1
|
Zhang Q, Qiao LX, Li DL, Liu Q, Zou X, Zhang CY. Construction of a Ligation-Controlled Single-Molecule Biosensor for Simultaneous Measurement of Multiple Cancer-Related circRNAs in Clinical Tissues. Anal Chem 2025. [PMID: 40329757 DOI: 10.1021/acs.analchem.5c00527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Circular RNAs (circRNAs) are noncoding RNAs with covalently closed circular structures that regulate important cellular processes, and their dysregulation is implicated in the pathogenesis and progression of various cancers. Simultaneous and specific detection of multiple circRNAs is of significant importance in the early diagnosis of cancer. Herein, we develop a ligation-controlled single-molecule biosensor for multiplexed measurement of breast cancer-associated circRNAs. This assay integrates the isothermal exponential amplification reaction (EXPAR)-induced generation of multiple DNAzymes with a Au nanoparticle (AuNP)-based spherical nucleic acid nanoprobe. The back-splice junction (BSJ) sequences of circFOXO3 and circMTO1 can serve as the templates to ligate their hairpin probes and helper probes under the catalysis of SplintR ligase, forming complete amplification templates. Afterward, the ligated amplification template can serve as both a primer and a template to initiate the EXPAR, inducing the exponential accumulation of characteristic DNAzyme sequences (i.e., DNAzymes 1 and 2). DNAzymes 1 and 2 can be paired with signal probes 1 and 2 immobilized on the AuNP surface, respectively, inducing cyclic degradation of signal probes to liberate large amounts of Cy5 and Cy3 fluorophores and achieving detection limits of 8.34 aM for circFOXO3 and 9.84 aM for circMTO1. This single-molecule biosensor has been successfully applied for simultaneous analysis of multiple circRNAs in a single cancer cell and differentiation of multiple circRNA levels between breast cancer tissues and healthy para-carcinoma tissues, offering a new paradigm for biomedical research and circRNA-related molecular diagnostics.
Collapse
Affiliation(s)
- Qian Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Li-Xue Qiao
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Dong-Ling Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China
| | - Qian Liu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China
| | - Xiaoran Zou
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
2
|
Lv X, Zhang PB, Zhang EL, Yang S. Predictive factors and prognostic models for Hepatic arterial infusion chemotherapy in Hepatocellular carcinoma: a comprehensive review. World J Surg Oncol 2025; 23:166. [PMID: 40287734 PMCID: PMC12034129 DOI: 10.1186/s12957-025-03765-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/23/2025] [Indexed: 04/29/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is a prevalent and lethal cancer, often diagnosed at advanced stages where traditional treatments such as surgical resection, liver transplantation, and locoregional therapies provide limited benefits. Hepatic arterial infusion chemotherapy (HAIC) has emerged as a promising treatment modality for advanced HCC, enhancing anti-tumor efficacy through targeted drug delivery while minimizing systemic side effects. However, the heterogeneous nature of HCC leads to variable responses to HAIC, highlighting the necessity for reliable predictive indicators to tailor personalized treatment strategies. This review explores the factors influencing HAIC success, including patient demographics, tumor characteristics, biomarkers, genomic profiles, and advanced imaging techniques such as radiomics and deep learning models. Additionally, the synergistic potential of HAIC combined with immunotherapy and molecular targeted therapies is examined, demonstrating improved survival outcomes. Prognostic scoring systems and nomograms that integrate clinical, molecular, and imaging data are discussed as superior tools for individualized prognostication compared to traditional staging systems. Understanding these predictors is essential for optimizing HAIC efficacy and enhancing survival and quality of life for patients with advanced HCC. Future research directions include large-scale prospective studies, integration of multi-omics data, and advancements in artificial intelligence to refine predictive models and further personalize treatment approaches.
Collapse
Affiliation(s)
- Xing Lv
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Peng-Bo Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Er-Lei Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - S Yang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
3
|
Kandettu A, Kuthethur R, Chakrabarty S. A detailed review on the role of miRNAs in mitochondrial-nuclear cross talk during cancer progression. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167731. [PMID: 39978440 DOI: 10.1016/j.bbadis.2025.167731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 01/11/2025] [Accepted: 02/12/2025] [Indexed: 02/22/2025]
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs that are associated with biochemical pathways through the post-transcriptional regulation of gene expression in different cell types. Based on their expression pattern and function, miRNAs can have oncogenic and tumor suppressor activities in different cancer cells. Altered mitochondrial function and bioenergetics are known hallmarks of cancer cells. Mitochondria play a central role in metabolic reprogramming during cancer progression. Cancer cells exploit mitochondrial function for cell proliferation, invasion, migration and metastasis. Genetic and epigenetic changes in nuclear genome contribute to altered mitochondrial function and metabolic reprogramming in cancer cells. Recent studies have identified the role of miRNAs as major facilitators of anterograde and retrograde signaling between the nucleus and mitochondria in cancer cells. Detailed analysis of the miRNA-mediated regulation of mitochondrial function in cancer cells may provide new avenues for the diagnosis, prognosis, and therapeutic management of the disease. Our review aims to discuss the role of miRNAs in nuclear-mitochondrial crosstalk regulating mitochondrial functions in different cancer types. We further discussed the potential application of mitochondrial miRNAs (mitomiRs) targeting mitochondrial biogenesis and metabolism in developing novel cancer therapy.
Collapse
Affiliation(s)
- Amoolya Kandettu
- Department of Public Health Genomics, Centre for DNA Repair and Genome Stability (CDRGS) Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Raviprasad Kuthethur
- Department of Public Health Genomics, Centre for DNA Repair and Genome Stability (CDRGS) Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sanjiban Chakrabarty
- Department of Public Health Genomics, Centre for DNA Repair and Genome Stability (CDRGS) Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
4
|
Wang Y, Wang S, He H, Bai Y, Liu Z, Sabihi SS. Mechanisms of apoptosis-related non-coding RNAs in ovarian cancer: a narrative review. Apoptosis 2025; 30:553-578. [PMID: 39833637 DOI: 10.1007/s10495-024-02074-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2024] [Indexed: 01/22/2025]
Abstract
Ovarian cancer remains a major challenge in oncology due to its complex biology and late-stage diagnosis. Recent advances in molecular biology have highlighted the crucial role of non-coding RNAs (ncRNAs) in regulating apoptosis and cancer progression. NcRNAs, including microRNAs, long non-coding RNAs, and circular RNAs, have emerged as significant players in the molecular networks governing ovarian cancer. Despite these insights, the precise mechanisms by which ncRNAs influence ovarian cancer pathology are not fully understood. This complexity, combined with the heterogeneity of the disease and the development of treatment resistance, poses substantial obstacles to effective therapeutic development. Additionally, the lack of reliable early detection methods further complicates treatment strategies. This manuscript reviews the current state of research on ncRNAs in ovarian cancer, discusses the challenges in translating these findings into clinical applications, and outlines potential future directions. Emphasis is placed on the need for integrated approaches to unravel the intricate roles of ncRNAs, improve early detection, and develop personalized treatment strategies to address the diverse and evolving nature of ovarian cancer. While these findings provide valuable insights, it is crucial to recognize that many results are based on preclinical studies and require further validation to establish their clinical applicability.
Collapse
Affiliation(s)
- Yue Wang
- Department of Obstetrics and Gynecology, Tang Du Hospital, The Air Force Military Medical University, Xi'an, 710038, China
| | - Shirui Wang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710038, China
| | - Haiyan He
- Department of Obstetrics and Gynecology, Tang Du Hospital, The Air Force Military Medical University, Xi'an, 710038, China
| | - Yingying Bai
- Department of Obstetrics and Gynecology, Tang Du Hospital, The Air Force Military Medical University, Xi'an, 710038, China
| | - Zhuo Liu
- Department of Obstetrics and Gynecology, Xi'an International Medical Center Hospital, Xi'an, 710038, China
| | - Sima-Sadat Sabihi
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
5
|
Wei Y, Tan Z, Liu L. CR-deal: Explainable Neural Network for circRNA-RBP Binding Site Recognition and Interpretation. Interdiscip Sci 2025:10.1007/s12539-025-00694-7. [PMID: 40146403 DOI: 10.1007/s12539-025-00694-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/01/2025] [Accepted: 02/06/2025] [Indexed: 03/28/2025]
Abstract
circRNAs are a type of single-stranded non-coding RNA molecules, and their unique feature is their closed circular structure. The interaction between circRNAs and RNA-binding proteins (RBPs) plays a key role in biological functions and is crucial for studying post-transcriptional regulatory mechanisms. The genome-wide circRNA binding event data obtained by cross-linking immunoprecipitation sequencing technology provides a foundation for constructing efficient computational model prediction methods. However, in existing studies, although machine learning techniques have been applied to predict circRNA-RBP interaction sites, these methods still have room for improvement in accuracy and lack interpretability. We propose CR-deal, which is an interpretable joint deep learning network that predicts the binding sites of circRNA and RBP through genome-wide circRNA data. CR-deal utilizes a graph attention network to unify sequence and structural features into the same view, more effectively utilizing structural features to improve accuracy. It can infer marker genes in the binding site through integrated gradient feature interpretation, thereby inferring functional structural regions in the binding site. We conducted benchmark tests on CR-deal on 37 circRNA datasets and 7 lncRNA datasets, respectively, and obtained the interpretability of CR-deal and discovered functional structural regions through 5 circRNA datasets. We believe that CR-deal can help researchers gain a deeper understanding of the functions and mechanisms of circRNA in living organisms and its critical role in the occurrence and development of diseases. The source code of CR-deal is provided free of charge on https://github.com/liuliwei1980/CR .
Collapse
Affiliation(s)
- Yuxiao Wei
- College of Software, Dalian Jiaotong University, Dalian, 116028, China
| | - Zhebin Tan
- College of Software, Dalian Jiaotong University, Dalian, 116028, China
| | - Liwei Liu
- College of Science, Dalian Jiaotong University, Dalian, 116028, China.
| |
Collapse
|
6
|
Li H, Su B, Jiang Y, Zhang B, Du R, Song C, Hou B, Xu K, Wu L, Gu Y. Circular RNA circDCUN1D4 suppresses hepatocellular carcinoma development via targeting the miR-590-5p/ TIMP3 axis. Mol Cancer 2025; 24:95. [PMID: 40128740 PMCID: PMC11934760 DOI: 10.1186/s12943-025-02300-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 03/12/2025] [Indexed: 03/26/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is a major global health concern, necessitating innovative therapeutic strategies. In this study, we investigated the functional role of circular RNA circDCUN1D4 in HCC progression and its potential therapeutic implications. It was found that HCC patients exhibiting higher levels of circDCUN1D4 demonstrated a more favorable survival rate. Furthermore, we revealed that circDCUN1D4 suppressed HCC cell proliferation, migration, and invasion. Mechanistically, circDCUN1D4 was identified as a sponge for miR-590-5p, leading to the downregulation of its downstream target, Tissue Inhibitor of Metalloproteinase 3 (TIMP3). Importantly, circDCUN1D4 administration through In vivo jet-PEI exhibited a robust inhibitory effect on tumor progression without causing notable toxicity in mice. Overall, our findings highlight circDCUN1D4 as a promising therapeutic candidate for HCC, unraveling its intricate regulatory role through the miR-590-5p/TIMP3 axis. This study contributes valuable insights into the potential clinical applications of circRNA-based therapies for HCC.
Collapse
Affiliation(s)
- Hongyu Li
- College of Chemistry and Lie Science, Beijing University of Technology, Beijing, 100124, China.
- Allife Medical Science and Technology Co., Ltd. Economic and Technological Development Zone, Beijing, 100176, China.
| | - Bing Su
- College of Chemistry and Lie Science, Beijing University of Technology, Beijing, 100124, China
| | - Yan Jiang
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Boyang Zhang
- Allife Medical Science and Technology Co., Ltd. Economic and Technological Development Zone, Beijing, 100176, China
| | - Rulong Du
- Allife Medical Science and Technology Co., Ltd. Economic and Technological Development Zone, Beijing, 100176, China
| | - Can Song
- Allife Medical Science and Technology Co., Ltd. Economic and Technological Development Zone, Beijing, 100176, China
| | - Bin Hou
- Allife Medical Science and Technology Co., Ltd. Economic and Technological Development Zone, Beijing, 100176, China
| | - Kun Xu
- College of Chemistry and Lie Science, Beijing University of Technology, Beijing, 100124, China.
| | - Lida Wu
- Allife Medical Science and Technology Co., Ltd. Economic and Technological Development Zone, Beijing, 100176, China.
| | - Yuchun Gu
- Allife Medical Science and Technology Co., Ltd. Economic and Technological Development Zone, Beijing, 100176, China.
- Molecular Pharmacology Laboratory, Institute of Molecular Medicine, Peking University, Beijing, 100871, China.
| |
Collapse
|
7
|
Wang Z, Xie X, Xue Y, Chen Y. Tryptophan-2,3-Dioxygenase as a Therapeutic Target in Digestive System Diseases. BIOLOGY 2025; 14:295. [PMID: 40136551 PMCID: PMC11939885 DOI: 10.3390/biology14030295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/06/2025] [Accepted: 03/12/2025] [Indexed: 03/27/2025]
Abstract
Tryptophan (Trp) is an essential amino acid that must be acquired exclusively through dietary intake. The metabolism of tryptophan plays a critical role in maintaining immune homeostasis and tolerance, as well as in preventing excessive inflammatory responses. Tryptophan-2,3-dioxygenase (TDO2) is a tetrameric heme protein and serves as one of the pivotal rate-limiting enzymes in the first step of tryptophan metabolism. Dysregulation of TDO2 expression has been observed in various digestive system diseases, encompassing those related to the oral cavity, esophagus, liver, stomach, pancreas, and colon and rectum. Digestive system diseases are the most common clinical diseases, with complex clinical manifestations and interrelated symptoms, and have become a research hotspot in the field of medicine. Studies have demonstrated that aberrant TDO2 expression is closely associated with various clinical manifestations and disease outcomes in patients with digestive system disorders. Consequently, TDO2 has garnered increasing recognition as a promising therapeutic target for digestive system diseases in recent years, attracting growing attention. This article provides a brief overview of the role of TDO2 in the tryptophan pathway, emphasizing its significant involvement in diseases of the digestive system. Strategies targeting TDO2 through specific inhibitors suggest considerable promise in enhancing therapeutic outcomes for digestive diseases. Thus, this review concludes by discussing recent advancements in the development of TDO2 inhibitors. We believe that targeted inhibition of TDO2 combined with immunotherapy, the screening of a large number of natural products, and the assistance of artificial intelligence in drug design will be important directions for developing more effective TDO2 inhibitors and improving treatment outcomes in the future.
Collapse
Affiliation(s)
| | | | | | - Yixuan Chen
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou 363000, China
| |
Collapse
|
8
|
Golovina E, Eaton C, Cox V, Andel J, Savvulidi Vargova K. Mechanism of Action of circRNA/miRNA Network in DLBCL. Noncoding RNA 2025; 11:22. [PMID: 40126346 PMCID: PMC11932212 DOI: 10.3390/ncrna11020022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 02/06/2025] [Accepted: 02/27/2025] [Indexed: 03/25/2025] Open
Abstract
Circular RNAs (circRNAs) make up approximately 10% of the human transcriptome. CircRNAs belong to the broad group of non-coding RNAs and characteristically are formed by backsplicing into a stable circular loop. Their main role is to regulate transcription through the inhibition of miRNAs' expression, termed miRNA sponging. CircRNAs promote tumorigenesis/lymphomagenesis by competitively binding to miRNAs at miRNA binding sites. In diffuse large B-cell lymphoma (DLBCL), several circRNAs have been identified and their expression is related to both progression and response to therapy. DLBCL is the most prevalent and aggressive subtype of B-cell lymphomas and accounts for about 25% to 30% of all non-Hodgkin lymphomas. DLBCL displays great heterogeneity concerning histopathology, biology, and genetics. Patients who have relapsed or have refractory disease after first-line therapy have a very poor prognosis, demonstrating an important unmet need for new treatment options. As more circRNAs are identified in the future, we will better understand their biological roles and potential use in treating cancer, including DLBCL. For example, circAmotl1 promotes nuclear translocation of MYC and upregulation of translational targets of MYC, thus enhancing lymphomagenesis. Another example is circAPC, which is significantly downregulated in DLBCL and correlates with disease aggressiveness and poor prognosis. CircAPC increases expression of the host gene adenomatous polyposis coli (APC), and in doing so inactivates the canonical Wnt/β-catenin signaling and restrains DLBCL growth. MiRNAs belong to the non-coding regulatory molecules that significantly contribute to lymphomagenesis through their target mRNAs. In DLBCL, among the highly expressed miRNAs, are miR-155-5p and miR-21-5p, which regulate NF-ĸB and PI3K/AKT signaling pathways. The aim of this review is to describe the function and mechanism of regulation of circRNAs on miRNAs' expression in DLBCL. This will help us to better understand the regulatory network of circRNA/miRNA/mRNA, and to propose novel therapeutic targets to treat DLBCL.
Collapse
Affiliation(s)
- Elena Golovina
- First Faculty of Medicine, Institute of Pathological Physiology, Charles University, 12108 Prague, Czech Republic; (E.G.); (C.E.)
| | - Cory Eaton
- First Faculty of Medicine, Institute of Pathological Physiology, Charles University, 12108 Prague, Czech Republic; (E.G.); (C.E.)
| | - Virginia Cox
- First Faculty of Medicine, Institute of Pathological Physiology, Charles University, 12108 Prague, Czech Republic; (E.G.); (C.E.)
| | - Jozef Andel
- First Faculty of Medicine, Institute of Pathological Physiology, Charles University, 12108 Prague, Czech Republic; (E.G.); (C.E.)
- Faculty of Science, Molecular Biology and Genetics of Eukaryotes, Charles University, 12800 Prague, Czech Republic
| | - Karina Savvulidi Vargova
- First Faculty of Medicine, Institute of Pathological Physiology, Charles University, 12108 Prague, Czech Republic; (E.G.); (C.E.)
| |
Collapse
|
9
|
Hussen BM, Abdullah SR, Jaafar RM, Rasul MF, Aroutiounian R, Harutyunyan T, Liehr T, Samsami M, Taheri M. Circular RNAs as key regulators in cancer hallmarks: New progress and therapeutic opportunities. Crit Rev Oncol Hematol 2025; 207:104612. [PMID: 39755160 DOI: 10.1016/j.critrevonc.2024.104612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/22/2024] [Accepted: 12/31/2024] [Indexed: 01/06/2025] Open
Abstract
Circular RNAs (circRNAs) have emerged as critical regulators in cancer biology, contributing to various cancer hallmarks, including cell proliferation, apoptosis, metastasis, and drug resistance. Defined by their covalently closed loop structure, circRNAs possess unique characteristics like high stability, abundance, and tissue-specific expression. These non-coding RNAs function through mechanisms such as miRNA sponging, interactions with RNA-binding proteins (RBPs), and modulating transcription and splicing. Advances in RNA sequencing and bioinformatics tools have enabled the identification and functional annotation of circRNAs across different cancer types. Clinically, circRNAs demonstrate high specificity and sensitivity in samples, offering potential as diagnostic and prognostic biomarkers. Additionally, therapeutic strategies involving circRNA mimics, inhibitors, and delivery systems are under investigation. However, their precise mechanisms remain unclear, and more clinical evidence is needed regarding their roles in cancer hallmarks. Understanding circRNAs will pave the way for novel diagnostic and therapeutic approaches, potentially improving patient outcomes.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Biomedical Sciences, College of Science, Cihan University-Erbil, Kurdistan Region, Iraq; Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| | - Snur Rasool Abdullah
- Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Rayan Mazin Jaafar
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| | - Mohammed Fatih Rasul
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Rouben Aroutiounian
- Laboratory of General and Molecular Genetics, Research Institute of Biology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia; Department of Genetics and Cytology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia
| | - Tigran Harutyunyan
- Laboratory of General and Molecular Genetics, Research Institute of Biology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia; Department of Genetics and Cytology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia
| | - Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| | - Majid Samsami
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Research Institute for Urology and Nephrology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Saadh MJ, Ehymayed HM, Alazzawi TS, Fahdil AA, Athab ZH, Yarmukhamedov B, Al-Anbari HHA, Shallal MM, Alsaikhan F, Farhood B. Role of circRNAs in regulating cell death in cancer: a comprehensive review. Cell Biochem Biophys 2025; 83:109-133. [PMID: 39243349 DOI: 10.1007/s12013-024-01492-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2024] [Indexed: 09/09/2024]
Abstract
Despite multiple diagnostic and therapeutic advances, including surgery, radiation therapy, and chemotherapy, cancer preserved its spot as a global health concern. Prompt cancer diagnosis, treatment, and prognosis depend on the discovery of new biomarkers and therapeutic strategies. Circular RNAs (circRNAs) are considered as a stable, conserved, abundant, and varied group of RNA molecules that perform multiple roles such as gene regulation. There is evidence that circRNAs interact with RNA-binding proteins, especially capturing miRNAs. An extensive amount of research has presented the substantial contribution of circRNAs in various types of cancer. To fully understand the linkage between circRNAs and cancer growth as a consequence of various cell death processes, including autophagy, ferroptosis, and apoptosis, more research is necessary. The expression of circRNAs could be controlled to limit the occurrence and growth of cancer, providing a more encouraging method of cancer treatment. Consequently, it is critical to understand how circRNAs affect various forms of cancer cell death and evaluate whether circRNAs could be used as targets to induce tumor death and increase the efficacy of chemotherapy. The current study aims to review and comprehend the effects that circular RNAs exert on cell apoptosis, autophagy, and ferroptosis in cancer to investigate potential cancer treatment targets.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | | | - Tuqa S Alazzawi
- College of dentist, National University of Science and Technology, Dhi Qar, Iraq
| | - Ali A Fahdil
- Medical technical college, Al-Farahidi University, Baghdad, Iraq
| | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Bekhzod Yarmukhamedov
- Department of Surgical Dentistry and Dental Implantology, Tashkent State Dental Institute, Tashkent, Uzbekistan
- Department of Scientific affairs, Samarkand State Medical University, Samarkand, Uzbekistan
| | | | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
- School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
11
|
Zhai Z, Li H. Identification of CircRNAs that promote cancer and their potential contribution to hepatocellular carcinoma (HCC) pathogenesis. Clin Exp Med 2025; 25:60. [PMID: 39961942 PMCID: PMC11832687 DOI: 10.1007/s10238-025-01585-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/02/2025] [Indexed: 02/20/2025]
Abstract
The critical involvement of circRNAs in tumour progression and development is becoming increasingly evident. This study aimed to identify novel cancer-promoting circRNAs and explore their potential contribution to the pathogenesis of hepatocellular carcinoma (HCC). Expression profiles of circRNAs, miRNAs, and mRNAs associated with HCC were predicted through interaction analysis using data from the GEO and TCGA databases. A circRNA-miRNA-mRNA network was constructed, and the biological functions of the target mRNAs were predicted via Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. A protein-protein interaction (PPI) network was generated to identify important hub genes. Weighted Gene Co-expression Network Analysis (WGCNA) was applied to determine the key modules related to cancer-promoting circRNAs. OncomiR and GEPIA were used to investigate the correlation between miRNAs, mRNAs, and clinicopathological features, while TIMER was utilized to explore the relationship between gene expression and immune cell infiltration. A network of 18 cancer-promoting circRNAs in HCC was identified, which enhanced the expression of 141 downstream mRNAs through competitive binding with 10 miRNAs. GO, KEGG, and PPI network analyses revealed that E2F1, H2AFX, TOP2A, and RAD51 are key hub genes within the competitive endogenous RNA (ceRNA) network, primarily involved in cell cycle regulation, cancer-related pathways, and angiogenesis. WGCNA identified the "HCC DUcircRNA Module". Moreover, these core genes and key modules were closely associated with pathological stage, patient survival, and B-cell immune infiltration. We constructed a ceRNA network related to cancer-promoting circRNAs. The genes and key modules involved in this network may serve as potential therapeutic targets.
Collapse
Affiliation(s)
- Zhensheng Zhai
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, NO.99 Longcheng Road, Xiaodian District, Taiyuan, 030032, Shanxi, People's Republic of China
| | - Huiyu Li
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, NO.99 Longcheng Road, Xiaodian District, Taiyuan, 030032, Shanxi, People's Republic of China.
| |
Collapse
|
12
|
Zhand S, Goss DM, Cheng YY, Warkiani ME. Recent Advances in Microfluidics for Nucleic Acid Analysis of Small Extracellular Vesicles in Cancer. Adv Healthc Mater 2025; 14:e2401295. [PMID: 39707658 DOI: 10.1002/adhm.202401295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 11/28/2024] [Indexed: 12/23/2024]
Abstract
Small extracellular vesicles (sEVs) are membranous vesicles released from cellular structures through plasma membrane budding. These vesicles contain cellular components such as proteins, lipids, mRNAs, microRNAs, long-noncoding RNA, circular RNA, and double-stranded DNA, originating from the cells they are shed from. Ranging in size from ≈25 to 300 nm and play critical roles in facilitating cell-to-cell communication by transporting signaling molecules. The discovery of sEVs in bodily fluids and their involvement in intercellular communication has revolutionized the fields of diagnosis, prognosis, and treatment, particularly in diseases like cancer. Conventional methods for isolating and analyzing sEVs, particularly their nucleic acid content face challenges including high costs, low purity, time-consuming processes, limited standardization, and inconsistent yield. The development of microfluidic devices, enables improved precision in sorting, isolating, and molecular-level separation using small sample volumes, and offers significant potential for the enhanced detection and monitoring of sEVs associated with cancer. These advanced techniques hold great promise for creating next-generation diagnostic and prognostic tools given their possibility of being cost-effective, simple to operate, etc. This comprehensive review explores the current state of research on microfluidic devices for the detection of sEV-derived nucleic acids as biomarkers and their translation into practical point-of-care and clinical applications.
Collapse
Affiliation(s)
- Sareh Zhand
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Dale Mark Goss
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Yuen Yee Cheng
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute of Molecular Theranostics, Sechenov First Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
13
|
Ye C, Liu Z, Xie Q, Tang Y, Zeng J, Feng Z, Liu J, Xie H. Adeno-associated virus mediated artificial circular RNA for triggering cancer immunotherapy to treat prostate cancer. Front Oncol 2025; 15:1443571. [PMID: 39959665 PMCID: PMC11827427 DOI: 10.3389/fonc.2025.1443571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 01/07/2025] [Indexed: 02/18/2025] Open
Abstract
Introduction Specifically regulating endogenous molecules is a potential molecular therapeutic strategy. Naturally occurring circular RNAs (circRNAs) are structurally stable and have been proved to serve as highly efficient miR-sponges and protein-sponges in cancer cells. Methods We chemically synthesized circRNA (ScircRNA) in vitro to achieve therapeutic dysfunction by targeting specific miRNAs. RNase R and fetal bovine serum were used to evaluate the stability of ScircRNAs. In prostate cancer cell lines, the competitive inhibition of the ScircRNA on miR-375 and miR-21 activity was evaluated using luciferase report gene, cell proliferation, and apoptosis assays. Results We found that ScircRNAs were more resistant to nuclease digestion and more effective inhibiting target miRNAs than linear RNA sponges. The ScircRNAs inhibited malignant phenotype of prostate cancer by specifically inhibiting the activity of miR-21 and miR-375. In addition, we used the ScircRNA inhibiting CDK5 expression to trigger T-cell mediated cancer immunotherapy for treating prostate cancer in vivo. Discussion The ScircRNAs possessed the advantages of stable structure and simple construction, and can specifically inhibit the function of target miRNAs, which has a potential therapeutic application prospect in prostate cancer.
Collapse
Affiliation(s)
- Chujin Ye
- Department of Urology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Zhiye Liu
- Department of Urology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Qifan Xie
- Department of Urology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yanlin Tang
- Department of Urology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jiayi Zeng
- Department of Urology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Ziwei Feng
- Department of Urology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jiumin Liu
- Department of Urology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Haibiao Xie
- Department of Urology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
14
|
Abudoureyimu M, Sun N, Chen W, Lin X, Pan F, Wang R. Aurora-A promotes lenvatinib resistance experimentally through hsa-circ-0058046/miR-424-5p/FGFR1 axis in hepatocellular carcinoma. Int J Immunopathol Pharmacol 2025; 39:3946320251316692. [PMID: 39895095 PMCID: PMC11789117 DOI: 10.1177/03946320251316692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 01/13/2025] [Indexed: 02/04/2025] Open
Abstract
OBJECTIVE This study aimed to investigate whether the dysregulation of Aurora-A is involved in lenvatinib resistance in hepatocellular carcinoma. METHODS Bioinformatics tools and drug sensitivity assays were used to investigate the association between Aurora-A expression level and lenvatinib resistance in hepatocellular carcinoma cell lines. Cell function experiments had performed after treatment with lenvatinib and/or a selective Aurora-A inhibitor (MLN-8237). CircRNA microarray, RIP, RNA pull-down, and dual-luciferace reporter assay were performed to identify the downstream molecular mechanism of Aurora-A dysregulation. RESULTS Aurora-A expression was positively correlated with lenvatinib resistance in hepatocellular carcinoma cells. The Aurora-A selective inhibitor MLN-8237, in combination with lenvatinib, synergistically inhibited hepatocellular carcinoma cell proliferation in vitro and vivo, suggesting the Aurora-A might be a potential therapeutic target for lenvatinib resistance. Mechanistically, Aurora-A induced FGFR1 expression through the hsa-circ-0058046/miR-424-5p/FGFR1 axis. Aurora-A promotes lenvatinib resistance through hsa-circ-0058046/miR-424-5p/FGFR1 axis in hepatocellular carcinoma cells. The simultaneous inhibition of FGFR1 by the Aurora-A inhibitor MLN-8237 and lenvatinib overcame lenvatinib resistance in hepatocellular carcinoma cells. CONCLUSION Collectively, our findings indicate that Aurora-A promotes lenvatinib resistance through the hsa-circ-0058046/miR-424-5p/FGFR1 axis in hepatocellular carcinoma (HCC) cells. These results suggest that Aurora-A may serve as a therapeutic target for HCC patients exhibiting lenvatinib resistance. Furthermore, the combination of lenvatinib and MLN-8237 shows potential for clinical trials aimed at overcoming lenvatinib resistance.
Collapse
MESH Headings
- Humans
- Quinolines/pharmacology
- Quinolines/therapeutic use
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/enzymology
- Liver Neoplasms/drug therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Liver Neoplasms/enzymology
- Phenylurea Compounds/pharmacology
- Phenylurea Compounds/therapeutic use
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- MicroRNAs/genetics
- MicroRNAs/metabolism
- RNA, Circular/genetics
- RNA, Circular/metabolism
- Aurora Kinase A/metabolism
- Aurora Kinase A/genetics
- Aurora Kinase A/antagonists & inhibitors
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Animals
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Gene Expression Regulation, Neoplastic
- Pyrimidines/pharmacology
- Antineoplastic Agents/pharmacology
- Protein Kinase Inhibitors/pharmacology
- Azepines/pharmacology
- Mice, Nude
- Signal Transduction/drug effects
- Mice
Collapse
Affiliation(s)
- Mubalake Abudoureyimu
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, China
| | - Ni Sun
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, China
| | - Weiwei Chen
- Department of Medical Oncology, Affiliated Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Xinrong Lin
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, China
| | - Fan Pan
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, China
| | - Rui Wang
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
15
|
Qian J, Jiang B, Qin Z, Tan Y. Knockdown of hsa_circ_0102231 Impedes the Progression of Liver Cancer through the miR-873-SOX4 Axis. Curr Gene Ther 2025; 25:317-326. [PMID: 38963113 DOI: 10.2174/0115665232301878240627051455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/17/2024] [Accepted: 05/29/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most intractable tumors in the world due to its high rate of recurrence and heterogeneity. AIMS The objective of this study was to investigate the role of circular RNA 0102231 (hsa_circ_ 0102231) in the progression of liver cancer. METHODS In this study, quantitative polymerase chain reaction experiments were performed to quantify the hsa_circ_0102231 level in different liver cancer cell lines. Bioinformatics analysis, as well as a dual-luciferase reporter and RNA pull-down assay, were used to identify putative hsa_circ_ 0102231 downstream targets. Colony formation and CCK8 assays were utilized to examine cell proliferation, whereas Transwell assays were employed to monitor cell migration. Lastly, the role of hsa_circ_0102231 in liver cancer was assessed in a subcutaneous xenograft model. RESULTS The expression of hsa_circ_0102231 increased significantly in HepG2 and Huh-7 cells compared with controls, and hsa_circ_0102231 knockdown inhibited cell proliferation and migration in vitro and in vivo. Bioinformatics analysis, as well as a dual-luciferase reporter and RNA pulldown assay, revealed that miR-873 and SOX4 were hsa_circ_0102231 downstream targets. miR-873 inhibition or SOX4 overexpression rescued the proliferation and migration of HepG2 and Huh-7 cells after hsa_circ_0102231 knockdown. Furthermore, SOX4 overexpression reversed the miR-873-induced inhibition of cell migration and proliferation in vitro. CONCLUSION These results show that hsa_circ_0102231 knockdown impedes the progression of liver cancer by regulating the miR-873/SOX4 axis. However, further studies are needed to determine whether hsa_circ_0102231 may be a therapeutic target in liver cancer.
Collapse
Affiliation(s)
- Jingyu Qian
- Department of Interventional Radiology, The First Affiliated Hospital of Bengbu Medical University, Anhui, Bengbu, 233004, People's Republic of China
| | - Banghong Jiang
- Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical University, Anhui, Bengbu, 233004, People's Republic of China
| | - Zhongqiang Qin
- Department of Interventional Radiology, The First Affiliated Hospital of Bengbu Medical University, Anhui, Bengbu, 233004, People's Republic of China
| | - Yulin Tan
- Department of Interventional Radiology, The First Affiliated Hospital of Bengbu Medical University, Anhui, Bengbu, 233004, People's Republic of China
| |
Collapse
|
16
|
Zhang H, Cai W, Miao Y, Gu Y, Zhou X, Kaneda H, Wang L. Long Non-Coding RNA LINC01116 Promotes the Proliferation of Lung Adenocarcinoma by Targeting miR-9-5p/CCNE1 Axis. J Cell Mol Med 2024; 28:e70270. [PMID: 39648148 PMCID: PMC11625508 DOI: 10.1111/jcmm.70270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/10/2024] Open
Abstract
Long non-coding RNA (lncRNA) LINC01116 is crucial in promoting cell proliferation, invasion and migration in solid tumours, including lung adenocarcinoma (LUAD). LINC01116 acts as a competing endogenous RNAs (ceRNA) that binds competitively to microRNAs and plays a critical role in tumour migration and invasion. However, other mechanisms of action besides the ceRNA theory have been rarely reported and remain to be elucidated further. The differences in RNA and protein levels in cells and tissues were assessed through real-time quantitative PCR and Western blot analysis. In vitro functional assays and in vivo xenograft models were used to analyse the function of LINC01116 in LUAD. Thus, the molecular correlation between miR-9-5p and CCNE1 was investigated through direct and indirect mechanism experiments. LINC01116, miR-9-5p and CCNE1 were upregulated in LUAD cell lines and tissues and were associated with a poor prognosis in patients. LINC01116 depletion inhibited proliferation but facilitated cell apoptosis. AGO2-RNA binding protein immunoprecipitation (AGO2-RIP) experiments confirmed that AGO2 binds to LINC01116 and miR-9-5p, indicating that LINC01116 interacts with miR-9-5p. The overexpression of miR-9-5p and CCNE1 effectively counteracts the biological effects of LINC01116 knockdown on reduced proliferation and cell cycle arrest in LUAD cells. The downregulation of miR-9-5p significantly reduces the CCNE1 level in A549 cells, and the upregulation of LINC01116 counteracts the downregulation of miR-9-5p effect, restoring the expression level of CCNE1. Our data demonstrated that LINC01116 regulates the expression of CCNE1 by positively regulating miR-9-5p, thereby affecting cell cycle, proliferation and participating in the development of LUAD.
Collapse
Affiliation(s)
- Hui Zhang
- The Jiangyin Clinical College of Xuzhou Medical UniversityXuzhouChina
| | - Wenwen Cai
- Sanmen County People's HospitalTaizhouChina
| | - Yiyan Miao
- The Jiangyin Clinical College of Xuzhou Medical UniversityXuzhouChina
| | - Yihang Gu
- Department of GeriatricsThe Jiangyin Clinical College of Xuzhou Medical UniversityJiangyinChina
| | - Xiaorong Zhou
- Department of Immunology, School of MedicineNantong UniversityNantongChina
| | - Hiroyasu Kaneda
- Department of Clinical Oncology, Graduate School of MedicineOsaka Metropolitan UniversityOsakaJapan
| | - Lan Wang
- Department of Respiratory and Critical Care MedicineThe Jiangyin Clinical College of Xuzhou Medical UniversityJiangyinChina
| |
Collapse
|
17
|
Almouh M, Soukkarieh C, Kassouha M, Ibrahim S. Crosstalk between circular RNAs and the STAT3 signaling pathway in human cancer. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195051. [PMID: 39121909 DOI: 10.1016/j.bbagrm.2024.195051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Circular RNAs (circRNAs) are endogenous covalently closed single-stranded RNAs produced by reverse splicing of pre-mRNA. Emerging evidence suggests that circRNAs contribute to cancer progression by modulating the oncogenic STAT3 signaling pathway, which plays key roles in human malignancies. STAT3 signaling-related circRNAs expression appears to be extensively dysregulated in diverse cancer types, where they function either as tumor suppressors or oncogenes. However, the biological effects of STAT3 signaling-related circRNAs and their associations with cancer have not been systematically studied before. Given this, shedding light on the interaction between circRNAs and STAT3 signaling pathway in human malignancies may provide several novel insights into cancer therapy. In this review, we provide a comprehensive introduction to the molecular mechanisms by which circRNAs regulate STAT3 signaling in cancer progression, and the crosstalk between STAT3 signaling-related circRNAs and other signaling pathways. We also further discuss the role of the circRNA/STAT3 axis in cancer chemotherapy sensitivity.
Collapse
Affiliation(s)
- Mansour Almouh
- Department of Animal Production, Faculty of Veterinary Medicine, Hama University, Hama, Syria.
| | - Chadi Soukkarieh
- Department of Animal Biology, Faculty of Sciences, Damascus University, Damascus, Syria
| | - Morshed Kassouha
- Department of Microbiology, Faculty of Veterinary Medicine, Hama University, Hama, Syria
| | - Samer Ibrahim
- Department of Microbiology, Faculty of Veterinary Medicine, Hama University, Hama, Syria; Faculty of Dentistry, Arab Private University of science and Technology, Hama, Syria
| |
Collapse
|
18
|
Fan JH, Li XM. Mesangial cell-derived CircRNAs in chronic glomerulonephritis: RNA sequencing and bioinformatics analysis. Ren Fail 2024; 46:2371059. [PMID: 38946402 PMCID: PMC467094 DOI: 10.1080/0886022x.2024.2371059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/17/2024] [Indexed: 07/02/2024] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) have been shown to play critical roles in the initiation and progression of chronic glomerulonephritis (CGN), while their role from mesangial cells in contributing to the pathogenesis of CGN is rarely understood. Our study aims to explore the potential functions of mesangial cell-derived circRNAs using RNA sequencing (RNA-seq) and bioinformatics analysis. METHODS Mouse mesangial cells (MMCs) were stimulated by lipopolysaccharide (LPS) to establish an in vitro model of CGN. Pro-inflammatory cytokines and cell cycle stages were detected by Enzyme-linked immunosorbent assay (ELISA) and Flow Cytometry experiment, respectively. Subsequently, differentially expressed circRNAs (DE-circRNAs) were identified by RNA-seq. GEO microarrays were used to identify differentially expressed mRNAs (DE-mRNAs) between CGN and healthy populations. Weighted co-expression network analysis (WGCNA) was utilized to explore clinically significant modules of CGN. CircRNA-associated CeRNA networks were constructed by bioinformatics analysis. The hub mRNAs from CeRNA network were identified using LASSO algorithms. Furthermore, utilizing protein-protein interaction (PPI), gene ontology (GO), pathway enrichment (KEGG), and GSEA analyses to explore the potential biological function of target genes from CeRNA network. In addition, we investigated the relationships between immune cells and hub mRNAs from CeRNA network using CIBERSORT. RESULTS The expression of pro-inflammatory cytokines IL-1β, IL-6, and TNF-α was drastically increased in LPS-induced MMCs. The number of cells decreased significantly in the G1 phase but increased significantly in the S/G2 phase. A total of 6 DE-mRNAs were determined by RNA-seq, including 4 up-regulated circRNAs and 2 down-regulated circRNAs. WGCNA analysis identified 1747 DE-mRNAs of the turquoise module from CGN people in the GEO database. Then, the CeRNA networks, including 6 circRNAs, 38 miRNAs, and 80 mRNAs, were successfully constructed. The results of GO and KEGG analyses revealed that the target mRNAs were mainly enriched in immune, infection, and inflammation-related pathways. Furthermore, three hub mRNAs (BOC, MLST8, and HMGCS2) from the CeRNA network were screened using LASSO algorithms. GSEA analysis revealed that hub mRNAs were implicated in a great deal of immune system responses and inflammatory pathways, including IL-5 production, MAPK signaling pathway, and JAK-STAT signaling pathway. Moreover, according to an evaluation of immune infiltration, hub mRNAs have statistical correlations with neutrophils, plasma cells, monocytes, and follicular helper T cells. CONCLUSIONS Our findings provide fundamental and novel insights for further investigations into the role of mesangial cell-derived circRNAs in CGN pathogenesis.
Collapse
Affiliation(s)
- Ji Hui Fan
- Department of Nephrology, Huaibei People’s Hospital, Huaibei, China
| | - Xiao Min Li
- Department of Nephrology, Huaibei People’s Hospital, Huaibei, China
- Department of Traditional Chinese Medicine, Huaibei People’s Hospital, Huaibei, China
| |
Collapse
|
19
|
Song G, Yu X, Shi H, Sun B, Amateau S. miRNAs in HCC, pathogenesis, and targets. Hepatology 2024:01515467-990000000-01097. [PMID: 39626210 DOI: 10.1097/hep.0000000000001177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/22/2024] [Indexed: 12/21/2024]
Abstract
Liver cancer is the third leading cause of cancer-related mortality worldwide. HCC, the most common type of primary liver cancer, is driven by complex genetic, epigenetic, and environmental factors. MicroRNAs, a class of naturally occurring small noncoding RNAs, play crucial roles in HCC by simultaneously modulating the expression of multiple genes in a fine-tuning manner. Significant progress has been made in understanding how miRNAs influence key oncogenic pathways, including cell proliferation, apoptosis, angiogenesis, and epithelial-mesenchymal transition (EMT), as well as their role in modulating the immune microenvironment in HCC. Due to the unexpected stability of miRNAs in the blood and fixed HCC tumors, recent advancements also highlight their potential as noninvasive diagnostic tools. Restoring or inhibiting specific miRNAs has offered promising strategies for targeted HCC treatment by suppressing malignant hepatocyte growth and enhancing antitumor immunity. In this comprehensive review, we consolidate previous research and provide the latest insights into how miRNAs regulate HCC and their therapeutic and diagnostic potential. We delve into the dysregulation of miRNA biogenesis in HCC, the roles of miRNAs in the proliferation and apoptosis of malignant hepatocytes, angiogenesis and metastasis of HCC, the immune microenvironment in HCC, and drug resistance. We also discuss the therapeutic and diagnostic potential of miRNAs and delivery approaches of miRNA drugs to overcome the limitations of current HCC treatment options. By thoroughly summarizing the roles of miRNAs in HCC, our goal is to advance the development of effective therapeutic drugs with minimal adverse effects and to establish precise tools for early diagnosis of HCC.
Collapse
Affiliation(s)
- Guisheng Song
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Xiaofan Yu
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Hongtao Shi
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
- Department of Cardiology, the First Hospital of Shanxi Medical University, Taiyuan City, China
| | - Bo Sun
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Stuart Amateau
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| |
Collapse
|
20
|
Xu D, Liu Y, Liu Q, Li G, Zhang L, Yu C, Liang H, Chen X, Zheng J, Song J. N 6-methyladenosine modification of circular RNA circASH2L suppresses growth and metastasis in hepatocellular carcinoma through regulating hsa-miR-525-3p/MTUS2 axis. J Transl Med 2024; 22:1026. [PMID: 39543614 PMCID: PMC11566831 DOI: 10.1186/s12967-024-05745-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 10/08/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND CircRNAs have been demonstrated to play a crucial role in regulating the growth and progression of various cancers, including hepatocellular carcinoma (HCC). Nevertheless, the circRNA's expression pattern and function in HCC need more investigation. METHODS Bioinformatics techniques were used to identify differentially expressed circRNAs in HCC. CircASH2L expression in HCC tissues was assessed through qRT-PCR and ISH analysis. To assess circASH2L's impact on HCC progression, a variety of experiments were carried out both in vitro and in vivo, such as CCK8, colony formation, EdU assay, flow cytometry, transwell assay, and xenograft mouse model. Various experimental techniques including qRT-PCR, dual luciferase reporter assay, FISH, RNA pull-down, and RIP experiments were utilized to evaluate the relationship between circASH2L, miR-525-3p, and MTUS2. Additionally, experiments were conducted to explore the impact of m6A modification on circASH2L expression, including RNA stability assay, m6A RNA immunoprecipitation assay (MeRIP), and Co-IP experiments. RESULTS We found that circASH2L was downregulated in HCC tissues and the downregulation of circASH2L was significantly correlated with malignant characteristics as well as poor overall survival of patients with HCC. CircASH2L was found to inhibit cells growth, migration and invasion as well as tumorigenesis and metastasis in vivo. Mechanistically, we established that circASH2L directly interacted with miR-525-3p to enhance MTUS2 expression, subsequently leading to tumor suppression. Moreover, the influence of circASH2L on tumor suppression was attenuated by increasing miR-525-3p levels, and MTUS2 was recognized as an essential intermediary in circASH2L-induced tumor suppression. Additionally, N6-methyladenosine (m6A) modification was identified in circASH2L. Our data suggested that METTL3 was responsible for mediating m6A methylation of circASH2L, ultimately regulating circASH2L expression through the promotion of its degradation. These findings collectively highlight the role of circASH2L as a tumor suppressor through a unique circASH2L/miR-525-3p/MTUS2 axis, shedding light on the significance of m6A modification in regulating circASH2L function. CONCLUSION The work emphasizes circASH2L as a promising therapeutic target for treating HCC, offering new insights into the role of circRNAs in HCC development.
Collapse
Affiliation(s)
- Dafeng Xu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, People's Republic of China
- Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, People's Republic of China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, People's Republic of China
| | - Yachong Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, People's Republic of China
- Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, People's Republic of China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, People's Republic of China
| | - Qiumeng Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, People's Republic of China
- Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, People's Republic of China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, People's Republic of China
| | - Ganxun Li
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, People's Republic of China
- Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, People's Republic of China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, People's Republic of China
| | - Lu Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, People's Republic of China
- Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, People's Republic of China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, People's Republic of China
| | - Chengpeng Yu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, People's Republic of China
- Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, People's Republic of China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, People's Republic of China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, People's Republic of China
- Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, People's Republic of China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, People's Republic of China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, People's Republic of China
- Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, People's Republic of China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, People's Republic of China
| | - Jinfang Zheng
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China.
| | - Jia Song
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, People's Republic of China.
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, People's Republic of China.
- Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, People's Republic of China.
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
21
|
Mirzaei E, Shahi A, Daraei A, Movahedi B, Karimi J, Farjam M, Gholampoor Y, Meshkibaf MH, Ansari A, Firoozi Z, Mansoori Y. Immune Regulatory Circular RNAs, circRasGEF1B and circHIPK3, are Upregulated in Peripheral Blood Mononuclear Cells of COVID-19 Patients. Genet Test Mol Biomarkers 2024; 28:452-459. [PMID: 39503793 DOI: 10.1089/gtmb.2024.0337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024] Open
Abstract
Background: COVID-19 is one of the worst pandemics worldwide, and its diagnosis and treatment are of great importance. Recent evidence has shown that circular RNA (circRNA deregulation is involved in different infectious diseases. In the present study, we tried to investigate the expression of cirRNAs RasGEF1B (hsa_circ_0127052), HIPK3 (hsa_circ_100783), and GATAD2A (hsa_circ_0050236) in COVID-19 patients. Methods: Using quantitative real-time polymerase chain reaction, the expression profiles of candidate circRNAs were detected in 57 COVID-19 patients and 51 healthy controls. As part of the process of identifying a candidate circRNA that is sensitive and specific, receiver operating characteristic (ROC) curves were also utilized. Results: Our results showed higher expression levels of circRasGEF1B and circHIPK3 in COVID-19 patients, however, circGATAD2A showed no statistical difference between patients and controls. ROC curves showed that circRasGEF1B (hsa_circ_0127052), and HIPK3 (hsa_circ_100783) had favorable specificity and sensitivity, whereas GATAD2A (hsa_circ_0050236) did not. Conclusion: In summary, our study highlights the potential of CircRasGEF1B (hsa_circ_0127052) and HIPK3 (hsa_circ_100783) as biomarkers for COVID-19 diagnosis due to their high expression levels and demonstrated diagnostic accuracy. These findings suggest that circRNAs could play a crucial role in the development of diagnostic tools for COVID-19, providing a new avenue for early detection and management of the disease.
Collapse
Affiliation(s)
- Ebrahim Mirzaei
- Department of Medical Genetics, Fasa University of Medical Sciences, Fasa, Iran
- Department of Clinical Biochemistry, Fasa University of Medical Sciences, Fasa, Iran
| | - Abbas Shahi
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Abdolreza Daraei
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Bahram Movahedi
- Department of Clinical Biochemistry, Fasa University of Medical Sciences, Fasa, Iran
| | - Jalal Karimi
- Department of Internal Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Mojtaba Farjam
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Yosef Gholampoor
- Department of Internal Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | | | - Amir Ansari
- Department of Internal Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Zahra Firoozi
- Department of Medical Genetics, Fasa University of Medical Sciences, Fasa, Iran
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Yaser Mansoori
- Department of Medical Genetics, Fasa University of Medical Sciences, Fasa, Iran
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
22
|
Wang L, Zheng G, Yang Y, Wu J, Du Y, Chen J, Liu C, Liu Y, Zhang B, Zhang H, Deng X, Lian L. Rolling-Translated circRUNX2.2 Promotes Lymphoma Cell Proliferation and Cycle Transition in Marek's Disease Model. Int J Mol Sci 2024; 25:11486. [PMID: 39519039 PMCID: PMC11545863 DOI: 10.3390/ijms252111486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Marek's disease (MD), an immunosuppressive disease induced by the Marek's disease virus (MDV), is regarded as an ideal model for lymphoma research to elucidate oncogenic and anti-oncogene genes. Using this model, we found that circRUNX2.2, derived from exon 6 of RUNX2, was significantly upregulated in MDV-infected tumorous spleens. In this study, we deeply analyzed the potential role of circRUNX2.2 in lymphoma cells. An open reading frame (ORF) in circRUNX2.2 with no stop codon was predicted, and small peptides (named circRUNX2.2-rt) presenting multiple ladder-like bands with different molecular weights encoded by circRUNX2.2 were detected via Western blotting assay. The polysome fraction assay reconfirmed the translation ability of circRUNX2.2, which could be detected in polysome fractions. Subsequent analysis verified that it translated in a rolling circle manner, rather than being assisted by the internal ribosome entry site (IRES) or m6A-mediated mechanism. Furthermore, we found that circRUNX2.2-rt was potently induced in MSB1 cells treated with sodium butyrate (NaB), which reactivated MDV and forced the MDV transition from the latent to reactivation phase. During this phase, MDV particles were clearly observed by electron microscopy, and the viral gene pp38 was also significantly upregulated. A biological function study showed that circRUNX2.2-rt promoted cell proliferation and cell cycle transition from the S to G2 phase and inhibited the apoptosis of MSB1. Further immunoprecipitation and mass spectrometry assays showed that 168 proteins potentially interacting with circRUNX2.2-rt were involved in multiple pathways related to cell cycle regulation, which proved that circRUNX2.2-rt could bind or recruit proteins to mediate the cell cycle.
Collapse
Affiliation(s)
- Lulu Wang
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Gang Zheng
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China
| | - Yuqin Yang
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China
| | - Junfeng Wu
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China
| | - Yushuang Du
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China
| | - Jiahua Chen
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China
| | - Changjun Liu
- Division of Avian Infectious Diseases, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Yongzhen Liu
- Division of Avian Infectious Diseases, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Bo Zhang
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China
| | - Hao Zhang
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China
| | - Xuemei Deng
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China
| | - Ling Lian
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China
| |
Collapse
|
23
|
Kundu I, Varshney S, Karnati S, Naidu S. The multifaceted roles of circular RNAs in cancer hallmarks: From mechanisms to clinical implications. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102286. [PMID: 39188305 PMCID: PMC11345389 DOI: 10.1016/j.omtn.2024.102286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Circular RNAs (circRNAs) represent a distinct class of covalently closed RNA species lacking conventional 5' to 3' polarity. Derived predominantly from pre-mRNA transcripts of protein-coding genes, circRNAs arise through back-splicing events of exon-exon or exon-intron junctions. They exhibit tissue- and cell-specific expression patterns and play crucial roles in regulating fundamental cellular processes such as cell cycle dynamics, proliferation, apoptosis, and differentiation. CircRNAs modulate gene expression through a plethora of mechanisms at epigenetic, transcriptional, and post-transcriptional levels, and some can even undergo translation into functional proteins. Recently, aberrant expression of circRNAs has emerged as a significant molecular aberration within the intricate regulatory networks governing hallmarks of cancer. The tumor-specific expression patterns and remarkable stability of circRNAs have profound implications for cancer diagnosis, prognosis, and therapy. This review comprehensively explores the multifaceted roles of circRNAs across cancer hallmarks in various tumor types, underscoring their growing significance in cancer diagnosis and therapeutic interventions. It also details strategies for leveraging circRNA-based therapies and discusses the challenges in using circRNAs for cancer management, emphasizing the need for further research to overcome these obstacles.
Collapse
Affiliation(s)
- Indira Kundu
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Shivani Varshney
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Srikanth Karnati
- Institute of Anatomy and Cell Biology, University of Würzburg, 97070 Würzburg, Germany
- Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - Srivatsava Naidu
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| |
Collapse
|
24
|
Chan YT, Zhang C, Wu J, Lu P, Xu L, Yuan H, Feng Y, Chen ZS, Wang N. Biomarkers for diagnosis and therapeutic options in hepatocellular carcinoma. Mol Cancer 2024; 23:189. [PMID: 39242496 PMCID: PMC11378508 DOI: 10.1186/s12943-024-02101-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 08/23/2024] [Indexed: 09/09/2024] Open
Abstract
Liver cancer is a global health challenge, causing a significant social-economic burden. Hepatocellular carcinoma (HCC) is the predominant type of primary liver cancer, which is highly heterogeneous in terms of molecular and cellular signatures. Early-stage or small tumors are typically treated with surgery or ablation. Currently, chemotherapies and immunotherapies are the best treatments for unresectable tumors or advanced HCC. However, drug response and acquired resistance are not predictable with the existing systematic guidelines regarding mutation patterns and molecular biomarkers, resulting in sub-optimal treatment outcomes for many patients with atypical molecular profiles. With advanced technological platforms, valuable information such as tumor genetic alterations, epigenetic data, and tumor microenvironments can be obtained from liquid biopsy. The inter- and intra-tumoral heterogeneity of HCC are illustrated, and these collective data provide solid evidence in the decision-making process of treatment regimens. This article reviews the current understanding of HCC detection methods and aims to update the development of HCC surveillance using liquid biopsy. Recent critical findings on the molecular basis, epigenetic profiles, circulating tumor cells, circulating DNAs, and omics studies are elaborated for HCC diagnosis. Besides, biomarkers related to the choice of therapeutic options are discussed. Some notable recent clinical trials working on targeted therapies are also highlighted. Insights are provided to translate the knowledge into potential biomarkers for detection and diagnosis, prognosis, treatment response, and drug resistance indicators in clinical practice.
Collapse
Affiliation(s)
- Yau-Tuen Chan
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Cheng Zhang
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Junyu Wu
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Pengde Lu
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Lin Xu
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Hongchao Yuan
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Zhe-Sheng Chen
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong.
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY, 11439, USA.
| | - Ning Wang
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong.
| |
Collapse
|
25
|
YuYan, Yuan E. Regulatory effect of N6-methyladenosine on tumor angiogenesis. Front Immunol 2024; 15:1453774. [PMID: 39295872 PMCID: PMC11408240 DOI: 10.3389/fimmu.2024.1453774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/19/2024] [Indexed: 09/21/2024] Open
Abstract
Previous studies have demonstrated that genetic alterations governing epigenetic processes frequently drive tumor development and that modifications in RNA may contribute to these alterations. In the 1970s, researchers discovered that N6-methyladenosine (m6A) is the most prevalent form of RNA modification in advanced eukaryotic messenger RNA (mRNA) and noncoding RNA (ncRNA). This modification is involved in nearly all stages of the RNA life cycle. M6A modification is regulated by enzymes known as m6A methyltransferases (writers) and demethylases (erasers). Numerous studies have indicated that m6A modification can impact cancer progression by regulating cancer-related biological functions. Tumor angiogenesis, an important and unregulated process, plays a pivotal role in tumor initiation, growth, and metastasis. The interaction between m6A and ncRNAs is widely recognized as a significant factor in proliferation and angiogenesis. Therefore, this article provides a comprehensive review of the regulatory mechanisms underlying m6A RNA modifications and ncRNAs in tumor angiogenesis, as well as the latest advancements in molecular targeted therapy. The aim of this study is to offer novel insights for clinical tumor therapy.
Collapse
Affiliation(s)
- YuYan
- Department of Laboratory Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Enwu Yuan
- Department of Laboratory Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
26
|
Yu CQ, Wang XF, Li LP, You ZH, Ren ZH, Chu P, Guo F, Wang ZY. RBNE-CMI: An Efficient Method for Predicting circRNA-miRNA Interactions via Multiattribute Incomplete Heterogeneous Network Embedding. J Chem Inf Model 2024. [PMID: 39231016 DOI: 10.1021/acs.jcim.4c01118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Circular RNA (circRNA)-microRNA (miRNA) interaction (CMI) plays crucial roles in cellular regulation, offering promising perspectives for disease diagnosis and therapy. Therefore, it is necessary to employ computational methods for the rapid and cost-effective prediction of potential circRNA-miRNA interactions. However, the existing methods are limited by incomplete data; therefore, it is difficult to model molecules with different attributes on a large scale, which greatly hinders the efficiency and performance of prediction. In this study, we propose an effective method for predicting circRNA-miRNA interactions, called RBNE-CMI, and introduce a framework that can embed incomplete multiattribute CMI heterogeneous networks. By combining the proposed method, we integrate different data sets in the CMI prediction field into one incomplete network for modeling, achieving superior performance in 5-fold cross-validation. Moreover, in the prediction task based on complete data, the proposed method still achieves better performance than the known model. In addition, in the case study, we successfully predicted 18 of the 20 potential cancer biomarkers. The data and source code can be found at https://github.com/1axin/RBNE-CMI.
Collapse
Affiliation(s)
- Chang-Qing Yu
- School of Information Engineering, Xijing University, Xi'an 710123 China
| | - Xin-Fei Wang
- College of Computer Science and Technology, Jilin University, Changchun 130012 China
| | - Li-Ping Li
- Yizhi School of Agriculture and Forestry, Xiangyang Polytechnic Institute, Xianyang 712000, China
| | - Zhu-Hong You
- School of Computer Science, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zhong-Hao Ren
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China
| | - Peng Chu
- School of Information Engineering, Xijing University, Xi'an 710123 China
| | - Feng Guo
- School of Information Engineering, Xijing University, Xi'an 710123 China
| | - Zhen-Yu Wang
- School of Telecommunications, Lanzhou University of Technology, Lanzhou 730000, China
| |
Collapse
|
27
|
Li J, Qian L, Ge M, Zhao J, Yang Y. hsa_circ_0000518 stimulates the malignant progression of hepatocellular carcinoma via regulating ITGA5 to activate the Warburg effect. Cell Signal 2024; 120:111243. [PMID: 38830562 DOI: 10.1016/j.cellsig.2024.111243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024]
Abstract
Studies have shown that the abnormal expression of circular RNA (circRNA) is inextricably linked to hepatocellular carcinoma (HCC). Recently, hsa_circ_0000518 (circ_0000518) was discovered in many cancer progressions. However, its function in HCC is still unclear. Through GEO database analysis combined with gene expression detection of HCC related clinical samples and cell lines, we identified that circ_0000518 was abnormally overexpressed in HCC. Cell and animal model experiments jointly indicated that circ_0000518 can stimulate HCC cell proliferation, migration, invasion and suppress apoptosis. Furthermore, we also found that knocking down the circ_0000518 could inhibit the Warburg effect in HCC cells. Mechanistically, circ_0000518 was found to be primarily localized in the cytoplasm, and sponge hsa-miR-326 (miR-326) promoted integrin alpha 5 (ITGA5) expression. In addition, circ_0000518 could enhance the stability of HuR-mediated ITGA5 mRNA, thereby activating the Warburg effect. In conclusion, this study elucidated that circ_0000518 was a cancer-promoting circRNA, which could enhance ITGA5 expression through competing endogenous RNAs (ceRNA) and RNA Binding Protein (RBP) mechanisms, thus facilitating the development of HCC. It provides a meaningful diagnostic and therapeutic target for HCC.
Collapse
MESH Headings
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Humans
- Liver Neoplasms/pathology
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- RNA, Circular/genetics
- RNA, Circular/metabolism
- MicroRNAs/metabolism
- MicroRNAs/genetics
- Animals
- Cell Proliferation
- Cell Line, Tumor
- Gene Expression Regulation, Neoplastic
- Warburg Effect, Oncologic
- Integrin alpha5/metabolism
- Integrin alpha5/genetics
- Cell Movement
- Mice, Nude
- Mice
- Apoptosis
- Disease Progression
- Mice, Inbred BALB C
- Male
- Integrins
Collapse
Affiliation(s)
- Jinhai Li
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Liyuan Qian
- Department of Hepatopancreatobiliary Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Mengchen Ge
- Department of Hepatopancreatobiliary Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Jie Zhao
- Department of General Surgery, Wujin Hospital of Traditional Chinese Medicine, Changzhou, Jiangsu, China
| | - Yu Yang
- Department of Hepatopancreatobiliary Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China.
| |
Collapse
|
28
|
Wang D, Chen D, Liang L, Hu J. The circZEB1/miR-337-3p/ OGT axis mediates angiogenesis and metastasis via O-GlcNAcylation and up-regulating YBX1 in breast cancer. Heliyon 2024; 10:e34079. [PMID: 39114035 PMCID: PMC11305230 DOI: 10.1016/j.heliyon.2024.e34079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND A growing corpus of research has revealed that circular RNAs (circRNAs) have become increasingly important for the growth of malignancies in recent years. CircRNAs as ideal candidates for breast cancer (BC) therapeutic targets is still absent. METHODS In our study, the dysregulated circRNAs in BC progression were explored, we analysed the BC's circRNA expression profiles using publicly available datasets (GSE101124 and GSE101122). The expression of circZEB1 in BC and cell lines was investigated by qPCR. RNase and actinomycin D were used to examine the features of circZEB1. The function of circZEB1 was subsequently investigated through the utilisation of colony formation, tube formation, transwell assays, and xenograft animal models.RNA immunoprecipitation (RIP), luciferase reporter assays, immunoprecipitation (co-IP) test in conjunction with LC-MS, and ChIP-seq assay to investigate the molecular mechanism underlying the biological activity of circZEB1 in BC. RESULTS Among the circRNAs, we were particularly interested in hsa_circ_0000228, which is spliced from the oncogene ZEB1. In BC cell lines, CircZEB1 expression was upregulated. CircZEB1 knockdown prevented BC cells from migrating and invading, as well as HUVECs from forming tubes and developing. By sponging miR-337-3p, functional testing revealed that circZEB1 promoted O-GlcNAcylation, increased YBX1, and OGT expression. Moreover, circZEB1 overexpression is reversible, in contrast to YBX1 knockdown, which mostly results in the downregulation of multiple oncogenes. CONCLUSION Our study indicate that circZEB1 had oncogenic function in BC by focusing on circZEB1/miR-337-3p/OGT and YBX1. It might be inferred that circZEB1 could be a promising new target for BC treatment.
Collapse
Affiliation(s)
- Dongying Wang
- Molecular Genetics Laboratory, Yiwu Maternity and Children Hospital, Jinhua, 321000, China
| | - Dengyi Chen
- Department of Clinical Laboratory, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China
| | - Leilei Liang
- Zhejiang Cancer Hospital, Hangzhou, 310011, China
| | - Jialei Hu
- Molecular Genetics Laboratory, Yiwu Maternity and Children Hospital, Jinhua, 321000, China
| |
Collapse
|
29
|
Youness RA, Hassan HA, Abaza T, Hady AA, El Magdoub HM, Ali M, Vogel J, Thiersch M, Gassmann M, Hamdy NM, Aboouf MA. A Comprehensive Insight and In Silico Analysis of CircRNAs in Hepatocellular Carcinoma: A Step toward ncRNA-Based Precision Medicine. Cells 2024; 13:1245. [PMID: 39120276 PMCID: PMC11312109 DOI: 10.3390/cells13151245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/11/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
Circular RNAs (circRNAs) are cardinal players in numerous physiological and pathological processes. CircRNAs play dual roles as tumor suppressors and oncogenes in different oncological contexts, including hepatocellular carcinoma (HCC). Their roles significantly impact the disease at all stages, including initiation, development, progression, invasion, and metastasis, in addition to the response to treatment. In this review, we discuss the biogenesis and regulatory functional roles of circRNAs, as well as circRNA-protein-mRNA ternary complex formation, elucidating the intricate pathways tuned by circRNAs to modulate gene expression and cellular processes through a comprehensive literature search, in silico search, and bioinformatics analysis. With a particular focus on the interplay between circRNAs, epigenetics, and HCC pathology, the article sets the stage for further exploration of circRNAs as novel investigational theranostic agents in the dynamic realm of HCC.
Collapse
Affiliation(s)
- Rana A. Youness
- Molecular Genetics Research Team (MGRT), Molecular Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), Cairo 11835, Egypt; (R.A.Y.); (H.A.H.); (T.A.)
| | - Hossam A. Hassan
- Molecular Genetics Research Team (MGRT), Molecular Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), Cairo 11835, Egypt; (R.A.Y.); (H.A.H.); (T.A.)
| | - Tasneem Abaza
- Molecular Genetics Research Team (MGRT), Molecular Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), Cairo 11835, Egypt; (R.A.Y.); (H.A.H.); (T.A.)
- Biotechnology Program, Institute of Basic and Applied Sciences (BAS), Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab City 21934, Egypt
| | - Ahmed A. Hady
- Clinical Oncology Department, Faculty of Medicine, Mansoura University, Mansoura 35511, Egypt;
| | - Hekmat M. El Magdoub
- Biochemistry Department, Faculty of Pharmacy, Misr International University, Cairo 19648, Egypt;
| | - Mohamed Ali
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA;
- Clinical Pharmacy Department, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Johannes Vogel
- Zurich Center for Integrative Human Physiology and Institute of V. Physiology, University of Zurich, 8057 Zurich, Switzerland; (J.V.); (M.T.); (M.G.)
| | - Markus Thiersch
- Zurich Center for Integrative Human Physiology and Institute of V. Physiology, University of Zurich, 8057 Zurich, Switzerland; (J.V.); (M.T.); (M.G.)
| | - Max Gassmann
- Zurich Center for Integrative Human Physiology and Institute of V. Physiology, University of Zurich, 8057 Zurich, Switzerland; (J.V.); (M.T.); (M.G.)
| | - Nadia M. Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo 11566, Egypt
| | - Mostafa A. Aboouf
- Zurich Center for Integrative Human Physiology and Institute of V. Physiology, University of Zurich, 8057 Zurich, Switzerland; (J.V.); (M.T.); (M.G.)
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo 11566, Egypt
| |
Collapse
|
30
|
Wang H, Wang EZR, Feng B, Chakrabarti S. CircRNA_012164/MicroRNA-9-5p axis mediates cardiac fibrosis in diabetic cardiomyopathy. PLoS One 2024; 19:e0302772. [PMID: 39042659 PMCID: PMC11265710 DOI: 10.1371/journal.pone.0302772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/11/2024] [Indexed: 07/25/2024] Open
Abstract
Noncoding RNAs play a part in many chronic diseases and interact with each other to regulate gene expression. MicroRNA-9-5p (miR9) has been thought to be a potential inhibitor of diabetic cardiomyopathy. Here we examined the role of miR9 in regulating cardiac fibrosis in the context of diabetic cardiomyopathy. We further expanded our studies through investigation of a regulatory circularRNA, circRNA_012164, on the action of miR9. We showed at both the in vivo and in vitro level that glucose induced downregulation of miR9 and upregulation of circRNA_012164 resulted in the subsequent upregulation of downstream fibrotic genes. Further, knockdown of circRNA_012164 shows protective effects in cardiac endothelial cells and reverses increased transcription of genes associated with fibrosis and fibroblast proliferation through a regulatory axis with miR9. This study presents a novel regulatory axis involving noncoding RNA that is evidently important in the development of cardiac fibrosis in diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Honglin Wang
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, Ontario, Canada
| | - Eric Zi Rui Wang
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, Ontario, Canada
| | - Biao Feng
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, Ontario, Canada
| | - Subrata Chakrabarti
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
31
|
Zeng J, Feng Y, Lin L, Ye H, Shen H, Sun Y. Circ_0000069 promotes the development of hepatocellular carcinoma by regulating CCL25. BMC Cancer 2024; 24:827. [PMID: 38992592 PMCID: PMC11238365 DOI: 10.1186/s12885-024-12594-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 07/02/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths globally, influenced by aberrant circRNA expression. Investigating circRNA-miRNA-mRNA interactions can unveil underlying mechanisms of HCC and identify potential therapeutic targets. METHODS In this study, we conducted differential analyses of mRNAs, miRNAs, and circRNAs, and established their relationships using various databases such as miRanda, miRDB, and miTarBase. Additionally, functional enrichment and immune infiltration analyses were performed to evaluate the roles of key genes. We also conducted qPCR assays and western blotting (WB) to examine the expression levels of circRNA, CCL25, and MAP2K1 in both HCC cells and clinical samples. Furthermore, we utilized overexpression and knockdown techniques for circ_0000069 and conducted wound healing, transwell invasion assays, and a tumorigenesis experiment to assess the migratory and invasive abilities of HCC cells. RESULTS Our findings revealed significant differential expression of 612 upregulated genes and 1173 downregulated genes in HCC samples compared to normal liver tissue. Additionally, 429 upregulated circRNAs and 453 downregulated circRNAs were identified. Significantly, circ_0000069 exhibited upregulation in HCC tissues and cell lines. The overexpression of circ_0000069 notably increased the invasion and migration capacity of Huh7 cells, whereas the downregulation of circ_0000069 reduced this capability in HepG2 cells. Furthermore, this effect was counteracted by CCL25 silencing or overexpression, separately. Animal studies further confirmed that the overexpression of hsa_circ_0000069 facilitated tumor growth in xenografted nude mice, while the inhibition of CCL25 attenuated this effect. CONCLUSION Circ_0000069 appears to promote HCC progression by regulating CCL25, suggesting that both circ_0000069 and CCL25 can serve as potential therapeutic targets.
Collapse
Affiliation(s)
- Junshao Zeng
- Department of Oncology, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang City People's Hospital, Guigang, Guangxi, China
| | - Yi Feng
- Department of Clinical Laboratory, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang City People's Hospital, No. 1, Zhong Shan Road, Guigang, 537100, Guangxi, China
| | - Liwen Lin
- Department of Clinical Laboratory, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang City People's Hospital, No. 1, Zhong Shan Road, Guigang, 537100, Guangxi, China
| | - Huifeng Ye
- Department of Clinical Laboratory, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang City People's Hospital, No. 1, Zhong Shan Road, Guigang, 537100, Guangxi, China
| | - Haoming Shen
- Department of Clinical Laboratory, Hunan Cancer Hospital &, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
| | - Yifan Sun
- Department of Clinical Laboratory, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang City People's Hospital, No. 1, Zhong Shan Road, Guigang, 537100, Guangxi, China.
| |
Collapse
|
32
|
Leng X, Zhang M, Xu Y, Wang J, Ding N, Yu Y, Sun S, Dai W, Xue X, Li N, Yang Y, Shi Z. Non-coding RNAs as therapeutic targets in cancer and its clinical application. J Pharm Anal 2024; 14:100947. [PMID: 39149142 PMCID: PMC11325817 DOI: 10.1016/j.jpha.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/12/2024] [Accepted: 02/01/2024] [Indexed: 08/17/2024] Open
Abstract
Cancer genomics has led to the discovery of numerous oncogenes and tumor suppressor genes that play critical roles in cancer development and progression. Oncogenes promote cell growth and proliferation, whereas tumor suppressor genes inhibit cell growth and division. The dysregulation of these genes can lead to the development of cancer. Recent studies have focused on non-coding RNAs (ncRNAs), including circular RNA (circRNA), long non-coding RNA (lncRNA), and microRNA (miRNA), as therapeutic targets for cancer. In this article, we discuss the oncogenes and tumor suppressor genes of ncRNAs associated with different types of cancer and their potential as therapeutic targets. Here, we highlight the mechanisms of action of these genes and their clinical applications in cancer treatment. Understanding the molecular mechanisms underlying cancer development and identifying specific therapeutic targets are essential steps towards the development of effective cancer treatments.
Collapse
Affiliation(s)
- Xuejiao Leng
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Mengyuan Zhang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yujing Xu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jingjing Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ning Ding
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yancheng Yu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shanliang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Weichen Dai
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xin Xue
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Nianguang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ye Yang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhihao Shi
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, 211198, China
| |
Collapse
|
33
|
Lei J, Qiao S. Circular RNA circ_001621 acts as a tumor promoter in lung cancer by regulating the miR-199a-3p/GREM1 axis. Arch Med Sci 2024; 20:876-886. [PMID: 39050152 PMCID: PMC11264106 DOI: 10.5114/aoms/174052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/12/2023] [Indexed: 07/27/2024] Open
Abstract
Introduction Investigating how circular RNAs (circRNAs) function during tumorigenesis may help uncover novel diagnostic markers for cancer treatment. The oncogenic role of circ_001621 has been verified in osteosarcoma, but its role in lung cancer has yet to be reported. This research is the first to investigate the circ_001621 expression and regulatory mechanism in lung cancer. Material and methods RT-qPCR was performed to assess the circ_001621 expression levels in lung cancer cells and tissues. The influence of circ_001621 on the viability, invasive ability, and apoptosis of lung cancer cells was investigated through CCK-8, transwell, and caspase-3 activity experiments, respectively. A xenograft nude mouse model was designed to evaluate how circ_001621 functions in vivo. The RIP and luciferase reporter experiments confirmed the binding among circRNA, miRNA, and mRNA. Results Circ_001621 was dramatically upregulated in lung cancer tissues and cells. Silencing circ_001621 in lung cancer cells reduced their viability and invasive ability but stimulated apoptosis. The nude mice experiment demonstrated that circ_001621 downregulation considerably stunted tumor growth in vivo. Additionally, circ_001621 could sponge miR-199a-3p. The inhibitor of miR-199a-3p improved the viability and invasion of cells while inhibiting apoptosis. Moreover, it offset the impact of circ_001621 on lung cancer cells. MiR-199a-3p was observed to target GREM1, and the downregulation of GREM1 could counteract miR-199a-3p-induced effects on lung cancer cells. Conclusions The circ_001621/miR-199a-3p/GREM1 axis exhibits an association with the development of lung cancer, suggesting its potential as a future therapeutic target for the disease.
Collapse
Affiliation(s)
- Jun Lei
- Department of Respiratory Medicine, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China
| | - Song Qiao
- Massage Department, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China
| |
Collapse
|
34
|
Li A, Wang R, Zhao Y, Zhao P, Yang J. Crosstalk between Epigenetics and Metabolic Reprogramming in Metabolic Dysfunction-Associated Steatotic Liver Disease-Induced Hepatocellular Carcinoma: A New Sight. Metabolites 2024; 14:325. [PMID: 38921460 PMCID: PMC11205353 DOI: 10.3390/metabo14060325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/01/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
Epigenetic and metabolic reprogramming alterations are two important features of tumors, and their reversible, spatial, and temporal regulation is a distinctive hallmark of carcinogenesis. Epigenetics, which focuses on gene regulatory mechanisms beyond the DNA sequence, is a new entry point for tumor therapy. Moreover, metabolic reprogramming drives hepatocellular carcinoma (HCC) initiation and progression, highlighting the significance of metabolism in this disease. Exploring the inter-regulatory relationship between tumor metabolic reprogramming and epigenetic modification has become one of the hot directions in current tumor metabolism research. As viral etiologies have given way to metabolic dysfunction-associated steatotic liver disease (MASLD)-induced HCC, it is urgent that complex molecular pathways linking them and hepatocarcinogenesis be explored. However, how aberrant crosstalk between epigenetic modifications and metabolic reprogramming affects MASLD-induced HCC lacks comprehensive understanding. A better understanding of their linkages is necessary and urgent to improve HCC treatment strategies. For this reason, this review examines the interwoven landscape of molecular carcinogenesis in the context of MASLD-induced HCC, focusing on mechanisms regulating aberrant epigenetic alterations and metabolic reprogramming in the development of MASLD-induced HCC and interactions between them while also updating the current advances in metabolism and epigenetic modification-based therapeutic drugs in HCC.
Collapse
Affiliation(s)
- Anqi Li
- College of Basic Medical Science, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (A.L.); (Y.Z.); (P.Z.)
| | - Rui Wang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China
| | - Yuqiang Zhao
- College of Basic Medical Science, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (A.L.); (Y.Z.); (P.Z.)
| | - Peiran Zhao
- College of Basic Medical Science, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (A.L.); (Y.Z.); (P.Z.)
| | - Jing Yang
- College of Basic Medical Science, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (A.L.); (Y.Z.); (P.Z.)
| |
Collapse
|
35
|
Li KZ, Liao XM, Li SQ, Wei HT, Liang ZJ, Ge LX, Zhou SF, Hu BL. Identification and diagnostic potential of hsa_circ_101303 in colorectal cancer: unraveling a regulatory network. BMC Cancer 2024; 24:671. [PMID: 38824581 PMCID: PMC11144310 DOI: 10.1186/s12885-024-12458-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 05/31/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND The role of novel circular RNAs (circRNAs) in colorectal cancer (CRC) remains to be determined. This study aimed to identify a novel circRNA involved in CRC pathogenesis, assess its diagnostic value, and construct a regulatory network. METHODS Differential expression analysis was conducted using circRNA datasets to screen for differentially expressed circRNAs. The expression of selected circRNAs was validated in external datasets and clinical samples. Diagnostic value of plasma circRNA levels in CRC was assessed. A competing endogenous RNA (ceRNA) network was constructed for the circRNA using TCGA dataset. RESULTS Analysis of datasets revealed that hsa_circ_101303 was significantly overexpressed in CRC tissues compared to normal tissues. The upregulation of hsa_circ_101303 in CRC tissues was further confirmed through the GSE138589 dataset and clinical samples. High expression of hsa_circ_101303 was associated with advanced N stage, M stage, and tumor stage in CRC. Plasma levels of hsa_circ_101303 were markedly elevated in CRC patients and exhibited moderate diagnostic ability for CRC (AUC = 0.738). The host gene of hsa_circ_101303 was also found to be related to the TNM stage of CRC. Nine miRNAs were identified as target miRNAs for hsa_circ_101303, and 27 genes were identified as targets of these miRNAs. Subsequently, a ceRNA network for hsa_circ_101303 was constructed to illustrate the interactions between the nine miRNAs and 27 genes. CONCLUSIONS The study identifies hsa_circ_101303 as a highly expressed circRNA in CRC, which is associated with the progression of the disease. Plasma levels of hsa_circ_101303 show promising diagnostic potential for CRC. The ceRNA network for hsa_circ_101303 provides valuable insights into the regulatory mechanisms underlying CRC.
Collapse
Affiliation(s)
- Ke-Zhi Li
- Department of Research, Guangxi Medical University Cancer Hospital, No. 71 Hedi Road, Nanning, 530021, China
| | - Xiao-Min Liao
- Department of Research, Guangxi Medical University Cancer Hospital, No. 71 Hedi Road, Nanning, 530021, China
| | - Si-Qi Li
- Department of Research, Guangxi Medical University Cancer Hospital, No. 71 Hedi Road, Nanning, 530021, China
| | - Hao-Tang Wei
- Department of Gastrointestinal Surgery, Third Affiliated Hospital of Guangxi Medical University, Nanning, 530031, China
| | - Zhi-Jian Liang
- Department of Research, Guangxi Medical University Cancer Hospital, No. 71 Hedi Road, Nanning, 530021, China
| | - Liu-Xin Ge
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, China
| | - Su-Fang Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, China.
- Key Laboratory of the Ministry of Education Project for Early Prevention and Treatment of Regional High-Risk Tumors & Key Laboratory of Biological Molecular Medicine Research, Guangxi Medical University, Nanning, 530021, China.
| | - Bang-Li Hu
- Department of Research, Guangxi Medical University Cancer Hospital, No. 71 Hedi Road, Nanning, 530021, China.
| |
Collapse
|
36
|
Tian Y, Zhang M, Liu LX, Wang ZC, Liu B, Huang Y, Wang X, Ling YZ, Wang F, Feng X, Tu Y. Exploring non-coding RNA mechanisms in hepatocellular carcinoma: implications for therapy and prognosis. Front Immunol 2024; 15:1400744. [PMID: 38799446 PMCID: PMC11116607 DOI: 10.3389/fimmu.2024.1400744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/03/2024] [Indexed: 05/29/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a significant contributor to cancer-related deaths in the world. The development and progression of HCC are closely correlated with the abnormal regulation of non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). Important biological pathways in cancer biology, such as cell proliferation, death, and metastasis, are impacted by these ncRNAs, which modulate gene expression. The abnormal expression of non-coding RNAs in HCC raises the possibility that they could be applied as new biomarkers for diagnosis, prognosis, and treatment targets. Furthermore, by controlling the expression of cancer-related genes, miRNAs can function as either tumor suppressors or oncogenes. On the other hand, lncRNAs play a role in the advancement of cancer by interacting with other molecules within the cell, which, in turn, affects processes such as chromatin remodeling, transcription, and post-transcriptional processes. The importance of ncRNA-driven regulatory systems in HCC is being highlighted by current research, which sheds light on tumor behavior and therapy response. This research highlights the great potential of ncRNAs to improve patient outcomes in this difficult disease landscape by augmenting the present methods of HCC care through the use of precision medicine approaches.
Collapse
Affiliation(s)
- Yu Tian
- Research Center, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
- School of Public Health, Benedictine University, Lisle, IL, United States
| | - Meng Zhang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Li-xia Liu
- Department of Ultrasound, Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Zi-chao Wang
- Department of Ultrasound, Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Bin Liu
- Central Laboratory, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Youcai Huang
- Research Center, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Xiaoling Wang
- Research Center, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Yun-zhi Ling
- Research Center, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Furong Wang
- Department of Pathology, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Xiaoqiang Feng
- Center of Stem Cell and Regenerative Medicine, Gaozhou People’s Hospital, Gaozhou, Guangdong, China
| | - Yanyang Tu
- Research Center, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| |
Collapse
|
37
|
Ma Y, Wang T, Zhang X, Wang P, Long F. The role of circular RNAs in regulating resistance to cancer immunotherapy: mechanisms and implications. Cell Death Dis 2024; 15:312. [PMID: 38697964 PMCID: PMC11066075 DOI: 10.1038/s41419-024-06698-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/05/2024]
Abstract
Cancer immunotherapy has rapidly transformed cancer treatment, yet resistance remains a significant hurdle, limiting its efficacy in many patients. Circular RNAs (circRNAs), a novel class of non-coding RNAs, have emerged as pivotal regulators of gene expression and cellular processes. Increasing evidence indicates their involvement in modulating resistance to cancer immunotherapy. Notably, certain circRNAs function as miRNA sponges or interact with proteins, influencing the expression of immune-related genes, including crucial immune checkpoint molecules. This, in turn, shapes the tumor microenvironment and significantly impacts the response to immunotherapy. In this comprehensive review, we explore the evolving role of circRNAs in orchestrating resistance to cancer immunotherapy, with a specific focus on their mechanisms in influencing immune checkpoint gene expression. Additionally, we underscore the potential of circRNAs as promising therapeutic targets to augment the effectiveness of cancer immunotherapy. Understanding the role of circRNAs in cancer immunotherapy resistance could contribute to the development of new therapeutic strategies to overcome resistance and improve patient outcomes.
Collapse
Affiliation(s)
- Yu Ma
- Department of Clinical Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Ting Wang
- Department of Clinical Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Xudong Zhang
- Department of Clinical Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Pinghan Wang
- Laboratory Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, 610032, China
| | - Fangyi Long
- Laboratory Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, 610032, China.
| |
Collapse
|
38
|
Wang R, Zeng Y, Chen Z, Ma D, Zhang X, Wu G, Fan W. Shear-Sensitive circRNA-LONP2 Promotes Endothelial Inflammation and Atherosclerosis by Targeting NRF2/HO1 Signaling. JACC Basic Transl Sci 2024; 9:652-670. [PMID: 38984054 PMCID: PMC11228119 DOI: 10.1016/j.jacbts.2024.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 07/11/2024]
Abstract
Hemodynamic shear stress is a frictional force that acts on vascular endothelial cells and is essential for endothelial homeostasis. Physiological laminar shear stress (LSS) suppresses endothelial inflammation and protects arteries from atherosclerosis. Herein, we screened differentially expressed circular RNAs (circRNAs) that were significantly altered in LSS-stimulated endothelial cells and found that circRNA-LONP2 was involved in modulating the flow-dependent inflammatory response. Furthermore, endothelial circRNA-LONP2 overexpression promoted endothelial inflammation and atherosclerosis in vitro and in vivo. Mechanistically, circRNA-LONP2 competitively sponged miR-200a-3p and subsequently promoted Kelch-like ECH-associated protein 1, Yes-associated protein 1, and enhancer of zeste homolog 2 expression, thereby inactivating nuclear factor erythroid 2-related factor 2/heme oxygenase-1 signaling, promoting oxidative stress and endothelial inflammation, and accelerating atherosclerosis. LSS-induced down-regulation of circRNA-LONP2 suppresses endothelial inflammation, at least in part, by activating the miR-200a-3p-mediated nuclear factor erythroid 2-related factor 2/heme oxygenase-1 signaling pathway. CircRNA-LONP2 may serve as a new therapeutic target for atherosclerosis.
Collapse
Affiliation(s)
- Ruoyu Wang
- Department of Cardiology, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, People's Republic of China
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University)
| | - Yue Zeng
- Department of Cardiology, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, People's Republic of China
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University)
| | - Ziqi Chen
- Department of Cardiology, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, People's Republic of China
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University)
| | - Dongwei Ma
- Department of Cardiology, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, People's Republic of China
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University)
| | - Xiaozhe Zhang
- Department of Cardiology, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, People's Republic of China
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University)
| | - Guifu Wu
- Department of Cardiology, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, People's Republic of China
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University)
- Guangdong Innovative Engineering and Technology Research Center for Assisted Circulation, Shenzhen, Guangdong, People's Republic of China
| | - Wendong Fan
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University)
- Department of Cardiology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
39
|
Dou C, Zhu H, Xie X, Huang C, Tan H, Cao C. Exosomal circ_0032704 confers sorafenib resistance to hepatocellular carcinoma and contributes to cancer malignant progression by modulating the miR-514a-3p/PD-L1 pathway. Ann Gastroenterol Surg 2024; 8:507-520. [PMID: 38707229 PMCID: PMC11066485 DOI: 10.1002/ags3.12772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/20/2023] [Accepted: 12/26/2023] [Indexed: 05/07/2024] Open
Abstract
Purpose This study aims to explore the role of circ_0032704 in sorafenib-resistant hepatocellular carcinoma (HCC). Methods The expression of circ_0032704, miR-514a-3p, and programmed death-ligand 1 (PD-L1) mRNA was detected by quantitative real-time PCR (qPCR). The expression of multidrug resistant-related proteins, migration/invasion-related proteins, exosome-related proteins, and PD-L1 protein was detected by western blot. Cell viability was detected by CCK-8 assay. Cell proliferation, migration, and invasion were assessed by EdU assay, wound healing assay, and transwell assay. The binding between miR-514a-3p and circ_0032704 or PD-L1 was verified by RIP assay, pull-down assay, and dual-luciferase reporter assay. Cell- or serum-derived exosomes were isolated and identified by TEM and NTA. Xenograft models were established to determine the effect of circ_0032704 on drug resistance in vivo. Results Circ_0032704 was overexpressed in sorafenib-resistant HCC tissues and cells. Circ_0032704 knockdown reduced sorafenib resistance in HCC cells and inhibited cell proliferation, migration, and invasion of sorafenib-resistant HCC cells, while these effects were reversed by PD-L1 overexpression. We found that circ_0032704 positively regulated PD-L1 expression via targeting miR-514a-3p. Exosomes with circ_0032704 inhibition reduced sorafenib resistance in HCC cells and inhibited cell proliferation, migration, and invasion of sorafenib-resistant HCC cells. Exosomes with circ_0032704 inhibition also inhibited tumor growth in vivo. The expression of circ_0032704 in exosomes was stable and possessed diagnostic value. Conclusion Circ_0032704 enhanced sorafenib resistance in HCC and promoted the malignant development of sorafenib-resistant HCC. Circ_0032704 could be transported by exosomes, and exosomal circ_0032704 had diagnostic value.
Collapse
Affiliation(s)
- Chengyun Dou
- Department of Infectious Diseases, the First Affiliated Hospital, Hengyang Medical SchoolUniversity of South ChinaHengyangHunanChina
| | - Hongbo Zhu
- Department of Medical Oncology, the First Affiliated Hospital, Hengyang Medical SchoolUniversity of South ChinaHengyangHunanChina
| | - Xia Xie
- Department of Infectious Diseases, the First Affiliated Hospital, Hengyang Medical SchoolUniversity of South ChinaHengyangHunanChina
| | - Cuiqin Huang
- Department of Pathology, the First Affiliated Hospital, Hengyang Medical SchoolUniversity of South ChinaHengyangHunanChina
| | - Hui Tan
- Department of Pathology, the First Affiliated Hospital, Hengyang Medical SchoolUniversity of South ChinaHengyangHunanChina
| | - Chuangjie Cao
- Department of Pathology, the First Affiliated Hospital, Hengyang Medical SchoolUniversity of South ChinaHengyangHunanChina
| |
Collapse
|
40
|
Arefnezhad R, Ashna S, Rezaei-Tazangi F, Arfazadeh SM, Seyedsalehie SS, Yeganeafrouz S, Aghaei M, Sanandaji M, Davoodi R, Abadi SRK, Vosough M. Noncoding RNAs and programmed cell death in hepatocellular carcinoma: Significant role of epigenetic modifications in prognosis, chemoresistance, and tumor recurrence rate. Cell Biol Int 2024; 48:556-576. [PMID: 38411312 DOI: 10.1002/cbin.12145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 01/26/2024] [Accepted: 02/09/2024] [Indexed: 02/28/2024]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of liver cancer with a high death rate in the world. The molecular mechanisms related to the pathogenesis of HCC have not been precisely defined so far. Hence, this review aimed to address the potential cross-talk between noncoding RNAs (ncRNAs) and programmed cell death in HCC. All related papers in the English language up to June 2023 were collected and screened. The searched keywords in scientific databases, including Scopus, PubMed, and Google Scholar, were HCC, ncRNAs, Epigenetic, Programmed cell death, Autophagy, Apoptosis, Ferroptosis, Chemoresistance, Tumor recurrence, Prognosis, and Prediction. According to the reports, ncRNAs, comprising long ncRNAs, microRNAs, circular RNAs, and small nucleolar RNAs can affect cell proliferation, migration, invasion, and metastasis, as well as cell death-related processes, such as autophagy, ferroptosis, necroptosis, and apoptosis in HCC by regulating cancer-associated genes and signaling pathways, for example, phosphoinositide 3-kinase/Akt, extracellular signal-regulated kinase/MAPK, and Wnt/β-catenin signaling pathways. It seems that ncRNAs, as epigenetic regulators, can be utilized as biomarkers in diagnosis, prognosis, survival and recurrence rates prediction, chemoresistance, and evaluation of therapeutic response in HCC patients. However, more scientific evidence is suggested to be accomplished to confirm these results.
Collapse
Affiliation(s)
- Reza Arefnezhad
- Coenzyme R Research Institute, Tehran, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Ashna
- Student Research Committee, Islamic Azad University Science and Research Branch, Tehran, Iran
| | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | | | - Seyede Shabnam Seyedsalehie
- Department of Pediatrics, Faculty of Medicine, Ahvaz Jundishapur, University of Medical Sciences, Ahvaz, Iran
| | - Shaghayegh Yeganeafrouz
- Department of Medical Science, Faculty of Medicine, Islamic Azad University, Medical branch, Tehran, Iran
| | - Melika Aghaei
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mandana Sanandaji
- Department of Physical Education and Sport Sciences, Tehran University, Tehran, Iran
| | | | | | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Institution for Laboratory Medicine, Karolinska Institutet, Experimental Cancer Medicine, Huddinge, Sweden
| |
Collapse
|
41
|
Wu L, Zhang Y, Ren J. Targeting non-coding RNAs and N 6-methyladenosine modification in hepatocellular carcinoma. Biochem Pharmacol 2024; 223:116153. [PMID: 38513741 DOI: 10.1016/j.bcp.2024.116153] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Hepatocellular carcinoma (HCC), the most common form of primary liver cancers, accounts for a significant portion of cancer-related death globally. However, the molecular mechanisms driving the onset and progression of HCC are still not fully understood. Emerging evidence has indicated that non-protein-coding regions of genomes could give rise to transcripts, termed non-coding RNA (ncRNA), forming novel functional driving force for aberrant cellular activity. Over the past decades, overwhelming evidence has denoted involvement of a complex array of molecular function of ncRNAs at different stages of HCC tumorigenesis and progression. In this context, several pre-clinical studies have highlighted the potentials of ncRNAs as novel therapeutic modalities in the management of human HCC. Moreover, N6-methyladenosine (m6A) modification, the most prevalent form of internal mRNA modifications in mammalian cells, is essential for the governance of biological processes within cells. Dysregulation of m6A in ncRNAs has been implicated in human carcinogenesis, including HCC. In this review, we will discuss dysregulation of several hallmark ncRNAs (miRNAs, lncRNAs, and circRNAs) in HCC and address the latest advances for their involvement in the onset and progression of HCC. We also focus on dysregulation of m6A modification and various m6A regulators in the etiology of HCC. In the end, we discussed the contemporary preclinical and clinical application of ncRNA-based and m6A-targeted therapies in HCC.
Collapse
Affiliation(s)
- Lin Wu
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Yingmei Zhang
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Jun Ren
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China.
| |
Collapse
|
42
|
Liu J, Zhang X, Yang M, Zhang X. CircCOL1A1 promotes proliferation, migration, and invasion of colorectal cancer (CRC) cells and glutamine metabolism through GLS1 up-regulation by sponging miR-214-3p. J Cancer Res Clin Oncol 2024; 150:211. [PMID: 38662258 PMCID: PMC11045592 DOI: 10.1007/s00432-024-05736-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/31/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Circular ribose nucleic acids (circRNAs), an abundant type of noncoding RNAs, are widely expressed in eukaryotic cells and exert a significant impact on the initiation and progression of various disorders, including different types of cancer. However, the specific role of various circRNAs in colorectal cancer (CRC) pathology is still not fully understood. METHODS The initial step involved the use of quantitative reverse transcription polymerase chain reaction (RT-qPCR) to assess the expression levels of circRNAs and messenger RNA (mRNA) in CRC cell lines and tissues. Subsequently, functional analyses of circCOL1A1 knockdown were conducted in vitro and in vivo through cell counting kit (CCK)-8, colony formation and transwell assays, as well as xenograft mouse model of tumor formation. Molecular expression and interactions were investigated using luciferase reporter assays, Western blot analysis, RNA immunoprecipitation (RIP), and immunohistochemical staining. RESULTS The RT-qPCR results revealed elevated levels of circCOL1A1 expressions in CRC tissues and cell lines as compared to the normal counterparts. In addition, circCOL1A1 expression level was found to be correlated with TNM stage, lymph node metastases, distant metastases, and invasion. Knockdown of circCOL1A1 resulted in impaired invasion, migration, and proliferation of CRC cells, and suppressed tumor generation in the animal model. We further demonstrated that circCOL1A1 could act as a sponge for miR-214-3p, suppressing miR-214-3p activity and leading to the upregulation of GLS1 protein to promote glutamine metabolism. CONCLUSION These findings suggest that circCOL1A1 functions as an oncogenic molecule to promote CRC progression via miR-214-3p/GLS1 axis, hinting on the potential of circCOL1A1 as a therapeutic target for CRC.
Collapse
Affiliation(s)
- Jia Liu
- Oncology Teaching and Research Office, Hebei Medical University, No. 361, Zhongshan East Road, Shijiazhuang City, 050017, Hebei, China
- Second Department of Oncology, Hebei General Hospital, No. 348 Heping West Road, Shijiazhuang City, 050051, Hebei Province, China
| | - Xianbo Zhang
- Second Department of Oncology, Hebei General Hospital, No. 348 Heping West Road, Shijiazhuang City, 050051, Hebei Province, China
| | - Meijian Yang
- Second Department of Oncology, Hebei General Hospital, No. 348 Heping West Road, Shijiazhuang City, 050051, Hebei Province, China
| | - Xianghong Zhang
- Department of Pathology, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Shijiazhuang City, 050000, Hebei, China.
| |
Collapse
|
43
|
Chen H, Wen J, Zhang W, Ma W, Guo Y, Shen L, Zhang Z, Yang F, Zhang Y, Gao Y, Xu T, Yan Y, Li W, Zhang J, Mao S, Yao X. circKDM1A suppresses bladder cancer progression by sponging miR-889-3p/CPEB3 and stabilizing p53 mRNA. iScience 2024; 27:109624. [PMID: 38632984 PMCID: PMC11022052 DOI: 10.1016/j.isci.2024.109624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/04/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024] Open
Abstract
Circular RNAs (circRNAs) play crucial biological functions in various tumors, including bladder cancer (BCa). However, the roles and underlying molecular mechanisms of circRNAs in the malignant proliferation of BCa are yet unknown. CircKDM1A was observed to be downregulated in BCa tissues and cells. Knockdown of circKDM1A promoted the proliferation of BCa cells and bladder xenograft growth, while the overexpression of circKDM1A exerts the opposite effect. The dual-luciferase reporter assay revealed that circKDM1A was directly bound to miR-889-3p, acting as its molecular sponge to downregulate CPEB3. In turn, the CPEB3 was bound to the CPE signal in p53 mRNA 3'UTR to stabilize its expression. Thus, circKDM1A-mediated CPEB3 downregulation inhibits the stability of p53 mRNA and promotes BCa malignant progression. In conclusion, circKDM1A functions as a tumor suppressor in the malignant proliferation of BCa via the miR-889-3p/CPEB3/p53 axis. CircKDM1A may be a potential prognostic biomarker and therapeutic target of BCa.
Collapse
Affiliation(s)
- Haotian Chen
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Jing Wen
- Institute of Energy Metabolism and Health, Shanghai Tenth People’s Hospital, Tongji University School of Medicine Shanghai, Shanghai 200072, P.R. China
| | - Wentao Zhang
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Wenchao Ma
- Department of Reproduction, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Yadong Guo
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Liliang Shen
- Department of Urology, The Affiliated People’s Hospital of Ningbo University, Ningbo, China
| | - Zhijin Zhang
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Fuhan Yang
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Yue Zhang
- Department of Central Laboratory, Clinical Medicine Scientific and Technical Innovation Park, Shanghai Tenth People’s Hospital, Shanghai 200435, China
| | - Yaohui Gao
- Department of Pathology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Tianyuan Xu
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Yang Yan
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Wei Li
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Junfeng Zhang
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Shiyu Mao
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Xudong Yao
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
44
|
Li L, Wang M, Chen Q, Zhang M, Chen Z, Han M, Zhao C, Xie Z, Dong Q, Zhang H. Intracellular Staphylococcus aureus infection in human osteoblasts: circRNA expression analysis. Heliyon 2024; 10:e28461. [PMID: 38560264 PMCID: PMC10979106 DOI: 10.1016/j.heliyon.2024.e28461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/06/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
Staphylococcus aureus (S. aureus) has the ability to invade human cortical bones and cause intracellular infections in osteoblasts, which may lead to a long-term infection that is difficult to eliminate. It is critical to identify the underlying mechanisms of the osteoblast response to the intracellular S. aureus. More recently, multiple circular RNA (circRNA) functions have been identified, including serving as protein scaffolds or miRNA sponges and being translated into polypeptides. The role that circRNAs play in intracellular S. aureus infection of osteoblasts has not, to our knowledge, been investigated. Here, we established an intracellular infection model of S. aureus in osteoblasts and compared the circRNA expression of osteoblasts between the infected and control groups using RNA sequencing technology, by which a significant difference was found. In total, 117 upregulated and 125 down-regulated differentially expressed circRNAs (DEcircRNAs) were identified, and reverse transcription-quantitative PCR was employed to validate the results of RNA sequencing. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses demonstrated that DEcircRNAs were enriched in processes associated with macromolecule modification, cellular component organization or biogenesis, and intracellular non-membrane-bound organelles. Finally, a potentially important network of circRNA-miRNA-mRNA based on the DEcircRNAs was constructed. Overall, this study revealed the circRNA expression profile of human osteoblasts infected by intracellular S. aureus for the first time, and identified the circRNAs that may contribute to the pathogenesis of infectious diseases caused by intracellular S. aureus infection in human osteoblasts.
Collapse
Affiliation(s)
- Liubing Li
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Min Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Qi Chen
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Mingxing Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Orthopedics, Shuofang Hospital of Xinwu District, Wuxi, China
| | - Zhihao Chen
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Mingxiao Han
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Chenhao Zhao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zonggang Xie
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Qirong Dong
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Haifang Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
45
|
Tian Y, Han W, Lv K, Fu L, Zhou X. CircSNX6 promotes proliferation, metastasis, and angiogenesis in hepatocellular carcinoma via miR-383-5p/VEGFA signaling pathway. Sci Rep 2024; 14:8243. [PMID: 38589413 PMCID: PMC11001896 DOI: 10.1038/s41598-024-58708-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/02/2024] [Indexed: 04/10/2024] Open
Abstract
The role of circular RNA (circRNAs) in hepatocellular carcinoma (HCC) has been extensively studied. Previous research has highlighted the regulatory role of circSNX6 in HCC cells and tissues. However, the precise mechanism underlying HCC progression still requires comprehensive investigation. The study initially utilized quantitative reverse transcription-polymerase chain reaction (qRT-PCR) to assess circSNX6 expression levels in HCC cell lines and tissues. Subsequently, the stability of circRNA was evaluated through Ribonuclease R and actinomycin D treatment assays. The impact of circSNX6 knockdown on proliferation, migration, invasion, and angiogenesis abilities was determined using various assays including colony formation, Transwell culture system, tube formation assay, and cell counting kit (CCK)-8 assays. Additionally, RNA immunoprecipitation chip and dual-luciferase reporter assays were employed to investigate the interactions between circSNX6 and miR-383-5p. Finally, an HCC xenograft tumor model in mice was established to assess the in vivo expression of circSNX6 and its functional role in HCC. Our findings revealed an elevated circSNX6 expression in HCC tissues, which was correlated with poor patient prognosis. Knockdown of circSNX6 suppressed HCC cell growth, invasion, metastasis, and angiogenesis. The downregulation of miR-383-5p, a target of circSNX6, significantly attenuated the tumor-suppressive effects induced by circSNX6 knockdown. Moreover, circSNX6 was found to modulate VEGFA expression by targeting miR-383-5p. The inhibition of HCC cell proliferation by miR-383-5p could be partially reversed by overexpressing VEGFA. Silencing circSNX6 also suppressed tumor formation and the metastasis of HCC cells in a mouse model. In summary, our findings suggest that circSNX6 promotes cell proliferation, metastasis, and angiogenesis in HCC by regulating the miR-383-5p/VEGFA pathway.
Collapse
Affiliation(s)
- Yuan Tian
- Department of General Surgery, Ningbo Medical Center Lihuili Hospital, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315100, Zhejiang, China
| | - Wenwen Han
- Department of Emergency, Ningbo Medical Center Lihuili Hospital, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315100, Zhejiang, China
| | - Kaiji Lv
- Department of General Surgery, Ningbo Medical Center Lihuili Hospital, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315100, Zhejiang, China
| | - Long Fu
- Department of General Surgery, Ningbo Medical Center Lihuili Hospital, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315100, Zhejiang, China
| | - Xinhua Zhou
- Department of General Surgery, Ningbo Medical Center Lihuili Hospital, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315100, Zhejiang, China.
| |
Collapse
|
46
|
Dawoud A, Elmasri RA, Mohamed AH, Mahmoud A, Rostom MM, Youness RA. Involvement of CircRNAs in regulating The "New Generation of Cancer Hallmarks": A Special Depiction on Hepatocellular Carcinoma. Crit Rev Oncol Hematol 2024; 196:104312. [PMID: 38428701 DOI: 10.1016/j.critrevonc.2024.104312] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/01/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024] Open
Abstract
The concept of 'Hallmarks of Cancer' is an approach of reducing the enormous complexity of cancer to a set of guiding principles. As the underlying mechanism of cancer are portrayed, we find that we gain insight and additional aspects of the disease arise. The understanding of the tumor microenvironment (TME) brought a new dimension and led to the discovery of novel hallmarks such as senescent cells, non-mutational epigenetic reprogramming, polymorphic microbiomes and unlocked phenotypic plasticity. Circular RNAs (circRNAs) are single-stranded, covalently closed RNA molecules that are ubiquitous across all species. Recent studies on the circRNAs have highlighted their crucial function in regulating the formation of human malignancies through a range of biological processes. The primary goal of this review is to clarify the role of circRNAs in the most common form of liver cancer, hepatocellular carcinoma (HCC). This review also addressed the topic of how circRNAs affect HCC hallmarks, including the new generation hallmarks. Finally, the enormous applications that these rapidly expanding ncRNA molecules serve in the functional and molecular development of effective HCC diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- A Dawoud
- Molecular Genetics and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), 11835, New Administrative Capital, Egypt; School of Medicine, University of North California, Chapel Hill, NC 27599, USA
| | - R A Elmasri
- Molecular Genetics and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), 11835, New Administrative Capital, Egypt
| | - A H Mohamed
- Molecular Genetics and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), 11835, New Administrative Capital, Egypt; Department of Chemistry, Faculty of Science, Cairo University, Cairo, Egypt
| | - A Mahmoud
- Molecular Genetics and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), 11835, New Administrative Capital, Egypt; Biotechnology School, Nile University, Giza 12677, Egypt
| | - M M Rostom
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| | - R A Youness
- Molecular Genetics and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), 11835, New Administrative Capital, Egypt.
| |
Collapse
|
47
|
Liu X, Feng Y, Wang L, Shi L, Ji K, Hu N, Du Y, Liu M, Wang M. Silencing of circ_0088036 inhibits growth and invasion of lung adenocarcinoma through miR-203/SP1 axis. J Biochem Mol Toxicol 2024; 38:e23684. [PMID: 38533528 DOI: 10.1002/jbt.23684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 02/06/2024] [Accepted: 02/23/2024] [Indexed: 03/28/2024]
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. Circular RNA (circRNA) circ_0088036 is a recently discovered circRNA known for its roles in rheumatoid arthritis. The study aimed to study the function of circ_0088036 in lung adenocarcinoma (LUAD). Circ_0088036 expressions were analyzed in the Gene Expression Omnibus (GEO) database. The relationship between circ_0088036 expressions and clinicopathological data of LUAD was assessed. The messenger RNA and protein levels were analyzed by quantitative real-time polymerase chain reaction and Western blot. Cell viability, apoptosis, and invasion were tested by Cell Counting Kit-8, flow cytometry, and transwell assay. The direct interaction between microRNA-203 (miR-203) and circ_0088036 or specificity protein 1 (SP1) was confirmed by dual-luciferase reporter assay, RNA pull-down, and RNA immunoprecipitation assays. Circ_0088036 was overexpressed in LUAD from the analysis of the GEO database. The poor prognosis was found in the patients with high expressions of circ_0088036. The level of Circ_0088036 was increased in LUAD tissues and cells. In terms of function, the deletion of circ_0088036 inhibited LUAD tumorigenesis in vitro by repressing cell growth, invasion, and epithelial-mesenchymal transition (EMT). In mechanism, circ_0088036 could competitively sponge miR-203, thereby affecting the expressions of the target gene SP1. In addition, lessening of miR-203 and enlarging of SP1 could eliminate the anticancer effect of short hairpin RNA-circ_0088036 on LUAD cells. Besides, the knockout of circ_0088036 hindered the growth of xenografted tumors in vivo. Circ_0088036 promoted the LUAD cell growth, invasion, and EMT via modulating the miR-203/SP1 axis in LUAD.
Collapse
Affiliation(s)
- Xiuhua Liu
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yan Feng
- Department of Oncology, General Hospital of Heilongjiang Province Land Reclamation Bureau, Harbin, Heilongjiang, China
| | - Linna Wang
- Department of Oncology, General Hospital of Heilongjiang Province Land Reclamation Bureau, Harbin, Heilongjiang, China
| | - Lei Shi
- Department of Oncology, General Hospital of Heilongjiang Province Land Reclamation Bureau, Harbin, Heilongjiang, China
| | - Kunxiang Ji
- Department of Oncology, General Hospital of Heilongjiang Province Land Reclamation Bureau, Harbin, Heilongjiang, China
| | - Nan Hu
- Department of Oncology, General Hospital of Heilongjiang Province Land Reclamation Bureau, Harbin, Heilongjiang, China
| | - Yang Du
- Department of Oncology, General Hospital of Heilongjiang Province Land Reclamation Bureau, Harbin, Heilongjiang, China
| | - Mingyang Liu
- Department of Oncology, General Hospital of Heilongjiang Province Land Reclamation Bureau, Harbin, Heilongjiang, China
| | - Man Wang
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
48
|
Chen S, Duan X, He Y, Chen W. METTL3 promotes osteogenic differentiation of human umbilical cord mesenchymal stem cells by up-regulating m6A modification of circCTTN. Biosci Rep 2024; 44:BSR20231186. [PMID: 38358895 PMCID: PMC10932744 DOI: 10.1042/bsr20231186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 02/10/2024] [Accepted: 02/13/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Human umbilical cord mesenchymal stem cells (hUCMSCs) are promising seed cells in bone tissue engineering. circRNA and N6-methyladenosine (m6A) RNA methylation play important roles in osteogenic differentiation. Here, we investigated the potential relevance of a critical circRNA, hsa_circ_0003376 (circCTTN), and methyltransferase-like 3 (METTL3) in osteogenic differentiation of hUCMSCs. METHODS Expression of circCTTN after hUCMSC osteogenic induction was detected by qRT-PCR. Three databases (RMBase v2.0, BERMP, and SRAMP) were used to predict m6A sites of circCTTN. RNA was enriched by methylated RNA immunoprecipitation (MeRIP), followed by quantitative real-time polymerase chain reaction to detect m6A level of circCTTN after METTL3 overexpression and osteogenic induction. RNA pull-down, Western blotting, and protein mass spectrometry were performed to investigate the potential mechanisms by which METTL3 promoted m6A modification of circCTTN. Bioinformatic analyses based on database (STRING) search and co-immunoprecipitation were used to analyze the proteins that interacted with METTL3. RESULTS Overexpression of METTL3 promoted osteogenic differentiation of hUCMSCs and increased m6A level of circCTTN. Two potential m6A modification sites of circCTTN were predicted. No direct interaction between METTL3 and circCTTN was observed. Thirty-one proteins were pulled down by probes specific for circCTTN, including NOP2, and two m6A reading proteins, EIF3A and SND1. Bioinformatics analysis and co-immunoprecipitation showed that METTL3 interacted with EIF3A indirectly through NOP2. CONCLUSIONS METTL3 promotes the osteogenic differentiation of hUCMSCs by increasing the m6A level of circCTTN. However, METTL3 does not bind directly to circCTTN. METTL3 interacts with circCTTN indirectly through NOP2 and EIF3A.
Collapse
Affiliation(s)
- Shujiang Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China school of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoqiong Duan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, Sichuan, China
| | - Yanjin He
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China school of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Wenchuan Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China school of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
49
|
Wang W, Han P, Li Z, Nie R, Wang K, Wang L, Liao H. LMGATCDA: Graph Neural Network With Labeling Trick for Predicting circRNA-Disease Associations. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:289-300. [PMID: 38231821 DOI: 10.1109/tcbb.2024.3355093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Previous studies have proven that circular RNAs (circRNAs) are inextricably connected to the etiology and pathophysiology of complicated diseases. Since conventional biological research are frequently small-scale, expensive, and time-consuming, it is essential to establish an efficient and reasonable computation-based method to identify disease-related circRNAs. In this article, we proposed a novel ensemble model for predicting probable circRNA-disease associations based on multi-source similarity information(LMGATCDA). In particular, LMGATCDA first incorporates information on circRNA functional similarity, disease semantic similarity, and the Gaussian interaction profile (GIP) kernel similarity as explicit features, along with node-labeling of the three-hop subgraphs extracted from each linked target node as graph structural features. After that, the fused features are used as input, and further implied features are extracted by graph sampling aggregation (GraphSAGE) and multi-hop attention graph neural network (MAGNA). Finally, the prediction scores are obtained through a fully connected layer. With five-fold cross-validation, LMGATCDA demonstrated excellent competitiveness against gold standard data, reaching 95.37% accuracy and 91.31% recall with an AUC of 94.25% on the circR2Disease benchmark dataset. Collectively, the noteworthy findings from these case studies support our conclusion that the LMGATCDA model can provide reliable circRNA-disease associations for clinical research while helping to mitigate experimental uncertainties in wet-lab investigations.
Collapse
|
50
|
Tavabie OD, Salehi S, Aluvihare VR. The challenges and potential of microRNA-based therapy for patients with liver failure syndromes and hepatocellular carcinoma. Expert Opin Ther Targets 2024; 28:179-191. [PMID: 38487923 DOI: 10.1080/14728222.2024.2331598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/13/2024] [Indexed: 03/20/2024]
Abstract
INTRODUCTION Morbidity and mortality from liver disease continues to rise worldwide. There are currently limited curative treatments for patients with liver failure syndromes, encompassing acute liver failure and decompensated cirrhosis states, outside of transplantation. Whilst there have been improvements in therapeutic options for patients with hepatocellular carcinoma (HCC), there remain challenges necessitating novel therapeutic agents. microRNA have long been seen as potential therapeutic targets but there has been limited clinical translation. AREAS COVERED We will discuss the limitations of conventional non-transplant management of patients with liver failure syndromes and HCC. We will provide an overview of microRNA and the challenges in developing and delivering microRNA-based therapeutic agents. We will finally provide an overview of microRNA-based therapeutic agents which have progressed to clinical trials. EXPERT OPINION microRNA have great potential to be developed into therapeutic agents due to their association with critical biological processes which govern health and disease. Utilizing microRNA sponges to target multiple microRNA associated with specific biological processes may improve their therapeutic efficacy. However, there needs to be significant improvements in delivery systems to ensure the safe delivery of microRNA to target sites and minimize systemic distribution. This currently significantly impacts the clinical translation of microRNA-based therapeutic agents.
Collapse
Affiliation(s)
| | - Siamak Salehi
- Institute of Liver Studies, King's College Hospital, London, UK
| | | |
Collapse
|