1
|
Saleh RO, Hamad HA, Najim MA, Menon SV, Kaur M, Sivaprasad GV, Abohassan M, Juan WT, Husseen B, Mustafa YF. Exosome-mediated Transfer of lncRNA in Liver Associated Diseases; Uncovered Truths. Cell Biochem Biophys 2025; 83:1465-1481. [PMID: 39567423 DOI: 10.1007/s12013-024-01617-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2024] [Indexed: 11/22/2024]
Abstract
Exosomes are extracellular vesicles with a diameter ranging from 40 to 160 nm. They are produced by hepatocytes, cholangiocytes, hepatic stellate cells (HSCs), liver sinusoidal endothelial cells (LSECs) and Kupffer cells in liver tissue. The secretion of exosomes might vary in quantity and composition in reaction to multiple triggers and various stages of disease. They transport various payloads, such as proteins, DNAs, and RNAs, and enable cell interaction to regulate myriad physiological and pathological processes in liver tissue. Long non-coding RNAs (lncRNAs) are a crucial component of exosomes with an excellent capability to regulate multiple cellular activities such as differentiation, development, metabolism, proliferation, apoptosis, and activation. With the advancements in transcriptomic and genomic study methods and database management technology, the functions and mechanisms of exosomal lncRNAs in liver diseases have been well-studied. This article delves into the detailed role of exosomal lncRNAs in liver disease onset and progression, ranging from hepatocellular carcinoma (HCC) to liver fibrosis drug-induced liver damage (DILI) and steatotic liver diseases.
Collapse
Affiliation(s)
- Raed Obaid Saleh
- Medical Laboratory Techniques Department, College of Health and Medical Technology, University of Al Maarif, Anbar, Iraq.
| | - Hamad Ali Hamad
- Department of Pathological Analysis, Collage of Applied Sciences, University of Fallujah, Fallujah, Iraq
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University Putra Malaysia, Serdang, Malaysia
| | | | - Soumya V Menon
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Mandeep Kaur
- Department of Sciences, Vivekananda Global University, Jaipur, Rajasthan, India
| | - G V Sivaprasad
- Department of Basic Science & Humanities, Raghu Engineering College, Visakhapatnam, India
| | - Mohammad Abohassan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Wen-Tau Juan
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Beneen Husseen
- Medical Laboratory Technique college, The Islamic University, Najaf, Iraq
- Medical Laboratory Technique college, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique college, The Islamic University of Babylon, Babylon, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| |
Collapse
|
2
|
Mollaheydaralimoazzen M, Sheikholeslam M, Poursamar SA, Farzan M, Farzan M, Rafienia M. 3D-printing of shear-thinning and self-healing gelatin/starch/halloysite-nanotube hydrogels for soft tissue engineering: An in vitro and in vivo assessment. Int J Biol Macromol 2025; 315:144502. [PMID: 40409625 DOI: 10.1016/j.ijbiomac.2025.144502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 05/03/2025] [Accepted: 05/20/2025] [Indexed: 05/25/2025]
Abstract
Shear-thinning and self-healing hydrogels are essential for various biomedical applications, specially 3D-printing. This study developed a novel shear-thinning and self-healing hydrogel based on gelatin, starch, and Halloysite-nanotubes (G-S-H) for 3D-printing soft tissues. Different G-S-H ratios and cross-linking reagents (i.e. EDC-NHS and glutaraldehyde) were employed to enhance mechanical properties and degradation rates. Characterization encompassed compression and rheological tests, degradation rates, zeta potential and Dynamic light scattering measurement, morphological analysis, and cytotoxicity assessment. The hydrogels demonstrated suitable stiffness resembling soft tissues and exhibited non-Newtonian behavior with distinct shear-thinning and self-healing properties. In vivo assessments of implanted scaffolds in rats revealed rapid degradation of the non-cross-linked scaffold subcutaneously, while the EDC-NHS scaffold showed prolonged degradation over 60 days, supporting tissue ingrowth into inter-filament spaces and filament pores. Histological analysis indicated initial acute inflammatory responses followed by transition to mild immune responses by day 60. The EDC-NHS-cross-linked scaffold supported higher vascularization and collagen deposition compared to the glutaraldehyde-cross-linked scaffold. Overall, the G-S-H hydrogels showed promise for 3D-printing applications in soft tissue engineering, offering optimal mechanical properties, degradation rate and biocompatibility for long-term tissue support. This study underscores the importance of scaffold composition in governing degradation rates, tissue integration, and biocompatibility in tissue engineering applications.
Collapse
Affiliation(s)
- Mohammadsadegh Mollaheydaralimoazzen
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Student Research Committee, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammadali Sheikholeslam
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - S Ali Poursamar
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Biosensor Research Center, Isfahan University of Medical Sciences, 81744-176 Isfahan, Iran
| | - Mahour Farzan
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mahan Farzan
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad Rafienia
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Biosensor Research Center, Isfahan University of Medical Sciences, 81744-176 Isfahan, Iran.
| |
Collapse
|
3
|
Yang Z, Jiang Y, Ma J, Wang L, Han S, Huda N, Kusumanchi P, Gao H, Thoudam T, Sun Z, Liangpunsakul S. LncRNA H19 promoted alcohol-associated liver disease through dysregulation of alternative splicing and methionine metabolism. Hepatology 2025; 81:1485-1500. [PMID: 39364651 DOI: 10.1097/hep.0000000000001078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/30/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND AND AIMS Long noncoding RNAs constitute a significant portion of the human genome. Among these, lncRNA H19, initially identified for its high expression during fetal development followed by a decline in the liver postnatally, re-emerges in various liver diseases. However, its specific role in alcohol-associated liver disease (ALD) remains unclear. APPROACH AND RESULTS Elevated H19 levels were detected in peripheral blood and livers of patients with alcohol-associated cirrhosis and hepatitis, as well as in livers of ethanol-fed mice. Hepatic overexpression of H19 exacerbated ethanol-induced liver steatosis and injury. Metabolomics analysis revealed decreased methionine levels in H19-overexpressed mouse livers, attributable to H19-mediated inhibition of betaine homocysteine methyltransferase (BHMT), a crucial enzyme in methionine synthesis. H19 regulated BHMT alternative splicing through polypyrimidine tract-binding protein 1 (PTBP1), resulting in a reduced Bhmt protein-coding variant. The maternally specific knockout of H19 ( H19Mat+/- ) or liver-specific knockout of the H19 differentially methylated domain ( H19DMDHep-/- ) in ethanol-fed mice upregulated BHMT expression and ameliorated hepatic steatosis. Furthermore, BHMT restoration counteracted H19-induced ethanol-mediated hepatic steatosis. CONCLUSIONS This study identifies a novel mechanism whereby H19, via PTBP1-mediated BHMT regulation, influences methionine metabolism in ALD. Targeting the H19-PTBP1-BHMT pathway may offer new therapeutic avenues for ALD.
Collapse
Affiliation(s)
- Zhihong Yang
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Yanchao Jiang
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jing Ma
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Li Wang
- Independent Researcher, Tucson, Arizona, USA
| | - Sen Han
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Nazmul Huda
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Praveen Kusumanchi
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Hui Gao
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Themis Thoudam
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Zhaoli Sun
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Suthat Liangpunsakul
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Roudebush Veterans Administration Medical Center, Indianapolis, Indiana, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
4
|
Xiong KG, Kong JF, Lin TS, Lin QB, Chen LF, Ke KY. Expression and clinical significance of serum lncRNA H19 in patients with metabolic dysfunction-associated fatty liver disease. Medicine (Baltimore) 2025; 104:e41838. [PMID: 40101079 PMCID: PMC11922472 DOI: 10.1097/md.0000000000041838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 02/23/2025] [Indexed: 03/20/2025] Open
Abstract
Long non-coding RNA H19 (lncRNA H19) plays an important role in lipid metabolism, however, its relationship with metabolic dysfunction-associated fatty liver disease (MAFLD) remains unclear. The aim of this study is to investigate the expression and clinical significance of serum lncRNA H19 in patients with MAFLD. This study enrolled patients with MAFLD and a control group of healthy subjects from January 2023 to March 2024. The serum levels of lncRNA H19 were quantified using real-time quantitative polymerase chain reaction. The serum levels of lncRNA H19 in patients with MAFLD were significantly higher compared to the control group (P < .05). Moreover, there was a positive correlation between serum lncRNA H19 and body mass index, triglyceride, total cholesterol (TC), low-density lipoprotein cholesterol, fasting blood glucose and uric acid (all P < .05). Conversely, a negative correlation was observed between serum lncRNA H19 and high-density lipoprotein cholesterol (HDL-C; P = .009). Additionally, significant positive associations were found between serum lncRNA H19 and alanine aminotransferase, aspartate aminotransferase, gamma-glutamyl transpeptidase and liver stiffness measurement(all P < .05). The optimal cutoff value of serum lncRNA H19 for diagnosing MAFLD was 1.15, with an area under the curve of the receiver operating characteristic curve of 0.83, and the sensitivity and specificity were observed to be 87.7% and 72.5%, respectively. The lncRNA H19 exhibits associations with metabolic risk factors, liver function, and liver fibrosis, and can serve as a potential diagnostic biomarker for MAFLD.
Collapse
Affiliation(s)
- Ke-Gong Xiong
- Department of Hepatology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Jin-Feng Kong
- Department of Hepatology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Tai-Shun Lin
- Department of Hepatology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Qing-Biao Lin
- Department of Hepatology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Li-Fang Chen
- Department of Hepatology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Kun-Yu Ke
- Department of Hepatology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
5
|
Sun C, Zhou C, Daneshvar K, Ben Saad A, Kratkiewicz AJ, Toles BJ, Arghiani N, Hess A, Chen JY, Pondick JV, York SR, Li W, Moran SP, Gentile SD, Rahman RU, Li Z, Zhou P, Sparks RP, Habboub T, Kim BM, Choi MY, Affo S, Schwabe RF, Popov YV, Mullen AC. Conserved long noncoding RNA TILAM promotes liver fibrosis through interaction with PML in HSCs. Hepatology 2025; 81:853-869. [PMID: 38563629 PMCID: PMC11825499 DOI: 10.1097/hep.0000000000000822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 02/01/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND AND AIMS Fibrosis is the common end point for all forms of chronic liver injury, and the progression of fibrosis leads to the development of end-stage liver disease. Activation of HSCs and their transdifferentiation into myofibroblasts results in the accumulation of extracellular matrix proteins that form the fibrotic scar. Long noncoding RNAs regulate the activity of HSCs and provide targets for fibrotic therapies. APPROACH AND RESULTS We identified long noncoding RNA TILAM located near COL1A1 , expressed in HSCs, and induced with liver fibrosis in humans and mice. Loss-of-function studies in human HSCs and human liver organoids revealed that TILAM regulates the expression of COL1A1 and other extracellular matrix genes. To determine the role of TILAM in vivo, we annotated the mouse ortholog ( Tilam ), generated Tilam- deficient green fluorescent protein-reporter mice, and challenged these mice in 2 different models of liver fibrosis. Single-cell data and analysis of single-data and analysis of Tilam-deficient reporter mice revealed that Tilam is induced in murine HSCs with the development of fibrosis in vivo. Tilam -deficient reporter mice revealed that Tilam is induced in murine HSCs with the development of fibrosis in vivo. Furthermore, loss of Tilam expression attenuated the development of fibrosis in the setting of in vivo liver injury. Finally, we found that TILAM interacts with promyelocytic leukemia nuclear body scaffold protein to regulate a feedback loop by which TGF-β2 reinforces TILAM expression and nuclear localization of promyelocytic leukemia nuclear body scaffold protein to promote the fibrotic activity of HSCs. CONCLUSIONS TILAM is activated in HSCs with liver injury and interacts with promyelocytic leukemia nuclear body scaffold protein to drive the development of fibrosis. Depletion of TILAM may serve as a therapeutic approach to combat the development of end-stage liver disease.
Collapse
Affiliation(s)
- Cheng Sun
- Department of Medicine, Division of Gastroenterology, Chan Medical School, University of Massachusetts, Worcester, Massachusetts, USA
| | - Chan Zhou
- Department of Population and Quantitative Health Sciences, Chan Medical School, University of Massachusetts, Worcester, Massachusetts USA
| | - Kaveh Daneshvar
- Department of Medicine, Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Amel Ben Saad
- Department of Medicine, Division of Gastroenterology, Chan Medical School, University of Massachusetts, Worcester, Massachusetts, USA
| | - Arcadia J. Kratkiewicz
- Department of Medicine, Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Benjamin J. Toles
- Department of Medicine, Division of Gastroenterology, Chan Medical School, University of Massachusetts, Worcester, Massachusetts, USA
| | - Nahid Arghiani
- Department of Medicine, Division of Gastroenterology, Chan Medical School, University of Massachusetts, Worcester, Massachusetts, USA
| | - Anja Hess
- Department of Medicine, Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jennifer Y. Chen
- Department of Medicine, Liver Center, University of California, San Francisco, California, USA
| | - Joshua V. Pondick
- Department of Medicine, Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Samuel R. York
- Department of Medicine, Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Wenyang Li
- Department of Medicine, Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sean P. Moran
- Department of Medicine, Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Stefan D. Gentile
- Department of Medicine, Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute, Cambridge, Massachusetts, USA
| | - Raza Ur Rahman
- Department of Medicine, Division of Gastroenterology, Chan Medical School, University of Massachusetts, Worcester, Massachusetts, USA
- Broad Institute, Cambridge, Massachusetts, USA
| | - Zixiu Li
- Department of Population and Quantitative Health Sciences, Chan Medical School, University of Massachusetts, Worcester, Massachusetts USA
| | - Peng Zhou
- Department of Population and Quantitative Health Sciences, Chan Medical School, University of Massachusetts, Worcester, Massachusetts USA
| | - Robert P. Sparks
- Department of Medicine, Division of Gastroenterology, Chan Medical School, University of Massachusetts, Worcester, Massachusetts, USA
| | - Tim Habboub
- Department of Medicine, Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Byeong-Moo Kim
- Department of Medicine, Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael Y. Choi
- Department of Medicine, Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Silvia Affo
- Department of Liver, Digestive System, and Metabolism, Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Robert F. Schwabe
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Yury V. Popov
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Alan C. Mullen
- Department of Medicine, Division of Gastroenterology, Chan Medical School, University of Massachusetts, Worcester, Massachusetts, USA
- Broad Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
6
|
Wang Q, Yang Z, Chen X, Yang Y, Jiang K. Noncoding RNA, friend or foe for nephrolithiasis? Front Cell Dev Biol 2024; 12:1457319. [PMID: 39633711 PMCID: PMC11614778 DOI: 10.3389/fcell.2024.1457319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024] Open
Abstract
Nephrolithiasis is one of the most common diseases in urology, characterized by notable incidence and recurrence rates, leading to significant morbidity and financial burden. Despite its prevalence, the precise mechanisms underlying stone formation remain incompletely understood, thus hindering significant advancements in kidney stone management over the past three decades. Investigating the pivotal biological molecules that govern stone formation has consistently been a challenging and high-priority task. A significant portion of mammalian genomes are transcribed into noncoding RNAs (ncRNAs), which have the ability to modulate gene expression and disease progression. They are thus emerging as a novel target class for diagnostics and pharmaceutical exploration. In recent years, the role of ncRNAs in stone formation has attracted burgeoning attention. They have been found to influence stone formation by regulating ion transportation, oxidative stress injury, inflammation, osteoblastic transformation, autophagy, and pyroptosis. These findings contributes new perspectives on the pathogenesis of nephrolithiasis. To enhance our understanding of the diagnostic and therapeutic potential of nephrolithiasis-associated ncRNAs, we summarized the expression profiles, biological functions, and clinical significance of these ncRNAs in the current review.
Collapse
Affiliation(s)
- Qing Wang
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Zhenlu Yang
- Department of Radiology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Xiaolong Chen
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Yuanyuan Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kehua Jiang
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| |
Collapse
|
7
|
Li B, Hu J, Xu H. Integrated single-cell and bulk RNA sequencing reveals immune-related SPP1+ macrophages as a potential strategy for predicting the prognosis and treatment of liver fibrosis and hepatocellular carcinoma. Front Immunol 2024; 15:1455383. [PMID: 39635536 PMCID: PMC11615077 DOI: 10.3389/fimmu.2024.1455383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
Background Liver fibrosis is a pathological response to liver damage induced by multiple etiologies including NASH and CCl4, which may further lead to cirrhosis and hepatocellular carcinoma (HCC). Despite the increasing understanding of liver fibrosis and HCC, clinical prognosis and targeted therapy remain challenging. Methods This study integrated single-cell sequencing analysis, bulk sequencing analysis, and mouse models to identify highly expressed genes, cell subsets, and signaling pathways associated with liver fibrosis and HCC. Clinical prediction models and prognostic genes were established and verified through machine learning, survival analysis, as well as the utilization of clinical data and tissue samples from HCC patients. The expression heterogeneity of the core prognostic gene, along with its correlation with the tumor microenvironment and prognostic outcomes, was analyzed through single-cell analysis and immune infiltration analysis. In addition, the cAMP database and molecular docking techniques were employed to screen potential small molecule drugs for the treatment of liver fibrosis and HCC. Result We identified 40 pathogenic genes, 15 critical cell subsets (especially Macrophages), and regulatory signaling pathways related to cell adhesion and the actin cytoskeleton that promote the development of liver fibrosis and HCC. In addition, 7 specific prognostic genes (CCR7, COL3A1, FMNL2, HP, PFN1, SPP1 and TENM4) were identified and evaluated, and expression heterogeneity of core gene SPP1 and its positive correlation with immune infiltration and prognostic development were interpreted. Moreover, 6 potential small molecule drugs for the treatment of liver fibrosis and HCC were provided. Conclusion The comprehensive investigation, based on a bioinformatics and mouse model strategy, may identify pathogenic genes, cell subsets, regulatory mechanisms, prognostic genes, and potential small molecule drugs, thereby providing valuable insights into the clinical prognosis and targeted treatment of liver fibrosis and HCC.
Collapse
Affiliation(s)
- Bangjie Li
- Jiangsu Province Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation, China Pharmaceutical University, Nanjing, China
- State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, China
| | - Jialiang Hu
- Jiangsu Province Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation, China Pharmaceutical University, Nanjing, China
- State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, China
| | - Hanmei Xu
- Jiangsu Province Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation, China Pharmaceutical University, Nanjing, China
- State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
8
|
Zhang L, Wang R, Nan Y, Kong L. Deciphering the role of LncRNA in alcoholic liver disease: Mechanisms and therapeutic potential. Medicine (Baltimore) 2024; 103:e40378. [PMID: 39533619 PMCID: PMC11557020 DOI: 10.1097/md.0000000000040378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Alcoholic liver disease (ALD) is a spectrum of liver damage caused by chronic alcohol consumption. The disease progresses in stages, starting with simple fatty liver, progressing to alcoholic hepatitis and potentially leading to fibrosis and cirrhosis. The pathophysiology of ALD is complex and involves several cellular and molecular mechanisms. Recent research has highlighted the role of long non-coding RNAs (LncRNAs) as critical regulators in the development and progression of ALD. This article reviews the current understanding of LncRNAs in ALD, focusing on their functions in key pathological processes and their potential as diagnostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Traditional and Western Medical Hepatology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Rongqi Wang
- Department of Traditional and Western Medical Hepatology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yuemin Nan
- Department of Traditional and Western Medical Hepatology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lingbo Kong
- Department of Traditional and Western Medical Hepatology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
9
|
Wade H, Pan K, Zhang B, Zheng W, Su Q. Mechanistic role of long non-coding RNAs in the pathogenesis of metabolic dysfunction-associated steatotic liver disease and fibrosis. EGASTROENTEROLOGY 2024; 2:e100115. [PMID: 39872125 PMCID: PMC11729351 DOI: 10.1136/egastro-2024-100115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), previously referred to as non-alcoholic fatty liver disease, encompasses a broad range of hepatic metabolic disorders primarily characterised by the disruption of hepatic lipid metabolism, hepatic lipid accumulation and steatosis. Severe cases of MASLD might progress to metabolic dysfunction-associated steatohepatitis, characterised by hepatic inflammation, hepatocyte ballooning degeneration, activation of hepatic stellate cells (HSCs) and fibrogenesis. It may further progress to hepatocellular carcinoma. In the liver, long non-coding RNAs (lncRNAs) target multiple metabolic pathways in hepatocytes, HSCs, and Kupffer cells at different stages of MASLD and liver fibrosis. In this study, we overview recent findings on the potential role of lncRNAs in the pathogenesis of MASLD and liver fibrosis via modulation of de novo lipid synthesis, fatty acid β-oxidation, lipotoxicity, oxidative stress, metabolic inflammation, mammalian target of rapamycin signalling, apoptosis, ubiquitination and fibrogenesis. We critically assess the literature reports that investigate the complex interplay between lncRNA, microRNA and key mediators in liver injury, in both human participants and animal models of MASLD and liver fibrosis. We also highlight the therapeutic potential of lncRNAs in chronic liver diseases.
Collapse
Affiliation(s)
- Henry Wade
- School of Biological Sciences, Queen’s University Belfast, Belfast, UK
| | - Kaichao Pan
- Endocrinology Group, Advocate Illinois Masonic Medical Center, Chicago, Illinois, USA
| | - Bingrui Zhang
- School of Biological Sciences, Queen’s University Belfast, Belfast, UK
| | - Wenhua Zheng
- Faculty of Health Science, University of Macau, Macau, China
| | - Qiaozhu Su
- School of Biological Sciences, Queen’s University Belfast, Belfast, UK
| |
Collapse
|
10
|
Dong QQ, Yang Y, Tao H, Lu C, Yang JJ. m6A epitranscriptomic and epigenetic crosstalk in liver fibrosis: Special emphasis on DNA methylation and non-coding RNAs. Cell Signal 2024; 122:111302. [PMID: 39025344 DOI: 10.1016/j.cellsig.2024.111302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Liver fibrosis is a pathological process caused by a variety of chronic liver diseases. Currently, therapeutic options for liver fibrosis are very limited, highlighting the urgent need to explore new treatment approaches. Epigenetic modifications and epitranscriptomic modifications, as reversible regulatory mechanisms, are involved in the development of liver fibrosis. In recent years, researches in epitranscriptomics and epigenetics have opened new perspectives for understanding the pathogenesis of liver fibrosis. Exploring the epigenetic mechanisms of liver fibrosis may provide valuable insights into the development of new therapies for chronic liver diseases. This review primarily focus on the regulatory mechanisms of N6-methyladenosine (m6A) modification, non-coding RNA, and DNA methylation in organ fibrosis. It discusses the interactions between m6A modification and DNA methylation, as well as between m6A modification and non-coding RNA, providing a reference for understanding the interplay between epitranscriptomics and epigenetics.
Collapse
Affiliation(s)
- Qi-Qi Dong
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yang Yang
- Department of General Surgery, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou 215153, China
| | - Hui Tao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| | - Chao Lu
- First Affiliated Hospital, Anhui University of Science & Technology, Huainan 232001, China.
| | - Jing-Jing Yang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| |
Collapse
|
11
|
Zhang J, Fu L, Wang H, Yonemura A, Semba T, Yasuda-Yoshihara N, Nishimura A, Tajiri T, Tong Y, Yasuda T, Uchihara T, Yamazaki M, Okamoto Y, Yamasaki J, Nagano O, Baba H, Ishimoto T. RAC1-mediated integrin alpha-6 expression in E-cadherin-deficient gastric cancer cells promotes interactions with the stroma and peritoneal dissemination. Cancer Lett 2024; 591:216901. [PMID: 38641311 DOI: 10.1016/j.canlet.2024.216901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024]
Abstract
Diffuse-type gastric cancer (DGC) is a subtype of gastric cancer that is prone to peritoneal dissemination, with poor patient prognosis. Although intercellular adhesion loss between cancer cells is a major characteristic of DGCs, the mechanism underlying the alteration in cell-to-extracellular matrix (ECM) adhesion is unclear. We investigated how DGCs progress and cause peritoneal dissemination through interactions between DGC cells and the tumour microenvironment (TME). P53 knockout and KRASG12V-expressing (GAN-KP) cells and Cdh1-deleted GAN-KP (GAN-KPC) cells were orthotopically transplanted into the gastric wall to mimic peritoneal dissemination. The GAN-KPC tumour morphology was similar to that of human DGCs containing abundant stroma. RNA sequencing revealed that pathways related to Rho GTPases and integrin-ECM interactions were specifically increased in GAN-KPC cells compared with GAN-KP cells. Notably, we found that Rac Family Small GTPase 1 (RAC1) induces Integrin Subunit Alpha 6 (ITGA6) trafficking, leading to its enrichment on the GC cell membrane. Fibroblasts activate the FAK/AKT pathway in GC cells by mediating extracellular matrix (ECM)-Itga6 interactions, exacerbating the malignant phenotype. In turn, GC cells induce abnormal expression of fibroblast collagen and its transformation into cancer-associated fibroblasts (CAFs), resulting in DGC-like subtypes. These findings indicate that Cdh1 gene loss leads to abnormal expression and changes in the subcellular localization of ITGA6 through RAC1 signalling. The latter, through interactions with CAFs, allows for peritoneal dissemination.
Collapse
Affiliation(s)
- Jun Zhang
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan; Gastrointestinal Cancer Biology, International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan; Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Lingfeng Fu
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan; Gastrointestinal Cancer Biology, International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan; Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Huaitao Wang
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan; Gastrointestinal Cancer Biology, International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan; Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Atsuko Yonemura
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan; Gastrointestinal Cancer Biology, International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan; Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takashi Semba
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan; Gastrointestinal Cancer Biology, International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Noriko Yasuda-Yoshihara
- Gastrointestinal Cancer Biology, International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan; Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Akiho Nishimura
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan; Gastrointestinal Cancer Biology, International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Takuya Tajiri
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan; Gastrointestinal Cancer Biology, International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan; Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yilin Tong
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan; Gastrointestinal Cancer Biology, International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan; Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tadahito Yasuda
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan; Gastrointestinal Cancer Biology, International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan; Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tomoyuki Uchihara
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan; Gastrointestinal Cancer Biology, International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan; Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Masaya Yamazaki
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yuya Okamoto
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Juntaro Yamasaki
- Division of Gene Regulation, Cancer Center, Fujita Health University, Toyoake, Japan
| | - Osamu Nagano
- Division of Gene Regulation, Cancer Center, Fujita Health University, Toyoake, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan; Center for Metabolic Regulation of Healthy Ageing, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takatsugu Ishimoto
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan; Gastrointestinal Cancer Biology, International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan; Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
12
|
Kang Z, Wang C, Shao F, Deng H, Sun Y, Ren Z, Zhang W, Ding Z, Zhang J, Zang Y. The increase of long noncoding RNA Fendrr in hepatocytes contributes to liver fibrosis by promoting IL-6 production. J Biol Chem 2024; 300:107376. [PMID: 38762176 PMCID: PMC11190708 DOI: 10.1016/j.jbc.2024.107376] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/14/2024] [Accepted: 05/07/2024] [Indexed: 05/20/2024] Open
Abstract
Liver fibrosis/cirrhosis is a pathological state caused by excessive extracellular matrix deposition. Sustained activation of hepatic stellate cells (HSC) is the predominant cause of liver fibrosis, but the detailed mechanism is far from clear. In this study, we found that long noncoding RNA Fendrr is exclusively increased in hepatocytes in the murine model of CCl4- and bile duct ligation-induced liver fibrosis, as well as in the biopsies of liver cirrhosis patients. In vivo, ectopic expression of Fendrr aggravated the severity of CCl4-induced liver fibrosis in mice. In contrast, inhibiting Fendrr blockaded the activation of HSC and ameliorated CCl4-induced liver fibrosis. Our mechanistic study showed that Fendrr binds to STAT2 and enhances its enrichment in the nucleus, which then promote the expression of interleukin 6 (IL-6), and, ultimately, activates HSC in a paracrine manner. Accordingly, disrupting the interaction between Fendrr and STAT2 by ectopic expression of a STAT2 mutant attenuated the profibrotic response inspired by Fendrr in the CCl4-induced liver fibrosis. Notably, the increase of Fendrr in patient fibrotic liver is positively correlated with the severity of fibrosis and the expression of IL-6. Meanwhile, hepatic IL-6 positively correlates with the extent of liver fibrosis and HSC activation as well, thus suggesting a causative role of Fendrr in HSC activation and liver fibrosis. In conclusion, these observations identify an important regulatory cross talk between hepatocyte Fendrr and HSC activation in the progression of liver fibrosis, which might represent a potential strategy for therapeutic intervention.
Collapse
Affiliation(s)
- Zhiqian Kang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Chenqi Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Fang Shao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Hao Deng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Yanyan Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China; State Key Laboratory for Organic Electronics and Information Displays (SKLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing, PR China
| | - Zhengrong Ren
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Wei Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Zhi Ding
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Junfeng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China.
| | - Yuhui Zang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China.
| |
Collapse
|
13
|
Zhang Y, Liu Y, Huo W, He L, Li B, Wang H, Meng F, Duan C, Zhou B, Wu J, Chen R, Xing J, Wan Y. The Role of miRNA and Long Noncoding RNA in Cholestatic Liver Diseases. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:879-893. [PMID: 38417698 DOI: 10.1016/j.ajpath.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/05/2024] [Accepted: 02/16/2024] [Indexed: 03/01/2024]
Abstract
Cholestatic liver diseases encompass a range of organic damages, metabolic disorders, and dysfunctions within the hepatobiliary system, arising from various pathogenic causes. These factors contribute to disruptions in bile production, secretion, and excretion. Cholestatic liver diseases can be classified into intrahepatic and extrahepatic cholestasis, according to the location of occurrence. The etiology of cholestatic liver diseases is complex, and includes drugs, poisons, viruses, parasites, bacteria, autoimmune responses, tumors, and genetic metabolism. The pathogenesis of cholelstatic liver disease is not completely clarified, and effective therapy is lacking. Clarifying its mechanism to find more effective therapeutic targets and drugs is an unmet need. Increasing evidence demonstrates that miRNA and long noncoding RNA are involved in the progression of cholestatic liver diseases. This review provides a comprehensive summary of the research progress on the roles of miRNA and long noncoding RNA in cholestatic liver diseases. The aim of the review is to enhance the understanding of their potential diagnostic, therapeutic, and prognostic value for patients with cholestasis.
Collapse
Affiliation(s)
- Yudian Zhang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Ying Liu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Wen Huo
- Functional Experiment Center, College of Basic and Legal Medicine, North Sichuan Medical College, Nanchong, China
| | - Longfei He
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Bowen Li
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Hui Wang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Fanyin Meng
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Richard L. Roudebush VA Medical Center, Indianapolis, Indiana
| | - Chenggang Duan
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Bingru Zhou
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Jinbo Wu
- Department of Otolaryngology-Head and Neck Surgery, Luzhou Maternal and Child Health Hospital (Luzhou Second People's Hospital), Luzhou, China
| | - Rong Chen
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Juan Xing
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China.
| | - Ying Wan
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China.
| |
Collapse
|
14
|
Zhong W, Fu J, Liao J, Ouyang S, Yin W, Liang Y, Liu K. A protective role of nintedanib in peritoneal fibrosis through H19-EZH2-KLF2 axis via impeding mesothelial-to-mesenchymal transition. Int Urol Nephrol 2024; 56:1987-1999. [PMID: 38097887 DOI: 10.1007/s11255-023-03892-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 11/16/2023] [Indexed: 05/14/2024]
Abstract
BACKGROUND Peritoneal fibrosis (PF), a common complication of long-term peritoneal dialysis, accounts for peritoneal ultrafiltration failure to develop into increased mortality. Nintedanib has previously been shown to protect against multi-organ fibrosis, including PF. Unfortunately, the precise molecular mechanism underlying nintedanib in the pathogenesis of PF remains elusive. METHODS The mouse model of PF was generated by chlorhexidine gluconate (CG) injection with or without nintedanib administration, either with the simulation for the cell model of PF by constructing high-glucose (HG)-treated human peritoneal mesothelial cells (HPMCs). HE and Masson staining were applied to assess the histopathological changes of peritoneum and collagen deposition. FISH, RT-qPCR, western blot and immunofluorescence were employed to examine distribution or expression of targeted genes. Cell viability was detected using CCK-8 assay. Cell morphology was observed under a microscope. RNA immunoprecipitation (RIP) and chromatin immunoprecipitation (ChIP) assays were applied to validate the H19-EZH2-KLF2 regulatory axis. RESULTS Aberrantly overexpressed H19 was observed in both the mouse and cell model of PF, of which knockdown significantly blocked HG-induced mesothelial-to-mesenchymal transition (MMT) of HPMCs. Moreover, loss of H19 further strengthened nintedanib-mediated suppressive effects against MMT process in a mouse model of PF. Mechanistically, H19 could epigenetically repressed KLF2 via recruiting EZH2. Furthermore, TGF-β/Smad pathway was inactivated by nintedanib through mediating H19/KLF2 axis. CONCLUSION In summary, nintedanib disrupts MMT process through regulating H19/EZH2/KLF2 axis and TGF-β/Smad pathway, which laid the experimental foundation for nintedanib in the treatment of PF.
Collapse
Affiliation(s)
- Wei Zhong
- Department of Nephrology and Laboratory of Kidney Disease, Changsha Clinical Research Center for Kidney Disease, Hunan Clinical Research Center for Chronic Kidney Disease, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), No.61, Jiefangxi Road, Changsha, 410002, Hunan, People's Republic of China
| | - Jia Fu
- Department of Oncology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410002, Hunan, People's Republic of China
| | - Jin Liao
- Department of Nephrology and Laboratory of Kidney Disease, Changsha Clinical Research Center for Kidney Disease, Hunan Clinical Research Center for Chronic Kidney Disease, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), No.61, Jiefangxi Road, Changsha, 410002, Hunan, People's Republic of China
| | - Shaxi Ouyang
- Department of Nephrology and Laboratory of Kidney Disease, Changsha Clinical Research Center for Kidney Disease, Hunan Clinical Research Center for Chronic Kidney Disease, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), No.61, Jiefangxi Road, Changsha, 410002, Hunan, People's Republic of China
| | - Wei Yin
- Department of Nephrology and Laboratory of Kidney Disease, Changsha Clinical Research Center for Kidney Disease, Hunan Clinical Research Center for Chronic Kidney Disease, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), No.61, Jiefangxi Road, Changsha, 410002, Hunan, People's Republic of China
| | - Yumei Liang
- Department of Nephrology and Laboratory of Kidney Disease, Changsha Clinical Research Center for Kidney Disease, Hunan Clinical Research Center for Chronic Kidney Disease, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), No.61, Jiefangxi Road, Changsha, 410002, Hunan, People's Republic of China
| | - Kanghan Liu
- Department of Nephrology and Laboratory of Kidney Disease, Changsha Clinical Research Center for Kidney Disease, Hunan Clinical Research Center for Chronic Kidney Disease, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), No.61, Jiefangxi Road, Changsha, 410002, Hunan, People's Republic of China.
| |
Collapse
|
15
|
Ramaiyer MS, Saad E, Kurt I, Borahay MA. Genetic Mechanisms Driving Uterine Leiomyoma Pathobiology, Epidemiology, and Treatment. Genes (Basel) 2024; 15:558. [PMID: 38790186 PMCID: PMC11121260 DOI: 10.3390/genes15050558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Uterine leiomyomas (ULs) are the most common benign tumor of the uterus. They can be associated with symptoms including abnormal uterine bleeding, pelvic pain, urinary frequency, and pregnancy complications. Despite the high prevalence of UL, its underlying pathophysiology mechanisms have historically been poorly understood. Several mechanisms of pathogenesis have been suggested, implicating various genes, growth factors, cytokines, chemokines, and microRNA aberrations. The purpose of this study is to summarize the current research on the relationship of genetics with UL. Specifically, we performed a literature review of published studies to identify how genetic aberrations drive pathophysiology, epidemiology, and therapeutic approaches of UL. With regards to pathophysiology, research has identified MED12 mutations, HMGA2 overexpression, fumarate hydratase deficiency, and cytogenetic abnormalities as contributors to the development of UL. Additionally, epigenetic modifications, such as histone acetylation and DNA methylation, have been identified as contributing to UL tumorigenesis. Specifically, UL stem cells have been found to contain a unique DNA methylation pattern compared to more differentiated UL cells, suggesting that DNA methylation has a role in tumorigenesis. On a population level, genome-wide association studies (GWASs) and epidemiologic analyses have identified 23 genetic loci associated with younger age at menarche and UL growth. Additionally, various GWASs have investigated genetic loci as potential drivers of racial disparities in UL incidence. For example, decreased expression of Cytohesin 4 in African Americans has been associated with increased UL risk. Recent studies have investigated various therapeutic options, including ten-eleven translocation proteins mediating DNA methylation, adenovirus vectors for drug delivery, and "suicide gene therapy" to induce apoptosis. Overall, improved understanding of the genetic and epigenetic drivers of UL on an individual and population level can propel the discovery of novel therapeutic options.
Collapse
Affiliation(s)
| | - Eslam Saad
- Department of Gynecology and Obstetrics, Johns Hopkins University, 720 Rutland Ave, Baltimore, MD 21205, USA; (E.S.); (I.K.)
| | - Irem Kurt
- Department of Gynecology and Obstetrics, Johns Hopkins University, 720 Rutland Ave, Baltimore, MD 21205, USA; (E.S.); (I.K.)
- Faculty of Medicine, Selcuk University, 42000 Konya, Turkey
| | - Mostafa A. Borahay
- Department of Gynecology and Obstetrics, Johns Hopkins University, 720 Rutland Ave, Baltimore, MD 21205, USA; (E.S.); (I.K.)
| |
Collapse
|
16
|
Hu Y, Bao X, Zhang Z, Chen L, Liang Y, Qu Y, Zhou Q, Zhou X, Fang J, Xiao Z, Fu Y, Yang H, Liu W, Lv Y, Cao H, Chen G, Ping J, Zhang H, Mu Y, Liu C, Lin CP, Wu J, Liu P, Chen J. Hepatic progenitor cell-originated ductular reaction facilitates liver fibrosis through activation of hedgehog signaling. Theranostics 2024; 14:2379-2395. [PMID: 38646644 PMCID: PMC11024850 DOI: 10.7150/thno.91572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/17/2024] [Indexed: 04/23/2024] Open
Abstract
Background: It is poorly understood what cellular types participate in ductular reaction (DR) and whether DR facilitates recovery from injury or accelerates hepatic fibrosis. The aim of this study is to gain insights into the role of hepatic progenitor cell (HPC)-originated DR during fibrotic progression. Methods: DR in liver specimens of PBC, chronic HBV infection (CHB) or NAFLD, and four rodent fibrotic models by different pathogenic processes was evaluated. Gli1 expression was inhibited in rodent models or cell culture and organoid models by AAV-shGli1 or treating with GANT61. Results: Severity of liver fibrosis was positively correlated with DR extent in patients with PBC, CHB or NAFLD. HPCs were activated, expanded, differentiated into reactive cholangiocytes and constituted "HPC-originated DR", accompanying with exacerbated fibrosis in rodent models of HPC activation & proliferation (CCl4/2-AAF-treated), Μdr2-/- spontaneous PSC, BDL-cholestatic fibrosis or WD-fed/CCl4-treated NASH-fibrosis. Gli1 expression was significantly increased in enriched pathways in vivo and in vitro. Enhanced Gli1 expression was identified in KRT19+-reactive cholangiocytes. Suppressing Gli1 expression by administration of AAV-shGli1 or GANT61 ameliorated HPC-originated DR and fibrotic extent. KRT19 expression was reduced after GANT61 treatment in sodium butyrate-stimulated WB-F344 cells or organoids or in cells transduced with Gli1 knockdown lentiviral vectors. In contrast, KRT19 expression was elevated after transducing Gli1 overexpression lentiviral vectors in these cells. Conclusions: During various modes of chronic injury, Gli1 acted as an important mediator of HPC activation, expansion, differentiation into reactive cholangiocytes that formed DR, and subsequently provoked hepatic fibrogenesis.
Collapse
Affiliation(s)
- Yonghong Hu
- Institute of Liver diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai 201203, China
- Institute of Surgery of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xinyu Bao
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai 201210, China
| | - Zheng Zhang
- Institute of Liver diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai 201203, China
| | - Long Chen
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yue Liang
- Institute of Liver diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai 201203, China
| | - Yan Qu
- Department of Hepatobiliary Surgery, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qun Zhou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaoxi Zhou
- Institute of Liver diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai 201203, China
| | - Jing Fang
- Institute of Liver diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai 201203, China
| | - Zhun Xiao
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yadong Fu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hailin Yang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wei Liu
- Institute of Liver diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai 201203, China
| | - Ying Lv
- Institute of Liver diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai 201203, China
| | - Hongyan Cao
- Department of Gastroenterology, Shanghai University of Traditional Chinese Medicine Shanghai TCM - Integrated hospital, Shanghai 201203, China
| | - Gaofeng Chen
- Institute of Liver diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai 201203, China
| | - Jian Ping
- Institute of Liver diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai 201203, China
| | - Hua Zhang
- Institute of Liver diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai 201203, China
| | - Yongping Mu
- Institute of Liver diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai 201203, China
| | - Chenghai Liu
- Institute of Liver diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai 201203, China
| | - Chao-Po Lin
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai 201210, China
| | - Jian Wu
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, China
- Department of Gastroenterology & Hepatology, Zhongshan Hospital of Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Diseases, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Ping Liu
- Institute of Liver diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai 201203, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiamei Chen
- Institute of Liver diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai 201203, China
| |
Collapse
|
17
|
Liu R, Li Y, Zheng Q, Ding M, Zhou H, Li X. Epigenetic modification in liver fibrosis: Promising therapeutic direction with significant challenges ahead. Acta Pharm Sin B 2024; 14:1009-1029. [PMID: 38486982 PMCID: PMC10935124 DOI: 10.1016/j.apsb.2023.10.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/18/2023] [Accepted: 09/13/2023] [Indexed: 03/17/2024] Open
Abstract
Liver fibrosis, characterized by scar tissue formation, can ultimately result in liver failure. It's a major cause of morbidity and mortality globally, often associated with chronic liver diseases like hepatitis or alcoholic and non-alcoholic fatty liver diseases. However, current treatment options are limited, highlighting the urgent need for the development of new therapies. As a reversible regulatory mechanism, epigenetic modification is implicated in many biological processes, including liver fibrosis. Exploring the epigenetic mechanisms involved in liver fibrosis could provide valuable insights into developing new treatments for chronic liver diseases, although the current evidence is still controversial. This review provides a comprehensive summary of the regulatory mechanisms and critical targets of epigenetic modifications, including DNA methylation, histone modification, and RNA modification, in liver fibrotic diseases. The potential cooperation of different epigenetic modifications in promoting fibrogenesis was also highlighted. Finally, available agonists or inhibitors regulating these epigenetic mechanisms and their potential application in preventing liver fibrosis were discussed. In summary, elucidating specific druggable epigenetic targets and developing more selective and specific candidate medicines may represent a promising approach with bright prospects for the treatment of chronic liver diseases.
Collapse
Affiliation(s)
- Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102400, China
| | - Yajing Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102400, China
| | - Qi Zheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102400, China
| | - Mingning Ding
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102400, China
| | - Huiping Zhou
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 22460, USA
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102400, China
| |
Collapse
|
18
|
Guennec A, Balnois E, Augias A, Bangoura MA, Jaffry C, Simon-Colin C, Langlois V, Azemar F, Vignaud G, Linossier I, Faÿ F, Vallée-Réhel K. Investigating the anti-bioadhesion properties of short, medium chain length, and amphiphilic polyhydroxyalkanoate films. BIOFOULING 2024; 40:177-192. [PMID: 38465991 DOI: 10.1080/08927014.2024.2326038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/22/2024] [Indexed: 03/12/2024]
Abstract
Silicone materials are widely used in fouling release coatings, but developing eco-friendly protection via biosourced coatings, such as polyhydroxyalcanoates (PHA) presents a major challenge. Anti-bioadhesion properties of medium chain length PHA and short chain length PHA films are studied and compared with a reference Polydimethylsiloxane coating. The results highlight the best capability of the soft and low-roughness PHA-mcl films to resist bacteria or diatoms adsorption as compared to neat PDMS and PHBHV coatings. These parameters are insufficient to explain all the results and other properties related to PHA crystallinity are discussed. Moreover, the addition of a low amount of PEG copolymers within the coatings, to create amphiphilic coatings, boosts their anti-adhesive properties. This work reveals the importance of the physical or chemical ambiguity of surfaces in their anti-adhesive effectiveness and highlights the potential of PHA-mcl film to resist the primary adhesion of microorganisms.
Collapse
Affiliation(s)
- Alexandra Guennec
- Laboratoire de Biotechnologie et de Chimie Marines (LBCM), EMR CNRS 6076, Université Bretagne Sud, Lorient, France
| | - Eric Balnois
- Laboratoire de Biotechnologie et de Chimie Marines (LBCM), EMR CNRS 6076, Université de Brest, Quimper, France
| | - Antoine Augias
- Laboratoire de Biotechnologie et de Chimie Marines (LBCM), EMR CNRS 6076, Université Bretagne Sud, Lorient, France
| | - Mama Aïssata Bangoura
- Laboratoire de Biotechnologie et de Chimie Marines (LBCM), EMR CNRS 6076, Université Bretagne Sud, Lorient, France
| | - Cédric Jaffry
- Laboratoire de Biotechnologie et de Chimie Marines (LBCM), EMR CNRS 6076, Université Bretagne Sud, Lorient, France
- Institut de Recherche Dupuy de Lôme (IRDL), Université Bretagne Sud, UMR CNRS 6027, Lorient, France
| | - Christelle Simon-Colin
- Laboratoire de Microbiologie des Environnements Extrêmes (LM2E), Université de Brest, IFREMER, CNRS, UMR BEEP 6197, Plouzané, France
| | - Valérie Langlois
- Institut de Chimie et des Matériaux Paris-Est (ICPME), Université Paris Est Créteil, UMR-CNRS 7182, Thiais, France
| | - Fabrice Azemar
- Laboratoire de Biotechnologie et de Chimie Marines (LBCM), EMR CNRS 6076, Université Bretagne Sud, Lorient, France
| | - Guillaume Vignaud
- Institut de Recherche Dupuy de Lôme (IRDL), Université Bretagne Sud, UMR CNRS 6027, Lorient, France
| | - Isabelle Linossier
- Laboratoire de Biotechnologie et de Chimie Marines (LBCM), EMR CNRS 6076, Université Bretagne Sud, Lorient, France
| | - Fabienne Faÿ
- Laboratoire de Biotechnologie et de Chimie Marines (LBCM), EMR CNRS 6076, Université Bretagne Sud, Lorient, France
| | - Karine Vallée-Réhel
- Laboratoire de Biotechnologie et de Chimie Marines (LBCM), EMR CNRS 6076, Université Bretagne Sud, Lorient, France
| |
Collapse
|
19
|
Liao X, Ruan X, Yao P, Yang D, Wu X, Zhou X, Jing J, Wei D, Liang Y, Zhang T, Qin S, Jiang H. LncRNA-Gm9866 promotes liver fibrosis by activating TGFβ/Smad signaling via targeting Fam98b. J Transl Med 2023; 21:778. [PMID: 37919785 PMCID: PMC10621198 DOI: 10.1186/s12967-023-04642-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/20/2023] [Indexed: 11/04/2023] Open
Abstract
OBJECTIVE The exact mechanism and target molecules of liver fibrosis have remained largely elusive. Here, we investigated the role of long noncoding RNA Gm9866(lncRNA-Gm9866) on liver fibrosis. METHODS The transcription of lncRNA-Gm9866 in activated cells and mouse fibrotic livers was determined by quantitative polymerase chain reaction (qRT-PCR). The effects of lentivirus-mediated knockdown or overexpression of lncRNA-Gm9866 in liver fibrosis were examined in vitro and in vivo. Furthermore, bioinformatics analysis, cell samples validation, fluorescence in situ hybridization (FISH) co-localization, RNA binding protein immunoprecipitation (RIP), actinomycin D test and Western blot (WB) were carried out to explore the potential mechanism of lncRNA-Gm9866. RESULTS The expression of α-smooth muscle actin (α-SMA), Collagen I (COL-1) and lncRNA-Gm9866 were significantly increased in tissues and cells. Overexpressing lncRNA-Gm9866 promoted the activation of hepatic stellate cells (HSCs). Silencing lncRNA-Gm9866 inhibited the activation of HSCs and transforming growth factor-β1 (TGFβ1) induced fibrosis. Overexpressing lncRNA-Gm9866 promoted hepatocytes (HCs) apoptosis and the expression of pro-fibrogenic genes, inhibited the proliferation and migration of HCs. Knockdown of lncRNA-Gm9866 inhibited the apoptosis of HCs, the expression of pro-fibrogenic genes, TGFβ1 induced fibrosis and the occurrence of carbon tetrachloride (CCl4)-induced liver fibrosis, and promoted the proliferation and migration of HCs. Mechanistically, lncRNA-Gm9866 may directly bine with Fam98b. Silencing Fam98b in stably overexpressing lncRNA-Gm9866 cell lines reversed the increase of pro-fibrogenic genes and pro-apoptotic genes, fibrosis related pathway protein TGFβ1, Smad2/3, p-Smad2/3 and Notch3 induced by overexpressing lncRNA-Gm9866. CONCLUSIONS LncRNA-Gm9866 may regulate TGFβ/Smad and Notch pathways by targeting Fam98b to regulate liver fibrosis. LncRNA-Gm9866 may be a new target for diagnosis and treatment of liver fibrosis.
Collapse
Affiliation(s)
- Xiaomin Liao
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Xianxian Ruan
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Peishan Yao
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Dan Yang
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xianbin Wu
- Department of Gastroenterology, The Wuming Affiliated Hospital of Guangxi Medical University, Nanning, 530000, Guangxi, China
| | - Xia Zhou
- Department of Emergency, People's Hospital of Guizhou Province, Guiyang, 550000, Guizhou, China
| | - Jie Jing
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Dafu Wei
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Yaodan Liang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Taicheng Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Shanyu Qin
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Nanning, 530021, Guangxi, China.
| | - Haixing Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Nanning, 530021, Guangxi, China.
| |
Collapse
|
20
|
Huang Y, Liangpunsakul S, Rudraiah S, Ma J, Keshipeddy SK, Wright D, Costa A, Burgess D, Zhang Y, Huda N, Wang L, Yang Z. HMGB2 is a potential diagnostic marker and therapeutic target for liver fibrosis and cirrhosis. Hepatol Commun 2023; 7:e0299. [PMID: 37930124 PMCID: PMC10629741 DOI: 10.1097/hc9.0000000000000299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/23/2023] [Indexed: 11/07/2023] Open
Abstract
BACKGROUND High mobility group proteins 1 and 2 (HMGB1 and HMGB2) are 80% conserved in amino acid sequence. The function of HMGB1 in inflammation and fibrosis has been extensively characterized. However, an unaddressed central question is the role of HMGB2 on liver fibrosis. In this study, we provided convincing evidence that the HMGB2 expression was significantly upregulated in human liver fibrosis and cirrhosis, as well as in several mouse liver fibrosis models. METHODS The carbon tetrachloride (CCl4) induced liver fibrosis mouse model was used. AAV8-Hmgb2 was utilized to overexpress Hmgb2 in the liver, while Hmgb2-/- mice were used for loss of function experiments. The HMGB2 inhibitor inflachromene and liposome-shHMGB2 (lipo-shHMGB2) were employed for therapeutic intervention. RESULTS The serum HMGB2 levels were also markedly elevated in patients with liver fibrosis and cirrhosis. Deletion of Hmgb2 in Hmgb2-/- mice or inhibition of HMGB2 in mice using a small molecule ICM slowed the progression of CCl4-induced liver fibrosis despite constant HMGB1 expression. In contrast, AAV8-mediated overexpression of Hmgb2 enchanced CCl4-incuded liver fibrosis. Primary hepatic stellate cells (HSCs) isolated from Hmgb2-/- mice showed significantly impaired transdifferentiation and diminished activation of α-SMA, despite a modest induction of HMGB1 protein. RNA-seq analysis revealed the induction of top 45 CCl4-activated genes in multiple signaling pathways including integrin signaling and inflammation. The activation of these genes by CCl4 were abolished in Hmgb2-/- mice or in ICM-treated mice. These included C-X3-C motif chemokine receptor 1 (Cx3cr1) associated with inflammation, cyclin B (Ccnb) associated with cell cycle, DNA topoisomerase 2-alpha (Top2a) associated with intracellular component, and fibrillin (Fbn) and fibromodulin (Fmod) associated with extracellular matrix. CONCLUSION We conclude that HMGB2 is indispensable for stellate cell activation. Therefore, HMGB2 may serve as a potential therapeutic target to prevent HSC activation during chronic liver injury. The blood HMGB2 level may also serve as a potential diagnostic marker to detect early stage of liver fibrosis and cirrhosis in humans.
Collapse
Affiliation(s)
- Yi Huang
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA
| | - Suthat Liangpunsakul
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University, Indianapolis, Indiana, USA
- Medicine Service, Roudebush Veterans Administration Medical Center, Indianapolis, Indiana, USA
| | - Swetha Rudraiah
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA
| | - Jing Ma
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University, Indianapolis, Indiana, USA
| | - Santosh K. Keshipeddy
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut, USA
| | - Dennis Wright
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut, USA
| | - Antonio Costa
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut, USA
| | - Diane Burgess
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut, USA
| | - Yuxia Zhang
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Nazmul Huda
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University, Indianapolis, Indiana, USA
| | - Li Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, USA
| | - Zhihong Yang
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University, Indianapolis, Indiana, USA
| |
Collapse
|
21
|
Ding P, Chen P, Ouyang J, Li Q, Li S. Clinicopathological and prognostic value of epithelial cell adhesion molecule in solid tumours: a meta-analysis. Front Oncol 2023; 13:1242231. [PMID: 37664060 PMCID: PMC10468606 DOI: 10.3389/fonc.2023.1242231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 07/27/2023] [Indexed: 09/05/2023] Open
Abstract
Background Malignant tumors, mainly solid tumors, are a significant obstacle to the improvement of life expectancy at present. Epithelial cell adhesion molecule (EpCAM), a cancer stem cell biomarker, showed widespread expression in most normal epithelial cells and most cancers. Although the clinical significance of EpCAM in various malignant solid tumors has been studied extensively, the latent relationships between EpCAM and pathological and clinical characteristics in solid tumors and differences in the roles of EpCAM among tumors have not been clearly determined. The destination point of this study was to analyze the value of EpCAM in solid tumors in clinicopathological and prognostic dimension using a meta-analysis approach. Method and materials A comprehensive and systematic search of the researches published up to March 7th, 2022, in PubMed, EMBASE, Web of Science, Cochrane library and PMC databases was performed. The relationships between EpCAM overexpression, clinicopathological characteristics, and survival outcomes were analyzed. Pooled hazard ratios (HRs) with 95% confidence intervals (CIs) and odds ratios (ORs) were estimated as indicators of the degree of correlation. This research was registered on PROSPERO (International prospective register of systematic reviews), ID: CRD42022315070. Results In total, 57 articles and 14184 cases were included in this study. High EpCAM expression had a significant coherence with a poorer overall survival (OS) (HR: 1.30, 95% CI: 1.08-1.58, P < 0.01) and a worse disease-free survival (DFS) (HR: 1.58, 95% CI: 1.28-1.95, P < 0.01), especially of gastrointestinal tumors' OS (HR: 1.50, 95% CI: 1.15-1.95, P < 0.01), and DFS (HR: 1.84, 95% CI: 1.52-2.33, P < 0.01). The DFS of head and neck tumors (HR: 2.33, 95% CI: 1.51-3.61, P < 0.01) was also associated with the overexpression of EpCAM. There were no positive relationships between the overexpression of EpCAM and sex (RR: 1.03, 95% CI: 0.99-1.07, P = 0.141), T classification (RR: 0.93, 95% CI: 0.82-1.06, P = 0.293), lymph node metastasis (RR: 0.85, 95% CI: 0.54-1.32, P = 0.461), distant metastasis (RR: 0.97, 95% CI: 0.84-1.10, P = 0.606), vascular infiltration (RR: 1.05, 95% CI: 0.85-1.29, P = 0.611), and TNM stage (RR: 0.93, 95% CI: 0.83-1.04, P = 0.187). However, the overexpression of EpCAM exhibited a significant association with the histological grades (RR: 0.88, 95% CI: 0.80-0.97, P < 0.01). Conclusion Based on pooled HRs, the positive expression of EpCAM was totally correlated to a worse OS and DFS in solid tumors. The expression of EpCAM was related to a worse OS in gastrointestinal tumors and a worse DFS in gastrointestinal tumors and head and neck tumors. Moreover, EpCAM expression was correlated with the histological grade. The results presented pointed out that EpCAM could serve as a prognostic biomarker for gastrointestinal and head and neck tumors. Systematic review registration https://www.crd.york.ac.uk/prospero, identifier CRD42022315070.
Collapse
Affiliation(s)
- Peiwen Ding
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Clinical School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Panyu Chen
- Operating Room, Sichuan University West China Hospital School of Nursing, Chengdu, China
| | - Jiqi Ouyang
- Department of Gastroenterology, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
| | - Qiang Li
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Clinical School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shijie Li
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Clinical School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
22
|
Zhang Y, Hong L, Li X, Li Y, Zhang X, Jiang J, Shi F, Diao H. M1 macrophage-derived exosomes promote autoimmune liver injury by transferring long noncoding RNA H19 to hepatocytes. MedComm (Beijing) 2023; 4:e303. [PMID: 37398637 PMCID: PMC10310975 DOI: 10.1002/mco2.303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 07/04/2023] Open
Abstract
Exosomes mediate intercellular communication by transmitting active molecules. The function of long noncoding RNA (lncRNA) H19 in autoimmune liver injury is unclear. Concanavalin A (ConA)-induced liver injury is well-characterized immune-mediated hepatitis. Here, we showed that lncRNA H19 expression was increased in the liver after ConA treatment, accompanied by increased exosome secretion. Moreover, injection of AAV-H19 aggravated ConA-induced hepatitis, with an increase in hepatocyte apoptosis. However, GW4869, an exosome inhibitor, alleviated ConA-induced liver injury and inhibited the upregulation of lncRNA H19. Intriguingly, lncRNA H19 expression in the liver was significantly downregulated, after macrophage depletion. Importantly, the lncRNA H19 was primarily expressed in type I macrophage (M1) and encapsulated in M1-derived exosomes. Furthermore, H19 was transported from M1 to hepatocytes via exosomes, and exosomal H19 dramatically induced hepatocytes apoptosis both in vitro and vivo. Mechanistically, H19 upregulated the transcription of hypoxia-inducible factor-1 alpha (HIF-1α), which accumulated in the cytoplasm and mediated hepatocyte apoptosis by upregulating p53. M1-derived exosomal lncRNA H19 plays a pivotal role in ConA-induced hepatitis through the HIF-1α-p53 signaling pathway. These findings identify M1 macrophage-derived exosomal H19 as a novel target for the treatment of autoimmune liver diseases.
Collapse
Affiliation(s)
- Yongting Zhang
- State Key Laboratory for Diagnosis & Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseaseCollaborative Innovation Center for Diagnosis & Treatment of Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouChina
| | - Liang Hong
- State Key Laboratory for Diagnosis & Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseaseCollaborative Innovation Center for Diagnosis & Treatment of Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouChina
| | - Xuehui Li
- State Key Laboratory for Diagnosis & Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseaseCollaborative Innovation Center for Diagnosis & Treatment of Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouChina
| | - Yuyu Li
- State Key Laboratory for Diagnosis & Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseaseCollaborative Innovation Center for Diagnosis & Treatment of Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouChina
| | - Xujun Zhang
- State Key Laboratory for Diagnosis & Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseaseCollaborative Innovation Center for Diagnosis & Treatment of Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouChina
| | - Jingjing Jiang
- State Key Laboratory for Diagnosis & Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseaseCollaborative Innovation Center for Diagnosis & Treatment of Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouChina
| | - Fan Shi
- State Key Laboratory for Diagnosis & Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseaseCollaborative Innovation Center for Diagnosis & Treatment of Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouChina
| | - Hongyan Diao
- State Key Laboratory for Diagnosis & Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseaseCollaborative Innovation Center for Diagnosis & Treatment of Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouChina
| |
Collapse
|
23
|
Sun C, Zhou C, Daneshvar K, Kratkiewicz AJ, Saad AB, Hess A, Chen JY, Pondick JV, York SR, Li W, Moran S, Gentile S, Rahman RU, Li Z, Sparks R, Habboub T, Kim BM, Choi MY, Affo S, Schwabe RF, Popov YV, Mullen AC. Conserved long noncoding RNA TILAM promotes liver fibrosis through interaction with PML in hepatic stellate cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.29.551032. [PMID: 37546982 PMCID: PMC10402143 DOI: 10.1101/2023.07.29.551032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Background & Aims Fibrosis is the common endpoint for all forms of chronic liver injury, and progression of fibrosis leads to the development of end-stage liver disease. Activation of hepatic stellate cells (HSCs) and their transdifferentiation to myofibroblasts results in the accumulation of extracellular matrix (ECM) proteins that form the fibrotic scar. Long noncoding (lnc) RNAs regulate the activity of HSCs and may provide targets for fibrotic therapies. Methods We identified lncRNA TILAM as expressed near COL1A1 in human HSCs and performed loss-of-function studies in human HSCs and liver organoids. Transcriptomic analyses of HSCs isolated from mice defined the murine ortholog of TILAM . We then generated Tilam -deficient GFP reporter mice and quantified fibrotic responses to carbon tetrachloride (CCl 4 ) and choline-deficient L-amino acid defined high fat diet (CDA-HFD). Co-precipitation studies, mass spectrometry, and gene expression analyses identified protein partners of TILAM . Results TILAM is conserved between human and mouse HSCs and regulates expression of ECM proteins, including collagen. Tilam is selectively induced in HSCs during the development of fibrosis in vivo . In both male and female mice, loss of Tilam results in reduced fibrosis in the setting of CCl 4 and CDA-HFD injury models. TILAM interacts with promyelocytic leukemia protein (PML) to stabilize PML protein levels and promote the fibrotic activity of HSCs. Conclusion TILAM is activated in HSCs and interacts with PML to drive the development of liver fibrosis. Depletion of TILAM may serve as a therapeutic approach to combat the development of end stage liver disease.
Collapse
|
24
|
Han SH, Ko JY, Kang ES, Park JH, Yoo KH. Long non-coding RNAs: key regulators of liver and kidney fibrogenesis. BMB Rep 2023; 56:374-384. [PMID: 37357534 PMCID: PMC10390290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/29/2023] [Accepted: 06/13/2023] [Indexed: 06/27/2023] Open
Abstract
Fibrosis is a pathological condition that is characterized by an abnormal buildup of extracellular matrix (ECM) components, such as collagen, in tissues. This condition affects various organs of the body, including the liver and kidney. Early diagnosis and treatment of fibrosis are crucial, as it is a progressive and irreversible process in both organs. While there are certain similarities in the fibrosis process between the liver and kidney, there are also significant differences that must be identified to determine molecular diagnostic markers and potential therapeutic targets. Long non-coding RNAs (lncRNAs), a class of RNA molecules that do not code for proteins, are increasingly recognized as playing significant roles in gene expression regulation. Emerging evidence suggests that specific lncRNAs are involved in fibrosis development and progression by modulating signaling pathways, such as the TGF-β/Smad pathway and the β-catenin pathway. Thus, identifying the precise lncRNAs involved in fibrosis could lead to novel therapeutic approaches for fibrotic diseases. In this review, we summarize lncRNAs related to fibrosis in the liver and kidney, and propose their potential as therapeutic targets based on their functions. [BMB Reports 2023; 56(7): 374-384].
Collapse
Affiliation(s)
- Su-hyang Han
- Laboratory of Biomedical Genomics, Department of Biological Sciences, Sookmyung Women
| | - Je Yeong Ko
- Molecular Medicine Lab, Department of Biological Sciences, Sookmyung Women
| | - Eun Seo Kang
- Laboratory of Biomedical Genomics, Department of Biological Sciences, Sookmyung Women
| | - Jong Hoon Park
- Molecular Medicine Lab, Department of Biological Sciences, Sookmyung Women
| | - Kyung Hyun Yoo
- Laboratory of Biomedical Genomics, Department of Biological Sciences, Sookmyung Women
- Research Institute of Women
| |
Collapse
|
25
|
Shen J, Cao J, Chen M, Zhang Y. Recent advances in the role of exosomes in liver fibrosis. J Gastroenterol Hepatol 2023. [PMID: 37114594 DOI: 10.1111/jgh.16203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/05/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023]
Abstract
BACKGROUND AND AIM We aim to summarize the current status of research on the role of exosomes in liver fibrosis. METHODS A review of the relevant literature was performed and the key findings were presented. RESULTS Most studies focused on the role of exosomes derived from mesenchymal stem cells, other types of stem cells, and liver resident cells including hepatocytes, cholangiocytes, and hepatic stellate cells in liver fibrosis. Exosomes have been reported to play an essential role in the inactivation or activation of hepatic stellate cells through the delivery of non-coding RNAs and proteins. In recent years, this exosome cargo has become a research hotspot. CONCLUSIONS Recent studies have indicated the potential therapeutic benefit of exosomes in liver fibrosis.
Collapse
Affiliation(s)
- Jiliang Shen
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiasheng Cao
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mingyu Chen
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yaping Zhang
- Department of Anesthesiology, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
26
|
Zhao R, Tang X, Lin H, Xing C, Xu N, Dai B, Wang P, Shao W, Liu M, Shen J, Deng S, Ren C. Knocking Down Gm16685 Decreases Liver Granuloma in Murine Schistosomiasis Japonica. Microorganisms 2023; 11:microorganisms11030796. [PMID: 36985369 PMCID: PMC10058064 DOI: 10.3390/microorganisms11030796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) can regulate key genes and pathways in liver disease development. Moreover, macrophages are speculated to play an important role in regulating granulomatous inflammation during schistosomiasis. However, the role of lncRNAs in the formation of liver granulomas by influencing the polarization of macrophages in Schistosoma japonicum infection is unclear. Our study aimed to determine whether lncRNAs can play a role in S. japonicum-induced hepatic egg granulomas and elucidate their effect on macrophages. We established S. japonicum infection models and screened the target lncRNA Gm16685 highly expressed in schistosomiasis mice using high-throughput sequencing. Hematoxylin and eosin staining revealed that the knockdown of Gm16685 reduced the area of egg granulomas. Moreover, M1 macrophage factor genes were significantly downregulated in Gm16685 knockdown livers. Meanwhile, M2 macrophage factor genes were significantly upregulated, which was consistent with the protein detection results. Hepatocytes, hepatic stellate cells, and macrophages were isolated from mouse models infected with S. japonicum, with Gm16685 being significantly upregulated in macrophages. Moreover, the knockdown of Gm16685 in RAW264.7 cells revealed similar results to in liver tissue. RNA fluorescence in situ hybridization (FISH) and nucleocytoplasmic separation experiments revealed that Gm16685 was predominantly localized in the cytoplasm of cells. We found that miR-205-5p was upregulated after Gm16685 was knocked down. After overexpression of miR-205-5p, the expression of Gm16685 and inflammatory factors was significantly downregulated. These results indicate that Gm16685 can participate in the pathogenesis of hepatic disease in schistosomiasis and promote M1 macrophage polarization by regulating miR-205-5p. Thus, our study may provide a new target for schistosomiasis japonica treatment.
Collapse
Affiliation(s)
- Ruyu Zhao
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, Anhui Key Laboratory of Zoonosis of High Institution, Laboratory of Tropical and Parasitic Diseases Control, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Xiaoxue Tang
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, Anhui Key Laboratory of Zoonosis of High Institution, Laboratory of Tropical and Parasitic Diseases Control, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Huiyao Lin
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, Anhui Key Laboratory of Zoonosis of High Institution, Laboratory of Tropical and Parasitic Diseases Control, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Chen Xing
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, Anhui Key Laboratory of Zoonosis of High Institution, Laboratory of Tropical and Parasitic Diseases Control, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Na Xu
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, Anhui Key Laboratory of Zoonosis of High Institution, Laboratory of Tropical and Parasitic Diseases Control, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Bingxin Dai
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, Anhui Key Laboratory of Zoonosis of High Institution, Laboratory of Tropical and Parasitic Diseases Control, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Pingping Wang
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, Anhui Key Laboratory of Zoonosis of High Institution, Laboratory of Tropical and Parasitic Diseases Control, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Wei Shao
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, Anhui Key Laboratory of Zoonosis of High Institution, Laboratory of Tropical and Parasitic Diseases Control, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Miao Liu
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, Anhui Key Laboratory of Zoonosis of High Institution, Laboratory of Tropical and Parasitic Diseases Control, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Jijia Shen
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, Anhui Key Laboratory of Zoonosis of High Institution, Laboratory of Tropical and Parasitic Diseases Control, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Shengqun Deng
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, Anhui Key Laboratory of Zoonosis of High Institution, Laboratory of Tropical and Parasitic Diseases Control, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Cuiping Ren
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, Anhui Key Laboratory of Zoonosis of High Institution, Laboratory of Tropical and Parasitic Diseases Control, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
27
|
Wang Y, Zeng J, Chen W, Fan J, Hylemon PB, Zhou H. Long Noncoding RNA H19: A Novel Oncogene in Liver Cancer. Noncoding RNA 2023; 9:19. [PMID: 36960964 PMCID: PMC10037657 DOI: 10.3390/ncrna9020019] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Liver cancer is the second leading cause of cancer-related death globally, with limited treatment options. Recent studies have demonstrated the critical role of long noncoding RNAs (lncRNAs) in the pathogenesis of liver cancers. Of note, mounting evidence has shown that lncRNA H19, an endogenous noncoding single-stranded RNA, functions as an oncogene in the development and progression of liver cancer, including hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), the two most prevalent primary liver tumors in adults. H19 can affect many critical biological processes, including the cell proliferation, apoptosis, invasion, and metastasis of liver cancer by its function on epigenetic modification, H19/miR-675 axis, miRNAs sponge, drug resistance, and its regulation of downstream pathways. In this review, we will focus on the most relevant molecular mechanisms of action and regulation of H19 in the development and pathophysiology of HCC and CCA. This review aims to provide valuable perspectives and translational applications of H19 as a potential diagnostic marker and therapeutic target for liver cancer disease.
Collapse
Affiliation(s)
- Yanyan Wang
- Department of Microbiology and Immunology, Medical College of Virginia, Central Virginia Veterans Healthcare System, Virginia Commonwealth University, 1220 East Broad Street, MMRB-5044, Richmond, VA 23298, USA
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Jing Zeng
- Department of Microbiology and Immunology, Medical College of Virginia, Central Virginia Veterans Healthcare System, Virginia Commonwealth University, 1220 East Broad Street, MMRB-5044, Richmond, VA 23298, USA
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Weidong Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Jiangao Fan
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Phillip B. Hylemon
- Department of Microbiology and Immunology, Medical College of Virginia, Central Virginia Veterans Healthcare System, Virginia Commonwealth University, 1220 East Broad Street, MMRB-5044, Richmond, VA 23298, USA
| | - Huiping Zhou
- Department of Microbiology and Immunology, Medical College of Virginia, Central Virginia Veterans Healthcare System, Virginia Commonwealth University, 1220 East Broad Street, MMRB-5044, Richmond, VA 23298, USA
| |
Collapse
|
28
|
Sun Y, Liu C, Guo X, Zhao J, Xiao A, Yin K, Liu M, Sun X, Chen X, Liu M. Identification of the c-Jun/H19/miR-19/JNK1 cascade during hepatic stellate cell activation. Clin Transl Med 2023; 13:e1106. [PMID: 36864707 PMCID: PMC9982076 DOI: 10.1002/ctm2.1106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 03/04/2023] Open
Affiliation(s)
- Ying Sun
- State Key Laboratory of Pharmaceutical BiotechnologyCollaborative Innovation Center of Chemistry for Life SciencesJiangsu Engineering Research Center for MicroRNA Biology and BiotechnologyNJU Advanced Institute for Life Sciences (NAILS)School of Life SciencesNanjing UniversityNanjingJiangsuChina
| | - Chunyu Liu
- State Key Laboratory of Pharmaceutical BiotechnologyCollaborative Innovation Center of Chemistry for Life SciencesJiangsu Engineering Research Center for MicroRNA Biology and BiotechnologyNJU Advanced Institute for Life Sciences (NAILS)School of Life SciencesNanjing UniversityNanjingJiangsuChina
| | - Xu Guo
- State Key Laboratory of Pharmaceutical BiotechnologyCollaborative Innovation Center of Chemistry for Life SciencesJiangsu Engineering Research Center for MicroRNA Biology and BiotechnologyNJU Advanced Institute for Life Sciences (NAILS)School of Life SciencesNanjing UniversityNanjingJiangsuChina
| | - Jiayu Zhao
- State Key Laboratory of Pharmaceutical BiotechnologyCollaborative Innovation Center of Chemistry for Life SciencesJiangsu Engineering Research Center for MicroRNA Biology and BiotechnologyNJU Advanced Institute for Life Sciences (NAILS)School of Life SciencesNanjing UniversityNanjingJiangsuChina
| | - Anqi Xiao
- State Key Laboratory of Pharmaceutical BiotechnologyCollaborative Innovation Center of Chemistry for Life SciencesJiangsu Engineering Research Center for MicroRNA Biology and BiotechnologyNJU Advanced Institute for Life Sciences (NAILS)School of Life SciencesNanjing UniversityNanjingJiangsuChina
| | - Kai Yin
- State Key Laboratory of Pharmaceutical BiotechnologyCollaborative Innovation Center of Chemistry for Life SciencesJiangsu Engineering Research Center for MicroRNA Biology and BiotechnologyNJU Advanced Institute for Life Sciences (NAILS)School of Life SciencesNanjing UniversityNanjingJiangsuChina
| | - Ming Liu
- State Key Laboratory of Pharmaceutical BiotechnologyCollaborative Innovation Center of Chemistry for Life SciencesJiangsu Engineering Research Center for MicroRNA Biology and BiotechnologyNJU Advanced Institute for Life Sciences (NAILS)School of Life SciencesNanjing UniversityNanjingJiangsuChina
| | - Xinlei Sun
- State Key Laboratory of Pharmaceutical BiotechnologyCollaborative Innovation Center of Chemistry for Life SciencesJiangsu Engineering Research Center for MicroRNA Biology and BiotechnologyNJU Advanced Institute for Life Sciences (NAILS)School of Life SciencesNanjing UniversityNanjingJiangsuChina
| | - Xi Chen
- State Key Laboratory of Pharmaceutical BiotechnologyCollaborative Innovation Center of Chemistry for Life SciencesJiangsu Engineering Research Center for MicroRNA Biology and BiotechnologyNJU Advanced Institute for Life Sciences (NAILS)School of Life SciencesNanjing UniversityNanjingJiangsuChina
| | - Minghui Liu
- State Key Laboratory of Pharmaceutical BiotechnologyCollaborative Innovation Center of Chemistry for Life SciencesJiangsu Engineering Research Center for MicroRNA Biology and BiotechnologyNJU Advanced Institute for Life Sciences (NAILS)School of Life SciencesNanjing UniversityNanjingJiangsuChina
- School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingJiangsuChina
| |
Collapse
|
29
|
Wu XJ, Xie Y, Gu XX, Zhu HY, Huang LX. LncRNA XIST promotes mitochondrial dysfunction of hepatocytes to aggravate hepatic fibrogenesis via miR-539-3p/ADAMTS5 axis. Mol Cell Biochem 2023; 478:291-303. [PMID: 35794289 DOI: 10.1007/s11010-022-04506-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/15/2022] [Indexed: 02/02/2023]
Abstract
A previous study indicated that long non-coding RNA X-inactive-specific transcript (XIST) promoted ethanol-induced HSCs autophagy and activation. Considering the critical role of HSC activation in hepatic fibrosis, the aim of the present study was to reveal the exact role of XIST in liver fibrosis and its underlying mechanism. The expression of XIST in the liver from CCL4-induced mice and control mice as well as human fibrotic liver tissue and healthy liver tissue was examined. The mitochondrial reactive oxygen species (mtROS), mitochondrial membrane potential (MMP), and mitochondrial morphology were measured to assess the mitochondrial damage. The relationship between XIST and miR-539-3p as well as between miR-539-3p and ADAMTS5 was verified by a dual-luciferase reporter assay. The expression levels of HSCs activation markers were examined by Western blot. The results showed that the XIST was upregulated in fibrotic liver tissue, and overexpression of XIST induced mitochondrial dysfunction in hepatocytes. miR-539-3p directly targeted XIST, and ADAMTS5 mRNA was a downstream target of miR-539-3p. Knockdown of miR-539-3p led to an increased mitochondrial damage in hepatocytes in terms of reduced mitochondrial length, decreased MMP, and increased ROS production. However, the depletion of ADAMTS5 reversed the regulatory effect of XIST on mitochondrial damage in hepatocytes and the activation of HSCs. Our study revealed the critical role of the XIST/miR-539-3p/ADAMTS5 axis in regulating mitochondrial damage in hepatocytes and the activation of HSCs. This study may provide a potential therapeutic strategy for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Xiong-Jian Wu
- Department of Gastroenterology, The First Affiliated Hospital of Gannan Medical University, No. 23 Youth Road, Zhanggong District, Ganzhou, 341000, Jiangxi, People's Republic of China.
| | - Yuan Xie
- Department of Gastroenterology, The First Affiliated Hospital of Gannan Medical University, No. 23 Youth Road, Zhanggong District, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Xiao-Xiang Gu
- Department of Gastroenterology, The First Affiliated Hospital of Gannan Medical University, No. 23 Youth Road, Zhanggong District, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Hai-Yan Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Gannan Medical University, No. 23 Youth Road, Zhanggong District, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Li-Xing Huang
- Department of Gastroenterology, The First Affiliated Hospital of Gannan Medical University, No. 23 Youth Road, Zhanggong District, Ganzhou, 341000, Jiangxi, People's Republic of China
| |
Collapse
|
30
|
Baptissart M, Bradish CM, Jones BS, Walsh E, Tehrani J, Marrero‐Colon V, Mehta S, Jima DD, Oh SH, Diehl AM, Fougeray T, Guillou H, Cowley M. Zac1 and the Imprinted Gene Network program juvenile NAFLD in response to maternal metabolic syndrome. Hepatology 2022; 76:1090-1104. [PMID: 35083765 PMCID: PMC9314464 DOI: 10.1002/hep.32363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 01/13/2022] [Accepted: 01/19/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND AIMS Within the next decade, NAFLD is predicted to become the most prevalent cause of childhood liver failure in developed countries. Predisposition to juvenile NAFLD can be programmed during early life in response to maternal metabolic syndrome (MetS), but the underlying mechanisms are poorly understood. We hypothesized that imprinted genes, defined by expression from a single parental allele, play a key role in maternal MetS-induced NAFLD, due to their susceptibility to environmental stressors and their functions in liver homeostasis. We aimed to test this hypothesis and determine the critical periods of susceptibility to maternal MetS. APPROACH AND RESULTS We established a mouse model to compare the effects of MetS during prenatal and postnatal development on NAFLD. Postnatal but not prenatal MetS exposure is associated with histological, biochemical, and molecular signatures of hepatic steatosis and fibrosis in juvenile mice. Using RNA sequencing, we show that the Imprinted Gene Network (IGN), including its regulator Zac1, is up-regulated and overrepresented among differentially expressed genes, consistent with a role in maternal MetS-induced NAFLD. In support of this, activation of the IGN in cultured hepatoma cells by overexpressing Zac1 is sufficient to induce signatures of profibrogenic transformation. Using chromatin immunoprecipitation, we demonstrate that Zac1 binds the TGF-β1 and COL6A2 promoters, forming a direct pathway between imprinted genes and well-characterized pathophysiological mechanisms of NAFLD. Finally, we show that hepatocyte-specific overexpression of Zac1 is sufficient to drive fibrosis in vivo. CONCLUSIONS Our findings identify a pathway linking maternal MetS exposure during postnatal development to the programming of juvenile NAFLD, and provide support for the hypothesis that imprinted genes play a central role in metabolic disease programming.
Collapse
Affiliation(s)
- Marine Baptissart
- Department of Biological SciencesCenter for Human Health and the EnvironmentNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Christine M. Bradish
- Department of Biological SciencesCenter for Human Health and the EnvironmentNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Brie S. Jones
- Department of Biological SciencesCenter for Human Health and the EnvironmentNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Evan Walsh
- Department of Biological SciencesCenter for Human Health and the EnvironmentNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Jesse Tehrani
- Department of Biological SciencesCenter for Human Health and the EnvironmentNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Vicmarie Marrero‐Colon
- Department of Biological SciencesCenter for Human Health and the EnvironmentNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Sanya Mehta
- Department of Biological SciencesCenter for Human Health and the EnvironmentNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Dereje D. Jima
- Department of Biological SciencesCenter for Human Health and the EnvironmentNorth Carolina State UniversityRaleighNorth CarolinaUSA
- Bioinformatics Research CenterNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Seh Hoon Oh
- Department of MedicineDuke UniversityDurhamNorth CarolinaUSA
| | - Anna Mae Diehl
- Department of MedicineDuke UniversityDurhamNorth CarolinaUSA
| | - Tiffany Fougeray
- UMR 1331Institut National de la Recherche AgronomiqueToxalim (Research Center in Food Toxicology)ToulouseFrance
| | - Hervé Guillou
- UMR 1331Institut National de la Recherche AgronomiqueToxalim (Research Center in Food Toxicology)ToulouseFrance
| | - Michael Cowley
- Department of Biological SciencesCenter for Human Health and the EnvironmentNorth Carolina State UniversityRaleighNorth CarolinaUSA
| |
Collapse
|
31
|
Palao N, Sequera C, Cuesta ÁM, Baquero C, Bragado P, Gutierrez-Uzquiza A, Sánchez A, Guerrero C, Porras A. C3G down-regulation enhances pro-migratory and stemness properties of oval cells by promoting an epithelial-mesenchymal-like process. Int J Biol Sci 2022; 18:5873-5884. [PMID: 36263169 PMCID: PMC9576514 DOI: 10.7150/ijbs.73192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/11/2022] [Indexed: 01/12/2023] Open
Abstract
Previous data indicate that C3G (RapGEF1) main isoform is highly expressed in liver progenitor cells (or oval cells) compared to adult mature hepatocytes, suggesting it may play an important role in oval cell biology. Hence, we have explored C3G function in the regulation of oval cell properties by permanent gene silencing using shRNAs. We found that C3G knock-down enhanced migratory and invasive ability of oval cells by promoting a partial epithelial to mesenchymal transition (EMT). This is likely mediated by upregulation of mRNA expression of the EMT-inducing transcription factors, Snail1, Zeb1 and Zeb2, induced in C3G-silenced oval cells. This EMT is associated to a higher expression of the stemness markers, CD133 and CD44. Moreover, C3G down-regulation increased oval cells clonogenic capacity by enhancing cell scattering. However, C3G knock-down did not impair oval cell differentiation into hepatocyte lineage. Mechanistic studies revealed that HGF/MET signaling and its pro-invasive activity was impaired in oval cells with low levels of C3G, while TGF-β signaling was increased. Altogether, these data suggest that C3G might be tightly regulated to ensure liver repair in chronic liver diseases such as non-alcoholic steatohepatitis. Hence, reduced C3G levels could facilitate oval cell expansion, after the proliferation peak, by enhancing migration.
Collapse
Affiliation(s)
- Nerea Palao
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid; 28040 Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Celia Sequera
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid; 28040 Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain.,Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), Turing Center for Living Systems, Parc Scientifique de Luminy, 13009 Marseille, France
| | - Ángel M Cuesta
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid; 28040 Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Cristina Baquero
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid; 28040 Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Paloma Bragado
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid; 28040 Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Alvaro Gutierrez-Uzquiza
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid; 28040 Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Aránzazu Sánchez
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid; 28040 Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Carmen Guerrero
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, 37007 Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain.,Departamento de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain.,✉ Corresponding authors: A. Porras, Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, UCM, Ciudad Universitaria, Madrid, Spain. Tel.: +34 913941627; E-mail: . Co-correspondence: C. Guerrero, Centro de Investigación del Cáncer, Campus Unamuno s/n, Salamanca, Spain. Tel.: +34 923294801; Fax.: +34 923294795; e-mail:
| | - Almudena Porras
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid; 28040 Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain.,✉ Corresponding authors: A. Porras, Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, UCM, Ciudad Universitaria, Madrid, Spain. Tel.: +34 913941627; E-mail: . Co-correspondence: C. Guerrero, Centro de Investigación del Cáncer, Campus Unamuno s/n, Salamanca, Spain. Tel.: +34 923294801; Fax.: +34 923294795; e-mail:
| |
Collapse
|
32
|
Lin C, Xing J, Jiang Z, Sun L, Gao Y, Yang S, Wang D, Yin N. Tanshinone IIA Inhibits Liver Fibrosis by Regulating COL1A1 Expression Through H19 /let-7a in Mice. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221123698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Liver fibrosis is a serious health problem and may lead to advanced liver cirrhosis and hepatocellular carcinoma if left untreated. In this study, a mouse liver fibrosis model was established by the administration of 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC), and tanshinone IIA. Salvia miltiorrhiza Bunge extract, shown to play a regulatory role in liver fibrosis, was administered to study its effect on the expression of COL1A1. Mice were divided into 3 groups, control (Con), model (DDC), and drug administration (DDC-Tan) groups, and were subjected to the respective treatment for 2 months. Following treatment, the degree of liver fibrosis in mice in each group was determined. Alanine aminotransferase (ALT), aspartate aminotransferase (AST), bilirubin, and albumin levels in mice were determined using enzyme-linked immunosorbent assay (ELISA). Mouse liver tissues were used for hematoxylin-eosin and immunohistochemical staining. ELISA results showed that treatment with tanshinone IIA inhibited the expression of ALT, AST, and bilirubin in the DDC-Tan group compared with the DDC group. Hematoxylin-eosin, Sirius red, and α-SMA staining showed that liver injury was delayed in the DDC-Tan group. Immunohistochemistry, quantitative polymerase chain reaction, and Western blot results showed that COL1A1 expression was reduced after tanshinone IIA treatment. Moreover, the bioinformatic analysis indicated that let-7a targets COL1A1, and H19 regulates let-7a expression. The quantitative polymerase chain reaction and Western blot results confirmed that the H19/let-7a axis regulates COL1A1 expression. Thus, tanshinone IIA inhibited liver fibrosis by regulating COL1A1 expression through the H19/let-7a axis in mice.
Collapse
Affiliation(s)
- Chao Lin
- Grain College, Jilin Business and Technology College, Changchun, China
| | - Jianming Xing
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Ziping Jiang
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun, China
| | - Liqun Sun
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun, China
| | - Yongjian Gao
- Department of Hepatobiliary and Pancreas Surgery, China–Japan Union Hospital of Jilin University, Changchun, China
| | - Shuo Yang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Ning Yin
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| |
Collapse
|
33
|
Liu C, Hou X, Mo K, Li N, An C, Liu G, Pan Z. Serum non-coding RNAs for diagnosis and stage of liver fibrosis. J Clin Lab Anal 2022; 36:e24658. [PMID: 35989522 PMCID: PMC9550980 DOI: 10.1002/jcla.24658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/01/2022] [Accepted: 08/02/2022] [Indexed: 11/24/2022] Open
Abstract
Background All chronic liver diseases could lead to liver fibrosis. Accurate diagnosis and stage of fibrosis were important for the medical determination, management, and therapy. Liver biopsy was considered to be the gold criteria of fibrosis diagnosis. However, liver biopsy was an invasive method with some drawbacks. Non‐invasive tests for liver fibrosis included radiologic method and serum‐based test. Radiologic examination was influenced by obesity, cost, and availability. Serum‐based test was widely used in the screening and diagnostic of liver fibrosis. However, the accuracy was still needed to be improved. Methods Recent studies showed serum non‐coding RNAs: microRNA, long non‐coding RNA(lncRNA), and circular RNA(circRNA), which have the potentiality to be non‐invasive markers for liver fibrosis. The recent progress was summarized in this review. Results These studies showed serum non‐coding RNAs exerted a good diagnostic performance for liver fibrosis. A panel that included several non‐coding RNAs could increase the accuracy of single marker. Conclusions Serum microRNAs, lncRNAs, and circRNAs could be potential non‐invasive markers for diagnosis and stage of liver fibrosis. More high‐quality clinical study is needed for further research.
Collapse
Affiliation(s)
- Chao Liu
- Clinical Laboratory, Guang'anmen HospitalChina Academy of Chinese Medical SciencesBeijingChina
| | - Xueyun Hou
- Clinical Laboratory, Guang'anmen HospitalChina Academy of Chinese Medical SciencesBeijingChina
| | - Kaixin Mo
- Clinical Laboratory, Shandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
| | - Nannan Li
- Clinical Laboratory, Guang'anmen HospitalChina Academy of Chinese Medical SciencesBeijingChina
| | - Cheng An
- Clinical Laboratory, Guang'anmen HospitalChina Academy of Chinese Medical SciencesBeijingChina
| | - Guijian Liu
- Clinical Laboratory, Guang'anmen HospitalChina Academy of Chinese Medical SciencesBeijingChina
| | - Zongdai Pan
- Clinical Laboratory, Guang'anmen HospitalChina Academy of Chinese Medical SciencesBeijingChina
| |
Collapse
|
34
|
Xiong L, Sun Y, Huang J, Ma P, Wang X, Wang J, Chen B, Chen J, Huang M, Huang S, Liu Y. Long Non-Coding RNA H19 Prevents Lens Fibrosis through Maintaining Lens Epithelial Cell Phenotypes. Cells 2022; 11:cells11162559. [PMID: 36010635 PMCID: PMC9406623 DOI: 10.3390/cells11162559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 12/02/2022] Open
Abstract
The integrity of lens epithelial cells (LECs) lays the foundation for lens function and transparency. By contrast, epithelial-mesenchymal transition (EMT) of LECs leads to lens fibrosis, such as anterior subcapsular cataracts (ASC) and fibrotic forms of posterior capsule opacification (PCO). However, the underlying mechanisms remain unclear. Here, we aimed to explore the role of long non-coding RNA (lncRNA) H19 in regulating TGF-β2-induced EMT during lens fibrosis, revealing a novel lncRNA-based regulatory mechanism. In this work, we identified that lncRNA H19 was highly expressed in LECs, but downregulated by exposure to TGF-β2. In both human lens epithelial explants and SRA01/04 cells, knockdown of H19 aggravated TGF-β2-induced EMT, while overexpressing H19 partially reversed EMT and restored lens epithelial phenotypes. Semi-in vivo whole lens culture and H19 knockout mice demonstrated the indispensable role of H19 in sustaining lens clarity through maintaining LEC features. Bioinformatic analyses further implied a potential H19-centered regulatory mechanism via Smad-dependent pathways, confirmed by in vitro experiments. In conclusion, we uncovered a novel role of H19 in inhibiting TGF-β2-induced EMT of the lens by suppressing Smad-dependent signaling, providing potential therapeutic targets for treating lens fibrosis.
Collapse
|
35
|
Yang G, Li S, Jin J, Xuan Y, Ding L, Huang M, Liu J, Wang B, Lan T. Protective effects of Longhu Rendan on chronic liver injury and fibrosis in mice. LIVER RESEARCH (BEIJING, CHINA) 2022; 6:93-102. [PMID: 39958622 PMCID: PMC11791823 DOI: 10.1016/j.livres.2021.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 04/01/2021] [Accepted: 05/06/2021] [Indexed: 02/16/2023]
Abstract
Background and aim Liver fibrosis resulting from persistent liver injury represents a major healthcare problem globally. Traditional Chinese medicine has played an essential role in the treatment of liver fibrosis in recent years. Thus, this study aims to assess the effect of Longhu Rendan (LHRD), a Chinese traditional patent medicine, on liver fibrosis and its potential mechanism. Methods The liver fibrosis in mice was induced via the intraperitoneal injection of carbon tetrachloride (CCl4) for 6 weeks or bile duct ligation for 15 days. Various methods were used to judge the therapeutic effect of LHRD. Results LHRD significantly suppressed the activity of serum index of abnormal liver function, liver cell apoptosis, and necrosis, attenuating liver injury. Moreover, LHRD treatment alleviated liver fibrotic features, such as the reduction of collagen deposition and hepatic stellate cell activation as well as profibrotic gene expression. Mechanistically, LHRD treatment inhibited nuclear transcription factor-kappa B signaling and inflammatory gene expression and diminished the production of reactive oxygen species and 4-hydroxynonenal, along with the downregulation of NADPH oxidase 4. Conclusions Overall, the present study demonstrates that LHRD ameliorates liver injury and fibrosis via the inhibition of inflammation and oxidative stress in mice, indicating that LHRD is a potential medicine for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Guizhi Yang
- Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Shengwen Li
- Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Jiahua Jin
- Shanghai Zhonghua Pharmaceutical Co., Ltd., Shanghai, China
| | - Yuanyuan Xuan
- Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Liqin Ding
- Shanghai Zhonghua Pharmaceutical Co., Ltd., Shanghai, China
| | - Minxia Huang
- Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Jun Liu
- Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Biye Wang
- Shanghai Zhonghua Pharmaceutical Co., Ltd., Shanghai, China
| | - Tian Lan
- Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| |
Collapse
|
36
|
Conner MM, Parker HV, Falcone DR, Chung G, Schaner Tooley CE. Novel regulation of the transcription factor ZHX2 by N-terminal methylation. Transcription 2022; 13:1-15. [PMID: 35613330 DOI: 10.1080/21541264.2022.2079184] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
N-terminal methylation (Nα-methylation) by the methyltransferase NRMT1 is an important post-translational modification that regulates protein-DNA interactions. Accordingly, its loss impairs functions that are reliant on such interactions, including DNA repair and transcriptional regulation. The global loss of Nα-methylation results in severe developmental and premature aging phenotypes, but given over 300 predicted substrates, it is hard to discern which physiological substrates contribute to each phenotype. One of the most striking phenotypes in NRMT1 knockout (Nrmt1-/-) mice is early liver degeneration. To identify the disrupted signaling pathways leading to this phenotype and the NRMT1 substrates involved, we performed RNA-sequencing analysis of control and Nrmt1-/- adult mouse livers. We found both a significant upregulation of transcripts in the cytochrome P450 (CYP) family and downregulation of transcripts in the major urinary protein (MUP) family. Interestingly, transcription of both families is inversely regulated by the transcription factor zinc fingers and homeoboxes 2 (ZHX2). ZHX2 contains a non-canonical NRMT1 consensus sequence, indicating that its function could be directly regulated by Nα-methylation. We confirmed misregulation of CYP and MUP mRNA and protein levels in Nrmt1-/- livers and verified NRMT1 can methylate ZHX2 in vitro. In addition, we used a mutant of ZHX2 that cannot be methylated to directly demonstrate Nα-methylation promotes ZHX2 transcription factor activity and target promoter occupancy. Finally, we show Nrmt1-/- mice also exhibit early postnatal de-repression of ZHX2 targets involved in fetal liver development. Taken together, these data implicate ZHX2 misregulation as a driving force behind the liver phenotype seen in Nrmt1-/- mice.
Collapse
Affiliation(s)
- Meghan M Conner
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Haley V Parker
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Daniela R Falcone
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Gehoon Chung
- Department of Oral Physiology and Program in Neurobiology, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Christine E Schaner Tooley
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|
37
|
LncRNA MAFG-AS1 promotes the malignant phenotype of ovarian cancer by upregulating NFKB1-dependent IGF1. Cancer Gene Ther 2022; 29:277-291. [PMID: 34035482 DOI: 10.1038/s41417-021-00306-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 01/24/2021] [Accepted: 02/03/2021] [Indexed: 02/04/2023]
Abstract
Long non-coding RNAs (lncRNAs) were recently recognized to vitally function in a variety of cancer cellular events, including epithelial-mesenchymal transition (EMT), invasion, and migration, particularly in ovarian cancer (OC). Herein, we sought to investigate the potential role of MAFG-AS1 in the malignant behaviors of OC cells. The binding affinity between MAFG-AS1, miR-339-5p, NFKB1 or IGF1 was characterized so as to identify the underlying mechanism of corresponding their interactions. We conducted MAFG-AS1 overexpression or knockdown along with NFKB1 and IGF1 silencing to examine their effects on the EMT, migration, and invasion of OC cells. Tumors were xenografted in nude mice to validate the in vitro findings. Our data showed significantly high expression pattern of MAFG-AS1 in the OC tissues and cells. Further mechanistic investigations revealed that MAFG-AS1 upregulated the IGF1 expression pattern through recruitment of NFKB1, whereas MAFG-AS1 upregulated the NFKB1 expression pattern through binding to miR-339-5p. Thus, MAFG-AS1 overexpression accelerated the EMT, invasion, and migration of OC cells, which could be annulled by silencing of IGF1 or NFKB1. Besides, our in vitro findings were successfully recapitulated in the xenograft mice. These results determined that MAFG-AS1 stimulated the OC malignant progression by upregulating the NFKB1-mediated IGF1 via miR-339-5p, thus highlighting a novel potential therapeutic target against OC.
Collapse
|
38
|
Xu F, Zhong JY, Guo B, Lin X, Wu F, Li FXZ, Shan SK, Zheng MH, Wang Y, Xu QS, Lei LM, Tan CM, Liao XB, Yuan LQ. H19 Promotes Osteoblastic Transition by Acting as ceRNA of miR-140-5p in Vascular Smooth Muscle Cells. Front Cell Dev Biol 2022; 10:774363. [PMID: 35198556 PMCID: PMC8859097 DOI: 10.3389/fcell.2022.774363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/07/2022] [Indexed: 11/27/2022] Open
Abstract
Arterial medial calcification is a common disease in patients with type 2 diabetes, end-stage renal disease and hypertension, resulting in high incidence and mortality of cardiovascular event. H19 has been demonstrated to be involved in cardiovascular diseases like aortic valve diseases. However, role of H19 in arterial medial calcification remains largely unknown. We identified that H19 was upregulated in ß-glycerophosphate (β-GP) induced vascular smooth muscle cells (VSMCs), a cellular calcification model in vitro. Overexpression of H19 potentiated while knockdown of H19 inhibited osteogenic differentiation of VSMCs, as demonstrated by changes of osteogenic genes Runx2 and ALP as well as ALP activity. Notably, H19 interacted with miR-140-5p directly, as demonstrated by luciferase report system and RIP analysis. Mechanistically, miR-140-5p attenuated osteoblastic differentiation of VSMCs by targeting Satb2 and overexpression of miR-140-5p blocked H19 induced elevation of Satb2 as well as the promotion of osteoblastic differentiation of VSMCs. Interestingly, over-expression of Satb2 induced phosphorylation of ERK1/2 and p38MAPK. In conclusion, H19 promotes VSMC calcification by acting as competing endogenous RNA of miR-140-5p and at least partially by activating Satb2-induced ERK1/2 and p38MAPK signaling.
Collapse
Affiliation(s)
- Feng Xu
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jia-Yu Zhong
- Department of Nuclear Medicine, Xiangya Hospital of Central South University, Changsha, China
| | - Bei Guo
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiao Lin
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Feng Wu
- Department of Pathology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Fu-Xing-Zi Li
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Su-Kang Shan
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ming-Hui Zheng
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yi Wang
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qiu-Shuang Xu
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Li-Min Lei
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Chang-Ming Tan
- Department of Cardiothoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiao-Bo Liao
- Department of Cardiothoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Ling-Qing Yuan, ; Xiao-Bo Liao,
| | - Ling-Qing Yuan
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Ling-Qing Yuan, ; Xiao-Bo Liao,
| |
Collapse
|
39
|
Song Y, Tran M, Wang L, Shin DJ, Wu J. MiR-200c-3p targets SESN1 and represses the IL-6/AKT loop to prevent cholangiocyte activation and cholestatic liver fibrosis. J Transl Med 2022; 102:485-493. [PMID: 34880414 PMCID: PMC9042705 DOI: 10.1038/s41374-021-00710-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 01/06/2023] Open
Abstract
Cholestasis causes ductular reaction in the liver where the reactive cholangiocytes not only proliferate but also gain a neuroendocrine-like phenotype, leading to inflammatory cell infiltration and extracellular matrix deposition and contributing to the development and progression of cholestatic liver fibrosis. This study aims to elucidate the role of miR-200c in cholestasis-induced biliary liver fibrosis and cholangiocyte activation. We found that miR-200c was extremely abundant in cholangiocytes but was reduced by cholestasis in a bile duct ligation (BDL) mouse model; miR-200c was also decreased by bile acids in vitro. Phenotypically, loss of miR-200c exacerbated cholestatic liver injury, including periductular fibrosis, intrahepatic inflammation, and biliary hyperplasia in both the BDL model and the 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) model. We identified sestrin 1 (SESN1) as a target of miR-200c. Sesn1-/--BDL mice showed mitigation of cholestatic liver injury. On a molecular level, the pro-proliferative IL-6/AKT feedback loop was activated in Mir200c-/- livers but was inhibited in Sesn1-/- livers upon cholestasis in mice. Furthermore, rescuing expression of miR-200c by the adeno-associated virus serotype 8 ameliorated BDL-induced liver injury in Mir200c-/- mice. Taken together, this study demonstrates that miR-200c restrains the proliferative and neuroendocrine-like activation of cholangiocytes by targeting SESN1 and inhibiting the IL-6/AKT feedback loop to protect against cholestatic liver fibrosis. Our findings provide mechanistic insights regarding biliary liver fibrosis, which may help to reveal novel therapeutic targets for the treatment of cholestatic liver injury and liver fibrosis.
Collapse
Affiliation(s)
- Yongfeng Song
- grid.63054.340000 0001 0860 4915Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT USA ,grid.460018.b0000 0004 1769 9639Department of Endocrinology and Metabolism, Shandong Provincial Hospital affiliated to Shandong First Medical University, Shandong Institute of Endocrinology & Metabolism, Shandong, China
| | - Melanie Tran
- grid.63054.340000 0001 0860 4915Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT USA
| | - Li Wang
- Independent Researcher, Tucson, AZ USA
| | - Dong-Ju Shin
- grid.63054.340000 0001 0860 4915Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT USA
| | - Jianguo Wu
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA. .,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
40
|
Bioinformatics-Based Analysis of lncRNA-mRNA Interaction Network of Mild Hepatic Encephalopathy in Cirrhosis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:7777699. [PMID: 34938356 PMCID: PMC8687767 DOI: 10.1155/2021/7777699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/23/2021] [Indexed: 12/14/2022]
Abstract
Backgrounds Serum long noncoding RNAs (lncRNAs) and messenger RNAs (mRNAs) interaction network was discovered to exert an important role in liver cirrhosis while little is known in mild hepatic encephalopathy (MHE). Therefore, we aim to systematically evaluate the serum lncRNA-mRNA network and its regulatory mechanism in MHE. Methods The data of serum mRNAs and lncRNAs were derived from the Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) were calculated between 11 cirrhotic patients with and without MHE. Next, the biological functions and underlined pathways of DEGs were determined through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. Finally, an interactive network between lncRNAs and mRNAs was built, and hub genes were identified, respectively. Results A total of 64 differentially expressed lncRNAs (dif-lncRNAs) were found between patients with and without MHE, including 30 up- and 34 downregulated genes. 187 differentially expressed mRNAs (dif-mRNAs) were identified, including 84 up- and 103 downregulated genes. Functional enrichment analysis suggested that the regulatory pathways involved in MHE mainly consisted of a series of immune and inflammatory responses. Several hub mRNAs involved in regulatory network were identified, including CCL5, CCR5, CXCR3, CD274, STAT1, CXCR6, and EOMES. In addition, lnc-FAM84B-8 and lnc-SAMD3-1 were found to regulate these above hub genes through building a lncRNA-mRNA network. Conclusion This is the first study to construct the serum lncRNA-mRNA network in MHE, demonstrating the critical role of lncRNAs in regulating inflammatory and immunological profiles in the developing of MHE, suggesting a latent mechanism in this pathophysiological process.
Collapse
|
41
|
Wu B, Zhang Y, Yu Y, Zhong C, Lang Q, Liang Z, Lv C, Xu F, Tian Y. Long Noncoding RNA H19: A Novel Therapeutic Target Emerging in Oncology Via Regulating Oncogenic Signaling Pathways. Front Cell Dev Biol 2021; 9:796740. [PMID: 34977037 PMCID: PMC8716783 DOI: 10.3389/fcell.2021.796740] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 11/24/2021] [Indexed: 12/24/2022] Open
Abstract
Long noncoding RNA H19 (H19) is an imprinting gene with only maternal expression that is involved in regulating different processes in various types of cells. Previous studies have shown that abnormal H19 expression is involved in many pathological processes, such as cancer, mainly through sponging miRNAs, interacting with proteins, or regulating epigenetic modifications. Accumulating evidence has shown that several oncogenic signaling pathways lead to carcinogenesis. Recently, the regulatory relationship between H19 and oncogenic signaling pathways in various types of cancer has been of great interest to many researchers. In this review, we discussed the key roles of H19 in cancer development and progression via its regulatory function in several oncogenic signaling pathways, such as PI3K/Akt, canonical Wnt/β-catenin, canonical NF-κB, MAPK, JAK/STAT and apoptosis. These oncogenic signaling pathways regulated by H19 are involved in cell proliferation, proliferation, migration and invasion, angiogenesis, and apoptosis of various cancer cells. This review suggests that H19 may be a novel therapeutic target for cancers treatment by regulating oncogenic signaling pathways.
Collapse
Affiliation(s)
- Baokang Wu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yizhou Zhang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yang Yu
- Department of Surgery, Jinzhou Medical University, Jinzhou, China
| | - Chongli Zhong
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qi Lang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhiyun Liang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chao Lv
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Feng Xu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
42
|
Wang Z, Yang X, Gui S, Yang F, Cao Z, Cheng R, Xia X, Li C. The Roles and Mechanisms of lncRNAs in Liver Fibrosis. Front Pharmacol 2021; 12:779606. [PMID: 34899344 PMCID: PMC8652206 DOI: 10.3389/fphar.2021.779606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) can potentially regulate all aspects of cellular activity including differentiation and development, metabolism, proliferation, apoptosis, and activation, and benefited from advances in transcriptomic and genomic research techniques and database management technologies, its functions and mechanisms in physiological and pathological states have been widely reported. Liver fibrosis is typically characterized by a reversible wound healing response, often accompanied by an excessive accumulation of extracellular matrix. In recent years, a range of lncRNAs have been investigated and found to be involved in several cellular-level regulatory processes as competing endogenous RNAs (ceRNAs) that play an important role in the development of liver fibrosis. A variety of lncRNAs have also been shown to contribute to the altered cell cycle, proliferation profile associated with the accelerated development of liver fibrosis. This review aims to discuss the functions and mechanisms of lncRNAs in the development and regression of liver fibrosis, to explore the major lncRNAs involved in the signaling pathways regulating liver fibrosis, to elucidate the mechanisms mediated by lncRNA dysregulation and to provide new diagnostic and therapeutic strategies for liver fibrosis.
Collapse
Affiliation(s)
- Zhifa Wang
- Department of Rehabilitation Medicine, Chaohu Hospital of Anhui Medical University, Hefei Anhui, China
| | - Xiaoke Yang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Siyu Gui
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fan Yang
- The First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Zhuo Cao
- The First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Rong Cheng
- Department of Gastroenterology, Anhui Provincial Children's Hospital, Hefei, China
| | - Xiaowei Xia
- Department of Gastroenterology, Anhui Provincial Children's Hospital, Hefei, China
| | - Chuanying Li
- Department of Gastroenterology, Anhui Provincial Children's Hospital, Hefei, China
| |
Collapse
|
43
|
Wang Y, Hylemon PB, Zhou H. Long Noncoding RNA H19: A Key Player in Liver Diseases. Hepatology 2021; 74:1652-1659. [PMID: 33630308 PMCID: PMC10071419 DOI: 10.1002/hep.31765] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/21/2021] [Accepted: 01/27/2021] [Indexed: 12/12/2022]
Affiliation(s)
- Yanyan Wang
- Department of Microbiology and Immunology, Medical College of Virginia and McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, VA
| | - Phillip B Hylemon
- Department of Microbiology and Immunology, Medical College of Virginia and McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, VA
| | - Huiping Zhou
- Department of Microbiology and Immunology, Medical College of Virginia and McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, VA
| |
Collapse
|
44
|
DiStefano JK, Gerhard GS. Long Noncoding RNAs and Human Liver Disease. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2021; 17:1-21. [PMID: 34416820 DOI: 10.1146/annurev-pathol-042320-115255] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Long noncoding RNAs (lncRNAs) are pervasively transcribed in the genome, exhibit a diverse range of biological functions, and exert effects through a variety of mechanisms. The sheer number of lncRNAs in the human genome has raised important questions about their potential biological significance and roles in human health and disease. Technological and computational advances have enabled functional annotation of a large number of lncRNAs. Though the number of publications related to lncRNAs has escalated in recent years, relatively few have focused on those involved in hepatic physiology and pathology. We provide an overview of evolving lncRNA classification systems and characteristics and highlight important advances in our understanding of the contribution of lncRNAs to liver disease, with a focus on nonalcoholic steatohepatitis, hepatocellular carcinoma, and cholestatic liver disease. Expected final online publication date for the Annual Review of Pathology: Mechanisms of Disease, Volume 17 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Johanna K DiStefano
- Diabetes and Fibrotic Disease Research Unit, Translational Genomics Research Institute, Phoenix, Arizona 85004, USA;
| | - Glenn S Gerhard
- Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, USA;
| |
Collapse
|
45
|
Bi C, Wang G. LINC00472 suppressed by ZEB1 regulates the miR-23a-3p/FOXO3/BID axis to inhibit the progression of pancreatic cancer. J Cell Mol Med 2021; 25:8312-8328. [PMID: 34363438 PMCID: PMC8419165 DOI: 10.1111/jcmm.16784] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 06/03/2021] [Accepted: 06/11/2021] [Indexed: 12/24/2022] Open
Abstract
The tumour-suppressive role of LINC00472 has been extensively reported in various human cancers such as lung, colon and ovarian cancers, yet its function in pancreatic cancer remains unidentified. Here, the current research aimed to explore the role and regulatory axis mediated by LINC00472 in the progression of pancreatic cancer. RT-qPCR was adopted to determine LINC00472 expression in the harvested pancreatic cancer tissues and adjacent normal tissues. Loss-of-function and gain-of-function experiments were performed to examine the effects of LINC00472 on proliferation and apoptosis in vitro and tumorigenesis in vivo. Immunoblotting was performed to detect the expression of several proliferation and apoptosis-related proteins. Bioinformatic analysis, dual-luciferase reporter assay and RNA pull-down were conducted to profile the relationships between LINC00472 and miR-23a-3p, between miR-23a-3p and FOXO3 and between FOXO3 and BID. The LINC00472 expression was down-regulated by ZEB1 in the pancreatic cancer cells and tissues. LINC00472 could competitively bind to miR-23a-3p to enhance the expression of FOXO3, which consequently could promote the BID expression, thereby suppressing proliferation and promoting the apoptosis of pancreatic cancer cells. Meanwhile, the inhibitory role of LINC00472 in tumorigenesis was validated in vivo, and the LINC00472-mediated miR-23a-3p/FOXO3/BID axis was also demonstrated in the nude mouse tumour formation model. The study substantiated the antitumour activity of LINC00472 in pancreatic cancer and proposed a regulatory axis in which LINC00472 competitively binds to miR-23a-3p to enhance the FOXO3 expression and promote BID expression. Consequently, these findings provide theoretical basis for developing potential targets for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Cong Bi
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Gang Wang
- Interventional Department, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
46
|
Wang C, Deng J, Deng H, Kang Z, Huang Z, Ding Z, Dong L, Chen J, Zhang J, Zang Y. A Novel Sox9/lncRNA H19 Axis Contributes to Hepatocyte Death and Liver Fibrosis. Toxicol Sci 2021; 177:214-225. [PMID: 32579217 DOI: 10.1093/toxsci/kfaa097] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Sox9 has been previously characterized as a transcription factor responsible for the extracellular matrix production during liver fibrosis. However, the deregulation and functional role of hepatocyte Sox9 in the progression of liver fibrosis remains elusive. Here, we found a significant increase of Sox9 in the hepatocytes isolated from CCl4-induced fibrotic liver and showed that antisense oligoribonucleotides depletion of Sox9 was sufficient to attenuate CCl4-induced liver fibrosis. Notably, the increase of Sox9 in hepatocyte was associated with the upregulation of long noncoding RNA H19 in both in vitro and in vivo systems. Mechanistic studies revealed that Sox9 induced H19 by binding to a conserved promoter region of H19. In vitro, hepatocyte injury triggered the increase of Sox9/H19 axis, whereas silence of H19 greatly alleviated the H2O2-induced hepatocyte apoptosis, suggesting that H19 functions as a downstream effector of Sox9 signaling and is involved in hepatocyte apoptosis. In animal experiments, inhibition of H19 alleviated the activation of hepatic stellate cells and reduced the extent of liver fibrosis, whereas ectopic expression of H19 abolished the inhibitory effects of Sox9 depletion on liver fibrosis, suggesting that the profibrotic effect of hepatocyte Sox9 depends on H19. Finally, we investigated the clinical relevance of Sox9/H19 axis to liver fibrosis and identified the increase of Sox9/H19 axis in liver cirrhosis patients. In conclusion, our findings link Sox9/H19 axis to the intrinsic mechanisms of hepatocyte apoptosis and may represent a hitherto unknown paradigm in hepatocyte injury associated with the progression of liver fibrosis.
Collapse
Affiliation(s)
- Chenqi Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University
| | - Jia Deng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University
| | - Hao Deng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University
| | - Zhiqian Kang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University
| | - Zhen Huang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University
| | - Zhi Ding
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University
| | - Lei Dong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University
| | - Jiangning Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University.,State Key Laboratory of Analytical Chemistry for Life Sciences and Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing 210093, P.R. China
| | - Junfeng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University
| | - Yuhui Zang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University
| |
Collapse
|
47
|
Hernández-Aguilar AI, Luciano-Villa CA, Tello-Flores VA, Beltrán-Anaya FO, Zubillaga-Guerrero MI, Flores-Alfaro E. Dysregulation of lncRNA-H19 in cardiometabolic diseases and the molecular mechanism involved : a systematic review. Expert Rev Mol Diagn 2021; 21:809-821. [PMID: 34133256 DOI: 10.1080/14737159.2021.1944808] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Cardiometabolic diseases are a global public health problem, with significant increases in their prevalence. Different epigenetic factors involved in the progression of metabolic alterations have been described, such as long non-coding RNAs (lncRNAs). H19 is a multifunctional lncRNA expressed from the maternal allele, with low expression after birth, except in the skeletal muscle and heart. Recent studies have linked its dysregulation to alterations in cell metabolism.Areas covered: H19 plays a role in the pathogenesis of coronary artery disease, nonalcoholic fatty liver disease, hepatic and renal fibrosis, insulin resistance, type 2 diabetes, and inflammation. H19 acts mainly as a competitive endogenous RNA of molecules involved in pathways that regulate cell metabolism. In this review, we analyzed the dysregulation of H19 in cardiometabolic diseases and its relationship with molecular alterations in different signaling pathways.Expert opinion: The association of H19 with the development of cardiometabolic diseases, indicates that H19 could be a therapeutic target and prognostic biomarker for these diseases. Controversies have been reported regarding the expression of H19 in some metabolic diseases, therefore, it is necessary to continue research to clarify its pathogenic effect in different organs.
Collapse
Affiliation(s)
- Ana Iris Hernández-Aguilar
- Faculty of Chemical‑Biological Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, Mexico
| | | | | | - Fredy Omar Beltrán-Anaya
- Faculty of Chemical‑Biological Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, Mexico
| | | | - Eugenia Flores-Alfaro
- Faculty of Chemical‑Biological Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, Mexico
| |
Collapse
|
48
|
Lin J, Luo Z, Liu S, Chen Q, Liu S, Chen J. Long non-coding RNA H19 promotes myoblast fibrogenesis via regulating the miR-20a-5p-Tgfbr2 axis. Clin Exp Pharmacol Physiol 2021; 48:921-931. [PMID: 33615521 DOI: 10.1111/1440-1681.13489] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/13/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023]
Abstract
Emerging evidence has indicated long non-coding RNAs (lncRNAs) play important roles in diverse biological processes, including fibrosis. Here, we report that lncRNA H19 is able to promote skeletal muscle fibrosis. lnc-H19 was identified to be highly expressed in skeletal muscle fibrosis in vivo and in vitro; while lnc-H19 knockdown attenuated fibrosis in vitro. The knockdown of lnc-H19 was proved to inhibit the activation of the TGFβ/Smad pathway in C2C12 myoblasts by sponging miR-20a-5p to regulate Tgfbr2 expression through the competing endogenous RNA function. Our study elucidates the roles of the lnc-H19-miR-20a-5p-Tgfbr2 axis in regulating the TGFβ/Smad pathway of myoblast fibrogenesis, which might provide a promising therapeutic target for skeletal muscle fibrosis.
Collapse
Affiliation(s)
- Jinrong Lin
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhiwen Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Shaohua Liu
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Qingyan Chen
- Biology Department, Boston University, Boston, MA, USA
| | - Siyang Liu
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiwu Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
49
|
Integrated Analysis of Long Noncoding RNA Expression Profiles in Acute-on-Chronic Liver Failure. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5387856. [PMID: 34104647 PMCID: PMC8158414 DOI: 10.1155/2021/5387856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 03/10/2021] [Accepted: 04/26/2021] [Indexed: 12/18/2022]
Abstract
People infected with chronic hepatitis B virus (HBV) might progress to acute-on-chronic liver failure (ACLF) with a high fatality rate. Long noncoding RNAs (lncRNAs) are involved in human diseases, but it is unknown whether lncRNAs are involved in the progression of chronic HBV infection to ACLF. Hence, this study is aimed at systemically identifying and characterizing the landscape and the molecular mechanism of lncRNAs in the pathogenesis of chronic HBV infection progress to ACLF. RNA sequencing (RNA-Seq) of peripheral blood samples from 5 ACLF and 5 HBV infection patients was performed. We detected 9733 lncRNAs, including 406 annotated lncRNAs and 9327 novel lncRNAs. A total of 407 lncRNAs were found to be significantly dysregulated in the patients with ACLF as compared with those in the chronic HBV infection patients. The flanking protein-coding genes of differentially expressed lncRNAs were enriched with pathways that might contribute to the pathogenesis of ACLF, such as the WNT signaling pathway. Furthermore, 9 selected differentially expressed lncRNAs validated by the qRT-PCR, showing that the expression patterns of these 9 lncRNAs were consistent with the RNA-Seq data. Four selected differentially expressed lncRNAs were also validated in another patient cohort comprising 80 patients with ACLF and 65 patients with chronic HBV infection. Aberrant lncRNAs might be used to develop novel diagnostic biomarkers or drug targets for ACLF.
Collapse
|
50
|
Wu J, Nagy LE, Wang L. The long and the small collide: LncRNAs and small heterodimer partner (SHP) in liver disease. Mol Cell Endocrinol 2021; 528:111262. [PMID: 33781837 PMCID: PMC8087644 DOI: 10.1016/j.mce.2021.111262] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 02/08/2023]
Abstract
Long non-coding RNAs (lncRNAs) are a large and diverse class of RNA molecules that are transcribed but not translated into proteins, with a length of more than 200 nucleotides. LncRNAs are involved in gene expression and regulation. The abnormal expression of lncRNAs is associated with disease pathogenesis. Small heterodimer partner (SHP, NR0B2) is a unique orphan nuclear receptor that plays a pivotal role in many biological processes by acting as a transcriptional repressor. In this review, we present the critical roles of SHP and summarize recent findings demonstrating the regulation between lncRNAs and SHP in liver disease.
Collapse
Affiliation(s)
- Jianguo Wu
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA.
| | - Laura E Nagy
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Gastroenterology and Hepatology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Li Wang
- Independent Researcher, Tucson, AZ, USA
| |
Collapse
|