1
|
He S, Wang A, Wang J, Tang Z, Wang X, Wang D, Chen J, Liu C, Zhao M, Chen H, Song L. Human papillomavirus E7 protein induces homologous recombination defects and PARPi sensitivity. J Cancer Res Clin Oncol 2024; 150:27. [PMID: 38263342 PMCID: PMC10805821 DOI: 10.1007/s00432-023-05511-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/08/2023] [Indexed: 01/25/2024]
Abstract
PURPOSE Cervical cancer is a common gynecological malignancy, pathologically associated with persistent infection of high-risk types of human papillomavirus (HPV). Previous studies revealed that HPV-positive cervical cancer displays genomic instability; however, the underlying mechanism is not fully understood. METHODS To investigate if DNA damage responses are aggravated in precancerous lesions of HPV-positive cervical epithelium, cervical tissues were biopsied and cryosectioned, and subjected to immunofluorescent staining. Cloned HA-tagged E6 and E7 genes of HPV16 subtype were transfected into HEK293T or C33A cells, and indirect immunofluorescent staining was applied to reveal the competency of double strand break (DSB) repair. To test the synthetic lethality of E7-indued HRD and PARP inhibitor (PARPi), we expressed E7 in C33A cells in the presence or absence of olaparib, and evaluated cell viability by colony formation. RESULTS In precancerous lesions, endogenous DNA lesions were elevated along with the severity of CIN grade. Expressing high-risk viral factor (E7) in HPV-negative cervical cells did not impair checkpoint activation upon genotoxic insults, but affected the potential of DSB repair, leading to homologous recombination deficiency (HRD). Based on this HPV-induced genomic instability, the viability of E7-expressing cells was reduced upon exposure to PARPi in comparison with control cells. CONCLUSION In aggregate, our findings demonstrate that HPV-E7 is a potential driver for genome instability and provides a new angle to understand its role in cancer development. The viral HRD could be employed to target HPV-positive cervical cancer via synthetic lethality.
Collapse
Affiliation(s)
- Siqi He
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), Department of Gynecology and Obstetrics, Meishan Women and Children's Hospital, West China Second University Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Ao Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), Department of Gynecology and Obstetrics, Meishan Women and Children's Hospital, West China Second University Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Jing Wang
- Department of Clinical Laboratory, Suining Central Hospital, Suining, 629000, People's Republic of China
| | - Zizhi Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), Department of Gynecology and Obstetrics, Meishan Women and Children's Hospital, West China Second University Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xiaojun Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), Department of Gynecology and Obstetrics, Meishan Women and Children's Hospital, West China Second University Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Danqing Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), Department of Gynecology and Obstetrics, Meishan Women and Children's Hospital, West China Second University Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Jie Chen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), Department of Gynecology and Obstetrics, Meishan Women and Children's Hospital, West China Second University Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Cong Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), Department of Gynecology and Obstetrics, Meishan Women and Children's Hospital, West China Second University Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Mingcai Zhao
- Department of Clinical Laboratory, Suining Central Hospital, Suining, 629000, People's Republic of China.
| | - Hui Chen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), Department of Gynecology and Obstetrics, Meishan Women and Children's Hospital, West China Second University Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| | - Liang Song
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), Department of Gynecology and Obstetrics, Meishan Women and Children's Hospital, West China Second University Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
2
|
Ming T, Yuting L, Meiling D, Shengtao C, Jihua R, Hui Z, Wanjin C, Dian L, Tingting G, Juan C, Zhenzhen Z. Chromatin binding protein HMGN1 promotes HBV cccDNA transcription and replication by regulating the phosphorylation of histone 3. Antiviral Res 2024; 221:105796. [PMID: 38181856 DOI: 10.1016/j.antiviral.2024.105796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/02/2024] [Accepted: 01/02/2024] [Indexed: 01/07/2024]
Abstract
BACKGROUND AND AIMS Direct elimination of cccDNA remains a formidable obstacle due to the persistent and stable presence of cccDNA in hepatocyte nuclei. The silencing of cccDNA transcription enduringly is one of alternative strategies in the treatment of hepatitis B. Protein binding to cccDNA plays an important role in its transcriptional regulation; thus, the identification of key factors involved in this process is of great importance. APPROACHES AND RESULTS In the present study, high mobility group nucleosome binding domain 1 (HMGN1) was screened out based on our biotin-avidin enrichment system. First, chromatin immunoprecipitation and fluorescent in situ hybridization assays confirmed the binding of HMGN1 with cccDNA in the nucleus. Second, functional experiments in HBV-infected cells showed that the promoting effect of HMGN1 on HBV transcription and replication depended on the functional region of the nucleosomal binding domain, while transfection of the HMGN1 mutant showed no influence on HBV compared with the vector. Third, further mechanistic exploration revealed that the silencing of HMGN1 increased the level of phosphorylase CLK2 and promoted H3 phosphorylation causing the reduced accessibility of cccDNA. Moreover, silenced HMGN1 was mimicked in HBV (r) cccDNA mouse model of HBV infection in vivo. The results showed that silencing HMGN1 inhibited HBV replication in vivo. CONCLUSIONS In summary, our study identified that a host protein can bind to cccDNA and promote its transcription, providing a candidate strategy for anti-HBV targeting to interfere with the transcriptional activity of cccDNA microchromosomes.
Collapse
Affiliation(s)
- Tan Ming
- Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Department of Infectious Diseases, The Children's Hospital of Chongqing Medical University, Chongqing Medical University Chongqing, China; The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Liu Yuting
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Dong Meiling
- Department of Clinical Laboratory, Infectious Diseases Hospital of Nanchang University, Nanchang, China
| | - Cheng Shengtao
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Ren Jihua
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Zhang Hui
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Chen Wanjin
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Li Dian
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Gao Tingting
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Chen Juan
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China; Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, China.
| | - Zhang Zhenzhen
- Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Department of Infectious Diseases, The Children's Hospital of Chongqing Medical University, Chongqing Medical University Chongqing, China.
| |
Collapse
|
3
|
Wang F, Song H, Xu F, Xu J, Wang L, Yang F, Zhu Y, Tan G. Role of hepatitis B virus non-structural protein HBx on HBV replication, interferon signaling, and hepatocarcinogenesis. Front Microbiol 2023; 14:1322892. [PMID: 38188582 PMCID: PMC10767994 DOI: 10.3389/fmicb.2023.1322892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/07/2023] [Indexed: 01/09/2024] Open
Abstract
Hepatitis B, a global health concern caused by the hepatitis B virus (HBV), infects nearly 2 billion individuals worldwide, as reported by the World Health Organization (WHO). HBV, a hepatotropic DNA virus, predominantly targets and replicates within hepatocytes. Those carrying the virus are at increased risk of liver cirrhosis and hepatocellular carcinoma, resulting in nearly 900,000 fatalities annually. The HBV X protein (HBx), encoded by the virus's open reading frame x, plays a key role in its virulence. This protein is integral to viral replication, immune modulation, and liver cancer progression. Despite its significance, the precise molecular mechanisms underlying HBx remain elusive. This review investigates the HBx protein's roles in HBV replication, interferon signaling regulation, and hepatocellular carcinoma progression. By understanding the complex interactions between the virus and its host mediated by HBx, we aim to establish a solid foundation for future research and the development of HBx-targeted therapeutics.
Collapse
Affiliation(s)
- Fei Wang
- Department of Hepatology, Center for Pathogen Biology and Infectious Diseases, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Hongxiao Song
- Department of Hepatology, Center for Pathogen Biology and Infectious Diseases, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Fengchao Xu
- Department of Hepatology, Center for Pathogen Biology and Infectious Diseases, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jing Xu
- Health Examination Center, The First Hospital of Jilin University, Changchun, China
| | - Le Wang
- Department of Hepatology, The First Hospital of Jilin University, Changchun, China
| | - Fan Yang
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yujia Zhu
- Department of Hepatology, Center for Pathogen Biology and Infectious Diseases, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Guangyun Tan
- Department of Hepatology, Center for Pathogen Biology and Infectious Diseases, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
4
|
Zeng M, Tang Z, Ren L, Wang H, Wang X, Zhu W, Mao X, Li Z, Mo X, Chen J, Han J, Kong D, Ji J, Carr AM, Liu C. Hepatitis B virus infection disrupts homologous recombination in hepatocellular carcinoma by stabilizing resection inhibitor ADRM1. J Clin Invest 2023; 133:e171533. [PMID: 37815873 PMCID: PMC10688980 DOI: 10.1172/jci171533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/05/2023] [Indexed: 10/12/2023] Open
Abstract
Many cancers harbor homologous recombination defects (HRDs). A HRD is a therapeutic target that is being successfully utilized in treatment of breast/ovarian cancer via synthetic lethality. However, canonical HRD caused by BRCAness mutations do not prevail in liver cancer. Here we report a subtype of HRD caused by the perturbation of a proteasome variant (CDW19S) in hepatitis B virus-bearing (HBV-bearing) cells. This amalgamate protein complex contained the 19S proteasome decorated with CRL4WDR70 ubiquitin ligase, and assembled at broken chromatin in a PSMD4Rpn10- and ATM-MDC1-RNF8-dependent manner. CDW19S promoted DNA end processing via segregated modules that promote nuclease activities of MRE11 and EXO1. Contrarily, a proteasomal component, ADRM1Rpn13, inhibited resection and was removed by CRL4WDR70-catalyzed ubiquitination upon commitment of extensive resection. HBx interfered with ADRM1Rpn13 degradation, leading to the imposition of ADRM1Rpn13-dependent resection barrier and consequent viral HRD subtype distinguishable from that caused by BRCA1 defect. Finally, we demonstrated that viral HRD in HBV-associated hepatocellular carcinoma can be exploited to restrict tumor progression. Our work clarifies the underlying mechanism of a virus-induced HRD subtype.
Collapse
Affiliation(s)
- Ming Zeng
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China
| | - Zizhi Tang
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China
| | - Laifeng Ren
- Department of Immunology, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Taiyuan, China
| | - Haibin Wang
- Department of Pediatric Surgery, Wuhan Children’s Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaojun Wang
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China
| | - Wenyuan Zhu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Xiaobing Mao
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zeyang Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Xianming Mo
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jun Chen
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Junhong Han
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Daochun Kong
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Jianguo Ji
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Antony M. Carr
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Cong Liu
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Liu C, Yang M, Zhang D, Chen M, Zhu D. Clinical cancer immunotherapy: Current progress and prospects. Front Immunol 2022; 13:961805. [PMID: 36304470 PMCID: PMC9592930 DOI: 10.3389/fimmu.2022.961805] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Immune checkpoint therapy via PD-1 antibodies has shown exciting clinical value and robust therapeutic potential in clinical practice. It can significantly improve progression-free survival and overall survival. Following surgery, radiotherapy, chemotherapy, and targeted therapy, cancer treatment has now entered the age of immunotherapy. Although cancer immunotherapy has shown remarkable efficacy, it also suffers from limitations such as irAEs, cytokine storm, low response rate, etc. In this review, we discuss the basic classification, research progress, and limitations of cancer immunotherapy. Besides, by combining cancer immunotherapy resistance mechanism with analysis of combination therapy, we give our insights into the development of new anticancer immunotherapy strategies.
Collapse
Affiliation(s)
- Chenglong Liu
- Minhang Hospital and Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Mengxuan Yang
- Minhang Hospital and Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Daizhou Zhang
- New Drug Evaluation Center, Shandong Academy of Pharmaceutical Science, Jinan, China
| | - Ming Chen
- Department of Laboratory Medicine, Sixth Affiliated Hospital of Yangzhou University, Yangzhou, China
- Department of Laboratory Medicine, Affiliated Taixing Hospital of Bengbu Medical College, Taizhou, China
| | - Di Zhu
- Minhang Hospital and Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
- New Drug Evaluation Center, Shandong Academy of Pharmaceutical Science, Jinan, China
- Shanghai Engineering Research Center of ImmunoTherapeutics, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Fu P, Gong B, Li H, Luo Q, Huang Z, Shan R, Li J, Yan S. Combined identification of three lncRNAs in serum as effective diagnostic and prognostic biomarkers for hepatitis B virus-related hepatocellular carcinoma. Int J Cancer 2022; 151:1824-1834. [PMID: 35802466 DOI: 10.1002/ijc.34201] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/05/2022] [Accepted: 06/22/2022] [Indexed: 12/09/2022]
Abstract
Hepatitis B virus-related hepatocellular carcinoma (HBV-related HCC) is a common, highly invasive malignant tumor associated with a high mortality rate. This study aimed to identify the effective diagnostic and prognostic biomarkers for HBV-related HCC. With HBV-related HCC RNA-sequencing data of The Cancer Genome Atlas (TCGA) database, 159 differentially expressed long non-coding RNAs (lncRNAs) between HBV-related HCC and para-carcinoma normal samples were identified, and 12 lncRNAs were eventually assessed for deeper research. Classification analysis developed a three-lncRNA signature of AC005332.5, ELF3-AS1, and LINC00665, which was demonstrated to be the most discriminatory with an AUC (Area Under the Curve) value of 0.913 (95% CI: 0.8610-0.9665) and verified in validation patients. The expression levels of AC005332.5, ELF3-AS1, and LINC00665 were significantly changed with different tumor stages or grades. Survival analysis revealed that AC005332.5, ELF3-AS1, and LINC00665 were highly associated with the prognosis of overall survival. Additionally, the lncRNA signature yielded statistical significance to predict clinical outcomes independently from other clinical variables in validation patients, as suggested in the multivariate Cox hazards analysis. Conclusively, a three-lncRNA signature of AC005332.5, ELF3-AS1, and LINC00665 may serve as an excellent diagnostic biomarker for HBV-related HCC and potential prognostic significance for HBV-related HCC sufferers. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Peng Fu
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Binbin Gong
- Department of Urology, The First Afliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Huiming Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qing Luo
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zikun Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Renfeng Shan
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Junming Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Shaoying Yan
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
7
|
Tang Z, Zeng M, Wang X, Guo C, Yue P, Zhang X, Lou H, Chen J, Mu D, Kong D, Carr AM, Liu C. Synthetic lethality between TP53 and ENDOD1. Nat Commun 2022; 13:2861. [PMID: 35606358 PMCID: PMC9126970 DOI: 10.1038/s41467-022-30311-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/26/2022] [Indexed: 01/22/2023] Open
Abstract
The atypical nuclease ENDOD1 functions with cGAS-STING in innate immunity. Here we identify a previously uncharacterized ENDOD1 function in DNA repair. ENDOD1 is enriched in the nucleus following H2O2 treatment and ENDOD1-/- cells show increased PARP chromatin-association. Loss of ENDOD1 function is synthetic lethal with homologous recombination defects, with affected cells accumulating DNA double strand breaks. Remarkably, we also uncover an additional synthetic lethality between ENDOD1 and p53. ENDOD1 depletion in TP53 mutated tumour cells, or p53 depletion in ENDOD1-/- cells, results in rapid single stranded DNA accumulation and cell death. Because TP53 is mutated in ~50% of tumours, ENDOD1 has potential as a wide-spectrum target for synthetic lethal treatments. To support this we demonstrate that systemic knockdown of mouse EndoD1 is well tolerated and whole-animal siRNA against human ENDOD1 restrains TP53 mutated tumour progression in xenograft models. These data identify ENDOD1 as a potential cancer-specific target for SL drug discovery.
Collapse
Affiliation(s)
- Zizhi Tang
- Department of Paediatrics, SCU-CUHK Joint Laboratory for Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, 610041, Chengdu, China
| | - Ming Zeng
- Department of Paediatrics, SCU-CUHK Joint Laboratory for Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, 610041, Chengdu, China
| | - Xiaojun Wang
- Department of Paediatrics, SCU-CUHK Joint Laboratory for Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, 610041, Chengdu, China
| | - Chang Guo
- Department of Paediatrics, SCU-CUHK Joint Laboratory for Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, 610041, Chengdu, China
| | - Peng Yue
- Department of Paediatrics, SCU-CUHK Joint Laboratory for Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, 610041, Chengdu, China
| | - Xiaohu Zhang
- Department of Paediatrics, SCU-CUHK Joint Laboratory for Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, 610041, Chengdu, China
| | - Huiqiang Lou
- School of Life Sciences, China Agricultural University, 100193, Beijing, China
| | - Jun Chen
- College of Life Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Dezhi Mu
- Department of Paediatrics, SCU-CUHK Joint Laboratory for Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, 610041, Chengdu, China
| | - Daochun Kong
- School of Life Sciences, Peking University, 100871, Beijing, China
| | - Antony M Carr
- Genome Damage and Stability Centre, School of Life Science, University of Sussex, Falmer, BN1 9RQ, UK.
| | - Cong Liu
- Department of Paediatrics, SCU-CUHK Joint Laboratory for Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, 610041, Chengdu, China.
- Genome Damage and Stability Centre, School of Life Science, University of Sussex, Falmer, BN1 9RQ, UK.
| |
Collapse
|
8
|
Mirman Z, Sharma K, Carroll TS, de Lange T. Expression of BRCA1, BRCA2, RAD51, and other DSB repair factors is regulated by CRL4 WDR70. DNA Repair (Amst) 2022; 113:103320. [PMID: 35316728 PMCID: PMC9474743 DOI: 10.1016/j.dnarep.2022.103320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 11/26/2022]
Abstract
Double-strand break (DSB) repair relies on DNA damage response (DDR) factors including BRCA1, BRCA2, and RAD51, which promote homology-directed repair (HDR); 53BP1, which affects single-stranded DNA formation; and proteins that mediate end-joining. Here we show that the CRL4/DDB1/WDR70 complex (CRL4WDR70) controls the expression of DDR factors. Auxin-mediated degradation of WDR70 led to reduced expression of BRCA1, BRCA2, RAD51, and other HDR factors; 53BP1 and its downstream effectors; and other DDR factors. In contrast, cNHEJ factors were generally unaffected. WDR70 loss abrogated the localization of HDR factors to DSBs and elicited hallmarks of genomic instability, although 53BP1/RIF1 foci still formed. Mutation of the DDB1-binding WD40 motif, disruption of DDB1, or inhibition of cullins phenocopied WDR70 loss, consistent with CRL4, DDB1, and WDR70 functioning as a complex. RNA-sequencing revealed that WDR70 degradation affects the mRNA levels of DDR and many other factors. The data indicate that CRL4WDR70 is critical for expression of myriad genes including BRCA1, BRCA2, and RAD51.
Collapse
Affiliation(s)
- Zachary Mirman
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, NY 10065, USA
| | - Keshav Sharma
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, NY 10065, USA
| | - Thomas S Carroll
- Bioinformatics Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Titia de Lange
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
9
|
Epoxymicheliolide directly targets histone H2B to inhibit neuroinflammation via recruiting E3 ligase RNF20. Pharmacol Res 2022; 177:106093. [PMID: 35074526 DOI: 10.1016/j.phrs.2022.106093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/15/2021] [Accepted: 01/19/2022] [Indexed: 01/15/2023]
Abstract
Monoubiquitination plays a critical role as one of the largest histone post-translational modifications (PTMs). Recent study has revealed that histone H2B monoubiquitination (H2Bub1) at a unique lysine 120 (K120) is widely involved in the development of inflammation progression. However, small-molecules directly targeting H2B to exert anti-inflammation effects via editing monoubiquitination have not been hitherto reported. In this study, we first discover a natural small-molecule epoxymicheliolide (ECL), which directly binds to H2B to inhibit microglia-mediated neuroinflammation in vitro and in vivo. Mechanism study suggests that ECL covalently modifies a previously undisclosed lysine 46 (K46) in H2B, and recruits E3 ubiquitin ligase RNF20 to promote H2Bub1 at K120. ChIP-seq and transcriptomics further reveal that ECL-mediated H2Bub1 markedly disrupts the AP-1 recruitment to proinflammatory gene promoters for microglia inactivation. Collectively, our findings suggests that K46 of H2B serves as a promising pharmacological target to develop small-molecule drugs against microglia-mediated neuroinflammation, and ECL represents a valuable lead compound for neuroinflammation via regulating histone monoubiquitination.
Collapse
|
10
|
Tsuge M. The association between hepatocarcinogenesis and intracellular alterations due to hepatitis B virus infection. Liver Int 2021; 41:2836-2848. [PMID: 34559952 DOI: 10.1111/liv.15065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/13/2021] [Accepted: 09/19/2021] [Indexed: 02/06/2023]
Abstract
Chronic hepatitis B virus (HBV) infection is a worldwide health problem leading to severe liver dysfunction, including liver cirrhosis and hepatocellular carcinoma. Although current antiviral therapies for chronic HBV infection have been improved and can lead to a strong suppression of viral replication, it is difficult to completely eliminate the virus with these therapies once chronic HBV infection is established in the host. Furthermore, chronic HBV infection alters intracellular metabolism and signalling pathways, resulting in the activation of carcinogenesis in the liver. HBV produces four viral proteins: hepatitis B surface-, hepatitis B core-, hepatitis B x protein, and polymerase; each plays an important role in HBV replication and the intracellular signalling pathways associated with hepatocarcinogenesis. In vitro and in vivo experimental models for analyzing HBV infection and replication have been established, and gene expression analyses using microarrays or next-generation sequencing have also been developed. Thus, it is possible to clarify the molecular mechanisms for intracellular alterations, such as endoplasmic reticulum stress, oxidative stress, and epigenetic modifications. In this review, the impact of HBV viral proteins and intracellular alterations in HBV-associated hepatocarcinogenesis are discussed.
Collapse
Affiliation(s)
- Masataka Tsuge
- Natural Science Center for Basic Research and Development, Hiroshima University, Hiroshima, Japan.,Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
11
|
Tsuge M. Are Humanized Mouse Models Useful for Basic Research of Hepatocarcinogenesis through Chronic Hepatitis B Virus Infection? Viruses 2021; 13:v13101920. [PMID: 34696350 PMCID: PMC8541657 DOI: 10.3390/v13101920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/14/2021] [Accepted: 09/20/2021] [Indexed: 12/19/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection is a global health problem that can lead to liver dysfunction, including liver cirrhosis and hepatocellular carcinoma (HCC). Current antiviral therapies can control viral replication in patients with chronic HBV infection; however, there is a risk of HCC development. HBV-related proteins may be produced in hepatocytes regardless of antiviral therapies and influence intracellular metabolism and signaling pathways, resulting in liver carcinogenesis. To understand the mechanisms of liver carcinogenesis, the effect of HBV infection in human hepatocytes should be analyzed. HBV infects human hepatocytes through transfer to the sodium taurocholate co-transporting polypeptide (NTCP). Although the NTCP is expressed on the hepatocyte surface in several animals, including mice, HBV infection is limited to human primates. Due to this species-specific liver tropism, suitable animal models for analyzing HBV replication and developing antivirals have been lacking since the discovery of the virus. Recently, a humanized mouse model carrying human hepatocytes in the liver was developed based on several immunodeficient mice; this is useful for analyzing the HBV life cycle, antiviral effects of existing/novel antivirals, and intracellular signaling pathways under HBV infection. Herein, the usefulness of human hepatocyte chimeric mouse models in the analysis of HBV-associated hepatocarcinogenesis is discussed.
Collapse
Affiliation(s)
- Masataka Tsuge
- Natural Science Center for Basic Research and Development, Department of Biomedical Science, Research and Development Division, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan; ; Tel.: +81-82-257-1510
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
- Research Center for Hepatology and Gastroenterology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| |
Collapse
|
12
|
Zhu G, Wang F, Li H, Zhang X, Wu Q, Liu Y, Qian M, Guo S, Yang Y, Xue X, Sun F, Qiao Y, Pan Q. N-Myristoylation by NMT1 Is POTEE-Dependent to Stimulate Liver Tumorigenesis via Differentially Regulating Ubiquitination of Targets. Front Oncol 2021; 11:681366. [PMID: 34136404 PMCID: PMC8201403 DOI: 10.3389/fonc.2021.681366] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/03/2021] [Indexed: 01/15/2023] Open
Abstract
Background A tremendous amount of studies have suggested that post-translational modifications (PTMs) play pivotal roles during tumorigenesis. Compared to other PTMs, lipid modification is less studied. Recently, N-myristoylation, one type of lipid modification, has been paid attention to the field of cancer. However, whether and how N-myristoylation exerts its roles in liver tumorigenesis still remains unclear. Methods Parallel reaction monitoring (PRM) was conducted to evaluate the expression of protein modification enzymes in paired tissues. Liver conditionally knocking NMT1 out mice model was used to assess the critical roles of N-myristoylation during liver tumorigenesis. Proteomics isobaric tags for relative and absolute quantification (iTraq) was performed to identify proteins that changed while NMT1 was knocked down. The click chemistry assay was used to evaluate the N-myristoylation levels of proteins. Results Here, N-myristolyation and its enzyme NMT1, but not NMT2, were found to be critical in liver cancer. Two categories of proteins, i.e., N-myristolyation down-regulated proteins (NDP, including LXN, RPL29, and FAU) and N-myristolyation up-regulated proteins (NUP, including AHSG, ALB, and TF), were revealed negatively and positively regulated by NMT1, respectively. Both NDP and NUP could be N-myristolyated by NMT1 indispensable of POTEE. However, N-myristolyation decreased and increased stability of NDP and NUP, respectively. Mechanistically, NDP-specific binding protein RPL7A facilitated HIST1H4H, which has ubiquitin E3 ligase function, to ubiquitinate NDP. By contrast, NUP-specific binding protein HBB prevented NUP from ubiquitination by HIST1H4H. Notably, function of RPL7A and HBB was all NMT1-dependent. Moreover, NDP suppressed while NUP stimulated transformative phenotypes. Clinically, higher levels of NMT1 and NUP with lower levels of NDP had worse prognostic outcome. Conclusion Collectively, N-myristolyation by NMT1 suppresses anti-tumorigenic NDP, whereas it stimulates pro-tumorigenic NUP by interfering their ubiquitination to finally result in a pro-tumorigenic outcome in liver cancer. Targeting N-myristolyation and NMT1 might be helpful to treat liver cancer.
Collapse
Affiliation(s)
- Guoqing Zhu
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Feng Wang
- Department of Gastroenterology, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Haojie Li
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Xiao Zhang
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qi Wu
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Ya Liu
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Mingping Qian
- Department of General Surgery, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Susu Guo
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yueyue Yang
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiangfei Xue
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Fenyong Sun
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Yongxia Qiao
- School of Public Health, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qiuhui Pan
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
13
|
Sekiba K, Otsuka M, Koike K. Potential of HBx Gene for Hepatocarcinogenesis in Noncirrhotic Liver. Semin Liver Dis 2021; 41:142-149. [PMID: 33984871 DOI: 10.1055/s-0041-1723033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Current treatments for hepatitis B virus (HBV) using nucleos(t)ide analogs cannot eliminate the risk of hepatocellular carcinoma (HCC) development. As HBV-associated HCC can develop even in the absence of liver cirrhosis, HBV is regarded to possess direct oncogenic potential. HBV regulatory protein X (HBx) has been identified as a primary mediator of HBV-mediated hepatocarcinogenesis. A fragment of the HBV genome that contains the coding region of HBx is commonly integrated into the host genome, resulting in the production of aberrant proteins and subsequent hepatocarcinogenesis. Besides, HBx interferes with the host DNA or deoxyribonucleic acid damage repair pathways, signal transduction, epigenetic regulation of gene expression, and cancer immunity, thereby promoting carcinogenesis in the noncirrhotic liver. However, numerous molecules and pathways have been implicated in the development of HBx-associated HCC, suggesting that the mechanisms underlying HBx-mediated hepatocarcinogenesis remain to be elucidated.
Collapse
Grants
- Japan Agency for Medical Research and Development, AMED JP20fk0210054
- Japan Agency for Medical Research and Development, AMED JP20fk0210080h0001
- Japan Agency for Medical Research and Development, AMED JP20fk0310102
- The Ministry of Education, Culture, Sports, Science, and Technology, Japan 19H03430
- The Ministry of Education, Culture, Sports, Science, and Technology, Japan 19J11829
Collapse
Affiliation(s)
- Kazuma Sekiba
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Motoyuki Otsuka
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
14
|
Song G, Zhu X, Xuan Z, Zhao L, Dong H, Chen J, Li Z, Song W, Jin C, Zhou M, Xie H, Zheng S, Song P. Hypermethylation of GNA14 and its tumor-suppressive role in hepatitis B virus-related hepatocellular carcinoma. Am J Cancer Res 2021; 11:2318-2333. [PMID: 33500727 PMCID: PMC7797690 DOI: 10.7150/thno.48739] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 11/14/2020] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal cancers worldwide, and its specific mechanism has not been fully elucidated. Inactivation of tumor suppressors may contribute to the occurrence, progression, and recurrence of HCC. DNA methylation is a crucial mechanism involved in regulating the occurrence of HCC. Herein, we aimed to identify the key methylation-related tumor suppressors as well as potential biomarkers and therapeutic targets in HCC. Methods: Combined analysis of TCGA and GEO databases was performed to obtain potential methylation-related tumor suppressors in HCC. Methyl-target sequencing was performed to analyze the methylation level of the GNA14 promoter. The diagnostic value of GNA14 as a predictor of HCC was evaluated in HCC tumor samples and compared with normal tissues. The functional role of GNA14 and its upstream and downstream regulatory factors were investigated by gain-of-function and loss-of-function assays in vitro. Subcutaneous tumorigenesis, lung colonization, and orthotopic liver tumor model were performed to analyze the role of GNA14 in vivo. Results: The expression of GNA14 was found to be downregulated in HCC and it was negatively correlated with hepatitis B virus (HBV) infection, vascular invasion, and prognosis of HCC. DNA methylation was demonstrated to be responsible for the altered expression of GNA14 and was regulated by HBV-encoded X protein (HBx). GNA14 regulated the RB pathway by promoting Notch1 cleavage to inhibit tumor proliferation, and might inhibit tumor metastasis by inhibiting the expression of JMJD6. Conclusion: GNA14 could be regulated by HBx by modulating the methylation status of its promoter. We identified GNA14 as a potential biomarker and therapeutic target for HCC.
Collapse
|
15
|
Wdr70 regulates histone modification and genomic maintenance in fission yeast. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118665. [PMID: 32007529 DOI: 10.1016/j.bbamcr.2020.118665] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/23/2020] [Accepted: 01/29/2020] [Indexed: 11/20/2022]
Abstract
Eukaryotic genomes are packaged into highly condensed chromatin and this repressive chromatin barrier can be overcome by altering the chromatin structure via histone modification enzymes. Here, we report Wdr70 in Schizosaccharomyces pombe (spWdr70) plays important roles in multiple cellular processes including cell cycle progression, chromatin structure and DNA repair. Depletion of Wdr70 gene causes cell cycle delay, hypersensitivity to DNA damage reagents and quick phenotypic changes. Moreover, we observed strong genetic interaction between Wdr70 and genes regulating checkpoint and homologous recombination (HR), pinpointing the function of Wdr70 to DNA end resection. Finally, we show that the function of Wdr70 could be attributed to monoubiquitination of histone H2B (uH2B) in the vicinity of DNA double strand breaks (DSBs). Taken together, our data reveal that Wdr70 and H2B monoubiquitination-dependent chromatin modulation is required for chromatin homeostasis and genetic stability.
Collapse
|
16
|
Hepatitis B Virus X Protein-Induced ROR γ Expression to Promote the Migration and Proliferation of Hepatocellular Carcinoma. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5407126. [PMID: 31781621 PMCID: PMC6874968 DOI: 10.1155/2019/5407126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/04/2019] [Accepted: 09/13/2019] [Indexed: 02/06/2023]
Abstract
Aberrant expression of RORγ is implicated in cancer development. A previous study identified that RORγ functions as a tumor promoter to drive hepatocellular carcinoma (HCC) growth. However, its expression and significance in HCC remain unclear. The central finding of this work is that RORγ was overexpressed in HCC due to its dysfunction of promoter methylation, and hepatitis B virus X protein (HBx) can remarkably induce the expression of RORγ in hepatocellular carcinoma through enhancing the transcriptional function. Also, the HBx-induced RORγ could promote the migration and proliferation of hepatoma cells. Hence, these results suggest that RORγ was an important regulator in HCC, and our finding provides new insights into the significance of RORγ in HCC.
Collapse
|
17
|
Fouad S, Wells OS, Hill MA, D'Angiolella V. Cullin Ring Ubiquitin Ligases (CRLs) in Cancer: Responses to Ionizing Radiation (IR) Treatment. Front Physiol 2019; 10:1144. [PMID: 31632280 PMCID: PMC6781834 DOI: 10.3389/fphys.2019.01144] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 08/22/2019] [Indexed: 12/19/2022] Open
Abstract
Treatment with ionizing radiation (IR) remains the cornerstone of therapy for multiple cancer types, including disseminated and aggressive diseases in the palliative setting. Radiotherapy efficacy could be improved in combination with drugs that regulate the ubiquitin-proteasome system (UPS), many of which are currently being tested in clinical trials. The UPS operates through the covalent attachment of ATP-activated ubiquitin molecules onto substrates following the transfer of ubiquitin from an E1, to an E2, and then to the substrate via an E3 enzyme. The specificity of ubiquitin ligation is dictated by E3 ligases, which select substrates to be ubiquitylated. Among the E3s, cullin ring ubiquitin ligases (CRLs) represent prototypical multi-subunit E3s, which use the cullin subunit as a central assembling scaffold. CRLs have crucial roles in controlling the cell cycle, hypoxia signaling, reactive oxygen species clearance and DNA repair; pivotal factors regulating the cancer and normal tissue response to IR. Here, we summarize the findings on the involvement of CRLs in the response of cancer cells to IR, and we discuss the therapeutic approaches to target the CRLs which could be exploited in the clinic.
Collapse
Affiliation(s)
- Shahd Fouad
- Medical Research Council Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Owen S Wells
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Mark A Hill
- Medical Research Council Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Vincenzo D'Angiolella
- Medical Research Council Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|