin Gu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Bin-Yong Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Er-Lei Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zun-Yi Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao-Ping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhi-Yong Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
29
|
Zhang W, Li YJ, Zhang N, Chen SY, Tong XF, Wang BQ, Huang T, You H, Chen W. Fibroblast-specific adipocyte enhancer binding protein 1 is a potential pathological trigger and prognostic marker for liver fibrosis independent of etiology. J Dig Dis 2023; 24:550-561. [PMID: 37776122 DOI: 10.1111/1751-2980.13230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/30/2023] [Accepted: 09/28/2023] [Indexed: 10/01/2023]
Abstract
OBJECTIVES Aortic carboxypeptidase-like protein (ACLP) is an extracellular protein involved in adipogenesis, epithelial-mesenchymal transition, epithelial cell hyperplasia, and collagen fibrogenesis. This study mainly aimed to analyze the potential role of adipocyte enhancer binding protein 1 (AEBP1), the ACLP-encoding gene, as a pathological target or prognostic marker for liver fibrosis regardless of etiology. METHODS Dysregulation pattern, clinical relevance, and biological significance of AEBP1 gene in liver fibrosis were analyzed using publicly available transcriptomic profiles, different liver fibrosis mouse models, biological databases, and AEBP1 gene silencing followed by RNA sequencing in human hepatic stellate cells (HSCs). RESULTS AEBP1 gene expression was upregulated and positively correlated with liver fibrogenesis independent of etiology, the protein of which was further verified in liver fibrosis mouse models induced by different pathogenic factors. A higher expression of liver AEBP1 gene had the potential to predict poor prognosis in liver fibrosis. Systematic bioinformatic analyses revealed that AEBP1 expression was HSCs-specific and associated with extracellular matrix (ECM) remodeling and its downstream mechanical-chemical signaling transition. AEBP1 knockdown by specific small interfering RNAs (siRNAs) in HSCs inhibited ECM-receptor interaction and immune-related pathways as well as HSC proliferation or activation. CONCLUSION A high expression of AEBP1 was specifically associated with liver fibrosis and was related to a poor prognosis and predicted the role of AEBP1 in HSCs, providing a new insight for understanding AEBP1 in liver fibrosis.
Collapse
Affiliation(s)
- Wen Zhang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Yu Jia Li
- Emory National primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Ning Zhang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Shu Yan Chen
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Xiao Fei Tong
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Bing Qiong Wang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Tao Huang
- Beijing Clinical Research Institute, Beijing, China
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hong You
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Wei Chen
- Beijing Clinical Research Institute, Beijing, China
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
30
|
Magdy Wasfy R, Mbaye B, Borentain P, Tidjani Alou M, Murillo Ruiz ML, Caputo A, Andrieu C, Armstrong N, Million M, Gerolami R. Ethanol-Producing Enterocloster bolteae Is Enriched in Chronic Hepatitis B-Associated Gut Dysbiosis: A Case-Control Culturomics Study. Microorganisms 2023; 11:2437. [PMID: 37894093 PMCID: PMC10608849 DOI: 10.3390/microorganisms11102437] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Hepatitis B virus (HBV) infection is a global health epidemic that causes fatal complications, leading to liver cirrhosis and hepatocellular carcinoma. The link between HBV-related dysbiosis and specific bacterial taxa is still under investigation. Enterocloster is emerging as a new genus (formerly Clostridium), including Enterocloster bolteae, a gut pathogen previously associated with dysbiosis and human diseases such as autism, multiple sclerosis, and inflammatory bowel diseases. Its role in liver diseases, especially HBV infection, is not reported. METHODS The fecal samples of eight patients with chronic HBV infection and ten healthy individuals were analyzed using the high-throughput culturomics approach and compared to 16S rRNA sequencing. Quantification of ethanol, known for its damaging effect on the liver, produced from bacterial strains enriched in chronic HBV was carried out by gas chromatography-mass spectrometry. RESULTS Using culturomics, 29,120 isolated colonies were analyzed by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-TOF); 340 species were identified (240 species in chronic HBV samples, 254 species in control samples) belonging to 169 genera and 6 phyla. In the chronic HBV group, 65 species were already known in the literature; 48 were associated with humans but had not been previously found in the gut, and 17 had never been associated with humans previously. Six species were newly isolated in our study. By comparing bacterial species frequency, three bacterial genera were serendipitously found with significantly enriched bacterial diversity in patients with chronic HBV: Enterocloster, Clostridium, and Streptococcus (p = 0.0016, p = 0.041, p = 0.053, respectively). However, metagenomics could not identify this enrichment, possibly concerning its insufficient taxonomical resolution (equivocal assignment of operational taxonomic units). At the species level, the significantly enriched species in the chronic HBV group almost all belonged to class Clostridia, such as Clostridium perfringens, Clostridium sporogenes, Enterocloster aldenensis, Enterocloster bolteae, Enterocloster clostridioformis, and Clostridium innocuum. Two E. bolteae strains, isolated from two patients with chronic HBV infection, showed high ethanol production (27 and 200 mM). CONCLUSIONS Culturomics allowed us to identify Enterocloster species, specifically, E. bolteae, enriched in the gut microbiota of patients with chronic HBV. These species had never been isolated in chronic HBV infection before. Moreover, ethanol production by E. bolteae strains isolated from the chronic HBV group could contribute to liver disease progression. Additionally, culturomics might be critical for better elucidating the relationship between dysbiosis and chronic HBV infection in the future.
Collapse
Affiliation(s)
- Reham Magdy Wasfy
- IHU Méditerranée Infection, 13005 Marseille, France (M.T.A.); (C.A.)
- MEPHI, IRD, Aix-Marseille Université, 13005 Marseille, France
| | - Babacar Mbaye
- IHU Méditerranée Infection, 13005 Marseille, France (M.T.A.); (C.A.)
- MEPHI, IRD, Aix-Marseille Université, 13005 Marseille, France
| | - Patrick Borentain
- Unité Hépatologie, Hôpital de la Timone, APHM, 13005 Marseille, France;
- Assistance Publique-Hôpitaux de Marseille (APHM), 13005 Marseille, France
| | - Maryam Tidjani Alou
- IHU Méditerranée Infection, 13005 Marseille, France (M.T.A.); (C.A.)
- MEPHI, IRD, Aix-Marseille Université, 13005 Marseille, France
| | - Maria Leticia Murillo Ruiz
- IHU Méditerranée Infection, 13005 Marseille, France (M.T.A.); (C.A.)
- MEPHI, IRD, Aix-Marseille Université, 13005 Marseille, France
| | - Aurelia Caputo
- IHU Méditerranée Infection, 13005 Marseille, France (M.T.A.); (C.A.)
- Assistance Publique-Hôpitaux de Marseille (APHM), 13005 Marseille, France
| | - Claudia Andrieu
- IHU Méditerranée Infection, 13005 Marseille, France (M.T.A.); (C.A.)
- Assistance Publique-Hôpitaux de Marseille (APHM), 13005 Marseille, France
| | - Nicholas Armstrong
- IHU Méditerranée Infection, 13005 Marseille, France (M.T.A.); (C.A.)
- Assistance Publique-Hôpitaux de Marseille (APHM), 13005 Marseille, France
| | - Matthieu Million
- IHU Méditerranée Infection, 13005 Marseille, France (M.T.A.); (C.A.)
- MEPHI, IRD, Aix-Marseille Université, 13005 Marseille, France
- Assistance Publique-Hôpitaux de Marseille (APHM), 13005 Marseille, France
| | - Rene Gerolami
- IHU Méditerranée Infection, 13005 Marseille, France (M.T.A.); (C.A.)
- MEPHI, IRD, Aix-Marseille Université, 13005 Marseille, France
- Unité Hépatologie, Hôpital de la Timone, APHM, 13005 Marseille, France;
- Assistance Publique-Hôpitaux de Marseille (APHM), 13005 Marseille, France
| |
Collapse
|
31
|
Matsukuma K, Yeh MM. Practical Guide, Challenges, and Pitfalls in Liver Fibrosis Staging. Surg Pathol Clin 2023; 16:457-472. [PMID: 37536882 DOI: 10.1016/j.path.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Liver fibrosis staging has many challenges, including the large number of proposed staging systems, the heterogeneity of the histopathologic changes of many primary liver diseases, and the potential for slight differences in histologic interpretation to significantly affect clinical management. This review focuses first on fibrosis regression. Following this, each of the major categories of liver disease is discussed in regard to (1) appropriate fibrosis staging systems, (2) emerging concepts, (3) current clinical indications for liver biopsy, (4) clinical decisions determined by fibrosis stage, and (5) histologic challenges and pitfalls related to staging.
Collapse
Affiliation(s)
- Karen Matsukuma
- University of California Davis, Pathology and Laboratory Medicine, 4400 V Street, Sacramento, CA 95817, USA.
| | - Matthew M Yeh
- University of Washington Medical Center - Montlake, Box 356100, 1959 NE Pacific Street, Seattle, WA 98195, USA
| |
Collapse
|
32
|
Lee MJ. A review of liver fibrosis and cirrhosis regression. J Pathol Transl Med 2023; 57:189-195. [PMID: 37461143 PMCID: PMC10369136 DOI: 10.4132/jptm.2023.05.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/20/2023] [Accepted: 05/24/2023] [Indexed: 07/30/2023] Open
Abstract
Cirrhosis has traditionally been considered an irreversible process of end-stage liver disease. With new treatments for chronic liver disease, there is regression of fibrosis and cirrhosis, improvement in clinical parameters (i.e. liver function and hemodynamic markers, hepatic venous pressure gradient), and survival rates, demonstrating that fibrosis and fibrolysis are a dynamic process moving in two directions. Microscopically, hepatocytes push into thinning fibrous septa with eventual perforation leaving behind delicate periportal spikes in the portal tracts and loss of portal veins. Obliterated portal veins during progressive fibrosis and cirrhosis due to parenchymal extinction, vascular remodeling and thrombosis often leave behind a bile duct and hepatic artery within the portal tract. Traditional staging classification systems focused on a linear, progressive process; however, the Beijing classification system incorporates both the bidirectional nature for the progression and regression of fibrosis. However, even with regression, vascular lesions/remodeling, parenchymal extinction and a cumulative mutational burden place patients at an increased risk for developing hepatocellular carcinoma and should continue to undergo active clinical surveillance. It is more appropriate to consider cirrhosis as another stage in the evolution of chronic liver disease as a bidirectional process rather than an end-stage, irreversible state.
Collapse
Affiliation(s)
- Michael J. Lee
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
33
|
Kleczka A, Mazur B, Tomaszek K, Gabriel A, Dzik R, Kabała-Dzik A. Association of NK Cells with the Severity of Fibrosis in Patients with Chronic Hepatitis C. Diagnostics (Basel) 2023; 13:2187. [PMID: 37443584 DOI: 10.3390/diagnostics13132187] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Some NK cell subpopulations may be involved in the modulation of fibrogenesis in the liver. The aim of the study was to evaluate the relationship between the number and phenotype of NK cell subsets in peripheral blood (PB) and total NK cell percentage, population density and the degree of liver fibrosis of patients infected with hepatitis C virus (HCV+). The study group consisted of 56 HCV+ patients, divided into two subgroups: patients with mild or moderate fibrosis and patients with advanced liver fibrosis or cirrhosis (F ≥ 3 in METAVIR classification). The preparations were stained with H-E and AZAN staining. NK cells were targeted with anti-CD56 antibody and identified automatically in situ using the DakoVision system. Assessment of different NK cell subsets in PB was performed with the flow cytometry technique. In the PB of HCV+ patients with advanced liver fibrosis, there was a lower proportion of CD62L+; CD62L+/CD94++; CD27+; CD127+/CD27+ and CXCR3+/CD27+ NK subsets, as compared to patients with mild/moderate liver fibrosis. The results also showed no association between total PB NK cell level and total intrahepatic NK cell population density between patients with mild/moderate fibrosis and with advanced liver fibrosis. However, positive correlations between the PB levels of CD94+ and CD62L+ NK cell subsets and the intrahepatic total NK cell percentage and population density in the liver, irrespectively to the extent of fibrosis, were observed. Additionally, positive correlation was found between the PB CXCR3+/CD94+ NK cell percentages and intrahepatic NK cell percentages in patients with advanced hepatic fibrosis. Lower blood availability of specific NK subsets in patients with chronic type C hepatitis might be a cause of progression of liver fibrosis via insufficient control over hepatic stellate cells.
Collapse
Affiliation(s)
- Anna Kleczka
- Department of Pathology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Ostrogórska 30, 41-200 Sosnowiec, Poland
| | - Bogdan Mazur
- Department of Microbiology and Immunology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, 40-808 Zabrze, Poland
| | - Krzysztof Tomaszek
- Department of Pathomorphology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, 40-800 Zabrze, Poland
| | - Andrzej Gabriel
- Department of Pathomorphology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, 40-800 Zabrze, Poland
| | - Radosław Dzik
- Faculty of Biomedical Engineering, Department of Biosensors and Processing of Biomedical Signals, Silesian University of Technology, Roosevelta 40, 41-800 Zabrze, Poland
| | - Agata Kabała-Dzik
- Department of Pathology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Ostrogórska 30, 41-200 Sosnowiec, Poland
| |
Collapse
|
34
|
Gole L, Liu F, Ong KH, Li L, Han H, Young D, Marini GPL, Wee A, Zhao J, Rao H, Yu W, Wei L. Quantitative image-based collagen structural features predict the reversibility of hepatitis C virus-induced liver fibrosis post antiviral therapies. Sci Rep 2023; 13:6384. [PMID: 37076590 PMCID: PMC10115775 DOI: 10.1038/s41598-023-33567-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 04/14/2023] [Indexed: 04/21/2023] Open
Abstract
The novel targeted therapeutics for hepatitis C virus (HCV) in last decade solved most of the clinical needs for this disease. However, despite antiviral therapies resulting in sustained virologic response (SVR), a challenge remains where the stage of liver fibrosis in some patients remains unchanged or even worsens, with a higher risk of cirrhosis, known as the irreversible group. In this study, we provided novel tissue level collagen structural insight into early prediction of irreversible cases via image based computational analysis with a paired data cohort (of pre- and post-SVR) following direct-acting-antiviral (DAA)-based treatment. Two Photon Excitation and Second Harmonic Generation microscopy was used to image paired biopsies from 57 HCV patients and a fully automated digital collagen profiling platform was developed. In total, 41 digital image-based features were profiled where four key features were discovered to be strongly associated with fibrosis reversibility. The data was validated for prognostic value by prototyping predictive models based on two selected features: Collagen Area Ratio and Collagen Fiber Straightness. We concluded that collagen aggregation pattern and collagen thickness are strong indicators of liver fibrosis reversibility. These findings provide the potential implications of collagen structural features from DAA-based treatment and paves the way for a more comprehensive early prediction of reversibility using pre-SVR biopsy samples to enhance timely medical interventions and therapeutic strategies. Our findings on DAA-based treatment further contribute to the understanding of underline governing mechanism and knowledge base of structural morphology in which the future non-invasive prediction solution can be built upon.
Collapse
Affiliation(s)
- Laurent Gole
- Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Drive, Proteos Building, Singapore, 138673, Singapore
| | - Feng Liu
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, No. 11, Xi Zhimen South Street, Beijing, 100044, People's Republic of China
| | - Kok Haur Ong
- Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Drive, Proteos Building, Singapore, 138673, Singapore
- Bioinformatics Institute, A*STAR, Singapore, Singapore
| | - Longjie Li
- Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Drive, Proteos Building, Singapore, 138673, Singapore
- Bioinformatics Institute, A*STAR, Singapore, Singapore
| | - Hao Han
- Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Drive, Proteos Building, Singapore, 138673, Singapore
| | - David Young
- Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Drive, Proteos Building, Singapore, 138673, Singapore
| | - Gabriel Pik Liang Marini
- Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Drive, Proteos Building, Singapore, 138673, Singapore
- Bioinformatics Institute, A*STAR, Singapore, Singapore
| | - Aileen Wee
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, National University Hospital, Singapore, Singapore
| | - Jingmin Zhao
- Department of Pathology, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, China
| | - Huiying Rao
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, No. 11, Xi Zhimen South Street, Beijing, 100044, People's Republic of China.
| | - Weimiao Yu
- Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Drive, Proteos Building, Singapore, 138673, Singapore.
- Bioinformatics Institute, A*STAR, Singapore, Singapore.
| | - Lai Wei
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, No. 11, Xi Zhimen South Street, Beijing, 100044, People's Republic of China.
- Department of Hepatobiliary and Pancreatic Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China.
| |
Collapse
|
35
|
Radiomics nomograms based on R2* mapping and clinical biomarkers for staging of liver fibrosis in patients with chronic hepatitis B: a single-center retrospective study. Eur Radiol 2023; 33:1653-1667. [PMID: 36149481 DOI: 10.1007/s00330-022-09137-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/05/2022] [Accepted: 09/01/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVES To investigate the value of R2* mapping-based radiomics nomograms in staging liver fibrosis in patients with chronic hepatitis B. METHODS Between January 2020 and December 2020, 151 patients with chronic hepatitis B were randomly divided into training (n = 103) and validation (n = 48) cohorts. From January to February 2021, 58 patients were included in a test cohort. Radiomics features were selected using the interclass correlation coefficient and least absolute shrinkage and selection operator method. Three radiomics nomograms, combining the radiomics score (Radscore) derived from R2* mapping and clinical variables, were used for staging significant and advanced fibrosis, and cirrhosis. Performance of the model was evaluated using the AUC. The utility and clinical benefits were evaluated using the continuous net reclassification index (NRI), integrated discrimination improvement (IDI), and decision curve analysis (DCA). RESULTS The Radscore calculated by 12 radiomics features and independent factors (laminin and platelet) of advanced fibrosis were used to construct the radiomics nomograms. In the test cohort, the AUCs of the radiomics nomograms for staging significant fibrosis, advanced fibrosis, and cirrhosis were 0.738 (95% confidence interval [CI]: 0.604-0.872), 0.879 (95% CI: 0.779-0.98), and 0.952 (95% CI: 0.878-1), respectively. NRI, IDI, and DCA confirmed that radiomics nomograms demonstrated varying degrees of clinical benefit and improvement for advanced fibrosis and cirrhosis, but not for significant fibrosis. CONCLUSIONS Radiomics nomograms combined with R2* mapping-based Radscore, laminin, and platelet have value in staging advanced fibrosis and cirrhosis but limited value for staging significant fibrosis. KEY POINTS • Laminin and platelets were independent predictors of advanced fibrosis. • Radiomics analysis based on R2* mapping was beneficial for evaluating advanced fibrosis and cirrhosis. • It was difficult to distinguish significant fibrosis using a radiomics nomogram, which is possibly due to the complex pathological microenvironment of chronic liver diseases.
Collapse
|
36
|
Chen S, Wang B, Zhou J, Wu X, Meng T, Liu H, Wang T, Zhao X, Wu S, Kong Y, Ou X, Jia J, Wee A, You H, Sun Y. A new glutamine synthetase index to evaluate hepatic lobular restoration in advanced fibrosis during anti-HBV therapy. J Med Virol 2023; 95:e28555. [PMID: 36738235 DOI: 10.1002/jmv.28555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Hepatic lobular architecture distortion is a deleterious turning point and a crucial histological feature of advanced liver fibrosis in chronic liver diseases. Regression of fibrosis has been documented in chronic hepatitis B (CHB) patients. However, whether lobular architecture could be restored following fibrosis regression after antiviral therapy is still unclear. Glutamine synthetase (GS) is generally expressed by perivenular hepatocytes around hepatic veins (HV). In this study, we defined abnormal lobular architecture (GSPT ) as GS expressing in the vicinity of portal tracts (PT), which denotes parenchymal extinction and lobular collapse. We defined normal lobular architecture (GSHV ) as GS positivity area not approximating PTs. Therefore, we propose a new GS-index, defined as the percentage of GSHV /(GSHV + GSPT ), to evaluate the extent of architectural disruption and restoration. We evaluated 43 CHB patients with advanced fibrosis (Ishak stage ≥4). Posttreatment liver biopsy was performed after 78 weeks of anti-HBV therapy. The median GS-index improved from 7% (interquartile range [IQR]: 0%-23%) at baseline to 36% (IQR: 20%-57%) at Week 78 (p < 0.001). Totals of 22 patients (51%) had significant GS-index improvement from 0% (IQR: 0%-13%) to 55% (IQR: 44%-81%), while the other half had almost no change between 17% (IQR: 0%-33%) to 20% (IQR: 12%-31%). When GS-index78w ≥ 50% was used to define hepatic lobular restoration, 37% of patients (16/43) achieved lobular restoration, with much improvement in alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels (median value of ∆/Baseline in ALT: restored vs. nonrestored was 79.1% vs. 48.8%, p = 0.018; median value of ∆/Baseline in AST: restored vs. nonrestored was 69.1% vs. 32.5%, p = 0.005). More importantly, lobular restoration correlated with fibrosis regression (median value of ∆/Baseline in Ishak stage: restored vs. nonrestored was 25.0% vs. 0%, p = 0.008). Therefore, in the era of antiviral therapy for CHB, restoration of hepatic lobular architecture is achievable in patients with advanced fibrosis. GS-index provides additional insight into fibrosis regression that goes beyond collagen degradation.
Collapse
Affiliation(s)
- Shuyan Chen
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Bingqiong Wang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Jialing Zhou
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Xiaoning Wu
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Tongtong Meng
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Hui Liu
- Department of Pathology, Beijing You-an Hospital, Capital Medical University, Beijing, China
| | - Tailing Wang
- Department of Pathology, China-Japan Friendship Hospital, Beijing, China
| | - Xinyan Zhao
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Shanshan Wu
- Clinical Epidemiology and EBM Unit, Beijing Friendship Hospital, Capital Medical University, Beijing Clinical Research Institute, Beijing, China
| | - Yuanyuan Kong
- Clinical Epidemiology and EBM Unit, Beijing Friendship Hospital, Capital Medical University, Beijing Clinical Research Institute, Beijing, China
| | - Xiaojuan Ou
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Jidong Jia
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Aileen Wee
- Department of Pathology, National University Hospital, Singapore, Singapore
| | - Hong You
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Yameng Sun
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| |
Collapse
|
37
|
Shen Y, Wu SD, Chen Y, Li XY, Zhu Q, Nakayama K, Zhang WQ, Weng CZ, Zhang J, Wang HK, Wu J, Jiang W. Alterations in gut microbiome and metabolomics in chronic hepatitis B infection-associated liver disease and their impact on peripheral immune response. Gut Microbes 2023; 15:2155018. [PMID: 36519342 PMCID: PMC9757487 DOI: 10.1080/19490976.2022.2155018] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Gut dysbiosis has been reported in chronic hepatitis B (CHB) infection, however its role in CHB progression and antiviral treatment remains to be clarified. Herein, the present study aimed to characterize gut microbiota (GM) in patients with chronic hepatitis B virus infection-associated liver diseases (HBV-CLD) by combining microbiome with metabolome analyses and to evaluate their effects on peripheral immunity. Fecal samples from HBV-CLD patients (n = 64) and healthy controls (n = 17) were collected for 16s rRNA sequencing. Fecal metabolomics was measured with untargeted liquid chromatography-mass spectrometry in subgroups of 58 subjects. Lineage changes of peripheral blood mononuclear cells (PBMCs) were determined upon exposure to bacterial extracts (BE) from HBV-CLD patients. Integrated analyses of microbiome with metabolome revealed a remarkable shift of gut microbiota and metabolites in HBV-CLD patients, and disease progression and antiviral treatment were found to be two main contributing factors for the shift. Concordant decreases in Turicibacter with 4-hydroxyretinoic acid were detected to be inversely correlated with serum AST levels through host-microbiota-metabolite interaction analysis in cirrhotic patients. Moreover, depletion of E.hallii group with elevated choline was restored in patients with 5-year antiviral treatment. PBMC exposure to BE from non-cirrhotic patients enhanced expansion of T helper 17 cells; however, BE from cirrhotics attenuated T helper 1 cell count. CHB progression and antiviral treatment are two main factors contributing to the compositional shift in microbiome and metabolome of HBV-CLD patients. Peripheral immunity might be an intermediate link in gut microbe-host interplay underlying CHB pathogenesis.
Collapse
Affiliation(s)
- Yue Shen
- Department of Gastroenterology & Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China
- Shanghai Institute of Liver Diseases, Fudan University Shanghai Medical College, Shanghai, China
| | - Sheng-Di Wu
- Department of Gastroenterology & Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China
- Shanghai Institute of Liver Diseases, Fudan University Shanghai Medical College, Shanghai, China
- Department of Gastroenterology& Hepatology, Zhongshan Hospital Xiamen Branch of Fudan University, Xiamen, China
| | - Yao Chen
- Department of Emergency Medicine, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Xin-Yue Li
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| | - Qin Zhu
- Department of Gastroenterology & Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China
- Shanghai Institute of Liver Diseases, Fudan University Shanghai Medical College, Shanghai, China
| | - Kiyoko Nakayama
- Department of Gastroenterology & Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China
- Shanghai Institute of Liver Diseases, Fudan University Shanghai Medical College, Shanghai, China
| | - Wan-Qin Zhang
- Department of Gastroenterology & Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China
- Shanghai Institute of Liver Diseases, Fudan University Shanghai Medical College, Shanghai, China
| | - Cheng-Zhao Weng
- Department of Gastroenterology& Hepatology, Zhongshan Hospital Xiamen Branch of Fudan University, Xiamen, China
| | - Jun Zhang
- Department of Gastroenterology& Hepatology, Zhongshan Hospital Xiamen Branch of Fudan University, Xiamen, China
| | - Hai-Kun Wang
- CAS Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Jian Wu
- Department of Gastroenterology & Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China
- Shanghai Institute of Liver Diseases, Fudan University Shanghai Medical College, Shanghai, China
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| | - Wei Jiang
- Department of Gastroenterology & Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China
- Shanghai Institute of Liver Diseases, Fudan University Shanghai Medical College, Shanghai, China
- Department of Gastroenterology& Hepatology, Zhongshan Hospital Xiamen Branch of Fudan University, Xiamen, China
| |
Collapse
|
38
|
Construction of a prediction model for chronic HBV-associated hepatocellular carcinoma based on ultrasound radiomics. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2022. [DOI: 10.1016/j.jrras.2022.100487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
39
|
Naoumov NV, Brees D, Loeffler J, Chng E, Ren Y, Lopez P, Tai D, Lamle S, Sanyal AJ. Digital pathology with artificial intelligence analyses provides greater insights into treatment-induced fibrosis regression in NASH. J Hepatol 2022; 77:1399-1409. [PMID: 35779659 DOI: 10.1016/j.jhep.2022.06.018] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 05/21/2022] [Accepted: 06/10/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Liver fibrosis is a key prognostic determinant for clinical outcomes in non-alcoholic steatohepatitis (NASH). Current scoring systems have limitations, especially in assessing fibrosis regression. Second harmonic generation/two-photon excitation fluorescence (SHG/TPEF) microscopy with artificial intelligence analyses provides standardized evaluation of NASH features, especially liver fibrosis and collagen fiber quantitation on a continuous scale. This approach was applied to gain in-depth understanding of fibrosis dynamics after treatment with tropifexor (TXR), a non-bile acid farnesoid X receptor agonist in patients participating in the FLIGHT-FXR study (NCT02855164). METHOD Unstained sections from 198 liver biopsies (paired: baseline and end-of-treatment) from 99 patients with NASH (fibrosis stage F2 or F3) who received placebo (n = 34), TXR 140 μg (n = 37), or TXR 200 μg (n = 28) for 48 weeks were examined. Liver fibrosis (qFibrosis®), hepatic fat (qSteatosis®), and ballooned hepatocytes (qBallooning®) were quantitated using SHG/TPEF microscopy. Changes in septa morphology, collagen fiber parameters, and zonal distribution within liver lobules were also quantitatively assessed. RESULTS Digital analyses revealed treatment-associated reductions in overall liver fibrosis (qFibrosis®), unlike conventional microscopy, as well as marked regression in perisinusoidal fibrosis in patients who had either F2 or F3 fibrosis at baseline. Concomitant zonal quantitation of fibrosis and steatosis revealed that patients with greater qSteatosis reduction also have the greatest reduction in perisinusoidal fibrosis. Regressive changes in septa morphology and reduction in septa parameters were observed almost exclusively in F3 patients, who were adjudged as 'unchanged' with conventional scoring. CONCLUSION Fibrosis regression following hepatic fat reduction occurs initially in the perisinusoidal regions, around areas of steatosis reduction. Digital pathology provides new insights into treatment-induced fibrosis regression in NASH, which are not captured by current staging systems. LAY SUMMARY The degree of liver fibrosis (tissue scarring) in non-alcoholic steatohepatitis (NASH) is the main predictor of negative clinical outcomes. Accurate assessment of the quantity and architecture of liver fibrosis is fundamental for patient enrolment in NASH clinical trials and for determining treatment efficacy. Using digital microscopy with artificial intelligence analyses, the present study demonstrates that this novel approach has greater sensitivity in demonstrating treatment-induced reversal of fibrosis in the liver than current systems. Furthermore, additional details are obtained regarding the pathogenesis of NASH disease and the effects of therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Arun J Sanyal
- Virginia Commonwealth University School of Medicine, Richmond, United States
| |
Collapse
|
40
|
Kong Y, Lv T, Li M, Zhao L, Meng T, Wu S, Wei W, Zhang Q, Chen S, You H, Lens S, Yoshiji H, Francque S, Tsochatzis E, Sarin SK, Mandorfer M, Jia J. Systematic review and meta-analysis: impact of anti-viral therapy on portal hypertensive complications in HBV patients with advanced chronic liver disease. Hepatol Int 2022; 16:1052-1063. [PMID: 36083440 DOI: 10.1007/s12072-022-10369-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/20/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND The efficacy of nucleos(t)ide analogs (NAs) in non-cirrhotic chronic hepatitis B (CHB) patients is well-established. However, their impact on complications of portal hypertension in advanced chronic liver disease (ACLD) is less well characterized. METHODS MEDLINE/PubMed, EMBASE, Web of Science, Cochrane Central Register of Controlled Trials, and abstracts of major international hepatology meetings were searched for publications from Jan 1, 1995 to Nov 30, 2021. Randomized control trials and observational studies reporting the efficacy of NAs in ACLD patients were eligible. Pooled risk ratios (RRs) for outcomes of interest were calculated with a random-effect or fixed-effect model, as appropriate. RESULTS Thirty-nine studies including 14,212 ACLD patients were included. NA treatment was associated with reduced risks of overall hepatic decompensation events (RR, 0.51; 95% confidence interval [CI]: 0.37-0.71), such as variceal bleeding (RR, 0.44; 95% CI: 0.26-0.74) and ascites (RR, 0.10; 95% CI: 0.01-1.59), on a trend-wise level. Moreover, the risks of hepatocellular carcinoma (HCC) (RR, 0.48; 95% CI: 0.30-0.75) and liver transplantation/death (RR, 0.36; 95% CI: 0.25-0.53) were also reduced by NA treatment and the first-line NAs were superior to non-first-line NAs in improving these outcomes (RR, 0.85; 95% CI: 0.75-0.97 and RR, 0.85; 95% CI: 0.73-0.99, respectively). CONCLUSION NA therapy lowers the risk of portal hypertension-related complications, including variceal bleeding, HCC, and liver transplantation/death.
Collapse
Affiliation(s)
- Yuanyuan Kong
- Clinical Epidemiology and EBM Unit, Beijing Friendship Hospital, Capital Medical University, Beijing Clinical Research Institute, Beijing, China
| | - Tingting Lv
- Liver Research Center, Beijing Friendship Hospital, National Clinical Research Center of Digestive Diseases, Capital Medical University, Beijing, China
| | - Min Li
- Clinical Epidemiology and EBM Unit, Beijing Friendship Hospital, Capital Medical University, Beijing Clinical Research Institute, Beijing, China
| | - Lianghui Zhao
- Liver Research Center, Beijing Friendship Hospital, National Clinical Research Center of Digestive Diseases, Capital Medical University, Beijing, China
| | - Tongtong Meng
- Liver Research Center, Beijing Friendship Hospital, National Clinical Research Center of Digestive Diseases, Capital Medical University, Beijing, China
| | - Shanshan Wu
- Clinical Epidemiology and EBM Unit, Beijing Friendship Hospital, Capital Medical University, Beijing Clinical Research Institute, Beijing, China
| | - Wei Wei
- Clinical Epidemiology and EBM Unit, Beijing Friendship Hospital, Capital Medical University, Beijing Clinical Research Institute, Beijing, China
| | - Qian Zhang
- Clinical Epidemiology and EBM Unit, Beijing Friendship Hospital, Capital Medical University, Beijing Clinical Research Institute, Beijing, China
| | - Sha Chen
- Liver Research Center, Beijing Friendship Hospital, National Clinical Research Center of Digestive Diseases, Capital Medical University, Beijing, China
| | - Hong You
- Liver Research Center, Beijing Friendship Hospital, National Clinical Research Center of Digestive Diseases, Capital Medical University, Beijing, China
| | - Sabela Lens
- Liver Unit, Hospital Clínic, IDIBAPS, Universidad de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Hitoshi Yoshiji
- Department of Gastroenterology, Endocrinology and Metabolism, Nara Medical University, Kashihara, Japan
| | - Sven Francque
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Antwerp, Belgium
- Translational Science in Inflammation and Immunology, Faculty of Medicine and Health Sciences, University of Antwerp, European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Antwerp, Belgium
| | - Emmanouil Tsochatzis
- Sheila Sherlock Liver Unit and UCL Institute for Liver and Digestive Health, Royal Free Hospital and University College London, London, UK
| | - Shiv K Sarin
- Department of Hepatology, Institute of Liver and Biliary Sciences, Vasant Kunj, New Delhi, India.
| | - Mattias Mandorfer
- Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria.
| | - Jidong Jia
- Liver Research Center, Beijing Friendship Hospital, National Clinical Research Center of Digestive Diseases, Capital Medical University, Beijing, China.
| |
Collapse
|
41
|
Peng W, Shen J, Dai J, Leng S, Xie F, Zhang Y, Ran S, Sun X, Wen T. Preoperative aspartate aminotransferase to albumin ratio correlates with tumor characteristics and predicts outcome of hepatocellular carcinoma patients after curative hepatectomy: a multicenter study. BMC Surg 2022; 22:307. [PMID: 35945520 PMCID: PMC9364544 DOI: 10.1186/s12893-022-01751-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/26/2022] [Indexed: 01/27/2023] Open
Abstract
AIMS This study aimed to evaluate the clinical significance of the preoperative aminotransferase to albumin ratio (AAR) in patients with hepatocellular carcinoma (HCC) after hepatectomy. METHODS From five hospitals, a total of 991 patients with HCC admitted between December 2014 and December 2019 were included as the primary cohort and 883 patients with HCC admitted between December 2010 and December 2014 were included as the validation cohort. The X-tile software was conducted to identify the optimal cut-off value of AAR. RESULTS In the primary cohort, the optimal cut-off value of the AAR was defined as 0.7 and 1.6, respectively. Compared to patients with AAR 0.7-1.6, those with AAR > 1.6 showed significantly worse overall survival (OS) and RFS, whereas those with AAR < 0.7 showed significantly better OS and RFS (all p < 0.001). Pathologically, patients with AAR > 1.6 had more aggressive tumour characteristics, such as larger tumour size, higher incidence of microvascular invasion, and severe histologic activity, and higher AFP level than patients with AAR < 0.7. Consistently, the abovementioned clinical significance of AAR was confirmed in the validation cohort. CONCLUSIONS A high AAR was significantly correlated with advanced tumours and severe hepatic inflammation, and a worse prognosis of HCC.
Collapse
Affiliation(s)
- Wei Peng
- Department of Liver Surgery & Liver Transplantation Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
- Chinese Evidence-Based Medicine Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Junyi Shen
- Department of Liver Surgery & Liver Transplantation Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Junlong Dai
- Department of Liver Surgery & Liver Transplantation Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Shusheng Leng
- Department of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Chengdu University, Chengdu, 610072, Sichuan Province, China
| | - Fei Xie
- Department of Hepatobiliary and Pancreatic Surgery, the First People's Hospital of Neijiang City, Neijiang, 641000, Sichuan Province, China
| | - Yu Zhang
- Department of Hepatobiliary Surgery, Sichuan Provincial People's Hospital, Chinese Academy of Sciences, Chengdu, 610072, Sichuan Province, China
| | - Shun Ran
- Department of Hepatobiliary Surgery, Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, 550000, Guizhou Province, China
| | - Xin Sun
- Chinese Evidence-Based Medicine Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Tianfu Wen
- Department of Liver Surgery & Liver Transplantation Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China.
- Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China.
| |
Collapse
|
42
|
De A, Keisham A, Duseja A. Letter to the editor: Spontaneous regression of cirrhosis: A paradigm shift in our understanding of the natural history of NASH. Hepatology 2022; 76:E1-E2. [PMID: 35102586 DOI: 10.1002/hep.32374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/08/2022]
Affiliation(s)
- Arka De
- Department of Hepatology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Amarjit Keisham
- Department of Hepatology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ajay Duseja
- Department of Hepatology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
43
|
Elsharkawy A, Samir R, El-Kassas M. Fibrosis regression following hepatitis C antiviral therapy. World J Hepatol 2022; 14:1120-1130. [PMID: 35978676 PMCID: PMC9258254 DOI: 10.4254/wjh.v14.i6.1120] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/16/2022] [Accepted: 05/12/2022] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) infection is one of the most common causes of liver pathology. It is a major etiological factor of continuous liver injury by triggering an uncontrolled inflammatory response, causing liver fibrosis and cirrhosis. Liver fibrosis is a dynamic process that can be reversible upon timely cessation of the injurious agent, which in cases of HCV is represented by the sustained virological response (SVR) following antiviral therapies. Direct-acting antiviral therapy has recently revolutionized HCV therapy and minimized complications. Liver fibrosis can be assessed with variable invasive and non-invasive methods, with certain limitations. Despite the broad validation of the diagnostic and prognostic value of non-invasive modalities of assessment of liver fibrosis in patients with HCV, the proper interpretation of liver stiffness measurement in patients after SVR remains unclear. It is also still a debate whether this regression is caused by the resolution of liver injury following treatment of HCV, rather than true fibrosis regression. Regression of liver fibrosis can possess a positive impact on patient's quality of life reducing the incidence of complications. However, fibrosis regression does not abolish the risk of developing hepatocellular carcinoma, which mandates regular screening of patients with advanced fibrosis.
Collapse
Affiliation(s)
- Aisha Elsharkawy
- Department of Endemic Medicine and Hepatogastroenterology, Faculty of Medicine, Cairo University, Cairo 11566, Egypt
| | - Reham Samir
- Department of Endemic Medicine and Hepatogastroenterology, Faculty of Medicine, Cairo University, Cairo 11566, Egypt
| | - Mohamed El-Kassas
- Department of Endemic Medicine, Faculty of Medicine, Helwan University, Cairo 11795, Egypt.
| |
Collapse
|
44
|
Wang CY, Deng Y, Li P, Zheng S, Chen G, Zhou G, Xu J, Chen YP, Wang Z, Jin X, Tang JM, Hu KP, Bi JF, Zhang P, Li CX, Huang A, Lv GJ, Xiao XH, Zou Z, Ji D. Prediction of biochemical nonresolution in patients with chronic drug-induced liver injury: A large multicenter study. Hepatology 2022; 75:1373-1385. [PMID: 34919746 DOI: 10.1002/hep.32283] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 11/23/2021] [Accepted: 12/12/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS To clarify high-risk factors and develop a nomogram model to predict biochemical resolution or biochemical nonresolution (BNR) in patients with chronic DILI. APPROACH AND RESULTS Retrospectively, 3655 of 5326 patients with chronic DILI were enrolled from nine participating hospitals, of whom 2866 underwent liver biopsy. All of these patients were followed up for over 1 year and their clinical characteristics were retrieved from electronic medical records. The endpoint was BNR, defined as alanine aminotransferase or aspartate aminotransferase >1.5× upper limit of normal or alkaline phosphatase >1.1× ULN, at 12 months from chronic DILI diagnosis. The noninvasive high-risk factors for BNR identified by multivariable logistic regression were used to establish a nomogram, which was validated in an independent external cohort. Finally, 19.3% (707 of 3655) patients presented with BNR. Histologically, with the increase in liver inflammation grades and fibrosis stages, the proportion of BNR significantly increased. The risk of BNR was increased by 21.3-fold in patients with significant inflammation compared to none or mild inflammation (p < 0.001). Biochemically, aspartate aminotransferase and total bilirubin, platelets, prothrombin time, sex, and age were associated with BNR and incorporated to construct a nomogram model (BNR-6) with a concordance index of 0.824 (95% CI, 0.798-0.849), which was highly consistent with liver histology. These results were successfully validated both in the internal cohort and external cohort. CONCLUSIONS Significant liver inflammation is a robust predictor associated with biochemical nonresolution. The established BNR-6 model provides an easy-to-use approach to assess the outcome of chronic DILI.
Collapse
Affiliation(s)
- Chun-Yan Wang
- Senior Department of HepatologyFifth Medical Center of Chinese PLA General HospitalBeijingChina
| | - Ya Deng
- The Second School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
| | - Ping Li
- Department of HepatologyTianjin Second People's HospitalTianjinChina
| | - Sujun Zheng
- First Department of Liver DiseaseBeijing YouAn HospitalCapital Medical UniversityBeijingChina
| | - Guofeng Chen
- Senior Department of HepatologyFifth Medical Center of Chinese PLA General HospitalBeijingChina
| | - Guangde Zhou
- Department of PathologyThird People's Hospital of ShenzhenShenzhenGuangdongChina
| | - Jing Xu
- Department of Liver DiseaseThe Second People's Hospital of Fuyang CityFuyangAnhuiChina
| | - Yan-Ping Chen
- Department of Infectious DiseasesYan'an Second People's HospitalYan'anShanxiChina
- Department of Infectious DiseasesYan'an University Affiliated HospitalYan'anShanxiChina
| | - Zheng Wang
- First Department of Liver DiseaseBeijing YouAn HospitalCapital Medical UniversityBeijingChina
| | - Xueyuan Jin
- Quality Control DepartmentFifth Medical Center of ChinesePLA General HospitalBeijingChina
| | - Jin-Mo Tang
- Department of Infectious DiseasesXiamen Hospital of Traditional Chinese MedicineXiamenFujianChina
| | - Kun-Peng Hu
- Department of General SurgeryThe Third Affiliated Hospital of Sun Yat-sen UniversityGuangzhouChina
| | - Jing-Feng Bi
- Epidemiology Research OfficeFifth Medical Center of ChinesePLA General HospitalBeijingChina
| | - Ping Zhang
- Third Department of Liver DiseasesLiaoyang Infection HospitalLiaoyangLiaoningChina
| | - Chun-Xia Li
- Department of Infectious DiseasesYan'an Second People's HospitalYan'anShanxiChina
| | - Ang Huang
- Senior Department of HepatologyFifth Medical Center of Chinese PLA General HospitalBeijingChina
| | - Gui-Ji Lv
- Peking University 302 Clinical Medical SchoolBeijingChina
| | - Xiao-He Xiao
- Senior Department of HepatologyFifth Medical Center of Chinese PLA General HospitalBeijingChina
| | - Zhengsheng Zou
- Senior Department of HepatologyFifth Medical Center of Chinese PLA General HospitalBeijingChina
- Peking University 302 Clinical Medical SchoolBeijingChina
| | - Dong Ji
- Senior Department of HepatologyFifth Medical Center of Chinese PLA General HospitalBeijingChina
- The Second School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
- Peking University 302 Clinical Medical SchoolBeijingChina
| |
Collapse
|
45
|
Orr CE, Wang PL, Chen L, Wang T. Features of fibrosis regression abound in “non-cirrhotic” patients with resected hepatocellular carcinoma. PLoS One 2022; 17:e0267474. [PMID: 35552548 PMCID: PMC9098014 DOI: 10.1371/journal.pone.0267474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 04/08/2022] [Indexed: 11/18/2022] Open
Abstract
Cirrhosis is a major risk factor for developing hepatocellular carcinoma (HCC). However, many surgically resected HCCs are presumably non-cirrhotic. The dynamic nature of chronic liver disease leads to periods of hepatic repair and fibrosis regression. We hypothesize that most resected HCCs, including those from non-cirrhotic patients, exhibit features of fibrosis regression in their background liver, suggesting previously more advanced liver disease. We reviewed the histology of 37 HCC resections performed between 2005–2020, including 30 from non-cirrhotic patients. The non-neoplastic liver was evaluated for features of liver disease and of the hepatic repair complex (HRC). CD34 immunohistochemistry was performed as a marker of sinusoidal capillarization. CD34 staining was evaluated manually and also by a digital image classifier algorithm. Overall, 28 cases (76%) had a high number of fibrosis regression and hepatic repair features (≥4 out of 8 features). Amongst the 30 non-cirrhotic patients, 21 (70%) showed a high number of repair features. Relative CD34 expression was increased in cases with a high number (≥4) of HRC features versus a low number (≤3) of features (p = 0.019). High HRC cases were more likely to exhibit nodular circumferential CD34 staining (p = 0.019). Our findings suggest that most resected HCC from non-cirrhotic patients display features of fibrosis regression in their background liver. Thus many, if not most, HCC patients who are “non-cirrhotic” may in fact have regressed cirrhosis. This finding reinforces that patients with regressed cirrhosis continue to be at high risk for HCC.
Collapse
Affiliation(s)
- Christine E. Orr
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, Ontario, Canada
| | - Peter L. Wang
- Department of Medicine, Division of Gastroenterology, Queen’s University, Kingston, Ontario, Canada
| | - Lina Chen
- Department of Laboratory Medicine and Molecular Diagnostics, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Tao Wang
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, Ontario, Canada
- * E-mail:
| |
Collapse
|
46
|
Tong XF, Wang QY, Zhao XY, Sun YM, Wu XN, Yang LL, Lu ZZ, Ou XJ, Jia JD, You H. Histological assessment based on liver biopsy: the value and challenges in NASH drug development. Acta Pharmacol Sin 2022; 43:1200-1209. [PMID: 35165400 PMCID: PMC9061806 DOI: 10.1038/s41401-022-00874-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 01/18/2022] [Indexed: 02/06/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) is increasingly recognized as a serious disease that can lead to cirrhosis, hepatocellular carcinoma (HCC), and death. However, there is no effective drug to thwart the progression of the disease. Development of new drugs for NASH is an urgent clinical need. Liver biopsy plays a key role in the development of new NASH drugs. Histological findings based on liver biopsy are currently used as the main inclusion criteria and the primary therapeutic endpoint in NASH clinical trials. However, there are inherent challenges in the use of liver biopsy in clinical trials, such as evaluation reliability, sampling error, and invasive nature of the procedure. In this article, we review the advantages and value of liver histopathology based on liver biopsy in clinical trials of new NASH drugs. We also discuss the challenges and limitations of liver biopsy and identify future drug development directions.
Collapse
Affiliation(s)
- Xiao-Fei Tong
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, 100050, China
| | - Qian-Yi Wang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, 100050, China
| | - Xin-Yan Zhao
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, 100050, China
| | - Ya-Meng Sun
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, 100050, China
| | - Xiao-Ning Wu
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, 100050, China
| | - Li-Ling Yang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, 100050, China
| | - Zheng-Zhao Lu
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, 100050, China
| | - Xiao-Juan Ou
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, 100050, China
| | - Ji-Dong Jia
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, 100050, China
| | - Hong You
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, 100050, China.
| |
Collapse
|
47
|
Advances in the diagnosis and treatment of viral hepatitis B and C in China. Chin Med J (Engl) 2022; 135:379-380. [PMID: 35194003 PMCID: PMC8869553 DOI: 10.1097/cm9.0000000000001886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
48
|
Yang R, Gui X, Ke H, Xiong Y, Gao S. Combination antiretroviral therapy is associated with reduction in liver fibrosis scores in patients with HIV and HBV co-infection. AIDS Res Ther 2021; 18:98. [PMID: 34924016 PMCID: PMC8684625 DOI: 10.1186/s12981-021-00419-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/23/2021] [Indexed: 11/12/2022] Open
Abstract
Background Liver fibrosis is common in individuals with HIV/HBV co-infection, but whether cART could reverses liver fibrosis is unclear. Methods This was a retrospective observational study. Binary logistic regression was used to assess predictors of liver fibrosis in individuals with HIV/HBV co-infection. Comparison of FIB-4 scores before and after cART were compared using X2 test and t test. Results Four hundred and fifty-eight individuals with HIV/HBV co-infection were included in this study. It was found that cART (HR 0.016, 95% CI: 0.009–0.136; P < 0.001) was one of protection factors to against liver fibrosis. Forty individuals who had normal levels of ALT, AST and PLT during the whole course of diseases were stratified into FIB-4 < 1.45 (n = 14), 1.45 ≤ FIB-4 ≤ 3.25 (n = 19) and FIB-4 > 3.25 (n = 7) groups by their FIB-4 scores before cART. In 1.45 ≤ FIB-4 ≤ 3.25 group, 57.9%(11/19) of the individuals dropped to FIB-4 < 1.45 group by cART; in FIB-4 > 3.25 group, 85.7%(6/79) dropped to 1.45 ≤ FIB-4 ≤ 3.25 group, while 14.3%(1/7) dropped to FIB-4 < 1.45 group. In cART-naive group, 1 year, 2–5 years and 5–10 years post-cART groups, FIB-4 scores were 4.29 ± 0.43, 3.63 ± 0.38, 2.90 ± 0.36 and 2.52 ± 0.38, respectively (P = 0.034); and the incidence of liver fibrosis were 7.38%(104/141), 63.6%(98/154), 60.8%(62/102) and 47.5%(29/61), respectively (P = 0.004). Conclusion cART was associated with decreased FIB-4 scores and the benefit of cART in reversing liver fibrosis can sustain for a decade in patients with HIV/HBV co-infection. Supplementary Information The online version contains supplementary material available at 10.1186/s12981-021-00419-y.
Collapse
|
49
|
Ehsan N, Sweed D, Elsabaawy M. Evaluation of HCV-related liver fibrosis post-successful DAA therapy. EGYPTIAN LIVER JOURNAL 2021; 11:56. [DOI: 10.1186/s43066-021-00129-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/11/2021] [Indexed: 12/11/2022] Open
Abstract
Abstract
Background
The rapidly developing era of direct-acting antiviral regimens (DAAs) for more than one hepatitis C virus (HCV) genotype had certainly alleviated HCV burden all over the world. Liver fibrosis is the major dramatic complication of HCV infection, and its progression leads to cirrhosis, liver failure, and hepatocellular carcinoma. The impact of DAAs on liver fibrosis had been debatably evaluated with undetermined resolution.
Main body
The aim of this review is to accurately revise the effects of DAA regimens on liver fibrosis which can either be regression, progression, or non-significant association. Liver fibrosis regression is a genuine fact assured by many retrospective and prospective clinical studies. Evaluation could be concluded early post-therapy reflecting the dynamic nature of the process.
Conclusions
The ideal application of DAA regimens in treating HCV has to be accomplished with efficient non-invasive markers in differentiating proper fibrosis evaluation from necroinflammation consequences. Liver biopsy is the gold standard that visualizes the dynamic of fibrosis regression.
Collapse
|
50
|
A comparative study of cirrhosis sub-staging using the Laennec system, Beijing classification, and morphometry. Mod Pathol 2021; 34:2175-2182. [PMID: 34381188 DOI: 10.1038/s41379-021-00881-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 02/04/2023]
Abstract
There is constant remodeling in a cirrhotic liver resulting in cirrhosis being spatially heterogeneous. The Laennec system, and, more recently the Beijing classification, have been used to sub-classify various degrees of cirrhosis. It is unknown how these two schemes compare with each other, how they are impacted by geographic variation, and how they correlate with clinical outcomes. Five needle biopsies were obtained from 20 explanted cirrhotic HCV livers at the time of transplantation. Collagen proportionate area (CPA) was measured by computerized quantitative morphometry. The Laennec system (4A-4C indicating increasing degrees of cirrhosis) and Beijing classification (P-progressive, R-regressive, I-indeterminate) were assessed and then correlated with CPA. Geographical variation using CPAs was calculated by the coefficient of variation (CoV). CPA of Laennec 4C cirrhosis was higher than 4A (p = 0.00008) or 4B (p = 0.0002). The CPA of the P pattern was greater than the R (p = 0.002) or I patterns (p = 0.037). The mean CoV of the five CPAs was 47.3 ± 4.5%, suggesting a significant degree of geographic variation. There was 100% overlap between the Beijing R pattern and Laennec 4A, and 80% overlap between the P pattern and Laennec 4C. Patients' platelet counts of P pattern were lower than R pattern (p = 0.008) or I pattern (p = 0.024), while Laennec 4C was lower than 4A (p = 0.036) and 4B patients (p = 0.7). There was no correlation between CPA, Laennec stage, or Beijing classification and MELD score, liver weights, total bilirubin, or albumin levels. The Laennec system and the Beijing classification are highly correlated with CPA in cirrhosis. This study confirms that there is a significant degree of geographic variation in terms of fibrosis content and cirrhosis morphology throughout the liver.
Collapse
|