1
|
Lu Y, Li T, Song L, Fan Q, Wang D, Wang P, Han Y, Zhou X. MDSCs in Chronic Liver Disease: Updates and Future Challenges. J Gastroenterol Hepatol 2025. [PMID: 40405825 DOI: 10.1111/jgh.17008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 04/14/2025] [Accepted: 05/09/2025] [Indexed: 05/24/2025]
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of pathologically expanded immature myeloid cells originating from bone marrow precursors, characterized by their potent immunosuppressive activity through mechanisms such as T cell inhibition, cytokine dysregulation, and metabolic interference. These cells are critically implicated in diverse pathological contexts, including cancer progression, chronic infections, and inflammatory disorders. In chronic liver diseases, MDSCs contribute to the pathogenesis of multiple conditions, such as chronic viral hepatitis, alcoholic liver disease (ALD), nonalcoholic fatty liver disease (NAFLD), and autoimmune liver diseases (AILD). Emerging evidence highlights their dual roles in both exacerbating tissue injury and modulating immune responses, positioning MDSCs as pivotal regulators of disease progression and potential therapeutic targets. In this review, we summarize the biological roles of MDSCs in a variety of chronic inflammatory liver diseases and explore the therapeutic potential of targeting these diseases to provide new insight for the treatment of chronic liver diseases.
Collapse
Affiliation(s)
- Yi Lu
- Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
- Department of Digestive Diseases, Xijing Hospital of Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Ting Li
- Department of Digestive Diseases, Xijing Hospital of Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Liang Song
- Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Qingling Fan
- Department of Digestive Diseases, Xijing Hospital of Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Danlin Wang
- Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Punan Wang
- Department of Digestive Diseases, Xijing Hospital of Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Ying Han
- Department of Digestive Diseases, Xijing Hospital of Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Xinmin Zhou
- Department of Digestive Diseases, Xijing Hospital of Air Force Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
2
|
Wu XQ, Ying F, Chung KPS, Leung CON, Leung RWH, So KKH, Lei MML, Chau WK, Tong M, Yu J, Wei D, Tai WCS, Ma S, Lu YY, Lee TKW. Intestinal Akkermansia muciniphila complements the efficacy of PD1 therapy in MAFLD-related hepatocellular carcinoma. Cell Rep Med 2025; 6:101900. [PMID: 39798567 PMCID: PMC11866522 DOI: 10.1016/j.xcrm.2024.101900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 01/15/2025]
Abstract
Immune checkpoint inhibitors are not effective for metabolic dysfunction-associated fatty liver disease (MAFLD)-hepatocellular carcinoma (HCC) patients, and identifying the key gut microbiota that contributes to immune resistance in these patients is crucial. Analysis using 16S rRNA sequencing reveals a decrease in Akkermansia muciniphila (Akk) during MAFLD-promoted HCC development. Administration of Akk ameliorates liver steatosis and effectively attenuates the tumor growth in orthotopic MAFLD-HCC mouse models. Akk repairs the intestinal lining, with a decrease in the serum lipopolysaccharide (LPS) and bile acid metabolites, along with decrease in the populations of monocytic myeloid-derived suppressor cells (m-MDSCs) and M2 macrophages. Akk in combination with PD1 treatment exerts maximal growth-suppressive effect in multiple MAFLD-HCC mouse models with increased infiltration and activation of T cells. Clinically, low Akk levels are correlated with PD1 resistance and poor progression-free survival. In conclusion, Akk is involved in the immune resistance of MAFLD-HCC and serves as a predictive biomarker for PD1 response in HCC.
Collapse
Affiliation(s)
- Xue Qian Wu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Fan Ying
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Katherine Po Sin Chung
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Carmen Oi Ning Leung
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Rainbow Wing Hei Leung
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Karl Kam Hei So
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Martina Mang Leng Lei
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Wing Ki Chau
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Man Tong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Dai Wei
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - William Chi Shing Tai
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Stephanie Ma
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong SAR, China
| | - Yin Ying Lu
- Comprehensive Liver Cancer Center, The Fifth Medical Center of PLA General Hospital, Beijing, China.
| | - Terence Kin Wah Lee
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China; State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong SAR, China; Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong SAR, China.
| |
Collapse
|
3
|
Lv X, Zhu L, Feng S, Yang S, Li G, Zhan J, Tan Y, Liu Y, Zhang J, Wang Y, Cheng Y, Fu P, Xu Y, Zheng C. Hsa_circ_0109623 regulates the progression of autoimmune liver disease through Hsa_miR_146b-3p/Sortilin 1-mediated activation of CD4+ T cells. Hepatol Commun 2025; 9:e0607. [PMID: 39774281 PMCID: PMC11717529 DOI: 10.1097/hc9.0000000000000607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/23/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Autoimmune hepatitis (AIH) is a chronic liver disease characterized by immune-mediated liver inflammation. Despite its global prevalence, the pathogenesis of AIH remains poorly understood, and there is a lack of specific biomarkers and targeted treatments. This study aimed to investigate the role of hsa_circ_0109623, hsa-miR-146b-3p, and Sortilin 1 (SORT1) in AIH and their potential as therapeutic targets. METHODS We collected liver tissue samples and peripheral blood mononuclear cells from patients with AIH and healthy controls and performed RT-PCR, western blotting, flow cytometry, and other molecular biology techniques to analyze the expression of hsa_circ_0109623, hsa-miR-146b-3p, and SORT1. We also used bioinformatics tools to predict the interaction between these molecules and conducted luciferase reporter assays to confirm their binding. RESULTS hsa_circ_0109623 was significantly upregulated in patients with AIH and positively correlated with inflammatory activity. We also found that hsa_circ_0109623 could enhance CD4+ T-cell activation and promote the expression of proinflammatory cytokines. Conversely, hsa-miR-146b-3p was downregulated in patients with AIH and negatively correlated with the expression of hsa_circ_0109623 and SORT1. In addition, hsa-miR-146b-3p acted as a sponge for hsa_circ_0109623, inhibiting CD4+ Th1 cell polarization and cytokine production. SORT1 was also upregulated in patients with AIH and acted as a sponge for hsa-miR-146b-3p, promoting CD4+ Th1 cell polarization and cytokine expression. Furthermore, hsa_miR_146b-3p/SORT1 can regulate the STAT1/STAT4 signaling pathway mediating the progression of AIH. CONCLUSIONS The hsa_circ_0109623/hsa-miR-146b-3p/SORT1 axis plays a crucial role in the pathogenesis of AIH by regulating CD4+ T-cell activation and cytokine production. These molecules may serve as potential biomarkers and therapeutic targets for AIH. Further research is needed to validate these findings and explore their clinical applications.
Collapse
Affiliation(s)
- Xinliang Lv
- Department of Rheumatology, Inner Mongolia Autonomous Region Hospital of Traditional Chinese Medicine, Hohhot, P.R. China
| | - Li Zhu
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Shijie Feng
- Department of Rheumatology, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Siyu Yang
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Guohua Li
- Department of Rheumatology, Inner Mongolia Autonomous Region Hospital of Traditional Chinese Medicine, Hohhot, P.R. China
| | - Jinqin Zhan
- Department of Ultrasound, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Yuchun Tan
- Department of Anesthesiology, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Yuquan Liu
- Department of Rheumatology, Inner Mongolia Autonomous Region Hospital of Traditional Chinese Medicine, Hohhot, P.R. China
| | - Jinliang Zhang
- Department of Rheumatology, Inner Mongolia Autonomous Region Hospital of Traditional Chinese Medicine, Hohhot, P.R. China
| | - Yujin Wang
- Department of Cardiology Department, Chinese People’s Liberation Army General Hospital, Beijing, P.R. China
| | - Yucheng Cheng
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Ping Fu
- Department of Rheumatology, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Yushan Xu
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Chenhong Zheng
- Department of Rheumatology, Inner Mongolia Autonomous Region Hospital of Traditional Chinese Medicine, Hohhot, P.R. China
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
- Department of Cardiology Department, Chinese People’s Liberation Army General Hospital, Beijing, P.R. China
| |
Collapse
|
4
|
Fu M, Li Q, Qian H, Min X, Yang H, Liu Z, Wu W, Zhong J, Xu H, Mei A, Chen J. Exendin-4 intervention attenuates atherosclerosis severity by modulating myeloid-derived suppressor cells and inflammatory cytokines in ApoE -/- mice. Int Immunopharmacol 2024; 140:112844. [PMID: 39094363 DOI: 10.1016/j.intimp.2024.112844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/21/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
OBJECTIVE To investigate the impact of the glucagon-like peptide-1 (GLP-1) receptor agonist Exendin-4 on the proportion of myeloid-derived suppressor cells (MDSCs) in male ApoE-/- mice, and investigate alterations in the concentrations of inflammatory factors in plasma and spleen tissues and assess their correlation with MDSCs. METHODS Thirty male ApoE-/- mice were randomly divided into five groups (n = 6 per group): control group (CON), model group (MOD), Exendin-4 intervention group (MOD/Ex-4), Exendin-9-39 intervention group (MOD/Ex-9-39), and Exendin-4 + Exendin-9-39 combined intervention group (MOD/Ex-4 + Ex-9-39). After 4 weeks of drug intervention, changes in aortic plaque were observed using Oil Red O staining and H&E staining. Flow cytometry was employed to detect the content of myeloid-derived suppressor cells (MDSCs) in bone marrow and peripheral blood. ELISA was utilized to measure the concentrations of inflammatory factors in mouse peripheral blood plasma, while RT-qPCR was employed to quantify the expression levels of inflammatory factors in the spleen. Pearson correlation analysis was conducted to assess the relationship between MDSCs and inflammatory factors. RESULTS Mice in the MOD group had significantly higher body weight compared to the CON group, with a statistically significant difference (P<0.05). Following Exendin-4 intervention, body weight was reduced compared to the MOD group (P<0.05). Additionally, Exendin-4 treatment led to a significant reduction in atherosclerotic plaque compared to the MOD group (P<0.001). After Exendin-4 intervention, the proportion of MDSCs in the bone marrow was higher than in the MOD group (P<0.001), and the proportion of MDSCs in peripheral blood was significantly higher than in the MOD group (P<0.05). Further investigation revealed that Exendin-4 could regulate lipid levels in mice, decreasing concentrations of TG (P<0.01), TC (P<0.0001), and LDL-C (P<0.0001), while increasing HDL-C concentrations (P<0.01). Moreover, after Exendin-4 treatment, the level of the cytokine IL-6 in peripheral plasma was significantly lower compared to the MOD group (P<0.0001), while levels of IL-10 and TGF-β were significantly higher compared to the MOD group (P<0.0001). In the spleen, levels of the cytokines IL-10 (P<0.0001) and TGF-β (P<0.001) were significantly increased compared to the MOD group. Pearson correlation analysis showed that the proportion of MDSCs in peripheral blood was positively correlated with IL-10 and TGF-β levels in both the spleen and peripheral blood. Additionally, the proportion of MDSCs in the bone marrow was positively correlated with IL-10 and TGF-β levels in the spleen and peripheral blood. CONCLUSION Exendin-4 alleviates the severity of atherosclerosis. This process may be achieved by promoting the secretion of myeloid-derived suppressor cells (MDSCs) in the bone marrow and peripheral blood of atherosclerotic ApoE-/- mice, regulating the ratio of inflammatory factors in the body, reducing mouse body weight, and lowering blood lipids.
Collapse
Affiliation(s)
- Miaoxin Fu
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Qingmei Li
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China; Sheng Li OilField Central Hospital, Dong Ying, Shandong Province, China
| | - Hang Qian
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Xinwen Min
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Handong Yang
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Zhixin Liu
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan, China
| | - Wenwen Wu
- School of Public Health, Hubei University of Medicine, 442000 Shiyan, Hubei, China
| | - Jixin Zhong
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, 430074 Wuhan, Hubei, China
| | - Hao Xu
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.
| | - Aihua Mei
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.
| | - Jun Chen
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China; Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan, China.
| |
Collapse
|
5
|
Tanaka A, Ma X, Takahashi A, Vierling JM. Primary biliary cholangitis. Lancet 2024; 404:1053-1066. [PMID: 39216494 DOI: 10.1016/s0140-6736(24)01303-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/04/2024] [Accepted: 06/17/2024] [Indexed: 09/04/2024]
Abstract
Primary biliary cholangitis is a chronic, autoimmune, cholestatic disease that mainly affects women aged 40-70 years. Recent epidemiological studies have shown an increasing incidence worldwide despite geographical heterogeneity and a decrease in the female-to-male ratio of those the disease affects. Similar to other autoimmune diseases, primary biliary cholangitis occurs in genetically predisposed individuals upon exposure to environmental triggers, specifically xenobiotics, smoking, and the gut microbiome. Notably, the diversity of the intestinal microbiome is diminished in individuals with primary biliary cholangitis. The intricate interplay among immune cells, cytokines, chemokines, and biliary epithelial cells is postulated as the underlying pathogenic mechanism involved in the development and progression of primary biliary cholangitis, and extensive research has been dedicated to comprehending these complex interactions. Following the official approval of obeticholic acid as second-line treatment for patients with an incomplete response or intolerance to ursodeoxycholic acid, clinical trials have indicated that peroxisome proliferator activator receptor agonists are promising additional second-line drugs. Future dual or triple drug regimens might reach a new treatment goal of normalisation of alkaline phosphatase levels, rather than a decrease to less than 1·67 times the upper limit of normal levels, and potentially improve long-term outcomes. Improvement of health-related quality of life with better recognition and care of subjective symptoms, such as pruritus and fatigue, is also an important treatment goal. Promising clinical investigations are underway to alleviate these symptoms. Efforts to facilitate better access to medical care and dissemination of current knowledge should enable diagnosis at an earlier stage of primary biliary cholangitis and ensure access to treatments based on risk stratification for all patients.
Collapse
Affiliation(s)
- Atsushi Tanaka
- Department of Medicine, Teikyo University School of Medicine, Tokyo, Japan.
| | - Xiong Ma
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Atsushi Takahashi
- Department of Gastroenterology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - John M Vierling
- Department of Medicine and Surgery, Section of Gastroenterology, Baylor College of Medicine, Houston, TX, USA; Hepatology, and Division of Abdominal Transplantation, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
6
|
Wang R, Li B, Huang B, Li Y, Liu Q, Lyu Z, Chen R, Qian Q, Liang X, Pu X, Wu Y, Chen Y, Miao Q, Wang Q, Lian M, Xiao X, Leung PSC, Gershwin ME, You Z, Ma X, Tang R. Gut Microbiota-Derived Butyrate Induces Epigenetic and Metabolic Reprogramming in Myeloid-Derived Suppressor Cells to Alleviate Primary Biliary Cholangitis. Gastroenterology 2024; 167:733-749.e3. [PMID: 38810839 DOI: 10.1053/j.gastro.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 03/29/2024] [Accepted: 05/08/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND & AIMS Gut dysbiosis and myeloid-derived suppressor cells (MDSCs) are implicated in primary biliary cholangitis (PBC) pathogenesis. However, it remains unknown whether gut microbiota or their metabolites can modulate MDSCs homeostasis to rectify immune dysregulation in PBC. METHODS We measured fecal short-chain fatty acids levels using targeted gas chromatography-mass spectrometry and analyzed circulating MDSCs using flow cytometry in 2 independent PBC cohorts. Human and murine MDSCs were differentiated in vitro in the presence of butyrate, followed by transcriptomic, epigenetic (CUT&Tag-seq and chromatin immunoprecipitation-quantitative polymerase chain reaction), and metabolic (untargeted liquid chromatography-mass spectrometry, mitochondrial stress test, and isotope tracing) analyses. The in vivo role of butyrate-MDSCs was evaluated in a 2-octynoic acid-bovine serum albumin-induced cholangitis murine model. RESULTS Decreased butyrate levels and defective MDSC function were found in patients with incomplete response to ursodeoxycholic acid, compared with those with adequate response. Butyrate induced expansion and suppressive activity of MDSCs in a manner dependent on PPARD-driven fatty acid β-oxidation (FAO). Pharmaceutical inhibition or genetic knockdown of the FAO rate-limiting gene CPT1A abolished the effect of butyrate. Furthermore, butyrate inhibited HDAC3 function, leading to enhanced acetylation of lysine 27 on histone H3 at promoter regions of PPARD and FAO genes in MDSCs. Therapeutically, butyrate administration alleviated immune-mediated cholangitis in mice via MDSCs, and adoptive transfer of butyrate-treated MDSCs also displayed protective efficacy. Importantly, reduced expression of FAO genes and impaired mitochondrial physiology were detected in MDSCs from ursodeoxycholic acid nonresponders, and their impaired suppressive function was restored by butyrate. CONCLUSIONS We identify a critical role for butyrate in modulation of MDSC homeostasis by orchestrating epigenetic and metabolic crosstalk, proposing a novel therapeutic strategy for treating PBC.
Collapse
Affiliation(s)
- Rui Wang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Bo Li
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Bingyuan Huang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Yikang Li
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Qiaoyan Liu
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Zhuwan Lyu
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Ruiling Chen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Qiwei Qian
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Xueying Liang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Xiting Pu
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Yi Wu
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Yu Chen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Qi Miao
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Qixia Wang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Digestive Disease, Shanghai, China; Division of Infectious Diseases, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Lian
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Xiao Xiao
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Patrick S C Leung
- Division of Rheumatology, Department of Medicine, Allergy and Clinical Immunology, University of California at Davis, Davis, California
| | - M Eric Gershwin
- Division of Rheumatology, Department of Medicine, Allergy and Clinical Immunology, University of California at Davis, Davis, California
| | - Zhengrui You
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Digestive Disease, Shanghai, China.
| | - Xiong Ma
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Digestive Disease, Shanghai, China; Institute of Aging & Tissue Regeneration, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Ruqi Tang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Digestive Disease, Shanghai, China.
| |
Collapse
|
7
|
Li Y, Quan X, Tai Y, Wu YT, Wei B, Wu H. Causal association between 731 immunocyte phenotypes and liver cirrhosis: A bidirectional two-sample mendelian randomization analysis. World J Hepatol 2024; 16:1156-1166. [PMID: 39221101 PMCID: PMC11362904 DOI: 10.4254/wjh.v16.i8.1156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/24/2024] [Accepted: 08/02/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND Liver cirrhosis is a progressive hepatic disease whose immunological basis has attracted increasing attention. However, it remains unclear whether a concrete causal association exists between immunocyte phenotypes and liver cirrhosis. AIM To explore the concrete causal relationships between immunocyte phenotypes and liver cirrhosis through a mendelian randomization (MR) study. METHODS Data on 731 immunocyte phenotypes were obtained from genome-wide association studies. Liver cirrhosis data were derived from the Finn Gen dataset, which included 214403 individuals of European ancestry. We used inverse variable weighting as the primary analysis method to assess the causal relationship. Sensitivity analyses were conducted to evaluate heterogeneity and horizontal pleiotropy. RESULTS The MR analysis demonstrated that 11 immune cell phenotypes have a positive association with liver cirrhosis [P < 0.05, odds ratio (OR) > 1] and that 9 immunocyte phenotypes were negatively correlated with liver cirrhosis (P < 0.05, OR < 1). Liver cirrhosis was positively linked to 9 immune cell phenotypes (P < 0.05, OR > 1) and negatively linked to 10 immune cell phenotypes (P < 0.05; OR < 1). None of these associations showed heterogeneity or horizontally pleiotropy (P > 0.05). CONCLUSION This bidirectional two-sample MR study demonstrated a concrete causal association between immunocyte phenotypes and liver cirrhosis. These findings offer new directions for the treatment of liver cirrhosis.
Collapse
Affiliation(s)
- Ying Li
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Xin Quan
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yang Tai
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yu-Tong Wu
- Department of Clinical Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Bo Wei
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Hao Wu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China.
| |
Collapse
|
8
|
Sun L, Yang N, Liu Z, Ye X, Cheng M, Deng L, Zhang J, Wu J, Shi M, Liao W. Cholestasis-induced phenotypic transformation of neutrophils contributes to immune escape of colorectal cancer liver metastasis. J Biomed Sci 2024; 31:66. [PMID: 38951890 PMCID: PMC11218316 DOI: 10.1186/s12929-024-01052-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 06/13/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Cholestasis is a common yet severe complication that occurs during the advancement of liver metastasis. However, how cholestasis impacts the development, treatment, and tumor microenvironment (TME) of liver metastasis remains to be elucidated. METHODS Extrahepatic and intrahepatic cholestatic mouse models with liver metastasis were established to detect the differential expression levels of genes, infiltration of immune cells and change in bile acid-associated metabolites by using RNA-Sequencing, flowcytometry, and liquid chromatography and mass spectrometry. Western blot was applied to neutrophils under the stimulation of primary bile acids (BAs) in vitro to study the mechanism of phenotypic alteration. In vitro coculture of BA-treated neutrophils with CD8+ T cells were performed to study the immune-suppressive effect of phenotypic-altered neutrophils. Clinical samples collected from colorectal cancer patients with liver metastasis and cholestasis were applied to RNA-Seq. RESULTS Compared to non-cholestatic mice, the progression of liver metastasis of cholestatic mice was significantly accelerated, which was associated with increased neutrophil infiltration and T-cell exclusion. Both neutrophils and T cells expressed higher immunosuppressive markers in the cholestatic mouse model, further indicating that an immunosuppressive tumor microenvironment was induced during cholestasis. Although neutrophils deletion via anti-Ly6G antibody partially hindered liver metastasis progression, it reduced the overall survival of mice. Tauro-β-muricholic acid (Tβ-MCA) and Glycocholic acid (GCA), the two most abundant cholestasis-associated primary BAs, remarkably promoted the expression of Arg1 and iNOS on neutrophils via p38 MAPK signaling pathway. In addition, BAs-pretreated neutrophils significantly suppressed the activation and cytotoxic effects of CD8+ T cells, indicating that the immunosuppressive phenotype of neutrophils was directly induced by BAs. Importantly, targeting BA anabolism with Obeticholic acid (OCA) under cholestasis effectively suppressed liver metastasis progression, enhanced the efficacy of immune checkpoint blockade, and prolonged survival of mice. CONCLUSIONS Our study reveals the TME of cholestasis-associated liver metastasis and proposes a new strategy for such patients by targeting bile acid anabolism.
Collapse
Affiliation(s)
- Li Sun
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Department of Oncology, Air Force Medical Center of PLA, Air Force Medical University, Beijing, China
| | - Nanyan Yang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Zhihong Liu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Xiandong Ye
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Mengting Cheng
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Lingjun Deng
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Junhao Zhang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Jingjing Wu
- Department of Thoracic Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Min Shi
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
- Foshan Key Laboratory of Translational Medicine in Oncology, Cancer Center, the Sixth Affiliated Hospital, South China University of Technology, Foshan, Guangdong, China.
| |
Collapse
|
9
|
Abstract
Primary biliary cholangitis (PBC) is the most common of the autoimmune liver diseases, in which there is chronic small bile duct inflammation. The pathophysiology of PBC is multifactorial, involving immune dysregulation and damage to biliary epithelial cells, with influences from genetic factors, epigenetics, the gut-liver axis, and environmental exposures.
Collapse
Affiliation(s)
- Inbal Houri
- Division of Gastroenterology and Hepatology, Toronto Centre for Liver Disease, University of Toronto, 9th Floor Eaton Building, North Wing 219-B, 200 Elizabeth Street, Toronto, Ontario M5G 2C4, Canada
| | - Gideon M Hirschfield
- Division of Gastroenterology and Hepatology, Toronto Centre for Liver Disease, University of Toronto, 9th Floor Eaton Building, North Wing 219-B, 200 Elizabeth Street, Toronto, Ontario M5G 2C4, Canada.
| |
Collapse
|
10
|
Liu J, Chen H, Guo C, Li J, Li M, Zhao M, Fu Z, Zhang Z, Li F, Zhao X, Yang L, Wang L, Lv Q, Zhang Y. Sulforaphane activates CD8 + T cells antitumor response through IL-12RB2/MMP3/FasL-induced MDSCs apoptosis'. J Immunother Cancer 2024; 12:e007983. [PMID: 38296593 PMCID: PMC10831471 DOI: 10.1136/jitc-2023-007983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2023] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Extensive attention has been given to the role of myeloid-derived suppressor cells (MDSCs) in driving tumor progression and treatment failure. Preclinical studies have identified multiple agents that eliminate MDSCs. However, none have been authorized in the cliniccal ues due to the safety reasons. In the present study, we investigated the efficacy and mechanism of sulforaphane (SFN) to eliminate MDSCs in the tumor microenvironment (TME). METHODS We monitored SFN effect on tumor growth and the percents or apoptosis of immune cell subsets in mice models bearing LLC or B16 cells. Flow cytometry, quantitative reverse transcription-PCR, immunohistochemistry, ELISA, immunofluorescence, imaging flow cytometry and western blot were performed to validate the role of SFN on MDSCs function in vivo and in vitro. RNA sequencing was then used to interrogate the mechanisms of how SFN regulated MDSCs function. Tumor xenograft models were established to evaluate the involvement of IL-12RB2/MMP3/FasL induced MDSCs apoptosis in vivo. We verified the effect of SFN on MDSCs and CD8+ T cells in the blood samples from a phase I clinical trial (KY-2021-0350). RESULTS In this study, we elucidated that SFN liberated CD8+ T-cell antitumor ability by reducing MDSCs abundance, leading to repressed tumor growth. SFN treatment suppressed MDSCs accumulation in the peripheral blood and tumor sites of mice, but had no effect on the bone marrow. Mechanistically, SFN activates IL-12RB2, which stimulates the MMP3/FasL signaling cascade to trigger caspase 3 cleavage and induce apoptosis in MDSCs. Clinically, SFN treatment eliminates peripheral MDSCs and increases the percentage and activation of CD8+ T cells. CONCLUSIONS Collectively, we uncovered the role of SFN in eliminating MDSCs to emancipate CD8+ T cells through IL-12RB2/MMP3/FasL induced apoptosis, thus providing a strategy for targeting MDSCs to control tumors and improve clinical efficacy.
Collapse
Affiliation(s)
- Jinyan Liu
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Huanan Chen
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Medical Record Management and Statistics, Shandong Provincial, Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Caijuan Guo
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jieyao Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Miaomiao Li
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ming Zhao
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ziyi Fu
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhen Zhang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Feng Li
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xuan Zhao
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Li Yang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Liping Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Quanjun Lv
- Department of Nutrition and Food Hygiene, College of Public Health, and the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yi Zhang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & and Treatment, Zhengzhou, Henan, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| |
Collapse
|
11
|
Sun Q, Dai H, Wang S, Chen Y, Shi H. Progress in research on the role played by myeloid-derived suppressor cells in liver diseases. Scand J Immunol 2023; 98:e13312. [PMID: 38441348 DOI: 10.1111/sji.13312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 06/23/2023] [Accepted: 07/02/2023] [Indexed: 03/07/2024]
Abstract
Myeloid-derived suppressor cells (MDSCs) refer to a group of immature myeloid cells with potent immunosuppressive capacity upon activation by pathological conditions. Because of their potent immunosuppressive ability, MDSCs have garnered extensive attention in the past few years in the fields of oncology, infection, chronic inflammation and autoimmune diseases. Research on MDSCs in liver diseases has gradually increased, and their potential therapeutic roles will be further explored. This review presents a summary of the involvement and the role played by MDSCs in liver diseases, thus identifying their potential targets for the treatment of liver diseases and providing new directions for liver disease-related research.
Collapse
Affiliation(s)
- Qianqian Sun
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Heng Dai
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Siliang Wang
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yuanyuan Chen
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Huilian Shi
- Department of Infectious Diseases, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
12
|
Roy AM, Iyer R, Chakraborty S. The extracellular matrix in hepatocellular carcinoma: Mechanisms and therapeutic vulnerability. Cell Rep Med 2023; 4:101170. [PMID: 37652015 PMCID: PMC10518608 DOI: 10.1016/j.xcrm.2023.101170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/04/2023] [Accepted: 08/03/2023] [Indexed: 09/02/2023]
Abstract
The tumor microenvironment (TME) is influenced by a "disorganized" extracellular matrix (ECM) that sensitizes cancer cells toward mechanical stress, signaling, and structural alterations. In hepatocellular carcinoma (HCC), lack of knowledge about key ECM proteins driving the TME refractory to targeted therapies poses a barrier to the identification of new therapeutic targets. Herein, we discuss the contributions of various ECM components that impact hepatocytes and their surrounding support network during tumorigenesis. In addition, the underpinnings by which ECM proteins transduce mechanical signals to the liver TME are detailed. Finally, in view of the bidirectional feedback between the ECM, transformed hepatocytes, and immune cells, we highlight the potential role of the ECM disorganization process in shaping responses to immune checkpoint inhibitors and targeted therapies. Our comprehensive characterization of these ECM components may provide a roadmap for innovative therapeutic approaches to restrain HCC.
Collapse
Affiliation(s)
- Arya Mariam Roy
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Renuka Iyer
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
| | - Sayan Chakraborty
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; Program of Developmental Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263.
| |
Collapse
|
13
|
Li Y, Li Z, Chen R, Lian M, Wang H, Wei Y, You Z, Zhang J, Li B, Li Y, Huang B, Chen Y, Liu Q, Lyu Z, Liang X, Miao Q, Xiao X, Wang Q, Fang J, Shi Y, Liu X, Seldin MF, Gershwin ME, Tang R, Ma X. A regulatory variant at 19p13.3 is associated with primary biliary cholangitis risk and ARID3A expression. Nat Commun 2023; 14:1732. [PMID: 36977669 PMCID: PMC10049997 DOI: 10.1038/s41467-023-37213-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
Genome-wide association studies have identified 19p13.3 locus associated with primary biliary cholangitis (PBC). Here we aim to identify causative variant(s) and initiate efforts to define the mechanism by which the 19p13.3 locus variant(s) contributes to the pathogenesis of PBC. A genome-wide meta-analysis of 1931 PBC subjects and 7852 controls in two Han Chinese cohorts confirms the strong association between 19p13.3 locus and PBC. By integrating functional annotations, luciferase reporter assay and allele-specific chromatin immunoprecipitation, we prioritize rs2238574, an AT-Rich Interaction Domain 3A (ARID3A) intronic variant, as a potential causal variant at 19p13.3 locus. The risk allele of rs2238574 shows higher binding affinity of transcription factors, leading to an increased enhancer activity in myeloid cells. Genome-editing demonstrates the regulatory effect of rs2238574 on ARID3A expression through allele-specific enhancer activity. Furthermore, knock-down of ARID3A inhibits myeloid differentiation and activation pathway, and overexpression of the gene has the opposite effect. Finally, we find ARID3A expression and rs2238574 genotypes linked to disease severity in PBC. Our work provides several lines of evidence that a non-coding variant regulates ARID3A expression, presenting a mechanistic basis for association of 19p13.3 locus with the susceptibility to PBC.
Collapse
Affiliation(s)
- You Li
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China
| | - Zhiqiang Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
- Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China
| | - Ruiling Chen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China
| | - Min Lian
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China
| | - Hanxiao Wang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China
| | - Yiran Wei
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China
| | - Zhengrui You
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China
| | - Jun Zhang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China
| | - Bo Li
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China
| | - Yikang Li
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China
| | - Bingyuan Huang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China
| | - Yong Chen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China
| | - Qiaoyan Liu
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China
| | - Zhuwan Lyu
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China
| | - Xueying Liang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China
| | - Qi Miao
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China
| | - Xiao Xiao
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China
| | - Qixia Wang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China
| | - Jingyuan Fang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China
| | - YongYong Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
- Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China
| | - Xiangdong Liu
- Key Laboratory of Developmental Genes and Human Diseases, Institute of Life Sciences, Southeast University, 2 Sipailou Road, Nanjing, Jiangsu, China
| | - Michael F Seldin
- Division of Rheumatology, Department of Medicine, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, USA
- Department of Biochemistry and Molecular Medicine, University of California at Davis, Davis, CA, USA
| | - M Eric Gershwin
- Division of Rheumatology, Department of Medicine, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, USA.
| | - Ruqi Tang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China.
| | - Xiong Ma
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China.
- Institute of Aging & Tissue Regeneration, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
14
|
Lyu Z, Huang B, Zhang J, Qian Q, Pu X, Cui N, Ou Y, Li B, You Z, Lian M, Tang R, Chen W, Zhao Z, Hou J, Gershwin ME, Zhang H, Xia Q, Ma X. Suppression of YTHDF2 attenuates autoimmune hepatitis by expansion of myeloid-derived suppressor cells. J Autoimmun 2023; 135:102993. [PMID: 36642058 DOI: 10.1016/j.jaut.2023.102993] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/02/2022] [Accepted: 01/05/2023] [Indexed: 01/14/2023]
Abstract
BACKGROUND & AIMS The N6-methyladenosine (m6A) reader YTH domain-containing family protein 2 (YTHDF2) is critically involved in a multiplicity of biological processes by mediating the degradation of m6A modified mRNAs. Based on our current understanding of this process, we hypothesized that YTHDF2 will play a role in the natural history and function of myeloid-derived suppressor cells (MDSC) and in particular in AIH. APPROACH & RESULTS We took advantage of YTHDF2 conditional knock-out mice to first address the phenotype and function of MDSCs by flow cytometry. Importantly, the loss of YTHDF2 resulted in a gradual elevation of MDSCs including PMN-MDSCs both in liver and ultimately in the BM. Notably, YTHDF2 deficiency in myeloid cells attenuated concanavalin (ConA)-induced liver injury, with enhanced expansion and chemotaxis to liver. Furthermore, MDSCs from Ythdf2CKO mice had a greater suppressive ability to inhibit the proliferation of T cells. Using multi-omic analysis of m6A RNA immunoprecipitation (RIP) and mRNA sequencing, we noted RXRα as potential target of YTHDF2. Indeed YTHDF2-RIP-qPCR confirmed that YTHDF2 directly binds RXRα mRNA thus promoting degradation and decreasing gene expression. Finally, by IHC and immunofluorescence, YTHDF2 expression was significantly upregulated in the liver of patients with AIH which correlated with the degree of inflammation. CONCLUSION Suppression of YTHDF2 enhances the expansion, chemotaxis and suppressive function of MDSCs and our data reveals a unique therapeutical target in immune mediated hepatitis.
Collapse
Affiliation(s)
- Zhuwan Lyu
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Bingyuan Huang
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Jun Zhang
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Qiwei Qian
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Xiting Pu
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Nana Cui
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Yiyan Ou
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Bo Li
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Zhengrui You
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Min Lian
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Ruqi Tang
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Weihua Chen
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Zhicong Zhao
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Transplantation, Shanghai, 200127, China
| | - Jiajie Hou
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - M Eric Gershwin
- Division of Rheumatology, Department of Medicine, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, USA
| | - Haiyan Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Transplantation, Shanghai, 200127, China.
| | - Xiong Ma
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China.
| |
Collapse
|
15
|
Shen M, Fan X, Shen Y, Wang X, Wu R, Wang Y, Huang C, Zhao S, Zheng Y, Men R, Luo X, Yang L. Myeloid-derived suppressor cells ameliorate liver mitochondrial damage to protect against autoimmune hepatitis by releasing small extracellular vesicles. Int Immunopharmacol 2023; 114:109540. [PMID: 36516541 DOI: 10.1016/j.intimp.2022.109540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Autoimmune hepatitis (AIH) is an inflammatory liver disease that is associated with impaired self-tolerance. Myeloid-derived supprfessor cells (MDSCs) have been considered to exert counterregulatory effects on AIH. However, the specific mechanism underlying these effects is unclear. Herein, we investigated the efficacy and safety of MDSCs in protecting against AIH and explored the underlying mechanism. METHODS Circulating and liver MDSC expression levels in 71 AIH patients and 47 healthy control (HC) individuals were detected by flow cytometry and immunohistochemistry. The adoptive transfer of induced bone marrow-derived MDSCs (BM MDSCs) to AIH mice was used to explore the function of MDSCs. Hepatic injury and mitochondrial damage were evaluated by transaminase levels, histopathology, immunohistochemistry, transmission electron microscopy and western blotting. MDSCs were pretreated with the small extracellular vesicle (sEV) generation inhibitor GW4869 to explore the mechanism. Importantly, sEVs derived from MDSCs and MDSCs-GW4869 were injected into model mice to monitor mitochondrial function and biogenesis. RESULTS Circulating and liver MDSCs were expanded in AIH patients and mouse model. Furthermore, the follow-up data of AIH patients showed that immunosuppressive therapy further promoted the expansion of MDSCs. More importantly, the adoptive transfer of BM MDSCs to AIH mice effectively ameliorated liver injury and regulated the imbalance of the immune microenvironment. Additionally, BM MDSCs reduced liver mitochondrial damage and improved mitochondrial biogenesis. Mechanistically, sEVs derived from BM MDSCs showed the same biological effects as cells, and blocking sEV production weakened the function of BM MDSCs. Finally, multiple long-term administrations of BM MDSCs were proven to be safe in general. CONCLUSION In conclusion, MDSCs ameliorate liver mitochondrial damage to protect against autoimmune hepatitis by releasing small extracellular vesicles.
Collapse
Affiliation(s)
- Mengyi Shen
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-related Molecular Network, Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoli Fan
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-related Molecular Network, Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yi Shen
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-related Molecular Network, Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoze Wang
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-related Molecular Network, Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ruiqi Wu
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-related Molecular Network, Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yi Wang
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-related Molecular Network, Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chen Huang
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-related Molecular Network, Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shenglan Zhao
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-related Molecular Network, Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanyi Zheng
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-related Molecular Network, Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ruoting Men
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-related Molecular Network, Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xuefeng Luo
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-related Molecular Network, Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Li Yang
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-related Molecular Network, Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
16
|
Chen R, Tang R, Ma X, Gershwin ME. Immunologic Responses and the Pathophysiology of Primary Biliary Cholangitis. Clin Liver Dis 2022; 26:583-611. [PMID: 36270718 DOI: 10.1016/j.cld.2022.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Primary biliary cholangitis (PBC) is an autoimmune liver disease with a female predisposition and selective destruction of intrahepatic small bile ducts leading to nonsuppurative destructive cholangitis. It is characterized by seropositivity of antimitochondrial antibodies or PBC-specific antinuclear antibodies, progressive cholestasis, and typical liver histologic manifestations. Destruction of the protective bicarbonate-rich umbrella is attributed to the decreased expression of membrane transporters in biliary epithelial cells (BECs), leading to the accumulation of hydrophobic bile acids and sensitizing BECs to apoptosis. A recent X-wide association study reveals a novel risk locus on the X chromosome, which reiterates the importance of Treg cells.
Collapse
Affiliation(s)
- Ruiling Chen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China
| | - Ruqi Tang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China
| | - Xiong Ma
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China.
| | - M Eric Gershwin
- Division of Rheumatology-Allergy and Clinical Immunology, University of California at Davis, 451 Health Sciences Drive, Suite 6510, Davis, CA 95616, USA.
| |
Collapse
|
17
|
Ascenção K, Lheimeur B, Szabo C. Regulation of CyR61 expression and release by 3-mercaptopyruvate sulfurtransferase in colon cancer cells. Redox Biol 2022; 56:102466. [PMID: 36113340 PMCID: PMC9482125 DOI: 10.1016/j.redox.2022.102466] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 10/28/2022] Open
Abstract
Cysteine-rich angiogenic inducer 61 (CYR61, also termed CCN family member 1 or CCN1), is a matricellular protein encoded by the CYR61 gene. This protein has been implicated in the regulation of various cancer-associated processes including tumor growth, angiogenesis, tumor cell adhesion, migration, and invasion as well as the regulation of anticancer drug resistance. Hydrogen sulfide (H2S) is a gaseous endogenous biological mediator, involved in the regulation of cellular bioenergetics, angiogenesis, invasion, and chemotherapeutic resistance in several types of cancer. H2S is produced by three enzymes: cystathionine-β-synthase (CBS), cystathionine-γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3-MST). The current studies were set up to investigate if CBS or 3-MST regulates CyR61 in colon cancer cells in the context of the regulation of proliferation, migration, and survival. The study mainly utilized HCT116 cells, in which two of the principal H2S-producing enzymes, CBS and 3-MST, are highly expressed. The H2S donor GYY4137 and the polysulfide donor Na2S3 activated the CyR61 promoter in a concentration-dependent fashion. Aminooxyacetic acid (AOAA), a pharmacological inhibitor of CBS as well as HMPSNE: 2-[(4-hydroxy-6- methylpyrimidin-2-yl)sulfanyl]-1-(naphthalen-1-yl)ethan-1-one, a pharmacological inhibitor of 3-MST inhibited CyR61 mRNA expression. This effect was more pronounced in response to HMPSNE than to AOAA and occurred through the modulation of S1PR via ATF1 and CREB. CyR61 was found to play an active, but relatively minor role in maintaining colon cell proliferation. HMPSNE markedly suppressed the secretion/release of CyR61 from the colon cancer cells. Moreover, HMPSNE promoted colon cancer cell apoptosis; endogenously produced CyR61 was found to counteract this effect, at least in part via RhoA activation. Taken together, we conclude that the upregulation of 3-MST in cancer cells exerts cytoprotective effects and confers the cancer cells a more aggressive phenotype - at least in part via the modulation of CyR61 expression and release.
Collapse
Affiliation(s)
- Kelly Ascenção
- Chair of Pharmacology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Bassma Lheimeur
- Chair of Pharmacology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Csaba Szabo
- Chair of Pharmacology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
18
|
Patient-driven discovery of CCN1 to rescue cutaneous wound healing in diabetes via the intracellular EIF3A/CCN1/ATG7 signaling by nanoparticle-enabled delivery. Biomaterials 2022; 288:121698. [PMID: 36038422 DOI: 10.1016/j.biomaterials.2022.121698] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 11/21/2022]
Abstract
Diabetic ulcers (DUs), a devastating complication of diabetes, are intractable for limited effective interventions in clinic. Based on the clinical samples and bioinformatic analysis, we found lower level of CCN1 in DU individuals. Considering the accelerated proliferation effect in keratinocytes, we propose the therapeutic role of CCN1 supplementation in DU microenvironment. To address the challenge of rapid degradation of CCN1 in protease-rich diabetic healing condition, we fabricated a nanoformulation of CCN1 (CCN1-NP), which protected CCN1 from degradation and significantly raised CCN1 intracellular delivery efficiency to 6.2-fold. The results showed that the intracellular CCN1 exhibited a greater anti-inflammatory and proliferative/migratory activities once the extracellular signal of CCN1 was blocked in vitro. The nanoformulation unveils a new mechanism that CCN1 delivered into cells interacted with Eukaryotic translation initiation factor 3 subunit A (EIF3A) to downregulate autophagy-related 7 (ATG7). Furthermore, topical application of CCN1-NP had profound curative effects on delayed wound healing in diabetes both in vitro and in vivo. Our results illustrate a novel mechanism of intracellular EIF3A/CCN1/ATG7 axis triggered by nanoformulation and the therapeutic potential of CCN1-NP for DU management.
Collapse
|
19
|
Jiang R, Tang J, Zhang X, He Y, Yu Z, Chen S, Xia J, Lin J, Ou Q. CCN1 Promotes Inflammation by Inducing IL-6 Production via α6β1/PI3K/Akt/NF-κB Pathway in Autoimmune Hepatitis. Front Immunol 2022; 13:810671. [PMID: 35547732 PMCID: PMC9084230 DOI: 10.3389/fimmu.2022.810671] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 03/25/2022] [Indexed: 12/12/2022] Open
Abstract
Autoimmune hepatitis (AIH) is a chronic inflammatory liver disease with unknown etiology. CCN1, an extracellular matrix-associated protein, is associated with carcinoma, inflammation, liver fibrosis, and even autoimmune diseases. However, the role that CCN1 plays in AIH has remained undetermined. In this study, expression of CCN1 in liver was detected by real-time PCR, western blot and immunohistochemistry (IHC). CCN1 level in serum was detected by ELISA. Diagnostic value of CCN1 was determined by receiver operating characteristic (ROC) curve analysis. CCN1 conditional knockout (CCN1fl/flCre+) mice were generated by mating CCN1fl/fl C57BL/6J and CAG-Cre-ERT C57BL/6J mice. Autoimmune hepatitis mice model was induced by concanavalin A (ConA). IKKα/β, IκBα, NF-κB p65 and Akt phosphorylation were determined by western blot. NF-κB p65 nuclear translocation was examined by immunofluorescence. Here, we found that CCN1 was over-expressed in hepatocytes of AIH patients. CCN1 level also increased in serum of AIH patients compared to healthy controls (HC). ROC curve analysis results showed that serum CCN1 was able to distinguish AIH patients from HD. In ConA induced hepatitis mice model, CCN1 conditional knockout (CCN1fl/flCre+) attenuated inflammation by reducing ALT/AST level and IL-6 expression. In vitro, CCN1 treatment dramatically induced IL-6 production in LO2 cells. Moreover, the production of IL-6 was attenuated by CCN1 knockdown. Furthermore, we showed that CCN1 could activate IL-6 production via the PI3K/Akt/NF-κB signaling pathway by binding to α6β1 receptor. In summary, our results reveal a novel role of CCN1 in promoting inflammation by upregulation of IL-6 production in AIH. Our study also suggests that targeting of CCN1 may represent a novel strategy in AIH treatment.
Collapse
Affiliation(s)
- Renquan Jiang
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Jifeng Tang
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Xuehao Zhang
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yujue He
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Ziqing Yu
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Shuhui Chen
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Jinfang Xia
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Jinpiao Lin
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Qishui Ou
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
20
|
You H, Ma X, Efe C, Wang G, Jeong SH, Abe K, Duan W, Chen S, Kong Y, Zhang D, Wei L, Wang FS, Lin HC, Yang JM, Tanwandee T, Gani RA, Payawal DA, Sharma BC, Hou J, Yokosuka O, Dokmeci AK, Crawford D, Kao JH, Piratvisuth T, Suh DJ, Lesmana LA, Sollano J, Lau G, Sarin SK, Omata M, Tanaka A, Jia J. APASL clinical practice guidance: the diagnosis and management of patients with primary biliary cholangitis. Hepatol Int 2022; 16:1-23. [PMID: 35119627 PMCID: PMC8843914 DOI: 10.1007/s12072-021-10276-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 11/08/2021] [Indexed: 12/14/2022]
Affiliation(s)
- Hong You
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, 95 Yong-an Road, Beijing, Mainland, China
| | - Xiong Ma
- Department of Gastroenterology and Hepatology, Renji Hospital, Shanghai Jiao Tong University, Shanghai, Mainland, China
| | - Cumali Efe
- Department of Gastroenterology, Gazi Yaşargil Education and Research Hospital, Diyarbakir, Turkey
| | - Guiqiang Wang
- Department of Infectious Diseases and Center for Liver Diseases, Peking University First Hospital, Beijing, Mainland, China
| | - Sook-Hyang Jeong
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seoul, South Korea
| | - Kazumichi Abe
- Department of Gastroenterology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Weijia Duan
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, 95 Yong-an Road, Beijing, Mainland, China
| | - Sha Chen
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, 95 Yong-an Road, Beijing, Mainland, China
| | - Yuanyuan Kong
- Clinical Epidemiology and EBM Unit, Beijing Friendship Hospital, Capital Medical University, Beijing, Mainland, China
| | - Dong Zhang
- Experimental and Translational Research Center, Beijing Clinical Research Institute, Beijing, Mainland, China
| | - Lai Wei
- Hepatobiliary Pancreatic Center, Tsinghua Changgung Hospital, Tsinghua University, Beijing, Mainland, China
| | - Fu-Sheng Wang
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospial, Beijing, Mainland, China
| | - Han-Chieh Lin
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jin Mo Yang
- Division of Hepatology, Department of Internal Medicine, College of Medicine, St. Vincent’s Hospital, The Catholic University of Korea, Suwon, South Korea
| | - Tawesak Tanwandee
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Rino A. Gani
- Department of Internal Medicine, Cipto Mangunkusumo Hospital, University of Indonesia, Jakarta, Indonesia
| | - Diana A. Payawal
- Department of Medicine, Fatima University Medical Center, Manila, Philippines
| | | | - Jinlin Hou
- Department of Infectious Disease and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, Mainland, China
| | - Osamu Yokosuka
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - A. Kadir Dokmeci
- Department of Medicine, Ankara University School of Medicine, Ankara, Turkey
| | - Darrell Crawford
- School of Medicine, University of Queensland, Brisbane, Australia
| | - Jia-Horng Kao
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Teerha Piratvisuth
- NKC Institute of Gastroenterology and Hepatology, Faculty of Medicine, Prince of Songkla University, Hatyai, Thailand
| | - Dong Jin Suh
- Department of Gastroenterology, University of Ulsan College of Medicine, Seoul, South Korea
| | | | - Jose Sollano
- Department of Medicine, University of Santo Tomas, Manila, Philippines
| | - George Lau
- Humanity and Health Clinical Trial Center, Humanity and Health Medical Group, Hong Kong SAR, China
| | - Shiv K. Sarin
- Department of Hepatology, Institute of Liver and Biliary Sciences, Vasant Kunj, New Delhi, India
| | - Masao Omata
- Department of Gastroenterology, Yamanashi Central Hospital, Yamanashi, Japan
- University of Tokyo, Tokyo, Japan
| | - Atsushi Tanaka
- Department of Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Jidong Jia
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, 95 Yong-an Road, Beijing, Mainland, China
| |
Collapse
|
21
|
Herrero-Cervera A, Soehnlein O, Kenne E. Neutrophils in chronic inflammatory diseases. Cell Mol Immunol 2022; 19:177-191. [PMID: 35039631 PMCID: PMC8803838 DOI: 10.1038/s41423-021-00832-3] [Citation(s) in RCA: 332] [Impact Index Per Article: 110.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic inflammation is a component of many disease conditions that affect a large group of individuals worldwide. Chronic inflammation is characterized by persistent, low-grade inflammation and is increased in the aging population. Neutrophils are normally the first responders to acute inflammation and contribute to the resolution of inflammation. However, in chronic inflammation, the role of neutrophils is less well understood and has been described as either beneficial or detrimental, causing tissue damage and enhancing the immune response. Emerging evidence suggests that neutrophils are important players in several chronic diseases, such as atherosclerosis, diabetes mellitus, nonalcoholic fatty liver disease and autoimmune disorders. This review will highlight the interaction of neutrophils with other cells in the context of chronic inflammation, the contribution of neutrophils to selected chronic inflammatory diseases, and possible future therapeutic strategies.
Collapse
Affiliation(s)
- Andrea Herrero-Cervera
- Institute for Experimental Pathology, Center for Molecular Biology of Inflammation, Westfälische Wilhelms-Universität Münster, Münster, Germany.
| | - Oliver Soehnlein
- Institute for Experimental Pathology, Center for Molecular Biology of Inflammation, Westfälische Wilhelms-Universität Münster, Münster, Germany
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Ellinor Kenne
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
22
|
Cyr61 Alleviates Cholangitis by Inhibiting Cytotoxic Effects of CD8 + T Cells on Biliary Epithelial Cells. Curr Med Sci 2021; 41:1205-1213. [PMID: 34787784 DOI: 10.1007/s11596-021-2458-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 03/11/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Primary biliary cholangitis (PBC) is a chronic progressive cholestatic liver disease. In recent years, researchers have found that cysteine-rich angiogenic inducer 61 (Cyr61, also known as CCN1) has a potential role in reducing portal inflammation in patients with PBC. This study aimed to explore the relationship between Cyr61 and PBC to provide new ideas and an experimental basis for the clinical treatment of PBC. METHODS After induction of the overexpression of Cyr61 in a mouse model of PBC using recombinant adenovirus, hematoxylin and eosin staining and pathological scores were used to indicate intrahepatic inflammation and bile duct damage. Real-time PCR was used to detect changes in inflammation-related cytokines in the liver. To further study the mechanism, we assessed whether Cyr61 protects bile duct epithelial cells from cytotoxic effects. RESULTS Serum and hepatic Cyr61 levels were increased in the murine model of PBC. Overexpression of Cyr61 alleviated hepatic inflammation and bile duct injury in vivo. Cyr61 inhibited the cytotoxic effects of CD8+ T cells by acting on biliary epithelial cells (BECs) in vitro. CONCLUSION Our results provide novel insight into the pathogenesis of PBC and suggest that Cyr61 plays a dominant role in the cytotoxic effects on BECs in PBC. Consequently, therapeutic strategies targeting Cyr61 could be a potent therapy for PBC.
Collapse
|
23
|
Li B, Lian M, Li Y, Qian Q, Zhang J, Liu Q, Tang R, Ma X. Myeloid-Derived Suppressive Cells Deficient in Liver X Receptor α Protected From Autoimmune Hepatitis. Front Immunol 2021; 12:732102. [PMID: 34512667 PMCID: PMC8427166 DOI: 10.3389/fimmu.2021.732102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/05/2021] [Indexed: 11/13/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) emerge as a promising candidate for the immunotherapy of autoimmune hepatitis (AIH). However, targets for modulating MDSC in AIH are still being searched. Liver X receptors (LXRs) are important nuclear receptors linking lipid metabolism and immune responses. Despite the extensive studies of LXR in myeloid compartment, its role in MDSCs is currently less understood. Herein, expression of LXRα was found to be upregulated in AIH patients and colocalized with hepatic MDSCs. In ConA-induced hepatitis, deletion of LXRα led to increased expansion of MDSCs in the liver and alleviated the hepatic injury. MDSCs in LXRα-/- mice exhibited enhanced proliferation and survival comparing with WT mice. T-cell proliferation assay and adoptive cell transfer experiment validated the potent immunoregulatory role of MDSCs in vitro and in vivo. Mechanistically, MDSCs from LXRα-/- mice possessed significantly lower expression of interferon regulatory factor 8 (IRF-8), a key negative regulator of MDSC differentiation. Transcriptional activation of IRF-8 by LXRα was further demonstrated. Conclusion We reported that abrogation of LXRα facilitated the expansion of MDSCs via downregulating IRF-8, and thereby ameliorated hepatic immune injury profoundly. Our work highlights the therapeutic potential of targeting LXRα in AIH.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiong Ma
- *Correspondence: Xiong Ma, ; Ruqi Tang,
| |
Collapse
|
24
|
Sehgal R, Kaur N, Ramakrishna G, Trehanpati N. Immune Surveillance by Myeloid-Derived Suppressor Cells in Liver Diseases. Dig Dis 2021; 40:301-312. [PMID: 34157708 DOI: 10.1159/000517459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/27/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Myeloid-derived suppressor cells (MDSCs) are immunosuppressive in nature, originate in the bone marrow, and are mainly found in the blood, spleen, and liver. In fact, liver acts as an important organ for induction and accumulation of MDSCs, especially during infection, inflammation, and cancer. In humans and rodents, models of liver diseases revealed that MDSCs promote regeneration and drive the inflammatory processes, leading to hepatitis, fibrogenesis, and cirrhosis, ultimately resulting in hepatocellular carcinoma. SUMMARY This brief review is focused on the in-depth understanding of the key molecules involved in the expansion and regulation of MDSCs and their underlying immunosuppressive mechanisms in liver diseases. KEY MESSAGE Modulated MDSCs can be used for therapeutic purposes in inflammation, cancer, and sepsis.
Collapse
Affiliation(s)
- Rashi Sehgal
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India.,Amity Institute of Biotechnology (AIB), Amity University, Noida, India
| | - Navkiran Kaur
- Amity Institute of Biotechnology (AIB), Amity University, Noida, India
| | - Gayatri Ramakrishna
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Nirupma Trehanpati
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| |
Collapse
|
25
|
The Relationship between Hepatic Myeloid-Derived Suppressor Cells and Clinicopathological Parameters in Patients with Chronic Liver Disease. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6612477. [PMID: 33860040 PMCID: PMC8024072 DOI: 10.1155/2021/6612477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/08/2021] [Accepted: 03/16/2021] [Indexed: 12/14/2022]
Abstract
Myeloid-derived suppressor cells (MDSCs) have attracted attention due to their important role in inflammation. Several studies have investigated the involvement of MDSCs in chronic liver disease. However, due to the difference of MDSC phenotypes, patient types, and sample sources among the studies, the results are inconsistent and controversial. We took advantage of a large well-defined cohort of 98 (24 patients with CHB, 18 with NAFLD, 13 with HCC, 16 with PBC, and 27 with AIH) patients with liver inflammation and 12 healthy controls to investigate the expression of MDSCs, and the relationships between the expression of hepatic MDSCs and the clinical characteristics were analyzed. We found that the expression of CD11b+CD33+ MDSCs is closely related to chronic liver disease and positively correlated with clinical parameters such as ALT, AST, and globulin. Ultimately, the present study suggests that hepatic CD11b+CD33+ MDSCs are increased in HCC and AIH and positively correlate with the liver stages of hepatitis activity and liver fibrosis stage.
Collapse
|
26
|
Sun C, Zhang H, Liu X. Emerging role of CCN family proteins in fibrosis. J Cell Physiol 2020; 236:4195-4206. [PMID: 33222181 DOI: 10.1002/jcp.30171] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/30/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022]
Abstract
Fibrosis is a common pathological change characterized by the excessive accumulation of fibrous connective tissue. Once uncontrolled, this pathological progress can lead to irreversible damage to the structure and function of organs, which is a serious threat to human health and life. Actually, the disability and death of patients caused by many chronic diseases have a closed relationship with fibrosis. The CCN protein family, including six members, is a small group of matrix proteins exhibiting structurally similar features. In the past 20 years, different biological functions of CCN proteins have been identified in various diseases. Of note, it has been recently shown that they are implicated in the key pathological process of fibrosis. In this review, we summarize the current status of knowledge regarding the role of CCN proteins involved in the pathogenesis of fibrosis diseases in detail. Furthermore, we highlight some of the underlying interaction mechanisms of CCN protein acting in fibrosis that helps to develop new drugs and determine appropriate clinical strategies for fibrotic diseases.
Collapse
Affiliation(s)
- Chao Sun
- Department of Spine Surgery, the Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Han Zhang
- Department of Spine Surgery, the Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xinhui Liu
- Department of Spine Surgery, the Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
27
|
McQuitty CE, Williams R, Chokshi S, Urbani L. Immunomodulatory Role of the Extracellular Matrix Within the Liver Disease Microenvironment. Front Immunol 2020; 11:574276. [PMID: 33262757 PMCID: PMC7686550 DOI: 10.3389/fimmu.2020.574276] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
Chronic liver disease when accompanied by underlying fibrosis, is characterized by an accumulation of extracellular matrix (ECM) proteins and chronic inflammation. Although traditionally considered as a passive and largely architectural structure, the ECM is now being recognized as a source of potent damage-associated molecular pattern (DAMP)s with immune-active peptides and domains. In parallel, the ECM anchors a range of cytokines, chemokines and growth factors, all of which are capable of modulating immune responses. A growing body of evidence shows that ECM proteins themselves are capable of modulating immunity either directly via ligation with immune cell receptors including integrins and TLRs, or indirectly through release of immunoactive molecules such as cytokines which are stored within the ECM structure. Notably, ECM deposition and remodeling during injury and fibrosis can result in release or formation of ECM-DAMPs within the tissue, which can promote local inflammatory immune response and chemotactic immune cell recruitment and inflammation. It is well described that the ECM and immune response are interlinked and mutually participate in driving fibrosis, although their precise interactions in the context of chronic liver disease are poorly understood. This review aims to describe the known pro-/anti-inflammatory and fibrogenic properties of ECM proteins and DAMPs, with particular reference to the immunomodulatory properties of the ECM in the context of chronic liver disease. Finally, we discuss the importance of developing novel biotechnological platforms based on decellularized ECM-scaffolds, which provide opportunities to directly explore liver ECM-immune cell interactions in greater detail.
Collapse
Affiliation(s)
- Claire E. McQuitty
- Institute of Hepatology, Foundation for Liver Research, London, United Kingdom
- Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| | - Roger Williams
- Institute of Hepatology, Foundation for Liver Research, London, United Kingdom
- Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| | - Shilpa Chokshi
- Institute of Hepatology, Foundation for Liver Research, London, United Kingdom
- Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| | - Luca Urbani
- Institute of Hepatology, Foundation for Liver Research, London, United Kingdom
- Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| |
Collapse
|
28
|
Wang H, Feng X, Yan W, Tian D. Regulatory T Cells in Autoimmune Hepatitis: Unveiling Their Roles in Mouse Models and Patients. Front Immunol 2020; 11:575572. [PMID: 33117375 PMCID: PMC7575771 DOI: 10.3389/fimmu.2020.575572] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/07/2020] [Indexed: 12/11/2022] Open
Abstract
Autoimmune hepatitis (AIH) is a severe and chronic liver disease, and its incidence has increased worldwide in recent years. Research into the pathogenesis of AIH remains limited largely owing to the lack of suitable mouse models. The concanavalin A (ConA) mouse model is a typical and well-established model used to investigate T cell-dependent liver injury. However, ConA-induced hepatitis is acute and usually disappears after 48 h; thus, it does not mimic the pathogenesis of AIH in the human body. Several studies have explored various AIH mouse models, but as yet there is no widely accepted and valid mouse model for AIH. Immunosuppression is the standard clinical therapy for AIH, but patient side effects and recurrence limit its use. Regulatory T cells (Tregs) play critical roles in the maintenance of immune homeostasis and in the prevention of autoimmune diseases, which may provide a potential therapeutic target for AIH therapy. However, the role of Tregs in AIH has not yet been clarified, partly because of difficulties in diagnosing AIH and in collecting patient samples. In this review, we discuss the studies related to Treg in various AIH mouse models and patients with AIH and provide some novel insights for this research area.
Collapse
Affiliation(s)
- Han Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinxia Feng
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yan
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dean Tian
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
29
|
Galectin-3 in Inflammasome Activation and Primary Biliary Cholangitis Development. Int J Mol Sci 2020; 21:ijms21145097. [PMID: 32707678 PMCID: PMC7404314 DOI: 10.3390/ijms21145097] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/07/2020] [Accepted: 07/10/2020] [Indexed: 12/11/2022] Open
Abstract
Primary biliary cholangitis (PBC) is a chronic inflammatory autoimmune liver disease characterized by inflammation and damage of small bile ducts. The NLRP3 inflammasome is a multimeric complex of proteins that after activation with various stimuli initiates an inflammatory process. Increasing data obtained from animal studies implicate the role of NLRP3 inflammasome in the pathogenesis of various diseases. Galectin-3 is a β-galactoside-binding lectin that plays important roles in various biological processes including cell proliferation, differentiation, transformation and apoptosis, pre-mRNA splicing, inflammation, fibrosis and host defense. The multilineage immune response at various stages of PBC development includes the involvement of Gal-3 in the pathogenesis of this disease. The role of Galectin-3 in the specific binding to NLRP3, and inflammasome activation in models of primary biliary cholangitis has been recently described. This review provides a brief pathogenesis of PBC and discusses the current knowledge about the role of Gal-3 in NLRP3 activation and PBC development.
Collapse
|
30
|
Fisicaro P, Barili V, Rossi M, Montali I, Vecchi A, Acerbi G, Laccabue D, Zecca A, Penna A, Missale G, Ferrari C, Boni C. Pathogenetic Mechanisms of T Cell Dysfunction in Chronic HBV Infection and Related Therapeutic Approaches. Front Immunol 2020; 11:849. [PMID: 32477347 PMCID: PMC7235343 DOI: 10.3389/fimmu.2020.00849] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 04/14/2020] [Indexed: 12/12/2022] Open
Abstract
A great effort of research has been devoted in the last few years to developing new anti-HBV therapies of finite duration that also provide effective sustained control of virus replication and antigen production. Among the potential therapeutic strategies, immune-modulation represents a promising option to cure HBV infection and the adaptive immune response is a rational target for novel therapeutic interventions, in consideration of the key role played by T cells in the control of virus infections. HBV-specific T cells are severely dysfunctional in chronic HBV infection as a result of several inhibitory mechanisms which are simultaneously active within the chronically inflamed liver. Indeed, the liver is a tolerogenic organ harboring different non-parenchymal cell populations which can serve as antigen presenting cells (APC) but are poorly efficient in effector T cell priming, with propensity to induce T cell tolerance rather than T cell activation, because of a poor expression of co-stimulatory molecules, up-regulation of the co-inhibitory ligands PD-L1 and PD-L2 upon IFN stimulation, and production of immune regulatory cytokines, such as IL10 and TGF-β. They include resident dendritic cells (DCs), comprising myeloid and plasmacytoid DCs, liver sinusoidal endothelial cells (LSECs), Kupffer cells (KCs), hepatic stellate cells (HSCs) as well as the hepatocytes themselves. Additional regulatory mechanisms which contribute to T cell attrition in the chronically infected liver are the high levels of soluble mediators, such as arginase, indoleamine 2,3-dioxygenase (IDO) and suppressive cytokines, the up-regulation of inhibitory checkpoint receptor/ligand pairs, the expansion of regulatory cells, such as CD4+FOXp3+ Treg cells, myeloid-derived suppressor cells and NK cells. This review will deal with the interactions between immune cells and liver environment discussing the different mechanisms which contribute to T cell dysfunction in chronic hepatitis B, some of which are specifically activated in HBV infection and others which are instead common to chronic inflammatory liver diseases in general. Therapeutic interventions targeting dysregulated pathways and cellular functions will be also delineated.
Collapse
Affiliation(s)
- Paola Fisicaro
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.,Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Valeria Barili
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.,Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Marzia Rossi
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.,Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Ilaria Montali
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Andrea Vecchi
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Greta Acerbi
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.,Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Diletta Laccabue
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Alessandra Zecca
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Amalia Penna
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Gabriele Missale
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.,Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Carlo Ferrari
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.,Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Carolina Boni
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| |
Collapse
|
31
|
Gulamhusein AF, Hirschfield GM, Milovanovic J, Arsenijevic D, Arsenijevic N, Milovanovic M. Primary biliary cholangitis: pathogenesis and therapeutic opportunities. Nat Rev Gastroenterol Hepatol 2020; 17:93-110. [PMID: 31819247 DOI: 10.1038/s41575-019-0226-7] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/09/2019] [Indexed: 02/08/2023]
Abstract
Primary biliary cholangitis is a chronic, seropositive and female-predominant inflammatory and cholestatic liver disease, which has a variable rate of progression towards biliary cirrhosis. Substantial progress has been made in patient risk stratification with the goal of personalized care, including early adoption of next-generation therapy with licensed use of obeticholic acid or off-label fibrate derivatives for those with insufficient benefit from ursodeoxycholic acid, the current first-line drug. The disease biology spans genetic risk, epigenetic changes, dysregulated mucosal immunity and altered biliary epithelial cell function, all of which interact and arise in the context of ill-defined environmental triggers. A current focus of research on nuclear receptor pathway modulation that specifically and potently improves biliary excretion, reduces inflammation and attenuates fibrosis is redefining therapy. Patients are benefiting from pharmacological agonists of farnesoid X receptor and peroxisome proliferator-activated receptors. Immunotherapy remains a challenge, with a lack of target definition, pleiotropic immune pathways and an interplay between hepatic immune responses and cholestasis, wherein bile acid-induced inflammation and fibrosis are dominant clinically. The management of patient symptoms, particularly pruritus, is a notable goal reflected in the development of rational therapy with apical sodium-dependent bile acid transporter inhibitors.
Collapse
Affiliation(s)
- Aliya F Gulamhusein
- Toronto Centre for Liver Disease, University Health Network and Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Gideon M Hirschfield
- Toronto Centre for Liver Disease, University Health Network and Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | - Jelena Milovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia.,Department of Histology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
| | - Dragana Arsenijevic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
| | - Nebojsa Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
| | - Marija Milovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
| |
Collapse
|
32
|
Su Y, Wang Z, Ye J, Feng T, Wang F, Chi H, Zhou Z, Hu Q, Liu H, Cheng X, Shi H, Teng J, Yang C, Sun Y. Cysteine-Rich Angiogenic Inducer 61 Serves as a Potential Serum Biomarker for the Remission of Adult-Onset Still's Disease. Front Med (Lausanne) 2019; 6:266. [PMID: 31824953 PMCID: PMC6879423 DOI: 10.3389/fmed.2019.00266] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/30/2019] [Indexed: 12/14/2022] Open
Abstract
Objective: Adult-onset Still's disease (AOSD) is a rare, polygenic, systemic autoinflammatory disease. The aim of this study is to evaluate the serum levels of cysteine-rich angiogenic inducer 61 (Cyr61), a secreted, extracellular protein in AOSD patients. Methods: A total of 60 AOSD patients (39 of active phase and 21 of inactive phase), 16 rheumatoid arthritis patients as a disease control, and 34 sex- and age-matched healthy control subjects (HC) were enrolled in the study. The data of the clinical manifestations and laboratory examinations were collected. The serum levels of Cyr61, interleukin (IL)-17, and IL-37 were detected by ELISA assay, and the serum levels of IL-10, IL-1β, IL-6, IL-18, and tumor necrosis factor (TNF)-α were examined by electrochemiluminescence assay. Results: The serum levels of Cyr61 were significantly increased in inactive AOSD than those in active patients and HCs, and the levels of Cyr61 were dramatically increased after treatment. The levels of Cyr61 were inversely correlated with systemic score, the counts of leukocyte and neutrophil, and the levels of inflammatory cytokines (IL-1β, IL-6, and IL-17). Moreover, the levels of Cyr61 were higher in patients without the clinical symptoms of fever, skin rash, sore throat, arthralgia, and lymphadenopathy compared with those in patients with these symptoms. Conclusion: The serum levels of Cyr61 were inversely correlated with disease activity in AOSD patients; thus, we proposed that Cyr61 was a biomarker for the remission of AOSD.
Collapse
Affiliation(s)
- Yutong Su
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhihong Wang
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junna Ye
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tienan Feng
- Clinical Research Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fan Wang
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huihui Chi
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhuochao Zhou
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiongyi Hu
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Honglei Liu
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaobing Cheng
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Shi
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jialin Teng
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengde Yang
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Sun
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
33
|
Lian M, Zhang J, Zhao L, Chen X, Peng Y, Wang Q, Chen S, Ma X. Interleukin-35 Regulates Immune Microenvironment of Autoimmune Hepatitis Through Inducing the Expansion of Myeloid-Derived Suppressor Cells. Front Immunol 2019; 10:2577. [PMID: 31787974 PMCID: PMC6854006 DOI: 10.3389/fimmu.2019.02577] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 10/17/2019] [Indexed: 12/26/2022] Open
Abstract
Interleukin-35 (IL-35) is a novel anti-inflammatory cytokine of IL12 cytokine family, however, the role of IL-35 in patients with AIH and its effect on myeloid-derived suppressor cells (MDSCs) has not yet been analyzed. The expression of IL-35 subunits (p35 and EBI3) in liver tissues was quantified by immunochemistry and its correlation with clinical parameters was explored in patients with AIH. The expression of MDSCs and IL-35 receptor (gp130 and IL-12Rβ2) were analyzed using flow cytometry and confocal staining. Besides, we utilized in vitro culture to explore the role of IL-35 on MDSCs expansion and activation. We found that the elevated expression of both IL-35 subunits (EBI3 and p35) in liver tissue was positively associated with degrees of hepatic inflammatory and fibrosis in patients with AIH. Furthermore, the expression of EBI3 in liver was positively correlated with patient age, serum IgG levels and serum AST, and was negatively correlated with hemoglobin and albumin. Moreover, our results showed that ratio of MDSC in peripheral blood increased significantly in AIH patients as compared with healthy controls. Further study showed that CD33, a representative marker of MDSCs, co-localized well with gp130 and IL12Rβ2, suggesting MDSCs as target cell for IL-35. Consistently, MDSCs from AIH displayed a substantial higher abundance of gp130 and IL12Rβ2 and were expanded by IL-35 in vitro. IL-35-induced MDSCs showed a significant increase in Nitric oxide (NO) production but not reactive oxygen species (ROS). Conclusions: IL-35 might play an important role in AIH by regulating MDSCs and it could provide new insights into the therapy of AIH.
Collapse
Affiliation(s)
- Min Lian
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Jun Zhang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Li Zhao
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Xiang Chen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Yanshen Peng
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Qixia Wang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Shengliang Chen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Xiong Ma
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| |
Collapse
|
34
|
Huang M, Wu R, Chen L, Peng Q, Li S, Zhang Y, Zhou L, Duan L. S100A9 Regulates MDSCs-Mediated Immune Suppression via the RAGE and TLR4 Signaling Pathways in Colorectal Carcinoma. Front Immunol 2019; 10:2243. [PMID: 31620141 PMCID: PMC6759487 DOI: 10.3389/fimmu.2019.02243] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/04/2019] [Indexed: 12/11/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a major component of the immunosuppressive tumor microenvironment (TME) and have been recognized as a contributing factor to inflammation-related cancers. However, the molecular mechanisms of MDSCs accumulation and activation remain elusive. We previously showed that the proinflammatory molecule S100A9 in TME exerts a tumor-promoting effect in colorectal carcinoma (CRC). In this report, we investigated the effect and molecular mechanisms of S100A9 on the accumulation and immunosuppressive function of MDSCs in CRC. Elevated S100A9 and MDSCs were found in tumor tissue and peripheral blood from CRC patients. Circulating S100A9 and MDSCs were positively associated to each other, and both S100A9 and MDSCs were correlated to neoplastic progression. Using a CRC cell line LoVo-induced MDSCs model, we found that S100A9 stimulated chemotaxis and activation but not viability of MDSCs. Mechanistic studies demonstrated that activation of RAGE-mediated p38 MAPK and TLR4-mediated NF-κB signaling pathways were involved in S100A9-induced chemotaxis and MDSCs activation, respectively. Furthermore, ROC analysis showed that combination detection of S100A9 and MDSCs was superior to individual detection of these two factors for diagnosing CRC patients with advanced staging and lymphatic metastasis, which yielded an area under the ROC curve (AUC) of 0.92 with 86.7% sensitivity and 86.4% specificity, and an AUC of 0.82 with 75% sensitivity and 77.1% specificity, respectively. Collectively, our study suggests that the S100A9 plays a pivotal role in immunosuppressive TME by stimulating MDSCs chemotaxis and activation, and combination detection of S100A9 and MDSCs may serve as a potential marker for diagnosis of CRC progression.
Collapse
Affiliation(s)
- Mao Huang
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Rui Wu
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lu Chen
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Qi Peng
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Shue Li
- Department of Academic Research, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yan Zhang
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Lan Zhou
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Liang Duan
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
35
|
Li YK, Li YM, Li Y, Wei YR, Zhang J, Li B, You ZR, Chen Y, Huang BY, Miao Q, Wang QX, Peng YS, Gershwin ME, Tang RQ, Bian ZL, Ma X. CTHRC1 expression in primary biliary cholangitis. J Dig Dis 2019; 20:371-376. [PMID: 31102333 DOI: 10.1111/1751-2980.12791] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 05/07/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Collagen triple helix repeat containing-1 (CTHRC1) is a highly conserved extracellular matrix glycoprotein that is overexpressed in two murine models of cholestatic liver fibrosis. Elevated CTHRC1 has been found to attenuate liver fibrosis in these murine models, thus we aimed to study the expression of CTHRC1 in patients with cholestatic liver diseases and its correlation with hepatic conditions. METHODS Ninety patients with chronic liver disease, including 48 had primary biliary cholangitis (PBC), 18 had primary sclerosing cholangitis (PSC) and 24 had chronic hepatitis B (CHB), together with five healthy controls (HC), were recruited to this study. Participants' liver sections were analyzed using immunohistochemistry. Serum CTHRC1 levels in another cohort of 59 patients with PBC and 10 age-matched HC were detected by enzyme-linked immunosorbent assay. RESULTS CTHRC1 protein was primarily expressed in activated hepatic stellate cells (HSC). CTHRC1 expression was significantly increased in the PBC and PSC groups, compared with the HC and CHB groups. Importantly, the hepatic fibrosis stage of the PBC group was positively correlated with hepatic CTHRC1 expression (r = 0.425, P = 0.003). Meanwhile, there were significant correlations between serum CTHRC1 levels and both the degrees of hepatic inflammation and fibrosis stage in the PBC group (r = 0.300, P = 0.022; r = 0.321, P = 0.012). CONCLUSION CTHRC1 may play a role in hepatic fibrogenesis in PBC and that serum CTHRC1 may be a potential novel noninvasive biomarker in the assessment of liver fibrosis and inflammation.
Collapse
Affiliation(s)
- Yi Kang Li
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes; Shanghai Institute of Digestive Disease; Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Mei Li
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes; Shanghai Institute of Digestive Disease; Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - You Li
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes; Shanghai Institute of Digestive Disease; Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Ran Wei
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes; Shanghai Institute of Digestive Disease; Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Zhang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes; Shanghai Institute of Digestive Disease; Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bo Li
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes; Shanghai Institute of Digestive Disease; Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zheng Rui You
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes; Shanghai Institute of Digestive Disease; Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yong Chen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes; Shanghai Institute of Digestive Disease; Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bing Yuan Huang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes; Shanghai Institute of Digestive Disease; Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qi Miao
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes; Shanghai Institute of Digestive Disease; Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qi Xia Wang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes; Shanghai Institute of Digestive Disease; Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Shen Peng
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes; Shanghai Institute of Digestive Disease; Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - M Eric Gershwin
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California at Davis, Davis, CA, USA
| | - Ru Qi Tang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes; Shanghai Institute of Digestive Disease; Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhao Lian Bian
- Department of Gastroenterology and Hepatology, Nantong Institute of Liver Disease, Nantong Third People's Hospital, Nantong University, Nantong, Jiangsu Province, China
| | - Xiong Ma
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes; Shanghai Institute of Digestive Disease; Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
36
|
Fan Y, Yang X, Zhao J, Sun X, Xie W, Huang Y, Li G, Hao Y, Zhang Z. Cysteine-rich 61 (Cyr61): a biomarker reflecting disease activity in rheumatoid arthritis. Arthritis Res Ther 2019; 21:123. [PMID: 31113467 PMCID: PMC6528265 DOI: 10.1186/s13075-019-1906-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 05/06/2019] [Indexed: 01/23/2023] Open
Abstract
Background Numerous preclinical studies have revealed a critical role of cysteine-rich 61 (Cyr61) in the pathogenesis of rheumatoid arthritis (RA). But there is little literature discussing the clinical value of circulation Cyr61 in RA patients. The aim of our study is to investigate the serum Cyr61 level and its association with disease activity in RA patients. Methods A training cohort was derived from consecutive RA patients who visited our clinic from Jun 2014 to Nov 2018. Serum samples were obtained at the enrollment time. To further confirm discovery, an independent validation cohort was set up based on a registered clinical trial. Paired serum samples of active RA patients were respectively collected at baseline and 12 weeks after uniformed treatment. Serum Cyr61 concentration was detected by enzyme-linked immunosorbent assay. The comparison of Cyr61 between RA patients and controls, the correlation between Cyr61 levels with disease activity, and the change of Cyr61 after treatment were analyzed by appropriate statistical analyses. Results A total of 177 definite RA patients and 50 age- and gender-matched healthy controls were enrolled in the training cohort. Significantly elevated serum Cyr61 concentration was found in RA patients, demonstrating excellent diagnostic ability to discriminate RA from healthy controls (area under the curve (AUC) = 0.98, P < 0.001). In addition, the Cyr61 level in active RA patients was significantly lower than that in patients in remission/low disease activity, and it was inversely correlated with composite disease activity scores and almost all of the components in statistic. Further study in the validation cohort (n = 77) showed a significant increase of the Cyr61 level at 12 weeks in ACR responders (ACR20/50/70), while no significant change of the Cyr61 level from baseline was observed in non-responders. Conclusions Serum Cyr61 levels were remarkably increased in RA patients compared with those in healthy controls. The Cyr61 concentration was inversely correlated with RA disease activity and upregulated in those therapeutic responders. Trial registration Combination Therapy Prevents the Relapse of RA, NCT02320630. Registered 19 December 2014, Electronic supplementary material The online version of this article (10.1186/s13075-019-1906-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yong Fan
- Department of Rheumatology and Clinical Immunology, Peking University First Hospital, No.8, Xishiku Street, West District, Beijing, 100034, China
| | - Xinlei Yang
- Department of Rheumatology and Clinical Immunology, Peking University First Hospital, No.8, Xishiku Street, West District, Beijing, 100034, China
| | - Juan Zhao
- Department of Rheumatology and Clinical Immunology, Peking University First Hospital, No.8, Xishiku Street, West District, Beijing, 100034, China
| | - Xiaoying Sun
- Department of Rheumatology and Clinical Immunology, Peking University First Hospital, No.8, Xishiku Street, West District, Beijing, 100034, China
| | - Wenhui Xie
- Department of Rheumatology and Clinical Immunology, Peking University First Hospital, No.8, Xishiku Street, West District, Beijing, 100034, China
| | - Yanrong Huang
- Department of Rheumatology and Clinical Immunology, Peking University First Hospital, No.8, Xishiku Street, West District, Beijing, 100034, China
| | - Guangtao Li
- Department of Rheumatology and Clinical Immunology, Peking University First Hospital, No.8, Xishiku Street, West District, Beijing, 100034, China
| | - Yanjie Hao
- Department of Rheumatology and Clinical Immunology, Peking University First Hospital, No.8, Xishiku Street, West District, Beijing, 100034, China
| | - Zhuoli Zhang
- Department of Rheumatology and Clinical Immunology, Peking University First Hospital, No.8, Xishiku Street, West District, Beijing, 100034, China.
| |
Collapse
|
37
|
Gao M, Huang A, Sun Z, Sun Y, Chang B, Zhang JY, Zou ZS. Granulocytic myeloid-derived suppressor cell population increases with the severity of alcoholic liver disease. J Cell Mol Med 2018; 23:2032-2041. [PMID: 30585398 PMCID: PMC6378203 DOI: 10.1111/jcmm.14109] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 08/24/2018] [Accepted: 12/03/2018] [Indexed: 12/20/2022] Open
Abstract
Alcoholic liver disease (ALD) is a progressive liver disease that can cause a series of complications, including cirrhosis, liver failure and hepatocellular carcinoma. Granulocytic myeloid‐derived suppressor cell (gMDSC) populations have been observed to expand in various liver diseases and to inhibit innate and adaptive immunity in patients with liver disease. However, the characteristics of gMDSCs in patients with ALD have not been studied. We studied 24 healthy controls (HCs) and 107 patients with ALD and found an accumulation of gMDSCs in the peripheral blood of patients with alcoholic liver cirrhosis (ALC). Furthermore, ALC patients with a poor prognosis displayed a significant increase in peripheral gMDSCs and showed an increased capacity for arginase I production compared to HCs. In contrast, plasma arginase I levels in ALC patients were negatively correlated with total bilirubin and international normalized ratio, two key parameters of liver damage. Importantly, gMDSCs accumulated in the livers of ALC patients, and the frequency of liver gMDSCs significantly correlated with that of peripheral gMDSCs. In addition, gMDSC enrichment in vitro significantly inhibited the function of natural killer (NK) cells, perhaps preventing the NK‐induced apoptosis of hepatic stellate cells. In summary, increased peripheral and intrahepatic gMDSC populations are present in patients with ALC and may contribute to enhancing the severity of liver cirrhosis.
Collapse
Affiliation(s)
- Miaomiao Gao
- Center of Non-Infectious Liver Diseases, Peking University 302 Clinical Medical School, Beijing, China
| | - Ang Huang
- Center of Non-Infectious Liver Diseases, Beijing 302 Hospital, Beijing, China
| | - Zijian Sun
- Center of Non-Infectious Liver Diseases, Peking University 302 Clinical Medical School, Beijing, China
| | - Ying Sun
- Center of Non-Infectious Liver Diseases, Beijing 302 Hospital, Beijing, China
| | - Binxia Chang
- Center of Non-Infectious Liver Diseases, Beijing 302 Hospital, Beijing, China
| | - Ji-Yuan Zhang
- Treatment and Research Center for Infectious Diseases, Beijing 302 Hospital, Beijing, China
| | - Zheng-Sheng Zou
- Center of Non-Infectious Liver Diseases, Peking University 302 Clinical Medical School, Beijing, China.,Center of Non-Infectious Liver Diseases, Beijing 302 Hospital, Beijing, China
| |
Collapse
|
38
|
Budhwar S, Verma P, Verma R, Rai S, Singh K. The Yin and Yang of Myeloid Derived Suppressor Cells. Front Immunol 2018; 9:2776. [PMID: 30555467 PMCID: PMC6280921 DOI: 10.3389/fimmu.2018.02776] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 11/12/2018] [Indexed: 02/06/2023] Open
Abstract
In recent years, most of our knowledge about myeloid derived suppressor cells (MDSCs) has come from cancer studies, which depicts Yin side of MDSCs. In cancer, inherent immunosuppressive action of MDSCs favors tumor progression by inhibiting antitumor immune response. However, recently Yang side of MDSCs has also been worked out and suggests the role in maintenance of homeostasis during non-cancer situations like pregnancy, obesity, diabetes, and autoimmune disorders. Continued work in this area has armored the biological importance of these cells as master regulators of immune system and prompted scientists all over the world to look from a different perspective. Therefore, explicating Yin and Yang arms of MDSCs is obligatory to use it as a double edged sword in a much smarter way. This review is an attempt toward presenting a synergistic coalition of all the facts and controversies that exist in understanding MDSCs, bring them on the same platform and approach their "Yin and Yang" nature in a more comprehensive and coherent manner.
Collapse
Affiliation(s)
- Snehil Budhwar
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Priyanka Verma
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Rachna Verma
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Sangeeta Rai
- Department of Obstetrics and Gynecology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Kiran Singh
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
39
|
Lian M, Wang Q, Jiang X, Zhang J, Wei Y, Li Y, Li B, Chen W, Zhang H, Miao Q, Peng Y, Xiao X, Sheng L, Zhang W, Fang J, Tang R, Gershwin ME, Ma X. The Immunobiology of Receptor Activator for Nuclear Factor Kappa B Ligand and Myeloid-Derived Suppressor Cell Activation in Immunoglobulin G4-Related Sclerosing Cholangitis. Hepatology 2018; 68:1922-1936. [PMID: 29774578 DOI: 10.1002/hep.30095] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 03/08/2018] [Accepted: 04/22/2018] [Indexed: 12/24/2022]
Abstract
The primary function of myeloid-derived suppressor cells (MDSCs) is reflected in their immune modulatory role in several immune-mediated diseases. In immunoglobulin G4 (IgG4)-related disease (IgG4-RD), it has been hypothesized that there are selective regulatory defects that lead to a T helper 2 (Th2) bias immune response. Herein we have taken advantage of a large cohort of patients with IgG4-related sclerosing cholangitis (IgG4-SC), the most common extrapancreatic involvement of IgG4-RD, as well as controls consisting of primary sclerosing cholangitis, autoimmune hepatitis, and healthy volunteers, to study MDSCs. We report dramatically increased levels of receptor activator for nuclear factor kappa B ligand (RANKL) expression in serum and liver from patients with IgG4-SC compared to both liver-disease and healthy controls. Moreover, in IgG4-SC liver, RANKL-secreting cells specifically colocalized with cluster of differentiation 38-positive plasma cells and MDSCs, particularly monocytic MDSCs, and express the RANKL receptor in liver. Similarly, the frequency and number of peripheral blood MDSCs were significantly increased. Importantly, serum expression levels of RANKL were inversely correlated with the serum level of gamma-glutamyltransferase but significantly positively correlated with the frequency of MDSCs. Moreover, we confirmed that RANKL induced the expansion and activation of MDSCs through the RANKL/RANK/nuclear factor kappa B signal pathway. Of note, RANKL-treated MDSCs suppressed T-cell proliferation and induced Th2 differentiation. Conclusion: Our data suggest that plasma cell-derived RANKL induces the expansion and activation of MDSCs, which suppress T-cell proliferation and contribute to the Th2-type response characteristic of IgG4-SC.
Collapse
Affiliation(s)
- Min Lian
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health; State Key Laboratory for Oncogenes and Related Genes, Renji Hospital; School of Medicine, Shanghai Jiao Tong University; and Shanghai Institute of Digestive Disease, Shanghai, China
| | - Qixia Wang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health; State Key Laboratory for Oncogenes and Related Genes, Renji Hospital; School of Medicine, Shanghai Jiao Tong University; and Shanghai Institute of Digestive Disease, Shanghai, China
| | - Xiang Jiang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health; State Key Laboratory for Oncogenes and Related Genes, Renji Hospital; School of Medicine, Shanghai Jiao Tong University; and Shanghai Institute of Digestive Disease, Shanghai, China
| | - Jun Zhang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health; State Key Laboratory for Oncogenes and Related Genes, Renji Hospital; School of Medicine, Shanghai Jiao Tong University; and Shanghai Institute of Digestive Disease, Shanghai, China
| | - Yiran Wei
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health; State Key Laboratory for Oncogenes and Related Genes, Renji Hospital; School of Medicine, Shanghai Jiao Tong University; and Shanghai Institute of Digestive Disease, Shanghai, China
| | - Yanmei Li
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health; State Key Laboratory for Oncogenes and Related Genes, Renji Hospital; School of Medicine, Shanghai Jiao Tong University; and Shanghai Institute of Digestive Disease, Shanghai, China
| | - Bo Li
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health; State Key Laboratory for Oncogenes and Related Genes, Renji Hospital; School of Medicine, Shanghai Jiao Tong University; and Shanghai Institute of Digestive Disease, Shanghai, China
| | - Weihua Chen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health; State Key Laboratory for Oncogenes and Related Genes, Renji Hospital; School of Medicine, Shanghai Jiao Tong University; and Shanghai Institute of Digestive Disease, Shanghai, China
| | - Haiyan Zhang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health; State Key Laboratory for Oncogenes and Related Genes, Renji Hospital; School of Medicine, Shanghai Jiao Tong University; and Shanghai Institute of Digestive Disease, Shanghai, China
| | - Qi Miao
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health; State Key Laboratory for Oncogenes and Related Genes, Renji Hospital; School of Medicine, Shanghai Jiao Tong University; and Shanghai Institute of Digestive Disease, Shanghai, China
| | - Yanshen Peng
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health; State Key Laboratory for Oncogenes and Related Genes, Renji Hospital; School of Medicine, Shanghai Jiao Tong University; and Shanghai Institute of Digestive Disease, Shanghai, China
| | - Xiao Xiao
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health; State Key Laboratory for Oncogenes and Related Genes, Renji Hospital; School of Medicine, Shanghai Jiao Tong University; and Shanghai Institute of Digestive Disease, Shanghai, China
| | - Li Sheng
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health; State Key Laboratory for Oncogenes and Related Genes, Renji Hospital; School of Medicine, Shanghai Jiao Tong University; and Shanghai Institute of Digestive Disease, Shanghai, China
| | - Weici Zhang
- Division of Rheumatology, Allergy and Clinical Immunology, Department of Internal Medicine, University of California at Davis, Davis, CA
| | - Jingyuan Fang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health; State Key Laboratory for Oncogenes and Related Genes, Renji Hospital; School of Medicine, Shanghai Jiao Tong University; and Shanghai Institute of Digestive Disease, Shanghai, China
| | - Ruqi Tang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health; State Key Laboratory for Oncogenes and Related Genes, Renji Hospital; School of Medicine, Shanghai Jiao Tong University; and Shanghai Institute of Digestive Disease, Shanghai, China
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, Department of Internal Medicine, University of California at Davis, Davis, CA
| | - Xiong Ma
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health; State Key Laboratory for Oncogenes and Related Genes, Renji Hospital; School of Medicine, Shanghai Jiao Tong University; and Shanghai Institute of Digestive Disease, Shanghai, China
| |
Collapse
|
40
|
Mo JF, Wu JY, Zheng L, Yu YW, Zhang TX, Guo L, Bao Y. Therapeutic efficacy of polydatin for nonalcoholic fatty liver disease via regulating inflammatory response in obese mice. RSC Adv 2018; 8:31194-31200. [PMID: 35548751 PMCID: PMC9085635 DOI: 10.1039/c8ra05915b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 08/19/2018] [Indexed: 12/12/2022] Open
Abstract
Polydatin (PD), a natural precursor of resveratrol, has been used to treat several diseases, such as cardiovascular diseases, hepatic diseases and various cancers. In this study, we aimed to investigate the protective effects and underlying mechanisms of PD on non-alcoholic fatty liver disease (NAFLD) using a high fat induced obese mice model. The studied subjects were randomly divided into a lean group, a high fat diet (HFD) group, and a high fat diet with PD (HFD + PD) group. The results showed that PD reduced the body weights in HFD mice. PD also downregulated the serum levels of triglyceride (TG), low density lipoprotein (LDL), aspartate aminotransferase (AST) and alanine aminotransferase (ALT), and upregulated high density lipoprotein (HDL). Moreover, PD significantly alleviated hepatocyte steatosis and reduced Gr-1+ cells in the liver tissues of HFD mice. The mRNA levels of pro-inflammatory factors, such as monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), S100A8 and S100A9 were significantly decreased in the liver tissues of HFD mice with PD treatment, and the downregulation of MCP-1 and S100A9 protein expressions was also observed. In conclusion, PD had beneficial roles in suppressing lipid accumulation in hepatocytes and anti-inflammatory responses in the liver tissue of obese associated NAFLD.
Collapse
Affiliation(s)
- Juan-Fen Mo
- The Key Laboratory, The Second Affiliated Hospital of Jiaxing University 1518 Huancheng North Road Jiaxing Zhejiang 314000 China +86-573-82082936 +86-573-82073185
| | - Jia-Yuan Wu
- The Key Laboratory, The Second Affiliated Hospital of Jiaxing University 1518 Huancheng North Road Jiaxing Zhejiang 314000 China +86-573-82082936 +86-573-82073185
| | - Li Zheng
- The Key Laboratory, The Second Affiliated Hospital of Jiaxing University 1518 Huancheng North Road Jiaxing Zhejiang 314000 China +86-573-82082936 +86-573-82073185
| | - Ya-Wei Yu
- Department of Pathology, The Second Affiliated Hospital of Jiaxing University Jiaxing Zhejiang 314000 China
| | - Tian-Xin Zhang
- Clinical Laboratory, The Second Affiliated Hospital of Jiaxing University Jiaxing Zhejiang 314000 China
| | - Li Guo
- The Key Laboratory, The Second Affiliated Hospital of Jiaxing University 1518 Huancheng North Road Jiaxing Zhejiang 314000 China +86-573-82082936 +86-573-82073185
| | - Yi Bao
- The Key Laboratory, The Second Affiliated Hospital of Jiaxing University 1518 Huancheng North Road Jiaxing Zhejiang 314000 China +86-573-82082936 +86-573-82073185
| |
Collapse
|
41
|
Zhang W, Li J, Qi G, Tu G, Yang C, Xu M. Myeloid-derived suppressor cells in transplantation: the dawn of cell therapy. J Transl Med 2018; 16:19. [PMID: 29378596 PMCID: PMC5789705 DOI: 10.1186/s12967-018-1395-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 01/22/2018] [Indexed: 02/07/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a series of innate cells that play a significant role in inhibiting T cell-related responses. This heterogeneous population of immature cells is involved in tumor immunity. Recently, the function and importance of MDSCs in transplantation have garnered the attention of scientists and have become an important focus of transplantation immunology research because MDSCs play a key role in establishing immune tolerance in transplantation. In this review, we summarize recent studies of MDSCs in different types of transplantation. We also focus on the influence of immunosuppressive drugs on MDSCs as well as future obstacles and research directions in this field.
Collapse
Affiliation(s)
- Weitao Zhang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai Key Laboratory of Organ Transplantation, 180 Fenglin Road, Shanghai, 200032 China
| | - Jiawei Li
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai Key Laboratory of Organ Transplantation, 180 Fenglin Road, Shanghai, 200032 China
| | - Guisheng Qi
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai Key Laboratory of Organ Transplantation, 180 Fenglin Road, Shanghai, 200032 China
| | - Guowei Tu
- Department of Intensive Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Cheng Yang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai Key Laboratory of Organ Transplantation, 180 Fenglin Road, Shanghai, 200032 China
| | - Ming Xu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai Key Laboratory of Organ Transplantation, 180 Fenglin Road, Shanghai, 200032 China
| |
Collapse
|