1
|
Kao C, Ho CH. Time-course RNA sequencing reveals high similarity in mRNAome between hepatic stellate cells activated by agalactosyl IgG and TGF-β1. Funct Integr Genomics 2024; 24:215. [PMID: 39549087 DOI: 10.1007/s10142-024-01502-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/18/2024]
Abstract
Previous studies have demonstrated the clinical relevance of aberrant serum immunoglobulin G (IgG) N-glycomic profiles in liver fibrosis and the pathogenic effects of agalactosyl IgG on activating hepatic stellate cells (HSCs). However, the dynamics of gene expression changes during HSC activation by agalactosyl IgG remain poorly understood. We performed RNA sequencing to analyze the mRNAome of human LX-2 HSCs at multiple time points after treatment with agalactosyl IgG and then compared these results with those obtained after normal IgG and transforming growth factor (TGF)-β1 treatments. Gene expression changes were significantly pronounced on day 5 and subsided by day 11 after HSC activation. A high degree of similarity in gene expression patterns between HSCs treated with agalactosyl IgG and TGF-β1 was observed, of which 1796 and 1785 differentially expressed genes (DEGs) were identified, respectively. Disease ontology analyses revealed that 114 and 105 DEGs in activated HSCs following agalactosyl IgG and TGF-β1 treatments, respectively, were linked to liver cirrhosis, hepatitis, fatty liver disease, hepatitis B, and alcoholic hepatitis, with CCL5 and FAS being the most commonly affected genes. DEGs associated with liver fibrosis or aforementioned liver diseases involved in gene annotation, physiological functions, and signaling pathways regarding secretion of cytokines and chemokines, expression of fibrosis-related growth factors and their receptors, modification of extracellular matrices, and regulation of cell viability in activated HSCs. In conclusion, this study characterized the dynamics of mRNAome and gene networks and identified the liver fibrosis-related DEGs during HSC activation by agalactosyl IgG and TGF-β1.
Collapse
Affiliation(s)
- Chieh Kao
- Department of Medical Laboratory Science, College of Medical Science and Technology, I-Shou University, No.8, Yida Road, Jiaosu Village, Yanchao District, Kaohsiung City, 82445, Taiwan
- School of Medicine for International Students, I-Shou University, Kaohsiung, Taiwan
| | - Cheng-Hsun Ho
- Department of Medical Laboratory Science, College of Medical Science and Technology, I-Shou University, No.8, Yida Road, Jiaosu Village, Yanchao District, Kaohsiung City, 82445, Taiwan.
| |
Collapse
|
2
|
González D, Campos G, Pütter L, Friebel A, Holland CH, Holländer L, Ghallab A, Hobloss Z, Myllys M, Hoehme S, Meindl-Beinker NM, Dooley S, Marchan R, Weiss TS, Hengstler JG, Godoy P. Role of WISP1 in Stellate Cell Migration and Liver Fibrosis. Cells 2024; 13:1629. [PMID: 39404393 PMCID: PMC11475959 DOI: 10.3390/cells13191629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/16/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024] Open
Abstract
The mechanisms underlying the remarkable capacity of the liver to regenerate are still not completely understood. Particularly, the cross-talk between cytokines and cellular components of the process is of utmost importance because they represent potential avenues for diagnostics and therapeutics. WNT1-inducible-signaling pathway protein 1 (WISP1) is a cytokine member of the CCN family, a family of proteins that play many different roles in liver pathophysiology. WISP1 also belongs to the earliest and strongest upregulated genes in mouse livers after CCl4 intoxication and has recently been shown to be secreted by tumor cells and to bind to type 1 collagen to cause its linearization in vitro and in tumor tissue in vivo. We show that WISP1 expression is strongly induced by TGFβ, a critical cytokine in wound healing processes. Additionally, secretion of WISP1 protein by hepatic stellate is increased in cells upon TGFβ stimulation (~seven-fold increase). Furthermore, WISP1 facilitates the migration of mouse hepatic stellate cells through collagen in vitro. However, in WISP1 knockout mice, no difference in stellate cell accumulation in damaged liver tissue and no influence on fibrosis was obtained, probably because the knockout of WISP1 was compensated by other factors in vivo.
Collapse
Affiliation(s)
- Daniela González
- IfADo-Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystrasse 67, 44139 Dortmund, Germany; (G.C.); (L.H.); (A.G.); (Z.H.); (M.M.); (R.M.)
| | - Gisela Campos
- IfADo-Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystrasse 67, 44139 Dortmund, Germany; (G.C.); (L.H.); (A.G.); (Z.H.); (M.M.); (R.M.)
| | - Larissa Pütter
- IfADo-Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystrasse 67, 44139 Dortmund, Germany; (G.C.); (L.H.); (A.G.); (Z.H.); (M.M.); (R.M.)
| | - Adrian Friebel
- Interdisciplinary Centre for Bioinformatics (IZBI) & Saxonian Incubator for Clinical Research (SIKT), University of Leipzig, Haertelstraße 16–18, 04107 Leipzig, Germany; (A.F.); (S.H.)
| | - Christian H. Holland
- IfADo-Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystrasse 67, 44139 Dortmund, Germany; (G.C.); (L.H.); (A.G.); (Z.H.); (M.M.); (R.M.)
| | - Leonhard Holländer
- IfADo-Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystrasse 67, 44139 Dortmund, Germany; (G.C.); (L.H.); (A.G.); (Z.H.); (M.M.); (R.M.)
| | - Ahmed Ghallab
- IfADo-Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystrasse 67, 44139 Dortmund, Germany; (G.C.); (L.H.); (A.G.); (Z.H.); (M.M.); (R.M.)
- Department of Forensic and Veterinary Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt
| | - Zaynab Hobloss
- IfADo-Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystrasse 67, 44139 Dortmund, Germany; (G.C.); (L.H.); (A.G.); (Z.H.); (M.M.); (R.M.)
| | - Maiju Myllys
- IfADo-Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystrasse 67, 44139 Dortmund, Germany; (G.C.); (L.H.); (A.G.); (Z.H.); (M.M.); (R.M.)
| | - Stefan Hoehme
- Interdisciplinary Centre for Bioinformatics (IZBI) & Saxonian Incubator for Clinical Research (SIKT), University of Leipzig, Haertelstraße 16–18, 04107 Leipzig, Germany; (A.F.); (S.H.)
| | - Nadja M. Meindl-Beinker
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, 69117 Mannheim, Germany; (N.M.M.-B.); (S.D.)
| | - Steven Dooley
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, 69117 Mannheim, Germany; (N.M.M.-B.); (S.D.)
| | - Rosemarie Marchan
- IfADo-Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystrasse 67, 44139 Dortmund, Germany; (G.C.); (L.H.); (A.G.); (Z.H.); (M.M.); (R.M.)
| | - Thomas S. Weiss
- Children’s University Hospital (KUNO), University Hospital Regensburg, 93053 Regensburg, Germany;
| | - Jan G. Hengstler
- IfADo-Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystrasse 67, 44139 Dortmund, Germany; (G.C.); (L.H.); (A.G.); (Z.H.); (M.M.); (R.M.)
| | - Patricio Godoy
- IfADo-Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystrasse 67, 44139 Dortmund, Germany; (G.C.); (L.H.); (A.G.); (Z.H.); (M.M.); (R.M.)
| |
Collapse
|
3
|
Meng Q, Zhu H, Li Y, Peng X, Wang T, Huang H, Zhou H, Liu Y, Ru S, Wu J, Ma Y. Quantitative proteomics reveals the protective effects of Yinchenzhufu decoction against cholestatic liver fibrosis in mice by inhibiting the PDGFRβ/PI3K/AKT pathway. Front Pharmacol 2024; 15:1341020. [PMID: 38469403 PMCID: PMC10926276 DOI: 10.3389/fphar.2024.1341020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/25/2024] [Indexed: 03/13/2024] Open
Abstract
Introduction: Yinchenzhufu decoction (YCZFD) is a traditional Chinese medicine formula with hepatoprotective effects. In this study, the protective effects of YCZFD against cholestatic liver fibrosis (CLF) and its underlying mechanisms were evaluated. Methods: A 3, 5-diethoxycarbonyl-1, 4-dihydro-collidine (DDC)-induced cholestatic mouse model was used to investigate the amelioration of YCZFD on CLF. Data-independent acquisition-based mass spectrometry was performed to investigate proteomic changes in the livers of mice in three groups: control, model, and model treated with high-dose YCZFD. The effects of YCZFD on the expression of key proteins were confirmed in mice and cell models. Results: YCZFD significantly decreased the levels of serum biochemical, liver injury, and fibrosis indicators of cholestatic mice. The proteomics indicated that 460 differentially expressed proteins (DEPs) were identified among control, model, and model treated with high-dose YCZFD groups. Enrichment analyses of these DEPs revealed that YCZFD influenced multiple pathways, including PI3K-Akt, focal adhesion, ECM-receptor interaction, glutathione metabolism, and steroid biosynthesis pathways. The expression of platelet derived growth factor receptor beta (PDGFRβ), a receptor associated with the PI3K/AKT and focal adhesion pathways, was upregulated in the livers of cholestatic mice but downregulated by YCZFD. The effects of YCZFD on the expression of key proteins in the PDGFRβ/PI3K/AKT pathway were further confirmed in mice and transforming growth factor-β-induced hepatic stellate cells. We uncovered seven plant metabolites (chlorogenic acid, scoparone, isoliquiritigenin, glycyrrhetinic acid, formononetin, atractylenolide I, and benzoylaconitine) of YCZFD that may regulate PDGFRβ expression. Conclusion: YCZFD substantially protects against DDC-induced CLF mainly through regulating the PDGFRβ/PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Qian Meng
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Analytical Research Center for Organic and Biological Molecules, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Hongwen Zhu
- Analytical Research Center for Organic and Biological Molecules, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yuanyuan Li
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaotian Peng
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tianming Wang
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hui Huang
- Analytical Research Center for Organic and Biological Molecules, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Hu Zhou
- Analytical Research Center for Organic and Biological Molecules, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuejia Liu
- Analytical Research Center for Organic and Biological Molecules, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Sujie Ru
- Analytical Research Center for Organic and Biological Molecules, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jiasheng Wu
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yueming Ma
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
4
|
Karri K, Waxman DJ. Dysregulation of murine long noncoding single-cell transcriptome in nonalcoholic steatohepatitis and liver fibrosis. RNA (NEW YORK, N.Y.) 2023; 29:977-1006. [PMID: 37015806 PMCID: PMC10275269 DOI: 10.1261/rna.079580.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
LncRNAs comprise a heterogeneous class of RNA-encoding genes typified by low expression, nuclear enrichment, high tissue-specificity, and functional diversity, but the vast majority remain uncharacterized. Here, we assembled the mouse liver noncoding transcriptome from >2000 bulk RNA-seq samples and discovered 48,261 liver-expressed lncRNAs, a majority novel. Using these lncRNAs as a single-cell transcriptomic reference set, we elucidated lncRNA dysregulation in mouse models of high fat diet-induced nonalcoholic steatohepatitis and carbon tetrachloride-induced liver fibrosis. Trajectory inference analysis revealed lncRNA zonation patterns across the liver lobule in each major liver cell population. Perturbations in lncRNA expression and zonation were common in several disease-associated liver cell types, including nonalcoholic steatohepatitis-associated macrophages, a hallmark of fatty liver disease progression, and collagen-producing myofibroblasts, a central feature of liver fibrosis. Single-cell-based gene regulatory network analysis using bigSCale2 linked individual lncRNAs to specific biological pathways, and network-essential regulatory lncRNAs with disease-associated functions were identified by their high network centrality metrics. For a subset of these lncRNAs, promoter sequences of the network-defined lncRNA target genes were significantly enriched for lncRNA triplex formation, providing independent mechanistic support for the lncRNA-target gene linkages predicted by the gene regulatory networks. These findings elucidate liver lncRNA cell-type specificities, spatial zonation patterns, associated regulatory networks, and temporal patterns of dysregulation during hepatic disease progression. A subset of the liver disease-associated regulatory lncRNAs identified have human orthologs and are promising candidates for biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Kritika Karri
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA
- Bioinformatics Program, Boston University, Boston, Massachusetts 02215, USA
| | - David J Waxman
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA
- Bioinformatics Program, Boston University, Boston, Massachusetts 02215, USA
| |
Collapse
|
5
|
Xu XY, Geng Y, Xu HX, Ren Y, Liu DY, Mao Y. Antrodia camphorata-Derived Antrodin C Inhibits Liver Fibrosis by Blocking TGF-Beta and PDGF Signaling Pathways. Front Mol Biosci 2022; 9:835508. [PMID: 35242813 PMCID: PMC8886226 DOI: 10.3389/fmolb.2022.835508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/18/2022] [Indexed: 12/16/2022] Open
Abstract
Hepatic stellate cells (HSCs) play an essential role in the development of liver fibrosis. Antrodia camphorata (A. camphorata) is a medicinal fungus with hepatoprotective effect. This study investigated whether Antrodin C, an A. camphorata-fermented metabolite, could exert a protective role on liver fibrosis both in vitro and in vivo. The anti-fibrotic effect of Antrodin C was investigated in CFSC-8B cell (hepatic stellate cell) stimulated by transforming growth factor-β1 (TGF-β1) or platelet-derived growth factor-BB (PDGF-BB) in vitro and in CCl4 induced liver fibrosis in mice. Antrodin C (50 μM) inhibited TGF-β1 or PDGF-BB stimulated CFSC-8B cell activation, migration and extracellular matrix (ECM) accumulation (all p < 0.05). Antrodin C (3, 6 mg/kg/d) oral administration reduced the degree of liver fibrosis induced by CCl4 in mice. Antrodin C down-regulated the expression of α-smooth muscle actin (α-SMA) and collagen I in fibrotic livers. Furthermore, Antrodin C ameliorated alanine aminotransferase (ALT) and aspartate aminotransferase (AST) elevation in serum (all p < 0.05). Mechanistically, Antrodin C executes its anti-fibrotic activity through negatively modulate TGF-β1 downstream SMAD Family Member 2 (Smad2), AKT Serine/Threonine Kinase 1 (AKT), extracellular signal-regulated kinase (ERK), and P38 MAP Kinase (P38), as well as PDGF-BB downstream AKT and ERK signaling pathways. Antrodin C ameliorates the activation, migration, ECM production in HSCs and CCl4-induced liver fibrosis in mice, suggesting that Antrodin C could serve as a protective molecule against liver fibrosis.
Collapse
Affiliation(s)
- Xin-Yi Xu
- Institute of Cancer, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yan Geng
- School of Life Science and Health Engineering, Jiangnan University, Wuxi, China
- *Correspondence: Yan Geng, ; Yong Mao,
| | - Hao-Xiang Xu
- Department of Urology, Affiliated Wuxi No. 2 Hospital of Nanjing Medical University, Wuxi, China
| | - Yilin Ren
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Deng-Yang Liu
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yong Mao
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, China
- *Correspondence: Yan Geng, ; Yong Mao,
| |
Collapse
|
6
|
Yaghoubi A, Azarpira N, Karbalay-Doust S, Daneshi S, Vojdani Z, Talaei-Khozani T. Prednisolone and mesenchymal stem cell preloading protect liver cell migration and mitigate extracellular matrix modification in transplanted decellularized rat liver. Stem Cell Res Ther 2022; 13:36. [PMID: 35090559 PMCID: PMC8800282 DOI: 10.1186/s13287-022-02711-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/10/2022] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Regenerative medicine provides promising approaches for treating chronic liver diseases. Previous studies indicate that decellularized liver architecture is damaged by invading non-hepatic inflammatory cells. This study aimed to use anti-inflammatory and regenerative potency of bone marrow-derived mesenchymal stem cells (BM-MSC) and prednisolone for reducing fibrosis and balancing inflammatory cell migration into the decellularized liver scaffold. MATERIAL AND METHOD The liver was decellularized by perfusing Sodium Lauryl Ether Sulfate (SLES), and nuclei depletion and extracellular matrix (ECM) retention were confirmed by DNA quantification, histochemical, and immunohistochemical assessments. Scaffolds were loaded with BM-MSCs, prednisolone, or a combination of both, implanted at the anatomical place in the rat partial hepatectomized and followed up for 2 and 4 weeks. RESULTS Labeled-MSCs were traced in the transplanted scaffolds; however, they did not migrate into the intact liver. Immunohistochemistry showed that the hepatoblasts, cholangiocytes, stellate, and oval cells invaded into all the scaffolds. Bile ducts were more abundant in the border of the scaffolds and intact liver. Stereological assessments showed a significant reduction in the number of lymphocytes and neutrophils in prednisolone-loaded scaffolds. The regeneration process and angiogenesis were significantly higher in the group treated with cell/prednisolone-loaded bioscaffolds. Collagen fibers were significantly reduced in the scaffolds pre-treated with cell/prednisolone, prednisolone, or BM-MSCs, compared to the control group. CONCLUSION Loading prednisolone into the scaffolds can be a worthy approach to restrict inflammation after transplantation. Although pre-loading of the scaffolds with a combination of cells/prednisolone could not alleviate inflammation, it played an important role in regeneration and angiogenesis.
Collapse
Affiliation(s)
- Atefeh Yaghoubi
- Tissue Engineering Lab, Anatomy Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplantation Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saied Karbalay-Doust
- Stereology and Morphometry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Anatomy Department, Shiraz medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sajad Daneshi
- Stereology and Morphometry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Vojdani
- Tissue Engineering Lab, Anatomy Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tahereh Talaei-Khozani
- Tissue Engineering Lab, Anatomy Department, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
7
|
Yu Y, Zong M, Lao L, Wen J, Pan D, Wu Z. Adhesion properties of the cell surface proteins in Lactobacillus strains under the GIT environment. Food Funct 2022; 13:3098-3109. [DOI: 10.1039/d1fo04328e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lactic acid bacteria (LAB) play an essential role in the epithelial barrier and the gut immune system. It can antagonize pathogens by producing antimicrobial substances like bacteriocins, and compete with...
Collapse
|
8
|
Rao Y, Li C, Hu YT, Xu YH, Song BB, Guo SY, Jiang Z, Zhao DD, Chen SB, Tan JH, Huang SL, Li QJ, Wang XJ, Zhang YJ, Ye JM, Huang ZS. A novel HSF1 activator ameliorates nonalcoholic steatohepatitis by stimulating mitochondrial adaptive oxidation. Br J Pharmacol 2021; 179:1411-1432. [PMID: 34783017 DOI: 10.1111/bph.15727] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Nonalcoholic steatohepatitis (NASH) is the more severe form of metabolic associated fatty liver disease (MAFLD), and no pharmacologic treatment approved as yet. Identification of novel therapeutic targets and their agents are critical to overcome the current inadequacy of drug treatment for NASH. EXPERIMENTAL APPROACH The correlation between heat shock factor 1 (HSF1) levels and the development of NASH and the target genes of HSF1 in hepatocyte were revealed by chromatin-immunoprecipitation sequencing. The effects and mechanisms of SYSU-3d in alleviating NASH were examined in relevant cell models and mouse models (the Ob/Ob mice, high-fat and high-cholesterol diet, the methionine-choline deficient diet fed mice). The drug-like properties of SYSU-3d in vivo were evaluated. KEY RESULTS HSF1 is progressively reduced with mitochondrial dysfunction in NASH pathogenesis and activation of this transcription factor by its newly-identified activator SYSU-3d efficiently ameliorated all manifestations of NASH in mice. When activated, the phosphorylated HSF1 (Ser326) translocated to nucleus and bound to the promoter of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) to induce mitochondrial biogenesis, thus increasing mitochondrial adaptive oxidation and inhibiting oxidative stress. The deletion of HSF1 and PGC-1α or recovery of HSF1 in HSF1-deficiency cells revealed the HSF1/PGC-1α metabolic axis mainly responsible for the anti-NASH effects of SYSU-3d independent of adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK). CONCLUSION AND IMPLICATIONS Activation of HSF1 is a practicable therapeutic approach for NASH treatment via the HSF1/PGC-1α/mitochondrial axis, and SYSU-3d would take into consideration as a potential candidate for the treatment of NASH.
Collapse
Affiliation(s)
- Yong Rao
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Chan Li
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yu-Tao Hu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yao-Hao Xu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Bing-Bing Song
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Shi-Yao Guo
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhi Jiang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Dan-Dan Zhao
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Shuo-Bin Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jia-Heng Tan
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Shi-Liang Huang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Qing-Jiang Li
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiao-Jun Wang
- Sunshine Lake Pharma Co., Ltd, Dongguan, Guangdong, China
| | - Ying-Jun Zhang
- Sunshine Lake Pharma Co., Ltd, Dongguan, Guangdong, China
| | - Ji-Ming Ye
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong, China
| | - Zhi-Shu Huang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
9
|
Zhang B, Lapenta K, Wang Q, Nam JH, Chung D, Robert ME, Nathanson MH, Yang X. Trefoil factor 2 secreted from damaged hepatocytes activates hepatic stellate cells to induce fibrogenesis. J Biol Chem 2021; 297:100887. [PMID: 34146542 PMCID: PMC8267550 DOI: 10.1016/j.jbc.2021.100887] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Liver fibrosis is a common characteristic of chronic liver diseases. The activation of hepatic stellate cells (HSCs) plays a key role in fibrogenesis in response to liver injury, yet the mechanism by which damaged hepatocytes modulate the activation of HSCs is poorly understood. Our previous studies have established that liver-specific deletion of O-GlcNAc transferase (OGT)leads to hepatocyte necroptosis and spontaneous fibrosis. Here, we report that OGT-deficient hepatocytes secrete trefoil factor 2 (TFF2) that activates HSCs and contributes to the fibrogenic process. The expression and secretion of TFF2 are induced in OGT-deficient hepatocytes but not in WT hepatocytes. TFF2 activates the platelet-derived growth factor receptor beta signaling pathway that promotes the proliferation and migration of primary HSCs. TFF2 protein expression is elevated in mice with carbon tetrachloride-induced liver injury. These findings identify TFF2 as a novel factor that mediates intercellular signaling between hepatocytes and HSCs and suggest a role of the hepatic OGT–TFF2 axis in the process of fibrogenesis.
Collapse
Affiliation(s)
- Bichen Zhang
- Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut, USA
| | - Kalina Lapenta
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Qi Wang
- Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut, USA
| | - Jin Hyun Nam
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Dongjun Chung
- Department of Biomedical Informatics, College of Medicine, Ohio State University, Columbus, Ohio, USA
| | - Marie E Robert
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Michael H Nathanson
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Xiaoyong Yang
- Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut, USA; Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
10
|
Chiu YJ, Wu KC, Tsai JC, Kao CP, Chao J, Peng WH, Cheng HY. Hepatoprotective Effect of the Fruits of Polygonum orientale L. Against Carbon Tetrachloride-Induced Liver Fibrosis in Mice. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20971501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The aim of this study was to evaluate the hepatoprotective effects of the fruits of Polygonum orientale L. (POE) against fibrosis in carbon tetrachloride (CCl4)-induced liver injury. Bioactive components of POE were identified using liquid chromatography (LC)-mass spectrometry (MS)/MS by comparison with standards. Treatment with either silymarin (200 mg/kg) or POE (0.5 and 1.0 g/kg) caused significant decreases in the serum levels of enzymes and reduced the extent of liver lesions and fibrosis in histological analysis. POE (0.5 and 1.0 g/kg) decreased the levels of malondialdehyde, nitric oxide, proinflammatory cytokines (ie, tumor necrosis factor-α, interleukin [IL]-1β, and IL-6), an inflammatory cytokine (ie, cyclooxygenase-2), a profibrotic cytokine (ie, transforming growth factor-β), and fibrosis-related proteins (ie, connective tissue growth factor and α-smooth muscle actin) in the liver and enhanced the activities of the antioxidative enzymes superoxide dismutase, glutathione peroxidase, glutathione reductase, and catalase. Quantitative analysis of the active constituents in POE revealed an extract composition of 3.4 mg/g of protocatechuic acid, 20.8 mg/g of taxifolin, and 5.6 mg/g of quercetin. We have demonstrated that the hepatoprotective mechanisms of POE are likely to be associated with the decrease in inflammatory cytokines by increasing the activities of antioxidant enzymes. Our findings provide evidence that POE possesses a hepatoprotective activity to ameliorate chronic liver injury.
Collapse
Affiliation(s)
- Yung-Jia Chiu
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Kun-Chang Wu
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Jen-Chieh Tsai
- Department of Medicinal Botanicals and Health Applications, College of Biotechnology and Bio-Resources, Da-Yeh University, Chang-Hua, Taiwan
- Biotechnology Research Center, Da-Yeh University, Chang-Hua, Taiwan
| | - Chun-Pin Kao
- Hsin Sheng College of Medical Care and Management, Taoyuan City, Taiwan
| | - Jung Chao
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Wen Huang Peng
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Hao-Yuan Cheng
- Department of Nursing, Chung-Jen Junior College of Nursing, Health Sciences and Management, Chia-Yi City, Taiwan
| |
Collapse
|
11
|
Masuzaki R, Ray KC, Roland J, Zent R, Lee YA, Karp SJ. Integrin β1 Establishes Liver Microstructure and Modulates Transforming Growth Factor β during Liver Development and Regeneration. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 191:309-319. [PMID: 33159885 DOI: 10.1016/j.ajpath.2020.10.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/07/2020] [Accepted: 10/13/2020] [Indexed: 01/16/2023]
Abstract
A unique and complex microstructure underlies the diverse functions of the liver. Breakdown of this organization, as occurs in fibrosis and cirrhosis, impairs liver function and leads to disease. The role of integrin β1 was examined both in establishing liver microstructure and recreating it after injury. Embryonic deletion of integrin β1 in the liver disrupts the normal development of hepatocyte polarity, specification of cell-cell junctions, and canalicular formation. This in turn leads to the expression of transforming growth factor β (TGF-β) and widespread fibrosis. Targeted deletion of integrin β1 in adult hepatocytes prevents recreation of normal hepatocyte architecture after liver injury, with resultant fibrosis. In vitro, integrin β1 is essential for canalicular formation and is needed to prevent stellate cell activation by modulating TGF-β. Taken together, these findings identify integrin β1 as a key determinant of liver architecture with a critical role as a regulator of TGF-β secretion. These results suggest that disrupting the hepatocyte-extracellular matrix interaction is sufficient to drive fibrosis.
Collapse
Affiliation(s)
- Ryota Masuzaki
- Section of Surgical Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Kevin C Ray
- Section of Surgical Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Joseph Roland
- Section of Surgical Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Roy Zent
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee; Department of Medicine, Nashville Veterans Affairs Hospital, Nashville, Tennessee
| | - Youngmin A Lee
- Section of Surgical Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Seth J Karp
- Section of Surgical Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee.
| |
Collapse
|
12
|
Romayor I, Badiola I, Benedicto A, Márquez J, Herrero A, Arteta B, Olaso E. Silencing of sinusoidal DDR1 reduces murine liver metastasis by colon carcinoma. Sci Rep 2020; 10:18398. [PMID: 33110221 PMCID: PMC7591579 DOI: 10.1038/s41598-020-75395-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022] Open
Abstract
Liver metastasis depends on the collagenous microenvironment generated by hepatic sinusoidal cells (SCs). DDR1 is an atypical collagen receptor linked to tumor progression, but whether SCs express DDR1 and its implication in liver metastasis remain unknown. Freshly isolated hepatic stellate cells (HSCs), Kupffer cells (KCs), and liver sinusoidal endothelial cells (LSECs), that conform the SCs, expressed functional DDR1. HSCs expressed the largest amounts. C26 colon carcinoma secretomes increased DDR1 phosphorylation in HSCs and KCs by collagen I. Inhibition of kinase activity by DDR1-IN-1 or mRNA silencing of DDR1 reduced HSCs secretion of MMP2/9 and chemoattractant and proliferative factors for LSECs and C26 cells. DDR1-IN-1 did not modify MMP2/9 in KCs or LSECs secretomes, but decreased the enhancement of C26 migration and proliferation induced by their secretomes. Gene array showed that DDR1 silencing downregulated HSCs genes for collagens, MMPs, interleukins and chemokines. Silencing of DDR1 before tumor inoculation reduced hepatic C26 metastasis in mice. Silenced livers bore less tumor foci than controls. Metastatic foci in DDR1 silenced mice were smaller and contained an altered stroma with fewer SCs, proliferating cells, collagen and MMPs than foci in control mice. In conclusion, hepatic DDR1 promotes C26 liver metastasis and favors the pro-metastatic response of SCs to the tumor.
Collapse
Affiliation(s)
- Irene Romayor
- Tumor Microenvironment Group, Department of Cell Biology and Histology, School of Medicine and Dentistry, University of the Basque Country, 48940, Leioa, Spain
| | - Iker Badiola
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country, 48940, Leioa, Spain
| | - Aitor Benedicto
- Tumor Microenvironment Group, Department of Cell Biology and Histology, School of Medicine and Dentistry, University of the Basque Country, 48940, Leioa, Spain
| | - Joana Márquez
- Tumor Microenvironment Group, Department of Cell Biology and Histology, School of Medicine and Dentistry, University of the Basque Country, 48940, Leioa, Spain
| | - Alba Herrero
- Tumor Microenvironment Group, Department of Cell Biology and Histology, School of Medicine and Dentistry, University of the Basque Country, 48940, Leioa, Spain
| | - Beatriz Arteta
- Tumor Microenvironment Group, Department of Cell Biology and Histology, School of Medicine and Dentistry, University of the Basque Country, 48940, Leioa, Spain
| | - Elvira Olaso
- Tumor Microenvironment Group, Department of Cell Biology and Histology, School of Medicine and Dentistry, University of the Basque Country, 48940, Leioa, Spain.
| |
Collapse
|
13
|
Wen Y, Lambrecht J, Ju C, Tacke F. Hepatic macrophages in liver homeostasis and diseases-diversity, plasticity and therapeutic opportunities. Cell Mol Immunol 2020; 18:45-56. [PMID: 33041338 DOI: 10.1038/s41423-020-00558-8] [Citation(s) in RCA: 410] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023] Open
Abstract
Macrophages, which are key cellular components of the liver, have emerged as essential players in the maintenance of hepatic homeostasis and in injury and repair processes in acute and chronic liver diseases. Upon liver injury, resident Kupffer cells (KCs) sense disturbances in homeostasis, interact with hepatic cell populations and release chemokines to recruit circulating leukocytes, including monocytes, which subsequently differentiate into monocyte-derived macrophages (MoMϕs) in the liver. Both KCs and MoMϕs contribute to both the progression and resolution of tissue inflammation and injury in various liver diseases. The diversity of hepatic macrophage subsets and their plasticity explain their different functional responses in distinct liver diseases. In this review, we highlight novel findings regarding the origins and functions of hepatic macrophages and discuss the potential of targeting macrophages as a therapeutic strategy for liver disease.
Collapse
Affiliation(s)
- Yankai Wen
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Joeri Lambrecht
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Cynthia Ju
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany.
| |
Collapse
|
14
|
Matsuda M, Seki E. The liver fibrosis niche: Novel insights into the interplay between fibrosis-composing mesenchymal cells, immune cells, endothelial cells, and extracellular matrix. Food Chem Toxicol 2020; 143:111556. [PMID: 32640349 DOI: 10.1016/j.fct.2020.111556] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 12/11/2022]
Abstract
Liver fibrosis is a hepatic wound-healing response caused by chronic liver diseases that include viral hepatitis, alcoholic liver disease, non-alcoholic steatohepatitis, and cholestatic liver disease. Liver fibrosis eventually progresses to cirrhosis that is histologically characterized by an abnormal liver architecture that includes distortion of liver parenchyma, formation of regenerative nodules, and a massive accumulation of extracellular matrix (ECM). Despite intensive investigations into the underlying mechanisms of liver fibrosis, developments of anti-fibrotic therapies for liver fibrosis are still unsatisfactory. Recent novel experimental approaches, such as single-cell RNA sequencing and proteomics, have revealed the heterogeneity of ECM-producing cells (mesenchymal cells) and ECM-regulating cells (immune cells and endothelial cells). These approaches have accelerated the identification of fibrosis-specific subpopulations among these cell types. The ECM also consists of heterogenous components. Their production, degradation, deposition, and remodeling are dynamically regulated in liver fibrosis, further affecting the functions of cells responsible for fibrosis. These cellular and ECM elements cooperatively form a unique microenvironment: a fibrotic niche. Understanding the complex interplay between these elements could lead to a better understanding of underlying fibrosis mechanisms and to the development of effective therapies.
Collapse
Affiliation(s)
- Michitaka Matsuda
- Division of Digestive and Liver Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Ekihiro Seki
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
15
|
Xie H, Su D, Zhang J, Ji D, Mao J, Hao M, Wang Q, Yu M, Mao C, Lu T. Raw and vinegar processed Curcuma wenyujin regulates hepatic fibrosis via bloking TGF-β/Smad signaling pathways and up-regulation of MMP-2/TIMP-1 ratio. JOURNAL OF ETHNOPHARMACOLOGY 2020; 246:111768. [PMID: 30849507 DOI: 10.1016/j.jep.2019.01.045] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 01/18/2019] [Accepted: 01/21/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Curcuma wenyujin Y.H. (CW), a variety of Curumae Rhizoma, which documented in China Pharmacopeia, has long been used as plant medicine for its traditional effect on promoting Qi, activating blood stagnation and expelling blood stasis. Nowadays, it is often used in clinic for extraordinary effect on liver diseases. It is worthy to be noted that CW processed with vinegar has been applied in clinic for 1500 years which started in the northern and southern dynasties. AIM OF STUDY Liver fibrosis is a worldwide clinical issue. It is worth developing a multi-target and multicellular approach which is high efficiency and low side effects for the treatment of hepatic fibrosis. The anti-hepatic fibrosis molecular mechanisms of CW and vinegar Curcuma wenyujin (VCW) need to be explored and elucidated. Furthermore, the study aimed to discuss the efficiency and mechanism differences between CW and VCW in hepatic fibrosis. METHODS AND RESULTS Biochemical assays and histopathology were adopted to evaluate the anti-hepatic fibrosis effect of CW and VCW. The TGF-β/Smad signaling involving TGF-β1, TGF-βRⅠ, TGF-βRⅡ and Smad2, Smad3, Smad7 in fibrosis is examined, which is a critical step towards the evaluation of anti-hepatic fibrosis agents. Meanwhile, the MMP/TIMP balance is a potential therapy target by modulating extracellular matrix, which is also examined. Both CW and VCW inhibit the activation and proliferation of hepatic stellate cells and induce apoptosis via blocking TGF-β/Smad signaling pathways. Additionally, the level of MMP-2/TIMP-1 regulated significantly, which suggest CW and VCW participate in the degradation process, and maintain the formation and production of extracellular matrix. CONCLUSION Raw and vinegar processed Curcuma wenyujin regulates hepatic fibrosis via bloking TGF-β/Smad signaling pathways and up-regulation of MMP-2/TIMP-1 ratio. And VCW has more exhibition than CW.
Collapse
Affiliation(s)
- Hui Xie
- School of Pharmacy, Nanjing University of Traditional Chinese Medicine, Nanjing, 210023, China
| | - Dan Su
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Ji Zhang
- School of Pharmacy, Nanjing University of Traditional Chinese Medicine, Nanjing, 210023, China
| | - De Ji
- School of Pharmacy, Nanjing University of Traditional Chinese Medicine, Nanjing, 210023, China
| | - Jing Mao
- School of Pharmacy, Nanjing University of Traditional Chinese Medicine, Nanjing, 210023, China
| | - Min Hao
- School of Pharmacy, Nanjing University of Traditional Chinese Medicine, Nanjing, 210023, China
| | - Qiaohan Wang
- School of Pharmacy, Nanjing University of Traditional Chinese Medicine, Nanjing, 210023, China
| | - Mengting Yu
- School of Pharmacy, Nanjing University of Traditional Chinese Medicine, Nanjing, 210023, China; School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Chunqin Mao
- School of Pharmacy, Nanjing University of Traditional Chinese Medicine, Nanjing, 210023, China.
| | - Tulin Lu
- School of Pharmacy, Nanjing University of Traditional Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
16
|
Xia YH, Lu Z, Wang SM, Hu LX. Nrf2 activation mediates tumor-specific hepatic stellate cells-induced DIgR2 expression in dendritic cells. Aging (Albany NY) 2019; 11:11565-11575. [PMID: 31831714 PMCID: PMC6932929 DOI: 10.18632/aging.102554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 11/20/2019] [Indexed: 01/24/2023]
Abstract
Our previous studies discovered that tumor-specific hepatic stellate cells (tHSCs) induced dendritic cell-derived immunoglobulin receptor 2 (DIgR2) expression in bone marrow-derived dendritic cells (mDCs), inhibiting splenic T cell activation. The current study aims to explore the underlying mechanism of DIgR2 expression by focusing on Nrf2 (nuclear-factor-E2-related factor 2) signaling. We show that tHSCs co-culture induced significant Nrf2 signaling activation in mDCs. The latter was evidenced by Nrf2-Keap1 disassociation, Nrf2 protein stabilization, accumulation and nuclear translocation. Expression of Nrf2-dependent genes, including heme oxygenase-1 (HO-1) and NAD(P)H:quinone oxidoreductase 1 (NQO1), were detected in tHSCs-co-cultured mDCs. Importantly tHSCs-induced DIgR2 expression was blocked by Nrf2 shRNA or knockout (KO, by CRISPR/Cas9 method). Conversely, forced activation of Nrf2, by Keap1 shRNA or the Nrf2 activators (3H-1,2-dithiole-3-thione and MIND4-17), induced significant DIgR2 expression. tHSCs stimulation induced reactive oxygen species (ROS) production in mDCs. Conversely, ROS scavengers inhibited tHSCs-induced ROS production, Nrf2 activation and DIgR2 expression in mDCs. Significantly, tHSCs inhibited production of multiple cytokines (CD80, CD86 and IL-12) in mDCs, reversed by Nrf2 depletion. Moreover, Nrf2 shRNA or KO attenuated splenic T cell inhibition by tHSCs-stimulated mDCs. Together, we conclude that Nrf2 activation mediates tHSCs-induced DIgR2 expression in mDCs.
Collapse
Affiliation(s)
- Yun-Hong Xia
- Department of Oncology, The Fourth Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Zhen Lu
- Department of General Surgery, The Fourth Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Shou-Min Wang
- Department of Oncology, The Fourth Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Li-Xia Hu
- Department of Oncology, Hefei Hospital, Anhui Medical University, Hefei, China
| |
Collapse
|
17
|
Zhi SC, Chen SZ, Li YY, Li JJ, Zheng YH, Yu FX. Rosiglitazone Inhibits Activation of Hepatic Stellate Cells via Up-Regulating Micro-RNA-124-3p to Alleviate Hepatic Fibrosis. Dig Dis Sci 2019; 64:1560-1570. [PMID: 30673982 DOI: 10.1007/s10620-019-5462-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 01/09/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND The activation of hepatic stellate cells (HSCs) is involved in hepatic fibrogenesis and is regulated by the decreased expression of peroxisome proliferator-activated receptor γ (PPARγ). Rosiglitazone (RGZ) is a highly potent agonist of PPARγ. AIMS To clarify molecular regulatory mechanism of RGZ in the activation of HSCs in hepatic fibrosis. METHODS A mouse model of hepatic fibrosis was established by carbon tetrachloride with or without RGZ intervention. A vector carrying pcDNA-HOTAIR was constructed and injected into a mouse model. HSCs were isolated from liver tissue and activated by transforming growth factor-β. The expression of miR-124-3p, HOTAIR, Col1A1, α-SMA, and PPARγ mRNAs was measured by quantitative real-time PCR. The level of PPARγ was measured by Western blotting. The interaction between HOTAIR and PPARγ was assessed by RNA immunoprecipitation (RIP) and RNA pull-down. The target gene of miR-124-3p was determined by luciferase reporter assay and RNA interference approaches. RESULTS The expression of Col1A1 and α-SMA was reduced after RGZ intervention. Different expressions of HOTAIR and miR-124-3p were observed in liver tissue and HSCs. The luciferase reporter assay and RNA interference approaches indicated that miR-124-3p negatively regulated HOTAIR expression. RIP and RNA pull-down results revealed that PPARγ was interacted by HOTAIR. The therapeutic effect of RGZ on hepatic fibrosis was reversed by overexpression of HOTAIR. CONCLUSIONS RGZ inhibits the activation of HSCs by up-regulating miR-124-3p. The silencing of HOTAIR by miR-124-3p in HSC activation provided the foundation to understand interactions of ncRNAs and potential treatment target in hepatic fibrosis.
Collapse
Affiliation(s)
- Shao-Ce Zhi
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Wenzhou Medical University, 205 Wenrui Avenue, Wenzhou, 325000, People's Republic of China
| | - Shi-Zuan Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Wenzhou Medical University, 205 Wenrui Avenue, Wenzhou, 325000, People's Republic of China
| | - Yan-Yan Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Wenzhou Medical University, 205 Wenrui Avenue, Wenzhou, 325000, People's Republic of China
| | - Jun-Jian Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Wenzhou Medical University, 205 Wenrui Avenue, Wenzhou, 325000, People's Republic of China
| | - Yi-Hu Zheng
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Wenzhou Medical University, 205 Wenrui Avenue, Wenzhou, 325000, People's Republic of China.
| | - Fu-Xiang Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Wenzhou Medical University, 205 Wenrui Avenue, Wenzhou, 325000, People's Republic of China.
| |
Collapse
|
18
|
Fibrogenic Gene Expression in Hepatic Stellate Cells Induced by HCV and HIV Replication in a Three Cell Co-Culture Model System. Sci Rep 2019; 9:568. [PMID: 30679661 PMCID: PMC6345841 DOI: 10.1038/s41598-018-37071-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/30/2018] [Indexed: 02/06/2023] Open
Abstract
Retrospective studies indicate that co-infection of hepatitis C virus (HCV) and human immunodeficiency virus (HIV) accelerates hepatic fibrosis progression. We have developed a co-culture system (MLH) comprising primary macrophages, hepatic stellate cells (HSC, LX-2), and hepatocytes (Huh-7), permissive for active replication of HCV and HIV, and assessed the effect of these viral infections on the phenotypic changes and fibrogenic gene expression in LX-2 cells. We detected distinct morphological changes in LX-2 cells within 24 hr post-infection with HCV, HIV or HCV/HIV in MLH co-cultures, with migration enhancement phenotypes. Human fibrosis microarrays conducted using LX-2 cell RNA derived from MLH co-culture conditions, with or without HCV and HIV infection, revealed novel insights regarding the roles of these viral infections on fibrogenic gene expression in LX-2 cells. We found that HIV mono-infection in MLH co-culture had no impact on fibrogenic gene expression in LX-2 cells. HCV infection of MLH co-culture resulted in upregulation (>1.9x) of five fibrogenic genes including CCL2, IL1A, IL1B, IL13RA2 and MMP1. These genes were upregulated by HCV/HIV co-infection but in a greater magnitude. Conclusion: Our results indicate that HIV-infected macrophages accelerate hepatic fibrosis during HCV/HIV co-infection by amplifying the expression of HCV-dependent fibrogenic genes in HSC.
Collapse
|
19
|
Ding Q, Li Z, Liu B, Ling L, Tian X, Zhang C. Propranolol prevents liver cirrhosis by inhibiting hepatic stellate cell activation mediated by the PDGFR/Akt pathway. Hum Pathol 2018. [PMID: 29514109 DOI: 10.1016/j.humpath.2018.02.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Propranolol is known to reduce portal pressure by decreasing blood flow to the splanchnic circulation and the liver. However, it is unknown if propranolol improves fibrogenesis and sinusoidal remodeling in the cirrhotic liver. The aim of this study was to investigate the therapeutic effects of propranolol on carbon tetrachloride (CCl4)-induced liver fibrosis in a mouse model and the intrinsic mechanisms underlying those effects. In this study, a hepatic cirrhosis mouse model was induced by CCl4 administration for 6 weeks. Propranolol was simultaneously administered orally in the experimental group. Liver tissue and blood samples were collected for histological and molecular analyses. LX-2 cells induced by platelet-derived growth factor-BB (PDGF-BB) were used to evaluate the anti-fibrogenic effect of propranolol in vitro. The results showed that treatment of mice with CCl4 induced hepatic fibrosis, as evidenced by inflammatory cell infiltration, collagen deposition and abnormal vascular formation in the liver tissue. All these changes were significantly attenuated by propranolol treatment. Furthermore, we also found that propranolol inhibited PDGF-BB-induced hepatic stellate cell migration, fibrogenesis, and PDGFR/Akt phosphorylation. Taken together, propranolol might prevent CCl4-induced liver injury and fibrosis at least partially through inhibiting the PDGF-BB-induced PDGFR/Akt pathway. The anti-fibrogenic effect of propranolol may support its status as a first-line treatment in patients with chronic liver disease.
Collapse
Affiliation(s)
- Qian Ding
- Department of Gastroenterology, Shandong Provincial Hospital affiliated to Shandong University, Jinan 250021, China
| | - Zhen Li
- Department of Gastroenterology, Shandong Provincial Hospital affiliated to Shandong University, Jinan 250021, China; Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, China
| | - Bin Liu
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto 606-8507 Japan
| | - Liping Ling
- Department of Gastroenterology, Shandong Provincial Hospital affiliated to Shandong University, Jinan 250021, China; Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, China
| | - Xiangguo Tian
- Department of Gastroenterology, Shandong Provincial Hospital affiliated to Shandong University, Jinan 250021, China
| | - Chunqing Zhang
- Department of Gastroenterology, Shandong Provincial Hospital affiliated to Shandong University, Jinan 250021, China.
| |
Collapse
|
20
|
Immuno-biological comparison of hepatic stellate cells in a reverted and activated state. Biomed Pharmacother 2017; 98:52-62. [PMID: 29245066 DOI: 10.1016/j.biopha.2017.12.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/29/2017] [Accepted: 12/07/2017] [Indexed: 12/20/2022] Open
Abstract
Human hepatic stellate cells (HSCs) demonstrated great immunological plasticity with important consequences for liver cell therapy. Activated HSCs (aHSCs) are in vitro reverted (rHSCs) to a quiescent-like phenotype with potential benefit to reduce liver fibrosis. The goal of this study is to establish and compare the immunological profile of activated and in vitro reverted HSCs and to investigate the impact of inflammatory priming on the immunobiology of both HSCs populations. The distribution of inflammatory primed activated and reverted HSCs across the different phases of the cell cycle is assessed by flow cytometry. In addition, Flow analysis was done to assess the expression level of neuronal, endothelial and stromal markers, cell adhesion molecules, human leucocyte antigens, co-stimulatory molecules, immunoregulatory molecules and natural killer ligands. Our results showed that the cell cycle distribution of both HSCs populations is significantly modulated by inflammation. Accordingly, activated HSC that were in G1 phase switch to S- and G2 phases when exposed to inflammation, while reverted HSCs mostly redistribute into sub-G0 phase. In a HSC state dependent manner, inflammatory priming modulated the expression of the stromal marker CD90, biological receptors (CD95 and CD200R), cell adhesion molecules (CD29, CD54, CD58, CD106 and CD166), human leucocyte antigen HLA-G, co-stimulatory molecules (CD40 and CD252), as well as the immunoregulatory molecules (CD200 and CD274). In conclusion, the immunologic profile of HSCs is significantly modulated by their activation state and inflammation and is important for the development of novel HSC liver cell-based therapy.
Collapse
|
21
|
Roderfeld M. Matrix metalloproteinase functions in hepatic injury and fibrosis. Matrix Biol 2017; 68-69:452-462. [PMID: 29221811 DOI: 10.1016/j.matbio.2017.11.011] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 11/29/2017] [Accepted: 11/29/2017] [Indexed: 01/18/2023]
Abstract
Liver fibrosis is the most common final outcome for chronic liver diseases. The complex pathogenesis includes hepatic parenchymal damage as a result of a persistent noxe, activation and recruitment of immune cells, activation of hepatic stellate cells, and the synthesis of fibrotic extracellular matrix (ECM) components leading to scar formation. Clinical studies and animal models demonstrated that fibrosis can be reversible. In this regard matrix metalloproteinases (MMPs) have been focused as therapeutic targets due to their ability to modulate tissue turnover during fibrogenesis as well as regeneration and, of special interest, due to their influence on cellular behavior like proliferation, gene expression, and apoptosis that, in turn, impact fibrosis and regeneration. The current review aims to summarize and update the knowledge about expression pattern and the central roles of MMPs in hepatic fibrosis.
Collapse
Affiliation(s)
- Martin Roderfeld
- Department of Gastroenterology, Justus-Liebig-University Giessen, Gaffkystr. 11c, D-35392 Giessen, Germany.
| |
Collapse
|
22
|
Effect of shear stress on the migration of hepatic stellate cells. In Vitro Cell Dev Biol Anim 2017; 54:11-22. [DOI: 10.1007/s11626-017-0202-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/04/2017] [Indexed: 12/22/2022]
|
23
|
Casas-Grajales S, Vázquez-Flores LF, Ramos-Tovar E, Hernández-Aquino E, Flores-Beltrán RE, Cerda-García-Rojas CM, Camacho J, Shibayama M, Tsutsumi V, Muriel P. Quercetin reverses experimental cirrhosis by immunomodulation of the proinflammatory and profibrotic processes. Fundam Clin Pharmacol 2017; 31:610-624. [PMID: 28802065 DOI: 10.1111/fcp.12315] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 07/07/2017] [Accepted: 08/09/2017] [Indexed: 12/14/2022]
Abstract
The ability of quercetin to reverse an established cirrhosis has not yet been investigated. Therefore, the aim of this study was to examine the efficacy of this flavonoid in reversing experimental cirrhosis. Cirrhosis was induced by intraperitoneal administration of TAA (200 mg/kg of body weight) three times per week for 8 weeks or by intraperitoneal petrolatum-CCl4 (400 mg/kg of body weight) administration three times per week for 8 weeks. To determine the capacity of quercetin to prevent liver fibrosis, the flavonoid (50 mg/kg of body weight, p.o.) was administered daily to rats during the CCl4 or TAA treatment. To evaluate the ability of quercetin to reverse the previously induced cirrhosis, we first treated rats with CCl4 for 8 weeks, as previously described and then the flavonoid was administered for four more weeks. We found that the liver anti-inflammatory and antinecrotic effects of quercetin are associated with its antioxidant properties, to the ability of the flavonoid to block NF-κB activation and in consequence to reduce cytokine IL-1. The ability of quercetin to reverse fibrosis may be associated with the capacity of the flavonoid to decrease TGF-β levels, hepatic stellate cell activation, and to promote degradation of the ECM by increasing metalloproteinases. The main conclusion is that quercetin, in addition to its liver protective activity against TAA chronic intoxication, is also capable of reversing a well-stablished cirrhosis by blocking the prooxidant processes and by downregulating the inflammatory and profibrotic responses.
Collapse
Affiliation(s)
- Sael Casas-Grajales
- Department of Pharmacology, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360, Apartado postal 14-740, Mexico City, Mexico
| | - Luis F Vázquez-Flores
- Department of Pharmacology, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360, Apartado postal 14-740, Mexico City, Mexico
| | - Erika Ramos-Tovar
- Department of Pharmacology, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360, Apartado postal 14-740, Mexico City, Mexico
| | - Erika Hernández-Aquino
- Department of Pharmacology, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360, Apartado postal 14-740, Mexico City, Mexico
| | - Rosa E Flores-Beltrán
- Department of Pharmacology, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360, Apartado postal 14-740, Mexico City, Mexico
| | - Carlos M Cerda-García-Rojas
- Department of Chemistry, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360, Apartado postal 14-740, Mexico City, Mexico
| | - Javier Camacho
- Department of Pharmacology, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360, Apartado postal 14-740, Mexico City, Mexico
| | - Mineko Shibayama
- Department of Infectomics and Molecular Pathogenesis, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360, Apartado postal 14-740, Mexico City, Mexico
| | - Víctor Tsutsumi
- Department of Infectomics and Molecular Pathogenesis, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360, Apartado postal 14-740, Mexico City, Mexico
| | - Pablo Muriel
- Department of Pharmacology, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360, Apartado postal 14-740, Mexico City, Mexico
| |
Collapse
|
24
|
Lu Z, Xia YH, Zhao M, Zhang B, Dai WT, Ding L, Hu LX, Bi JL, Jiang GL. DlgR2 knockdown boosts dendritic cell activity and inhibits hepatocellular carcinoma tumor in-situ growth. Oncotarget 2017; 8:54993-55002. [PMID: 28903397 PMCID: PMC5589636 DOI: 10.18632/oncotarget.18990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 06/16/2017] [Indexed: 12/27/2022] Open
Abstract
Tumor-specific hepatic stellate cells (tHSCs) positively participate in human hepatocellular carcinoma (HCC) tumorigenesis and progression. Our previous studies have shown that tHSCs co-culture with dendritic cells (DCs) induced DIgR2 (dendritic cell-derived immunoglobulin receptor 2) expression. The latter is a member of IgSF inhibitory receptor suppressing DCs-initiated antigen-specific T-cell responses. In the current study, we show that hepatic artery injection of DlgR2 siRNA significantly inhibited in-situ HCC xenograft growth in rat livers. Further, 5-FU-medied inhibition of in-situ HCC growth was dramatically sensitized with DlgR2 silence. DlgR2 siRNA injection indeed downregulated DlgR2 in ex-vivo cultured tumor-derived DCs (tDCs). More importantly, tDCs activity was boosted following DlgR2 siRNA. These cells presented with upregulated CD80, CD86 and MHC-II. Production of interleukin-12 and tumor necrosis factor-α was also increased in the DlgR2-silenced tDCs. We propose that DlgR2 knockdown likely boosts the activity of tumor-associated DCs, and inhibits growth of in-situ HCC xenografts.
Collapse
Affiliation(s)
- Zhen Lu
- Department of General Surgery, The Fourth Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Yun-Hong Xia
- Department of Oncology, The Fourth Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Min Zhao
- Hefei Hospital, Anhui Medical University, Hefei, China
| | - Bing Zhang
- Hefei Hospital, Anhui Medical University, Hefei, China
| | - Wen-Ting Dai
- Hefei Hospital, Anhui Medical University, Hefei, China
| | - Lu Ding
- Hefei Hospital, Anhui Medical University, Hefei, China
| | - Li-Xia Hu
- Hefei Hospital, Anhui Medical University, Hefei, China
| | - Jin-Ling Bi
- Hefei Hospital, Anhui Medical University, Hefei, China
| | - Guo-Lin Jiang
- Key Laboratory of Anhui Medical University, Hefei, China
| |
Collapse
|
25
|
Kikuchi A, Pradhan-Sundd T, Singh S, Nagarajan S, Loizos N, Monga SP. Platelet-Derived Growth Factor Receptor α Contributes to Human Hepatic Stellate Cell Proliferation and Migration. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:2273-2287. [PMID: 28734947 DOI: 10.1016/j.ajpath.2017.06.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/19/2017] [Accepted: 06/08/2017] [Indexed: 02/06/2023]
Abstract
Platelet-derived growth factor receptor α (PDGFRα), a tyrosine kinase receptor, is up-regulated in hepatic stellate cells (HSCs) during chronic liver injury. HSCs mediate hepatic fibrosis through their activation from a quiescent state partially in response to profibrotic growth factors. HSC activation entails enhanced expression of profibrotic genes, increase in proliferation, and increase in motility, which facilitates migration within the hepatic lobule. We show colocalization of PDGFRα in murine carbon tetrachloride, bile duct ligation, and 0.1% 3,5-diethoxycarbonyl-1,4-dihydrocollidine models of chronic liver injury, and investigate the role of PDGFRα on proliferation, profibrotic gene expression, and migration in primary human HSCs (HHSteCs) using the PDGFRα-specific inhibitory monoclonal antibody olaratumab. Although lacking any effects on HHSteC transdifferentiation assessed by gene expression of ACTA2, TGFB1, COL1A1, SYP1, and FN1, olaratumab specifically reduced HHSteC proliferation (AlamarBlue assay) and cell migration (transwell migration assays). Using phospho-specific antibodies, we show that olaratumab attenuates PDGFRα activation in response to PDGF-BB, and reduced phosphorylation of extracellular signal-regulated kinase 1 and 2, Elk-1, p38, Akt, focal adhesion kinase, mechanistic target of rapamycin, C10 regulator of kinase II, and C10 regulator of kinase-like, suggesting that PDGFRα contributes to mitogenesis and actin reorganization through diverse downstream effectors. Our findings support a distinct contribution of PDGFRα signaling to HSC proliferation and migration and provide evidence that inhibition of PDGFRα signaling could alter the pathogenesis of hepatic fibrosis.
Collapse
Affiliation(s)
- Alexander Kikuchi
- Department of Pathology and Medicine and Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Tirthadipa Pradhan-Sundd
- Department of Pathology and Medicine and Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Sucha Singh
- Department of Pathology and Medicine and Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Shanmugam Nagarajan
- Department of Pathology and Medicine and Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Nick Loizos
- Department of Immunology, Eli Lilly and Company, New York, New York
| | - Satdarshan P Monga
- Department of Pathology and Medicine and Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
26
|
Tumor-specific hepatic stellate cells (tHSCs) induces DIgR2 expression in dendritic cells to inhibit T cells. Oncotarget 2017; 8:55084-55093. [PMID: 28903404 PMCID: PMC5589643 DOI: 10.18632/oncotarget.19027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 06/16/2017] [Indexed: 12/20/2022] Open
Abstract
Tumor-specific hepatic stellate cells (tHSCs) contributes to tumorigenesis and progression of hepatocellular carcinoma (HCC). The potential function of tHSCs on dendritic cells (DCs) was studied here. We discovered that tHSCs co-culture induced upregulation of DIgR2 (dendritic cell-derived immunoglobulin receptor 2) in bone marrow-derived DCs (mDCs). Activation of MEK-ERK is required for DIgR2 expression in mDCs. MEK-ERK inhibitors or shRNA-mediated silence of MEK1/2 in mDCs inhibited tHSCs-induced DIgR2 expression. Meanwhile, tHSCs stimulation decreased production of multiple cytokines (CD80, CD86 and IL-12) in mDCs. Such an effect was almost reversed by DIgR2 shRNA in mDCs. Further, tHSCs-stimulated mDCs induced T-cell hypo-responsiveness, leading to decreased cytotoxic T lymphocyte (CTL) activity and reduced IFN-γ production in splenic T cells. T cell proliferation inhibition and apoptosis were also noticed. These actions on T cells were again largely inhibited by DIgR2 shRNA in mDCs. Together, our results indicate that tHSCs directly induces DIgR2 expression in DCs to inhibit T cells.
Collapse
|
27
|
Omar R, Yang J, Liu H, Davies NM, Gong Y. Hepatic Stellate Cells in Liver Fibrosis and siRNA-Based Therapy. Rev Physiol Biochem Pharmacol 2017; 172:1-37. [PMID: 27534415 DOI: 10.1007/112_2016_6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Hepatic fibrosis is a reversible wound-healing response to either acute or chronic liver injury caused by hepatitis B or C, alcohol, and toxic agents. Hepatic fibrosis is characterized by excessive accumulation and reduced degradation of extracellular matrix (ECM). Excessive accumulation of ECM alters the hepatic architecture leading to liver fibrosis and cirrhosis. Cirrhosis results in failure of common functions of the liver. Hepatic stellate cells (HSC) play a major role in the development of liver fibrosis as HSC are the main source of the excessive production of ECM in an injured liver. RNA interference (RNAi) is a recently discovered therapeutic tool that may provide a solution to manage multiple diseases including liver fibrosis through silencing of specific gene expression in diseased cells. However, gene silencing using small interfering RNA (siRNA) is encountering many challenges in the body after systemic administration. Efficient and stable siRNA delivery to the target cells is a key issue for the development of siRNA therapeutic. For that reason, various viral and non-viral carriers for liver-targeted siRNA delivery have been developed. This review will cover the current strategies for the treatment of liver fibrosis as well as discussing non-viral approaches such as cationic polymers and lipid-based nanoparticles for targeted delivery of siRNA to the liver.
Collapse
Affiliation(s)
- Refaat Omar
- College of Pharmacy, Faculty of Health Sciences, University of Manitoba, 750 McDermot Avenue, Winnipeg, MB, Canada, R3E 0T5
| | - Jiaqi Yang
- College of Pharmacy, Faculty of Health Sciences, University of Manitoba, 750 McDermot Avenue, Winnipeg, MB, Canada, R3E 0T5
| | - Haoyuan Liu
- College of Pharmacy, Faculty of Health Sciences, University of Manitoba, 750 McDermot Avenue, Winnipeg, MB, Canada, R3E 0T5
| | - Neal M Davies
- College of Pharmacy, Faculty of Health Sciences, University of Manitoba, 750 McDermot Avenue, Winnipeg, MB, Canada, R3E 0T5
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, 8613-114 Street, Edmonton, AB, Canada, T6G 2H1
| | - Yuewen Gong
- College of Pharmacy, Faculty of Health Sciences, University of Manitoba, 750 McDermot Avenue, Winnipeg, MB, Canada, R3E 0T5.
| |
Collapse
|
28
|
Nishizawa H, Iguchi G, Fukuoka H, Takahashi M, Suda K, Bando H, Matsumoto R, Yoshida K, Odake Y, Ogawa W, Takahashi Y. IGF-I induces senescence of hepatic stellate cells and limits fibrosis in a p53-dependent manner. Sci Rep 2016; 6:34605. [PMID: 27721459 PMCID: PMC5056388 DOI: 10.1038/srep34605] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 09/15/2016] [Indexed: 12/15/2022] Open
Abstract
Hepatic fibrosis in nonalcoholic steatohepatitis (NASH) and cirrhosis determines patient prognosis; however, effective treatment for fibrosis has not been established. Oxidative stress and inflammation activate hepatic stellate cells (HSCs) and promote fibrosis. In contrast, cellular senescence inhibits HSCs’ activity and limits fibrosis. The aim of this study was to explore the effect of IGF-I on NASH and cirrhotic models and to clarify the underlying mechanisms. We demonstrate that IGF-I significantly ameliorated steatosis, inflammation, and fibrosis in a NASH model, methionine-choline-deficient diet-fed db/db mice and ameliorated fibrosis in cirrhotic model, dimethylnitrosamine-treated mice. As the underlying mechanisms, IGF-I improved oxidative stress and mitochondrial function in the liver. In addition, IGF-I receptor was strongly expressed in HSCs and IGF-I induced cellular senescence in HSCs in vitro and in vivo. Furthermore, in mice lacking the key senescence regulator p53, IGF-I did not induce cellular senescence in HSCs or show any effects on fibrosis. Taken together, these results indicate that IGF-I induces senescence of HSCs, inactivates these cells and limits fibrosis in a p53-dependent manner and that IGF-I may be applied to treat NASH and cirrhosis.
Collapse
Affiliation(s)
- Hitoshi Nishizawa
- Division of Diabetes and Endocrinology, Kobe University Hospital, Japan
| | - Genzo Iguchi
- Division of Diabetes and Endocrinology, Kobe University Hospital, Japan
| | - Hidenori Fukuoka
- Division of Diabetes and Endocrinology, Kobe University Hospital, Japan
| | | | - Kentaro Suda
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hironori Bando
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ryusaku Matsumoto
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kenichi Yoshida
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yukiko Odake
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Wataru Ogawa
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yutaka Takahashi
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
29
|
May the fibrosis be with you: Is discoidin domain receptor 2 the receptor we have been looking for? J Mol Cell Cardiol 2016; 91:201-3. [PMID: 26772530 DOI: 10.1016/j.yjmcc.2016.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 01/03/2016] [Accepted: 01/05/2016] [Indexed: 01/06/2023]
Abstract
In a recent issue of Journal of Molecular and Cellular Cardiology, George et al. [1] identified discoidin domain receptor 2 (DDR2) as a positive modulator of collagen production in cardiac fibroblasts stimulated with angiotensin II (Ang II). DDR2 is a tyrosine kinase collagen receptor and is associated with pathological scarring of multiple organs; nevertheless, the functional role of DDR2 in the myocardium remains unclear. George et al. present evidence for the first time that Ang II induces cardiac fibrosis by enhancing DDR2 expression in cardiac fibroblasts via p38 mitogen activated protein kinase (p38 MAPK)-mediated activation of nuclear factor-κB (NF-κB).
Collapse
|
30
|
PDGF-Mediated Regulation of Liver Fibrosis. CURRENT PATHOBIOLOGY REPORTS 2015. [DOI: 10.1007/s40139-015-0096-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
31
|
Tang Y. Curcumin targets multiple pathways to halt hepatic stellate cell activation: updated mechanisms in vitro and in vivo. Dig Dis Sci 2015; 60:1554-64. [PMID: 25532502 DOI: 10.1007/s10620-014-3487-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 12/07/2014] [Indexed: 12/12/2022]
Abstract
Nonalcoholic steatohepatitis (NASH) is the advanced form of nonalcoholic fatty liver disease, which is often accompanied by obese and/or type II diabetes mellitus. Approximately one-third of NASH patients develop hepatic fibrosis. Hepatic stellate cells are the major effector cells during liver fibrogenesis. Advanced liver fibrosis usually proceeds to cirrhosis and even hepatocellular carcinoma, leading to liver failure, portal hypertension and even death. Currently, there are no approved agents for treatment and prevention of liver fibrosis in human beings. Curcumin, the principal curcuminoid of turmeric, has been reported to show antitumor, antioxidant, and anti-inflammatory properties both in in vitro and in vivo systems. Accumulating data shows that curcumin plays a critical role in combating liver fibrogenesis. This review will discuss the inhibitory roles of curcumin and update the underlying mechanisms by which curcumin targets in inhibiting hepatic stellate cell activation.
Collapse
Affiliation(s)
- Youcai Tang
- Department of Pediatrics, The Second Affiliated Hospital, Zhengzhou University, 2 Jingba Road, Zhengzhou, 450014, Henan, China,
| |
Collapse
|
32
|
Borkham-Kamphorst E, Meurer SK, Van de Leur E, Haas U, Tihaa L, Weiskirchen R. PDGF-D signaling in portal myofibroblasts and hepatic stellate cells proves identical to PDGF-B via both PDGF receptor type α and β. Cell Signal 2015; 27:1305-14. [PMID: 25819339 DOI: 10.1016/j.cellsig.2015.03.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 03/12/2015] [Indexed: 02/07/2023]
Abstract
UNLABELLED Platelet-derived growth factor-D (PDGF-D) is one member of PDGF growth factors and known to signal by binding to and activating its cognate receptor type β (PDGFR-β). Beside PDGF-B, PDGF-D is a potent growth factor for stellate cell growth and proliferation and therefore potentiates the extracellular matrix deposition in liver fibrogenesis. We aimed to explore the signaling and molecular mechanisms of PDGF-D in liver fibrogenesis using the primary liver portal myofibroblasts and hepatic stellate cells. Unexpectedly we found PDGF-D to bind to PDGFR-α, thus inducing receptor endocytosis and decreasing the amount of PDGFR-α significantly. PDGF-D activates PDGFR-α specific tyrosine 754 and -1018 phosphorylation and CrkII, the adaptor protein that is specifically recruited by activated PDGFR-α. As a novel finding we could also demonstrate that recombinant PDGFR-α-Fc chimera homodimer is able to bind PDGF-D and thus prevent PDGF-D signaling. PDGF-D does induce individual PDGFR-β specific tyrosine phosphorylation similar to the PDGF-B. Additionally, PDGF-D enhances extracellular matrix accumulation comparable to the PDGF-B isoform. CONCLUSION PDGF-D signaling in pMF and HSC is identical to that of PDGF-B by binding to both PDGFR-α and -β.
Collapse
Affiliation(s)
- Erawan Borkham-Kamphorst
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Germany.
| | - Steffen K Meurer
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Germany
| | - Eddy Van de Leur
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Germany
| | - Ute Haas
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Germany
| | - Lidia Tihaa
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Germany.
| |
Collapse
|
33
|
Barnes MA, McMullen MR, Roychowdhury S, Madhun NZ, Niese K, Olman MA, Stavitsky AB, Bucala R, Nagy LE. Macrophage migration inhibitory factor is required for recruitment of scar-associated macrophages during liver fibrosis. J Leukoc Biol 2014; 97:161-9. [PMID: 25398607 DOI: 10.1189/jlb.3a0614-280r] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Recruitment of peripheral monocytes to the liver is a key contributor to the response to injury. MIF can act as a chemokine and cytokine, regulating innate immune responses in many tissues and cell types. We hypothesized that MIF contributes to the progression of CCl4-induced hepatic fibrosis by regulating recruitment of SAM. SAMs dynamically regulate HSC activation and ECM degradation. To gain insight into the role of MIF in progression of liver fibrosis, we investigated markers of fibrosis and immune responses after chronic CCl4 administration to female C57BL/6 and MIF(-/-) mice. Chronic CCl4 exposure increased activation of HSC in WT mice, indicated by increased expression of αSMA mRNA and protein, as well as mRNA for collagen 1α1; these responses were blunted in female MIF(-/-) mice. Despite lower activation of HSC in MIF(-/-) mice, accumulation of ECM was similar in WT and MIF(-/-)mice, suggesting a decreased rate of ECM degradation. Recruitment of SAMs was lower in MIF(-/-) mice compared with WT mice, both in their initial inflammatory phenotype, as well as in the later phase as proresolution macrophages. The decreased presence of resolution macrophages was associated with lower expression of MMP13 in MIF(-/-) mice. Taken together, these data indicate that MIF-dependent recruitment of SAMs contributes to degradation of ECM via MMP13, highlighting the importance of appropriate recruitment and phenotypic profile of macrophages in the resolution of fibrosis.
Collapse
Affiliation(s)
- Mark A Barnes
- Departments of *Molecular Medicine and Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, USA; Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA; and Departments of Pathobiology and Gastroenterology and Hepatology, Center for Liver Disease Research, Cleveland Clinic, Cleveland, Ohio, USA
| | - Megan R McMullen
- Departments of *Molecular Medicine and Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, USA; Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA; and Departments of Pathobiology and Gastroenterology and Hepatology, Center for Liver Disease Research, Cleveland Clinic, Cleveland, Ohio, USA
| | - Sanjoy Roychowdhury
- Departments of *Molecular Medicine and Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, USA; Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA; and Departments of Pathobiology and Gastroenterology and Hepatology, Center for Liver Disease Research, Cleveland Clinic, Cleveland, Ohio, USA
| | - Nabil Z Madhun
- Departments of *Molecular Medicine and Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, USA; Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA; and Departments of Pathobiology and Gastroenterology and Hepatology, Center for Liver Disease Research, Cleveland Clinic, Cleveland, Ohio, USA
| | - Kathryn Niese
- Departments of *Molecular Medicine and Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, USA; Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA; and Departments of Pathobiology and Gastroenterology and Hepatology, Center for Liver Disease Research, Cleveland Clinic, Cleveland, Ohio, USA
| | - Mitchell A Olman
- Departments of *Molecular Medicine and Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, USA; Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA; and Departments of Pathobiology and Gastroenterology and Hepatology, Center for Liver Disease Research, Cleveland Clinic, Cleveland, Ohio, USA
| | - Abram B Stavitsky
- Departments of *Molecular Medicine and Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, USA; Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA; and Departments of Pathobiology and Gastroenterology and Hepatology, Center for Liver Disease Research, Cleveland Clinic, Cleveland, Ohio, USA
| | - Richard Bucala
- Departments of *Molecular Medicine and Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, USA; Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA; and Departments of Pathobiology and Gastroenterology and Hepatology, Center for Liver Disease Research, Cleveland Clinic, Cleveland, Ohio, USA
| | - Laura E Nagy
- Departments of *Molecular Medicine and Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, USA; Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA; and Departments of Pathobiology and Gastroenterology and Hepatology, Center for Liver Disease Research, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
34
|
Abstract
Hepatic stellate cells are resident perisinusoidal cells distributed throughout the liver, with a remarkable range of functions in normal and injured liver. Derived embryologically from septum transversum mesenchyme, their precursors include submesothelial cells that invade the liver parenchyma from the hepatic capsule. In normal adult liver, their most characteristic feature is the presence of cytoplasmic perinuclear droplets that are laden with retinyl (vitamin A) esters. Normal stellate cells display several patterns of intermediate filaments expression (e.g., desmin, vimentin, and/or glial fibrillary acidic protein) suggesting that there are subpopulations within this parental cell type. In the normal liver, stellate cells participate in retinoid storage, vasoregulation through endothelial cell interactions, extracellular matrix homeostasis, drug detoxification, immunotolerance, and possibly the preservation of hepatocyte mass through secretion of mitogens including hepatocyte growth factor. During liver injury, stellate cells activate into alpha smooth muscle actin-expressing contractile myofibroblasts, which contribute to vascular distortion and increased vascular resistance, thereby promoting portal hypertension. Other features of stellate cell activation include mitogen-mediated proliferation, increased fibrogenesis driven by connective tissue growth factor, and transforming growth factor beta 1, amplified inflammation and immunoregulation, and altered matrix degradation. Evolving areas of interest in stellate cell biology seek to understand mechanisms of their clearance during fibrosis resolution by either apoptosis, senescence, or reversion, and their contribution to hepatic stem cell amplification, regeneration, and hepatocellular cancer.
Collapse
Affiliation(s)
- Juan E Puche
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai Hospital, New York, New York, New York
| | | | | |
Collapse
|
35
|
Peverill W, Powell LW, Skoien R. Evolving concepts in the pathogenesis of NASH: beyond steatosis and inflammation. Int J Mol Sci 2014; 15:8591-638. [PMID: 24830559 PMCID: PMC4057750 DOI: 10.3390/ijms15058591] [Citation(s) in RCA: 284] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 03/20/2014] [Accepted: 04/17/2014] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is characterised by hepatic steatosis and inflammation and, in some patients, progressive fibrosis leading to cirrhosis. An understanding of the pathogenesis of NASH is still evolving but current evidence suggests multiple metabolic factors critically disrupt homeostasis and induce an inflammatory cascade and ensuing fibrosis. The mechanisms underlying these changes and the complex inter-cellular interactions that mediate fibrogenesis are yet to be fully elucidated. Lipotoxicity, in the setting of excess free fatty acids, obesity, and insulin resistance, appears to be the central driver of cellular injury via oxidative stress. Hepatocyte apoptosis and/or senescence contribute to activation of the inflammasome via a variety of intra- and inter-cellular signalling mechanisms leading to fibrosis. Current evidence suggests that periportal components, including the ductular reaction and expansion of the hepatic progenitor cell compartment, may be involved and that the Th17 response may mediate disease progression. This review aims to provide an overview of the pathogenesis of NASH and summarises the evidence pertaining to key mechanisms implicated in the transition from steatosis and inflammation to fibrosis. Currently there are limited treatments for NASH although an increasing understanding of its pathogenesis will likely improve the development and use of interventions in the future.
Collapse
Affiliation(s)
- William Peverill
- Department of Gastroenterology and Hepatology, Royal Brisbane and Women's Hospital, Brisbane 4029, Australia.
| | - Lawrie W Powell
- Department of Gastroenterology and Hepatology, Royal Brisbane and Women's Hospital, Brisbane 4029, Australia.
| | - Richard Skoien
- Department of Gastroenterology and Hepatology, Royal Brisbane and Women's Hospital, Brisbane 4029, Australia.
| |
Collapse
|
36
|
Yokoyama Y, Nagino M. Current scenario for the hepatoprotective effects of Inchinkoto, a traditional herbal medicine, and its clinical application in liver surgery: A review. Hepatol Res 2014; 44:384-94. [PMID: 24450947 DOI: 10.1111/hepr.12299] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 01/09/2014] [Accepted: 01/14/2014] [Indexed: 02/08/2023]
Abstract
Inchinkoto (ICKT) is one of the most commonly used herbal medicines as a hepatoprotective agent. Among the numerous chemical compounds included in ICKT, geniposide is the most abundant component. Geniposide, after p.o. intake, is converted to the active metabolite genipin by intestinal bacteria and is absorbed in the portal circulation. The biological properties of ICKT and genipin have been studied in numerous experiments. Administration of ICKT or genipin exerts choleretic effects through upregulation of multidrug resistance-associated protein 2 in hepatocytes. ICKT also exerts an anti-apoptotic action through inhibition of transforming growth factor-β1- or tumor necrosis factor-α-dependent signaling pathways. The excessive inflammatory response induced by various hepatic stresses is also attenuated by ICKT pre-administration. Moreover, ICKT upregulates antioxidant enzymes in the liver under conditions of oxidative stress. These experimental results suggest potential benefit of ICKT in liver disease and particularly in hepatic surgery, which justify further well-designed controlled clinical study. To date, however, clinical data regarding the benefit of ICKT for liver surgery are rare. This review article summarized and discussed recent evidence relating to the hepatoprotective effects of ICKT in the field of basic and clinical science.
Collapse
Affiliation(s)
- Yukihiro Yokoyama
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masato Nagino
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
37
|
Chen MF, Huang CC, Liu PS, Chen CH, Shiu LY. Saikosaponin a and saikosaponin d inhibit proliferation and migratory activity of rat HSC-T6 cells. J Med Food 2013; 16:793-800. [PMID: 24044489 PMCID: PMC3778952 DOI: 10.1089/jmf.2013.2762] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 05/29/2013] [Indexed: 11/12/2022] Open
Abstract
The proliferation and migration of hepatic stellate cells (HSCs) profoundly impact the pathogenesis of liver inflammation and fibrogenesis. As a perennial herb native to China, Bupleurum falcatum is administered for its anti-inflammatory, antipyretic, and antihepatotoxic effects. Saikosaponin a (SSa) and Saikosaponin d (SSd) are the major active components of triterpene saponins in Bupleurum falcatum. This study analyzes how SSa and SSd affect rat HSC-T6 cell line proliferation and migration. Experimental results indicate that, in addition to suppressing HSC-T6 proliferation, wound healing activity and cell migration in a time- and dose-dependent manner, SSa and SSd significantly induce apoptosis. Additionally, SSa and SSd decreased the expressions of extracellular matrix-regulated kinase 1/2 (ERK1/2), platelet-derived growth factor receptor 1 (PDGFR1), and subsequently transforming growth factor-β1 receptor (TGF-β1R), α-smooth muscle actin, TGF-β1 and connective tissue growth factor. They also decreased phosphorylation of p38 (p-p38) and ERK1/2 (p-ERK1/2) of HSC-T6. Furthermore, both SSa and SSd can block PDGF-BB and TGF-β1-induced cell proliferation and migration of HSC-T6. These results suggest that SSa and SSd may inhibit proliferation and activation of HSC-T6, and the modulated mechanisms warrant further study.
Collapse
Affiliation(s)
- Ming Feng Chen
- Department of Gastroenterology and Hepatology, E-DA hospital, Kaohsiung, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| | - Chao Cheng Huang
- Kaohsiung Chang Gung Head and Neck Oncology Group, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Pei Shan Liu
- Department of Microbiology, Soochow University, Taipei, Taiwan
| | - Chang Han Chen
- Kaohsiung Chang Gung Head and Neck Oncology Group, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Li Yen Shiu
- Department of Medical Research and Development, Show Chwan Memorial Hospital and Chang Bing Show Chwan Memorial Hospital, Changhua, Taiwan
| |
Collapse
|
38
|
Xia YH, Wang ZM, Chen RX, Ye SL, Sun RX, Xue Q, Huang Y. T-cell apoptosis induced by intratumoral activated hepatic stellate cells is associated with lung metastasis in hepatocellular carcinoma. Oncol Rep 2013; 30:1175-84. [PMID: 23807027 DOI: 10.3892/or.2013.2571] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 05/15/2013] [Indexed: 11/06/2022] Open
Abstract
Profound T cell inhibitory activity of hepatic stellate cells (HSCs) in vitro has recently been described in hepatocellular carcinoma (HCC). In the present study, we investigated the immune inhibitory activity of HSCs in vivo in an orthotopic rat HCC model with lung metastasis. Rats (n=24) were randomly sacrificed on days 7, 14, 21 and 28 (n=4 each). Lung tissues were stained with hematoxylin and eosin. Liver sections were stained for immunofluorescence analysis. T-cell apoptosis was detected using double staining for terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL). Staining revealed marked and continuous accumulation of α-smooth muscle actin with tumor progression after orthotopic tumor implantation in rat liver. T lymphocyte numbers gradually increased following tumor progression, and subset analysis revealed an increase in the distribution of liver CD8+ and CD4+ T cells. Double staining for CD3 and TUNEL demonstrated T-cell apoptosis. Apoptotic T cells were more frequent in the HCC livers compared to the normal livers, and were spatially associated with intratumoral activated HSCs (tHSCs), suggesting a direct interaction. T-cell apoptosis was more frequently induced in the co-cultures of activated splenic T cells(aT)/tHSCs compared to aT/quiescent (q) HSCs or qT/tHSCs. tHSCs were positively correlated with T-cell apoptosis, and the percentage of T-cells undergoing apoptosis was positively correlated with the number of lung metastasis nodules. T-cell apoptosis may be promoted via an interaction with tHSCs, suggesting that tHSCs regulate T cells and contribute to lung metastasis in HCC.
Collapse
Affiliation(s)
- Yun-Hong Xia
- Department of Oncology, Hefei Second People's Hospital, Anhui Medical University, Hefei 230011, P.R. China
| | | | | | | | | | | | | |
Collapse
|
39
|
Chan KM, Fu YH, Wu TJ, Hsu PY, Lee WC. Hepatic stellate cells promote the differentiation of embryonic stem cell-derived definitive endodermal cells into hepatic progenitor cells. Hepatol Res 2013; 43:648-657. [PMID: 23072626 DOI: 10.1111/j.1872-034x.2012.01110.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Revised: 09/14/2012] [Accepted: 09/17/2012] [Indexed: 02/08/2023]
Abstract
AIM Hepatic non-parenchymal cells are well known to be capable of providing an important microenvironment and growth factors for hepatic regeneration, but their capacity for directing embryonic stem cells (ESC) toward hepatocytes remains to be assessed. Thus, this study aims to investigate the role of hepatic stellate cells (HSC), the major type of hepatic non-parenchymal cells, in the differentiation of ESC as well as exploring the potentiality of ESC in regeneration medicine for cell-based therapy. METHODS A two-step differentiation procedure that utilized the capability of HSC to regulate proliferation and differentiation of hepatocytes was used to develop an approach for directing the differentiation of ESC towards hepatic progenitor cells. Mouse ESC were cultivated in a serum-free medium containing Activin A and fibroblast growth factor to generate definitive endodermal cells characterized by the CXCR4 cell-surface marker. After 6-8 days in culture, approximately 60% of the differentiated cells expressed CXCR4, and more than 90% of the CXCR4 positive cells could be recovered by cell sorting. The purified CXCR4 positive cells were co-cultured with mouse HSC as feeder cells in basal medium without additional hepatocyte growth factors. Differentiation was complete after 10-12 days of co-culture, and hepatic progenitor cell markers such as α-fetoprotein (afp) and albumin (alb) were detected in the terminally differentiated ESC. CONCLUSION These results show that HSC provide an appropriate microenvironment and pivotal growth factors for generation of hepatic progenitor cells from ESC-derived definitive endodermal cells, and suggest that this approach possibly allows for hepatic differentiation of ESC imitating the process of hepatic regeneration.
Collapse
Affiliation(s)
- Kun-Ming Chan
- Division of Liver and Transplantation Surgery, Department of General Surgery, Chang-Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | | | | | | | | |
Collapse
|
40
|
Presser LD, McRae S, Waris G. Activation of TGF-β1 promoter by hepatitis C virus-induced AP-1 and Sp1: role of TGF-β1 in hepatic stellate cell activation and invasion. PLoS One 2013; 8:e56367. [PMID: 23437118 DOI: 10.1371/journal.pone.0056367] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 01/14/2013] [Indexed: 12/17/2022] Open
Abstract
Our previous studies have shown the induction and maturation of transforming growth factor-beta 1 (TGF-β1) in HCV-infected human hepatoma cells. In this study, we have investigated the molecular mechanism of TGF-β1 gene expression in response to HCV infection. We demonstrate that HCV-induced transcription factors AP-1, Sp1, NF-κB and STAT-3 are involved in TGF-β1 gene expression. Using chromatin immunoprecipitation (ChIP) assay, we further show that AP-1 and Sp1 interact with TGF-b1 promoter in vivo in HCV-infected cells. In addition, we demonstrate that HCV-induced TGF-β1 gene expression is mediated by the activation of cellular kinases such as p38 MAPK, Src, JNK, and MEK1/2. Next, we determined the role of secreted bioactive TGF-β1 in human hepatic stellate cells (HSCs) activation and invasion. Using siRNA approach, we show that HCV-induced bioactive TGF-β1 is critical for the induction of alpha smooth muscle actin (α-SMA) and type 1 collagen, the markers of HSCs activation and proliferation. We further demonstrate the potential role of HCV-induced bioactive TGF-β1 in HSCs invasion/cell migration using a transwell Boyden chamber. Our results also suggest the role of HCV-induced TGF-β1 in HCV replication and release. Collectively, these observations provide insight into the mechanism of TGF-β1 promoter activation, as well as HSCs activation and invasion, which likely manifests in liver fibrosis associated with HCV infection.
Collapse
Affiliation(s)
- Lance D Presser
- Department of Microbiology and Immunology, H.M. Bligh Cancer Research Laboratories, Rosalind Franklin University of Medicine and Science, Chicago Medical School, Chicago, Illinois, USA
| | | | | |
Collapse
|
41
|
Nan YM, Kong LB, Ren WG, Wang RQ, Du JH, Li WC, Zhao SX, Zhang YG, Wu WJ, Di HL, Li Y, Yu J. Activation of peroxisome proliferator activated receptor alpha ameliorates ethanol mediated liver fibrosis in mice. Lipids Health Dis 2013; 12:11. [PMID: 23388073 PMCID: PMC3608939 DOI: 10.1186/1476-511x-12-11] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Accepted: 01/31/2013] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Peroxisome proliferator activated receptor alpha (PPARα) ameliorates ethanol induced hepatic steatohepatitis. However, its role in alcoholic liver fibrosis has not been fully clarified. The aim of this study was to elucidate the effect and the molecular basis of PPARα in ethanol induced liver fibrosis in mice. METHODS C57BL/6J mice were fed with 4% ethanol-containing Lieber-DeCarli liquid diet for eight weeks, and intraperitoneal injected with 5% carbon tetrachloride (CCl4) for the last four weeks to induce alcoholic liver fibrosis. PPARα agonist WY14643 was administered to mice during the last couple of weeks. The effects of PPARα induction on liver histology, activation of hepatic stellate cells (HSCs), as well as hepatic expression of inflammatory and fibrogenic factors were assessed. RESULTS The ethanol plus CCl4 treated mice exhibited progressive liver injury including piecemeal necrosis of hepatocytes, severe inflammatory cells infiltration and bridging fibrosis. This was accompanied by down-regulated hepatic expression of PPARα and the protective cytokines adiponectin, heme oxygenase-1 and interleukin-10. Additionally, up-regulation of the proinflammatory cytokine tumor necrosis factor-alpha, as well as the profibrogenic genes osteopontin, transforming growth factor-beta 1, visfatin, phosphatidylinositol 3-kinase, matrix metalloproteinase-2 (MMP-2) and MMP-9 was observed. WY14643 treatment restored expression of cytokines altered by ethanol plus CCl4 treatment and concomitantly ameliorated the liver injury. CONCLUSIONS The present study provides evidence for the protective role of PPARα induction in ameliorating ethanol mediated fibrosis through mediation of inflammatory and fibrogenic factors.
Collapse
Affiliation(s)
- Yue-Min Nan
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Ikeda H, Yatomi Y. Autotaxin in liver fibrosis. Clin Chim Acta 2012; 413:1817-21. [PMID: 22820036 DOI: 10.1016/j.cca.2012.07.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 07/03/2012] [Accepted: 07/06/2012] [Indexed: 12/21/2022]
Abstract
Autotaxin (ATX) hydrolyzes lysophosphatidylcholine to produce lysophosphatidic acid (LPA), a multi-functional bioactive lipid mediator. ATX is a major determinant of LPA levels in the blood, and the pathophysiological functions of ATX are thought to be largely attributed to its ability to produce LPA. Liver fibrosis is one of the rare disorders exhibiting the increased ATX and LPA levels in the blood. This review summarizes the recent findings on the relation between ATX or LPA and liver fibrosis, the usefulness of serum ATX levels to predict the stages of liver fibrosis, and speculated roles of increased serum ATX and plasma LPA levels in liver fibrosis.
Collapse
Affiliation(s)
- Hitoshi Ikeda
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Japan.
| | | |
Collapse
|
43
|
Takuwa Y, Ikeda H, Okamoto Y, Takuwa N, Yoshioka K. Sphingosine-1-phosphate as a mediator involved in development of fibrotic diseases. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:185-92. [PMID: 22735357 DOI: 10.1016/j.bbalip.2012.06.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 06/18/2012] [Accepted: 06/18/2012] [Indexed: 12/30/2022]
Abstract
Fibrosis is a pathological process characterized by massive deposition of extracellular matrix (ECM) such as type I/III collagens and fibronectin that are secreted by an expanded pool of myofibroblasts, which are phenotypically altered fibroblasts with more contractile, proliferative, migratory and secretory activities. Fibrosis occurs in various organs including the lung, heart, liver and kidney, resulting in loss of normal tissue architecture and functions. Myofibroblasts could originate from multiple sources including tissue-resident fibroblasts, epithelial and endothelial cells through mechanisms of epithelial/endothelial-mesenchymal transition (EMT/EndMT), and bone marrow-derived circulating progenitors called fibrocytes. Emerging evidence in recent years shows that sphingosine-1-phosphate (S1P) acts on several types of target cells and is engaged in pro-fibrotic inflammatory process and fibrogenic process through multiple mechanisms, which include vascular permeability change, leukocyte infiltration, and migration, proliferation and myofibroblast differentiation of fibroblasts. Many of these S1P actions are receptor subtype-specific. In these actions, S1P has multiple cross-talks with other cytokines, particularly transforming growth factor-β (TGFβ), which plays a major role in fibrosis. The cross-talks include the regulation of S1P production through altered expression and activity of sphingosine kinases in fibrotic lesions, altered expression of S1P receptors, and S1P receptor-mediated transactivation of TGFβ signaling pathway. These cross-talks may give rise to a feed-forward, amplifying loop between S1P and TGFβ, and possibly with other cytokines in stimulating fibrogenesis. Another lysophospholipid mediator lysophosphatidic acid has also been recently implicated in fibrosis. The lysophospholipid signaling pathways represent novel, promising therapeutic targets for treating refractory fibrotic diseases. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.
Collapse
Affiliation(s)
- Yoh Takuwa
- Department of Physiology, Kanazawa University School of Medicine, Kanazawa, Japan.
| | | | | | | | | |
Collapse
|
44
|
Olsen AL, Sackey BK, Marcinkiewicz C, Boettiger D, Wells RG. Fibronectin extra domain-A promotes hepatic stellate cell motility but not differentiation into myofibroblasts. Gastroenterology 2012; 142:928-937.e3. [PMID: 22202457 PMCID: PMC3321084 DOI: 10.1053/j.gastro.2011.12.038] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 11/29/2011] [Accepted: 12/13/2011] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Myofibroblasts are the primary cell type involved in physiologic wound healing and its pathologic counterpart, fibrosis. Cellular fibronectin that contains the alternatively spliced extra domain A (EIIIA) is up-regulated during these processes and is believed to promote myofibroblast differentiation. We sought to determine the requirement for EIIIA in fibrosis and differentiation of myofibroblasts in rodent livers. METHODS We used a mechanically tunable hydrogel cell culture system to study differentiation of primary hepatic stellate cells and portal fibroblasts from rats into myofibroblasts. Liver fibrosis was induced in mice by bile duct ligation or administration of thioacetamide. RESULTS EIIIA was not required for differentiation of rat hepatic stellate cells or portal fibroblasts into fibrogenic myofibroblasts. Instead, hepatic stellate cells cultured on EIIIA-containing cellular fibronectin formed increased numbers of lamellipodia; their random motility and chemotaxis also increased. These increases required the receptor for EIIIA, the integrin α(9)β(1). In contrast, the motility of portal fibroblasts did not increase on EIIIA, and these cells expressed little α(9)β(1). Male EIIIA(-/-) mice were modestly protected from thioacetamide-induced fibrosis, which requires motile hepatic stellate cells, but not from bile duct ligation-induced fibrosis, in which portal fibroblasts are more important. Notably, myofibroblasts developed during induction of fibrosis with either thioacetamide or bile duct ligation in EIIIA(-/-) mice. CONCLUSIONS EIIIA is dispensable for differentiation of hepatic stellate cells and portal fibroblasts to myofibroblasts, both in culture and in mouse models of fibrosis. Our findings, however, indicate a role for EIIIA in promoting stellate cell motility and parenchymal liver fibrosis.
Collapse
Affiliation(s)
- Abby L. Olsen
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104,Cell and Molecular Biology Graduate Group, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Bridget K. Sackey
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104,Cell and Molecular Biology Graduate Group, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | | | - David Boettiger
- Cell and Molecular Biology Graduate Group, University of Pennsylvania School of Medicine, Philadelphia, PA 19104,Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104,Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Rebecca G. Wells
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104,Cell and Molecular Biology Graduate Group, University of Pennsylvania School of Medicine, Philadelphia, PA 19104,Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| |
Collapse
|
45
|
Serum concentrations of human insulin-like growth factor-1 and levels of insulin-like growth factor-binding protein-5 in patients with nonalcoholic fatty liver disease: association with liver histology. Eur J Gastroenterol Hepatol 2012; 24:255-61. [PMID: 22157234 DOI: 10.1097/meg.0b013e32834e8041] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE In this study, we aimed to investigate the relationship between the histological features of nonalcoholic fatty liver disease (NAFLD) and serum insulin-like growth factor-1 (IGF-1) and insulin-like growth factor-binding protein-5 (IGFBP-5) to determine the usefulness of this relationship in clinical practice. MATERIALS AND METHODS Serum samples were collected from 92 patients with biopsy-proven NAFLD and 51 healthy controls and serum levels of IGF-1 and IGFBP-5 were assayed by enzyme-linked immunosorbent assay. RESULT Serum IGFBP-5 levels were correlated with liver steatosis, fibrosis, and nonalcoholic steatohepatitis scores. IGF-1 levels were significantly decreased in patients with moderate-to-severe fibrosis compared with patients with no or mild fibrosis. CONCLUSION Serum IGFBP-5 levels may be useful to differentiate both advanced fibrosis and definite nonalcoholic steatohepatitis from other NAFLD groups. Also, serum IGF-1 levels may be useful to differentiate advanced fibrosis in patients with NAFLD.
Collapse
|
46
|
Knight V, Tchongue J, Lourensz D, Tipping P, Sievert W. Protease-activated receptor 2 promotes experimental liver fibrosis in mice and activates human hepatic stellate cells. Hepatology 2012; 55:879-87. [PMID: 22095855 DOI: 10.1002/hep.24784] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 10/11/2011] [Indexed: 12/14/2022]
Abstract
UNLABELLED Protease-activated receptor (PAR) 2 is a G-protein-coupled receptor that is activated after proteolytic cleavage by serine proteases, including mast cell tryptase and activated coagulation factors. PAR-2 activation augments inflammatory and profibrotic pathways through the induction of genes encoding proinflammatory cytokines and extracellular matrix proteins. Thus, PAR-2 represents an important interface linking coagulation and inflammation. PAR-2 is widely expressed in cells of the gastrointestinal tract, including hepatic stellate cells (HSCs), endothelial cells, and hepatic macrophages; however, its role in liver fibrosis has not been previously examined. We studied the development of CCl(4) -induced liver fibrosis in PAR-2 knockout mice, and showed that PAR-2 deficiency reduced the progression of liver fibrosis, hepatic collagen gene expression, and hydroxyproline content. Reduced fibrosis was associated with decreased transforming growth factor beta (TGFβ) gene and protein expression and decreased matrix metalloproteinase 2 and tissue inhibitor of matrix metalloproteinase 1 gene expression. In addition, PAR-2 stimulated activation, proliferation, collagen production, and TGFβ protein production by human stellate cells, indicating that hepatic PAR-2 activation increases profibrogenic cytokines and collagen production both in vivo and in vitro. CONCLUSION Our findings demonstrate the capacity of PAR-2 activation to augment TGFβ production and promote hepatic fibrosis in mice and to induce a profibrogenic phenotype in human HSCs. PAR-2 antagonists have recently been developed and may represent a novel therapeutic approach in preventing fibrosis in patients with chronic liver disease.
Collapse
Affiliation(s)
- Virginia Knight
- Center for Inflammatory Diseases, Monash University, Melbourne, Victoria, Australia
| | | | | | | | | |
Collapse
|
47
|
|
48
|
Zhao Y, Wang Y, Wang Q, Liu Z, Liu Q, Deng X. Hepatic stellate cells produce vascular endothelial growth factor via phospho-p44/42 mitogen-activated protein kinase/cyclooxygenase-2 pathway. Mol Cell Biochem 2011; 359:217-23. [PMID: 21863308 DOI: 10.1007/s11010-011-1016-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 07/27/2011] [Indexed: 01/18/2023]
Abstract
Vascular endothelial growth factor (VEGF) is one of the major cytokines secreted by activated hepatic stellate cells (HSCs). VEGF is involved in hepatic angiogenesis and plays an important role in the development of liver fibrosis. TNP-470, an angiogenic inhibitor, attenuates the development of rat liver fibrosis with reduced angiogenesis, as demonstrated in our previous study. HSCs were prepared from specific pathogen-free Wister rat livers. The isolated HSCs were activated and stimulated with platelet-derived growth factor BB (PDGF-BB) or prostaglandin E2 with or without pretreatment with MAPK cascade inhibitors (PD98059, which inhibits MEK activation), SB203580 (a selective pharmacologic inhibitor of p38 MAPK), and SP600125 (a selective inhibitor of the c-Jun N-terminal kinase, JNK). VEGF production and those of related molecules were assayed at the protein and mRNA levels by immunostaining, western blot analysis, and real-time quantitative PCR. The activated HSCs produced more VEGF than the quiescent ones. Those that received PDGF-BB stimulation showed enhanced cyclooxygenase-2 (COX-2) expression and activation of phosphor-mitogen-activated protein kinase (MAPK) p44/p42. Pretreatment with PD98059 significantly inhibited COX-2 expression and VEGF production within the PDGF-activated HSCs, but the effect was nullified by exogenous prostaglandin E2. pJNK and p38 inhibitors do not show similar inhibitory effects on VEGF and COX-2 expression, and pJNK and p38 MAPK signals are not involved in the COX-2/MAPK signaling cascade. VEGF production in PDGF-stimulated HSCs is dependent on the overexpression of COX-2 protein via the phospho-p42/44 MAP kinase activation, based on PD98059 inhibition.
Collapse
Affiliation(s)
- Yi Zhao
- Department of Gastroenterology Surgery, Affiliated Shengjing Hospital, Medical University of China, 36 Sanhao Street, Heping District, Shenyang, China.
| | | | | | | | | | | |
Collapse
|
49
|
Li C, Zheng S, You H, Liu X, Lin M, Yang L, Li L. Sphingosine 1-phosphate (S1P)/S1P receptors are involved in human liver fibrosis by action on hepatic myofibroblasts motility. J Hepatol 2011; 54:1205-1213. [PMID: 21145832 DOI: 10.1016/j.jhep.2010.08.028] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 08/20/2010] [Accepted: 08/23/2010] [Indexed: 12/04/2022]
Abstract
BACKGROUND & AIMS Directed migration of hepatic myofibroblasts (hMFs) contributes to the development of liver fibrosis. However, the signals regulating the motility of these cells are incompletely understood. We have recently shown that sphingosine 1-phosphate (S1P) and S1P receptors (S1PRs) are involved in mouse liver fibrogenesis. Here, we investigated the role of S1P/S1PRs signals in human liver fibrosis involving motility of human hMFs. METHODS S1P level in the liver was examined by high-performance liquid chromatography. Expression of S1PRs was characterized, in biopsy specimens of human liver and cultured hMFs, by immunofluorescence and real-time RT-PCR or Western blot analysis. Cell migration was determined in Boyden chambers, by using the selective S1P receptor agonist or antagonist and silencing of S1PRs expression with small interfering RNA. RESULTS S1P level in the human fibrotic liver was increased through up-regulation of sphingosine kinase (SphK), irrespective of the etiology of fibrosis. S1P receptors type 1, 2, and 3 (S1P(1,2,3)) were expressed in human hMFs in vivo and in vitro. Interestingly, S1P(1,3) were strongly induced in human fibrotic samples, whereas expression of S1P(2) was massively decreased. S1P exerted a powerful migratory action on human hMFs. Furthermore, the effect of S1P was mimicked by SEW2871 (an S1P(1) agonist), and blocked by suramin (an S1P(3) antagonist) and by silencing S1P(1,3) expression. In contrast, JTE-013 (an S1P(2) antagonist) and silencing of S1P(2) expression enhanced S1P-induced migration. CONCLUSIONS SphK/S1P/S1PRs signaling axis plays an important role in human liver fibrosis and is involved in the directed migration of human hMFs into the damaged areas.
Collapse
Affiliation(s)
- Changyong Li
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
| | | | | | | | | | | | | |
Collapse
|
50
|
Chen C, Wu CQ, Zhang ZQ, Yao DK, Zhu L. Loss of expression of miR-335 is implicated in hepatic stellate cell migration and activation. Exp Cell Res 2011; 317:1714-25. [PMID: 21586285 DOI: 10.1016/j.yexcr.2011.05.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 04/26/2011] [Accepted: 05/02/2011] [Indexed: 12/12/2022]
Abstract
Activation and migration of resident stellate cells (HSCs) within the hepatic space of Disse play an important role in hepatic fibrosis, which accounts for the increased numbers of activated HSCs in areas of inflammation during hepatic fibrosis. Currently, microRNAs have been found to play essential roles in HSC differentiation, proliferation, apoptosis, fat accumulation and collagen production. However, little is known about microRNA mediated HSC activation and migration. In this study, the miRNA expression profiles of quiescent HSCs, partially activated HSCs and fully activated HSCs were compared in pairs. Gene ontology (GO) and GO-Map network analysis indicated that the activation of HSCs was regulated by microRNAs. Among them miR-335 was confirmed to be significantly reduced during HSC activation by qRT-PCR, and restoring expression of miR-335 inhibited HSC migration and reduced α-SMA and collagen type I. Previous study revealed that tenascin-C (TNC), an extracellular matrix glycoprotein involved in cell migration, might be a target of miR-335. Therefore, we further studied the TNC expression in miR-335 over-expressed HSCs. Our data showed that exogenous TNC could enhance HSC migration in vitro and miR-335 restoration resulted in a significant inhibition of TNC expression. These results demonstrated that miR-335 restoration inhibited HSC migration, at least in part, via downregulating the TNC expression.
Collapse
Affiliation(s)
- Chao Chen
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, No.415 Fengyang Road, Shanghai 200003, China
| | | | | | | | | |
Collapse
|