1
|
Shu Y, Tao Q, Xu Q, Chen Y, Xu Y, Ma T, Zhu Z, Wei X, Liu F, Wu Z, Zeng Y, Chen M, Shao M, Cao X, Zhou Y, Peng W, Li C, Shi Y. Loss of NUMB promotes hepatomegaly and hepatocellular carcinoma through the AKT/glycogen/hippo signaling. Oncogene 2025:10.1038/s41388-025-03430-z. [PMID: 40319143 DOI: 10.1038/s41388-025-03430-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 04/15/2025] [Accepted: 04/24/2025] [Indexed: 05/07/2025]
Abstract
Excessive glycogen deposition is a common feature of liver enlargement, liver adenoma, and liver cancer, yet the underlying mechanisms remain poorly understood. In this study, we found that NUMB, a well-known cell fate determinant, is downregulated in glycogen-rich adenomas and hepatocellular carcinoma (HCC). NUMB-deficient livers developed excessive glycogen accumulation and adenoma formation particularly in aged mice. Surprisingly, the Alb-Cre:Trp53loxP/loxP liver displayed no similar defective morphology and function, although p53 is considered an important downstream target of NUMB and closely related to glucose metabolism. Instead, we observed a synergistic interaction between NUMB and p53 in regulating glycogen metabolism in HCC tissues and cell lines. Combined knockout of NUMB and p53 in mice significantly enhances glycogen accumulation and hepatomegaly, particularly when mice are subjected to a high sugar diet (HSD), leading to higher cancer incidence. Mechanistically, NUMB deficiency disrupts the PTEN-PI3K/AKT signaling pathway, promoting glycogen accumulation. Subsequently, successive glycogen deposition triggers hepatomegaly and tumorigenesis via the Hippo signaling pathway. Our results suggest that NUMB plays a crucial role in maintaining the homeostasis of glucose metabolism and suppressing the development of liver tumors associated with glycogen deposition.
Collapse
Affiliation(s)
- Yuke Shu
- Department of Pathology & Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Institute of Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qing Tao
- Department of Pathology & Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qing Xu
- Department of Pathology & Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Institute of Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuwei Chen
- Department of Pathology & Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Institute of Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yahong Xu
- Institute of Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Tingting Ma
- Department of Pathology & Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Institute of Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhiqi Zhu
- Department of Pathology & Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Institute of Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinyu Wei
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fei Liu
- Department of Biliary Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhenru Wu
- Department of Pathology & Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuting Zeng
- Department of Pathology & Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Menglin Chen
- Department of Pathology & Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Mingyang Shao
- Department of Pathology & Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Institute of Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaoyue Cao
- Department of Pathology & Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Institute of Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yongjie Zhou
- Institute of Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wei Peng
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chuan Li
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yujun Shi
- Department of Pathology & Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Institute of Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Xu J, Liu W, Yao Y, Knowles TPJ, Zhang ZG, Zhang YL. Liquid-liquid phase separation in hepatocellular carcinoma. Front Cell Dev Biol 2024; 12:1454587. [PMID: 39777266 PMCID: PMC11703843 DOI: 10.3389/fcell.2024.1454587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
Liquid-liquid phase separation (LLPS) drives the formation of membraneless intracellular compartments within both cytoplasm and nucleus. These compartments can form distinct physicochemical environments, and in particular display different concentrations of proteins, RNA, and macromolecules compared to the surrounding cytosol. Recent studies have highlighted the significant role of aberrant LLPS in cancer development and progression, impacting many core processes such as oncogenic signalling pathways, transcriptional dysregulation, and genome instability. In hepatocellular carcinoma (HCC), aberrant formation of biomolecular condensates has been observed in a number of preclinical models, highlighting their significance as an emerging factor in understanding cancer biology and its molecular underpinnings. In this review, we summarize emerging evidence and recent advances in understanding the role of LLPS in HCC, with a particular focus on the regulation and dysregulation of cytoplasmic and nuclear condensates in cancer cells. We finally discuss how an emerging understanding of phase separation processes in HCC opens up new potential treatment avenues.
Collapse
Affiliation(s)
- Jianguo Xu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wangwang Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yihan Yao
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Tuomas P. J. Knowles
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Zhi-Gang Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan-Li Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
3
|
Gibson RA, Jeck WR, Koch RL, Mehta A, Choi SJ, Sriraman Y, Bali D, Young S, Asokan A, Lim JA, Kishnani PS. Progressive liver disease and dysregulated glycogen metabolism in murine GSD IX γ2 models human disease. Mol Genet Metab 2024; 143:108597. [PMID: 39488079 PMCID: PMC11633833 DOI: 10.1016/j.ymgme.2024.108597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024]
Abstract
Hepatic glycogen storage disease type IX γ2 (GSD IX γ2) is a severe, liver-specific subtype of GSD IX. While all patients with hepatic GSD IX present with similar symptoms, over 95 % of patients with GSD IX γ2 progress to liver fibrosis and cirrhosis. Despite disease severity, the long-term natural history of GSD IX γ2 liver disease progression is not known. Our lab previously characterized the Phkg2-/- mouse model at 3 months of age, demonstrating that the mouse recapitulates the early liver disease phenotype of GSD IX γ2. To understand how liver disease progresses in GSD IX γ2, we characterized the mouse model through 24 months of age. Our study showed for the first time that GSD IX γ2 mice develop liver fibrosis that progresses to cirrhosis. Importantly, we observed that the progression of liver fibrosis is associated with an initial elevation and subsequent decrease of key GSD biomarkers - the latter being a finding that is often considered to be an improvement of disease in patients. In recognition of the unique liver fibrosis pattern and to support future therapeutic investigations using this model, we developed a novel scoring system for GSD IX γ2 mouse liver pathology. Lastly, this work introduces evidence of a dysregulated glycogen metabolism pathway which can serve as an endpoint for future therapeutic evaluation. As we await longitudinal clinical natural history data, these findings greatly expand our understanding of liver disease manifestations in GSD IX γ2 and have notable clinical applications.
Collapse
Affiliation(s)
- Rebecca A Gibson
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA; Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - William R Jeck
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Rebecca L Koch
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Aarav Mehta
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Su Jin Choi
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Yajur Sriraman
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Deeksha Bali
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Sarah Young
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Aravind Asokan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA; Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Jeong-A Lim
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Priya S Kishnani
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA; Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
4
|
Li F, Yang J, Li J, Lin X. Adaptive Strategies and Underlying Response Mechanisms of Ciliates to Salinity Change with Note on Fluctuation Properties. Microorganisms 2024; 12:1957. [PMID: 39458267 PMCID: PMC11509147 DOI: 10.3390/microorganisms12101957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
The adaptability of marine organisms to changes in salinity has been a significant research area under global climate change. However, the underlying mechanisms of this adaptability remain a debated subject. We hypothesize that neglecting salinity fluctuation properties is a key contributing factor to the controversy. The ciliate Euplotes vannus was used as the model organism, with two salinity fluctuation period sets: acute (24 h) and chronic (336 h). We examined its population growth dynamics and energy metabolism parameters following exposure to salinity levels from 15‱ to 50‱. The carrying capacity (K) decreased with increasing salinity under both acute and chronic stresses. The intrinsic growth rate (r) decreased with increasing salinity under acute stress. Under chronic stress, the r initially increased with stress intensity before decreasing when salinity exceeded 40‱. Overall, glycogen and lipid content decreased with stress increasing and were significantly higher in the acute stress set compared to the chronic one. Both hypotonic and hypertonic stresses enhanced the activities of metabolic enzymes. A trade-off between survival and reproduction was observed, prioritizing survival under acute stress. Under chronic stress, the weight on reproduction increased in significance. In conclusion, the tested ciliates adopted an r-strategy in response to salinity stress. The trade-off between reproduction and survival is a significant biological response mechanism varying with salinity fluctuation properties.
Collapse
Affiliation(s)
- Fenfen Li
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China;
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
| | - Jing Yang
- College of Life Science, South China Normal University, Guangzhou 510631, China;
| | - Jiqiu Li
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China;
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
| | - Xiaofeng Lin
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China;
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
| |
Collapse
|
5
|
Park H, Hong T, An G, Park J, Song G, Lim W. Bifenox induces hepatotoxicity and vascular toxicity in zebrafish embryos via ROS production and alterations in signaling pathways. Comp Biochem Physiol C Toxicol Pharmacol 2024; 281:109918. [PMID: 38583696 DOI: 10.1016/j.cbpc.2024.109918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 03/31/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
Existing evidence shows that currently used pesticides pose toxicological risks to exposed wildlife. Chemically, bifenox belongs to diphenyl ethers, a well-known group of herbicides. Its mechanism of action primarily involves inducing lipid peroxidation and blocking protoporphyrinogen oxidases. Toxicity of diphenyl ether herbicides has been elucidated in animal cells; however, in vivo toxicological evaluations of bifenox are required to determine its unexpected effects. This study aimed to determine the negative effects of bifenox, and its effects on higher eukaryotes. We found that early stages of zebrafish embryo exposed to bifenox demonstrated increased mortality and physiological defects, based on the LC50 value. Bifenox severely inhibited blood vessel growth by reducing key elements of complex connectivity; fluorescently tagged transgenic lines (fli1a:EGFP) showed morphological changes. Additionally, transgenic lines that selectively identified hepatocytes (fabp10a:DsRed) showed reduced fluorescence, indicating that bifenox may inhibit liver development. To evaluate the level of oxidative stress, we used 2',7'-dichlorofluorescein diacetate (DCFH-DA) probes in zebrafish embryos to identify the underlying mechanisms causing developmental damage. Our findings demonstrate that exposure to bifenox causes abnormalities in the hepatic and cardiovascular systems during zebrafish embryogenesis. Therefore, this study provides new information for the evaluation of toxicological risks of bifenox in vertebrates.
Collapse
Affiliation(s)
- Hahyun Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Taeyeon Hong
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Garam An
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Junho Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Gwonhwa Song
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Whasun Lim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
6
|
Abdelhamed W, El-Kassas M. Rare liver diseases in Egypt: Clinical and epidemiological characterization. Arab J Gastroenterol 2024; 25:75-83. [PMID: 38228442 DOI: 10.1016/j.ajg.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/04/2023] [Accepted: 12/16/2023] [Indexed: 01/18/2024]
Abstract
Illnesses that afflict a tiny number of individuals are referred to as rare diseases (RDs), sometimes called orphan diseases. The local healthcare systems are constantly under financial, psychological, and medical strain due to low incidence rates, unusual presentations, flawed diagnostic standards, and a lack of treatment alternatives for these RDs. The effective management of the once widely spread viral hepatitis B and C has altered the spectrum of liver diseases in Egypt during the last several years. The detection of uncommon disorders such as autoimmune, cholestatic, and hereditary liver diseases has also been made easier by the increasing knowledge and greater accessibility of specific laboratory testing. Finally, despite Egypt's large population, there are more uncommon liver disorders than previously thought. This review article discusses the clinical and epidemiological characteristics of a few uncommon liver disorders and the information currently accessible concerning these illnesses in Egypt.
Collapse
Affiliation(s)
- Walaa Abdelhamed
- Endemic Medicine Department, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Mohamed El-Kassas
- Endemic Medicine Department, Faculty of Medicine, Helwan University, Cairo, Egypt.
| |
Collapse
|
7
|
Ren LK, Lu RS, Fei XB, Chen SJ, Liu P, Zhu CH, Wang X, Pan YZ. Unveiling the role of PYGB in pancreatic cancer: a novel diagnostic biomarker and gene therapy target. J Cancer Res Clin Oncol 2024; 150:127. [PMID: 38483604 PMCID: PMC10940407 DOI: 10.1007/s00432-024-05644-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/05/2024] [Indexed: 03/17/2024]
Abstract
PURPOSE Pancreatic cancer (PC) is a highly malignant tumor that poses a severe threat to human health. Brain glycogen phosphorylase (PYGB) breaks down glycogen and provides an energy source for tumor cells. Although PYGB has been reported in several tumors, its role in PC remains unclear. METHODS We constructed a risk diagnostic model of PC-related genes by WGCNA and LASSO regression and found PYGB, an essential gene in PC. Then, we explored the pro-carcinogenic role of PYGB in PC by in vivo and in vitro experiments. RESULTS We found that PYGB, SCL2A1, and SLC16A3 had a significant effect on the diagnosis and prognosis of PC, but PYGB had the most significant effect on the prognosis. Pan-cancer analysis showed that PYGB was highly expressed in most of the tumors but had the highest correlation with PC. In TCGA and GEO databases, we found that PYGB was highly expressed in PC tissues and correlated with PC's prognostic and pathological features. Through in vivo and in vitro experiments, we found that high expression of PYGB promoted the proliferation, invasion, and metastasis of PC cells. Through enrichment analysis, we found that PYGB is associated with several key cell biological processes and signaling pathways. In experiments, we validated that the MAPK/ERK pathway is involved in the pro-tumorigenic mechanism of PYGB in PC. CONCLUSION Our results suggest that PYGB promotes PC cell proliferation, invasion, and metastasis, leading to poor patient prognosis. PYGB gene may be a novel diagnostic biomarker and gene therapy target for PC.
Collapse
Affiliation(s)
- Li-Kun Ren
- College of Clinical Medicine, Guizhou Medical University, Guiyang, 550000, Guizhou, China
| | - Ri-Shang Lu
- College of Clinical Medicine, Guizhou Medical University, Guiyang, 550000, Guizhou, China
| | - Xiao-Bin Fei
- College of Clinical Medicine, Guizhou Medical University, Guiyang, 550000, Guizhou, China
| | - Shao-Jie Chen
- College of Clinical Medicine, Guizhou Medical University, Guiyang, 550000, Guizhou, China
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550000, China
| | - Peng Liu
- College of Clinical Medicine, Guizhou Medical University, Guiyang, 550000, Guizhou, China
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550000, China
| | - Chang-Hao Zhu
- College of Clinical Medicine, Guizhou Medical University, Guiyang, 550000, Guizhou, China
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, 550000, China
| | - Xing Wang
- College of Clinical Medicine, Guizhou Medical University, Guiyang, 550000, Guizhou, China.
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, 550000, China.
| | - Yao-Zhen Pan
- College of Clinical Medicine, Guizhou Medical University, Guiyang, 550000, Guizhou, China.
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, 550000, China.
| |
Collapse
|
8
|
Wang S, Ye F, Ren Q, Sun S, Xia W, Wang Z, Guo H, Li H, Zhang S, Lowe S, Chen M, Du Q, Weihong Li. The anti-liver fibrosis effect of Tibetan medicine (Qiwei Tiexie capsule) is related to the inhibition of NLRP3 inflammasome activation in vivo and in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117283. [PMID: 37827298 DOI: 10.1016/j.jep.2023.117283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/15/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Qiwei Tiexie capsule (QWTX) is an improved form of a classical prescription of Tibetan medicine-Qiwei Tiexie pill. It has been employed in the treatment of a variety of chronic liver disorders, including liver fibrosis. Uncertainty still exists regarding the mechanism of QWTX action in liver fibrosis. AIM OF THE STUDY Confirm the anti-liver fibrosis effect of QWTX and reveal its mechanism from the perspective of NOD-like receptor protein 3 (NLRP3) inflammasome activation. MATERIALS AND METHODS In vivo experiment: A rat model of carbon tetrachloride -induced liver fibrosis was constructed. All rats were randomly divided into six groups: a control group, a model group, a group receiving the positive drug (Biejia Ruangan tablet), and three groups receiving QWTX at high, medium, and low doses. The contents of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and total bilirubin (TBil) were detected in serum. Hematoxylin and eosin staining and Masson's staining were used to assess the histomorphological alteration of the liver. The levels of glutathione peroxidase, hydroxyproline, tumor necrosis factor alpha (TNF-α), and interleukin 1 beta (IL-1β) in the liver were determined using the corresponding detection kits. Real-time polymerase chain reaction, immunofluorescence, and western blotting were used to determine the expression levels of NLRP3, adaptor protein (ASC), caspase-1, and alpha-smooth muscle actin (α-SMA). In vitro experiment: Four groups of rat hepatic stellate cell line (HSC-T6) cells were created: the control group, the low-dose QWTX group (0.05 mg/mL), the medium-dose QWTX group (0.1 mg/mL), and the high-dose QWTX group (0.2 mg/mL). Cell viability was assessed using a cell counting kit, and the amounts of collagen type I (Col I) and IL-1β in the cell lysate were measured using an enzyme-linked immunosorbent assay kit. The mRNA and protein expression of NLRP3, ASC, caspase-1, and α-SMA were also estimated. RESULTS QWTX had an inhibitory effect on liver fibrosis and a negative effect on HSC activation, while it improved liver histopathological injury and abnormal liver function and increased hydroxyproline content and glutathione peroxidase activity in vivo. QWTX decreased the expression of α-SMA, NLRP3, caspase-1, ASC, and IL-1β both in vitro and in vivo. CONCLUSIONS Tibetan medicine QWTX had a significant anti-liver fibrosis effect that was related to the inhibition of NLRP3 inflammasome activation in vivo and in vitro.
Collapse
Affiliation(s)
- Shanshan Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102401, China; Bei Jing Jing Mei Group General Hospital, Beijing, 102300, China
| | - Fei Ye
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102401, China
| | - Qingjia Ren
- Institute of Tibetan Medicine, University of Tibetan Medicine, Lhasa, 850000, Tibet Autonomous Region, China
| | - Shengnan Sun
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102401, China
| | - Weina Xia
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102401, China
| | - Zhuwei Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102401, China
| | - Haolin Guo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102401, China
| | - Han Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102401, China
| | - Shujing Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102401, China
| | - Scott Lowe
- College of Osteopathic Medicine, Kansas City University of Medicine and Biosciences, Kansas City, MO, 64106, USA
| | - Meng Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102401, China
| | - Qinghong Du
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102401, China; Institute of Tibetan Medicine, University of Tibetan Medicine, Lhasa, 850000, Tibet Autonomous Region, China.
| | - Weihong Li
- School of Nursing, Beijing University of Chinese Medicine, Beijing, 102401, China.
| |
Collapse
|
9
|
Koeberl DD, Koch RL, Lim JA, Brooks ED, Arnson BD, Sun B, Kishnani PS. Gene therapy for glycogen storage diseases. J Inherit Metab Dis 2024; 47:93-118. [PMID: 37421310 PMCID: PMC10874648 DOI: 10.1002/jimd.12654] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/24/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
Glycogen storage disorders (GSDs) are inherited disorders of metabolism resulting from the deficiency of individual enzymes involved in the synthesis, transport, and degradation of glycogen. This literature review summarizes the development of gene therapy for the GSDs. The abnormal accumulation of glycogen and deficiency of glucose production in GSDs lead to unique symptoms based upon the enzyme step and tissues involved, such as liver and kidney involvement associated with severe hypoglycemia during fasting and the risk of long-term complications including hepatic adenoma/carcinoma and end stage kidney disease in GSD Ia from glucose-6-phosphatase deficiency, and cardiac/skeletal/smooth muscle involvement associated with myopathy +/- cardiomyopathy and the risk for cardiorespiratory failure in Pompe disease. These symptoms are present to a variable degree in animal models for the GSDs, which have been utilized to evaluate new therapies including gene therapy and genome editing. Gene therapy for Pompe disease and GSD Ia has progressed to Phase I and Phase III clinical trials, respectively, and are evaluating the safety and bioactivity of adeno-associated virus vectors. Clinical research to understand the natural history and progression of the GSDs provides invaluable outcome measures that serve as endpoints to evaluate benefits in clinical trials. While promising, gene therapy and genome editing face challenges with regard to clinical implementation, including immune responses and toxicities that have been revealed during clinical trials of gene therapy that are underway. Gene therapy for the glycogen storage diseases is under development, addressing an unmet need for specific, stable therapy for these conditions.
Collapse
Affiliation(s)
- Dwight D. Koeberl
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical School, Durham, NC, United States
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC, United States
| | - Rebecca L. Koch
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical School, Durham, NC, United States
| | - Jeong-A Lim
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical School, Durham, NC, United States
| | - Elizabeth D. Brooks
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical School, Durham, NC, United States
| | - Benjamin D. Arnson
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC, United States
| | - Baodong Sun
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical School, Durham, NC, United States
| | - Priya S. Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical School, Durham, NC, United States
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
10
|
Wang Y, Xu J, Fan Z, Zhou X, Wang Z, Zhang H. Unlocking the Antioxidant Potential of White Tea and Osmanthus Flower: A Novel Polyphenol Liquid Preparation and Its Impact on KM Mice and Their Offspring. Foods 2023; 12:4041. [PMID: 37959160 PMCID: PMC10650671 DOI: 10.3390/foods12214041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/27/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
White tea, known for its high polyphenol content, boasts impressive antioxidant properties, but its practical applications remain promising. In this study, we successfully developed a liquid polyphenolic preparation (wtofLPP) using white tea and osmanthus flowers, characterized by its rich antioxidant content and favorable rheological properties. This formulation offers a strong foundation for the creation and utilization of innovative antioxidant-rich food products. Notably, wtofLPP significantly enhanced the activity of certain antioxidant enzymes in both KM mice and their offspring, leading to a reduction in malondialdehyde (MDA) levels, prolonged swimming endurance, and a marked increase in levels of active antioxidant compounds. Furthermore, our study highlights that fatigue stress can impact offspring mice, suggesting that oxidative damage in parents may influence their offspring, potentially affecting their genetic function.
Collapse
Affiliation(s)
- Yisen Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; (Y.W.); (J.X.); (Z.W.)
| | - Jiaqi Xu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; (Y.W.); (J.X.); (Z.W.)
| | - Ziluan Fan
- School of Forestry, Northeast Forestry University, Harbin 150040, China; (Z.F.); (X.Z.)
| | - Xun Zhou
- School of Forestry, Northeast Forestry University, Harbin 150040, China; (Z.F.); (X.Z.)
| | - Zhenyu Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; (Y.W.); (J.X.); (Z.W.)
| | - Hua Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; (Y.W.); (J.X.); (Z.W.)
| |
Collapse
|
11
|
Li L, Zhou H, Wang J, Li J, Lyu X, Wang W, Luo C, Huang H, Zhou D, Chen X, Xu L, Li P. Metabolic switch from glycogen to lipid in the liver maintains glucose homeostasis in neonatal mice. J Lipid Res 2023; 64:100440. [PMID: 37826876 PMCID: PMC10568567 DOI: 10.1016/j.jlr.2023.100440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/17/2023] [Accepted: 08/20/2023] [Indexed: 10/14/2023] Open
Abstract
Neonates strive to acquire energy when the continuous transplacental nutrient supply ceases at birth, whereas milk consumption takes hours to start. Using murine models, we report the metabolic switches in the first days of life, with an unexpected discovery of glucose as the universal fuel essential for neonatal life. Blood glucose quickly drops as soon as birth, but immediately rebounds even before suckling and maintains stable afterward. Meanwhile, neonatal liver undergoes drastic metabolic changes, from extensive glycogenolysis before suckling to dramatically induced fatty acid oxidation (FAO) and gluconeogenesis after milk suckling. Unexpectedly, blocking hepatic glycogenolysis only caused a transient hypoglycemia before milk suckling without causing lethality. Limiting lipid supply in milk (low-fat milk, [LFM]) using Cidea-/- mice, however, led to a chronic and severe hypoglycemia and consequently claimed neonatal lives. While fat replenishment rescued LFM-caused neonatal lethality, the rescue effects were abolished by blocking FAO or gluconeogenesis, pointing to a funneling of lipids and downstream metabolites into glucose as the essential fuel. Finally, glucose administration also rescued LFM-caused neonatal lethality, independent on FAO or gluconeogenesis. Therefore, our results show that the liver works as an energy conversion center to maintain blood glucose homeostasis in neonates, providing theoretical basis for managing infant hypoglycemia.
Collapse
Affiliation(s)
- Liangkui Li
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China; Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, China
| | - Haoyu Zhou
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jinhui Wang
- The Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Jiaxin Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xuchao Lyu
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Wenshan Wang
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Chengting Luo
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - He Huang
- The Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Dawang Zhou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xiaowei Chen
- College of Future Technology, Peking University, Beijing, China
| | - Li Xu
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China; Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, China.
| | - Peng Li
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China; Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, China; The Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China.
| |
Collapse
|
12
|
Vemana HP, Dukhande VV. The effect of hormones insulin and glucagon on ubiquitin modifications elucidated by proteomics in liver cells. Life Sci 2023; 329:121935. [PMID: 37442415 PMCID: PMC10528490 DOI: 10.1016/j.lfs.2023.121935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/02/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
AIMS Insulin action is intertwined with changing levels of glucose and counter-regulatory hormone glucagon. While insulin lowers blood sugar level, glucagon raises it by promoting the breakdown of the stored glycogen in liver and releases glucose into the bloodstream. The hormones insulin and glucagon are key in the pathogenesis of type 2 diabetes (T2D). Insulin resistance is a primary predisposing factor for diabetes. Phosphorylation of insulin signaling molecules is altered in the insulin-resistant state. However, ubiquitin (Ub) modifications in insulin-resistant state are relatively understudied. To dissect the underlying mechanisms, we performed a proteomics study on hepatoma cells to study the regulation of ubiquitination by insulin and glucagon. MATERIALS AND METHODS We performed western blotting, immunoprecipitations, and affinity pull down using tandem Ub binding entities (TUBE) reagents on hepatoma cells treated with insulin or glucagon. Next, we performed MS/MS analysis on Ub-linkage specific affinity pull down samples. Gene ontology analysis and protein-protein interaction network analysis was performed using DAVID GO and STRING db, respectively. KEY FINDINGS The ubiquitination pattern of total Ub, K48-linked Ub, and K63-linked Ub was altered with the treatment of hormones insulin and glucagon. Ubiquitination in immunoprecipitated samples showed enrichment with total Ub and K48-linked Ub but not with K63-linked Ub. Ubiquitination by treatment with hormones mainly enriched key signaling pathways MAPK, Akt, oxidative stress etc. SIGNIFICANCE: Our study identified key altered proteins and signal transduction pathways which aids in understanding the mechanisms of hormonal action on ubiquitination and identify new therapeutic targets for T2D.
Collapse
Affiliation(s)
- Hari Priya Vemana
- Department of Pharmaceutical Sciences, College of Pharmacy & Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Vikas V Dukhande
- Department of Pharmaceutical Sciences, College of Pharmacy & Health Sciences, St. John's University, Queens, NY 11439, USA.
| |
Collapse
|
13
|
Sneha NP, Dharshini SAP, Taguchi YH, Gromiha MM. Investigating Neuron Degeneration in Huntington's Disease Using RNA-Seq Based Transcriptome Study. Genes (Basel) 2023; 14:1801. [PMID: 37761940 PMCID: PMC10530489 DOI: 10.3390/genes14091801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/02/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder caused due to a CAG repeat expansion in the huntingtin (HTT) gene. The primary symptoms of HD include motor dysfunction such as chorea, dystonia, and involuntary movements. The primary motor cortex (BA4) is the key brain region responsible for executing motor/movement activities. Investigating patient and control samples from the BA4 region will provide a deeper understanding of the genes responsible for neuron degeneration and help to identify potential markers. Previous studies have focused on overall differential gene expression and associated biological functions. In this study, we illustrate the relationship between variants and differentially expressed genes/transcripts. We identified variants and their associated genes along with the quantification of genes and transcripts. We also predicted the effect of variants on various regulatory activities and found that many variants are regulating gene expression. Variants affecting miRNA and its targets are also highlighted in our study. Co-expression network studies revealed the role of novel genes. Function interaction network analysis unveiled the importance of genes involved in vesicle-mediated transport. From this unified approach, we propose that genes expressed in immune cells are crucial for reducing neuron death in HD.
Collapse
Affiliation(s)
- Nela Pragathi Sneha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India; (N.P.S.); (S.A.P.D.)
| | - S. Akila Parvathy Dharshini
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India; (N.P.S.); (S.A.P.D.)
| | - Y.-h. Taguchi
- Department of Physics, Chuo University, Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan;
| | - M. Michael Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India; (N.P.S.); (S.A.P.D.)
| |
Collapse
|
14
|
Kundu A, Gali S, Sharma S, Kacew S, Yoon S, Jeong HG, Kwak JH, Kim HS. Dendropanoxide Alleviates Thioacetamide-induced Hepatic Fibrosis via Inhibition of ROS Production and Inflammation in BALB/ C Mice. Int J Biol Sci 2023; 19:2630-2647. [PMID: 37324954 PMCID: PMC10266086 DOI: 10.7150/ijbs.80743] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/23/2023] [Indexed: 06/17/2023] Open
Abstract
Hepatic fibrosis results from overproduction and excessive accumulation of extracellular matrix (ECM) proteins in hepatocytes. Although the beneficial effects of dendropanoxide (DPx) isolated from Dendropanax morbifera have been studied, its role as an anti-fibrotic agent remains elucidated. We investigated the protective effect of DPx in BALB/C mice that received thioacetamide (TAA) intraperitoneally for 6 weeks. Later DPx (20 mg/kg/day) or silymarin (50 mg/kg/day) was administered daily for 6 weeks, followed by biochemical and histological analyses of each group. Hematoxylin and eosin staining of the livers showed TAA-induced hepatic fibrosis, which was significantly reduced in the DPx group. DPx treatment significantly decreased TAA-induced hyperlipidemia as evidenced by the decreased AST, ALT, ALP, γ-GTP and serum TG concentrations and reduced the activities of catalase (CAT) and superoxide dismutase (SOD) activity. ELISA revealed reduced levels of total glutathione (GSH), malondialdehyde (MDA) and Inflammatory factors (IL-6, IL-1β, and TNF-α). Immunostaining showed reduced in collagen-1, α-SMA, and TGF-β1 expression and western blotting showed reduced levels of the apoptotic proteins, TGF-β1, p-Smad2/3, and Smad4. RT-qPCR and Western blotting revealed modifications in SIRT1, SIRT3 and SIRT4. Thus, DPx exerted a protective effect against TAA-induced hepatic fibrosis in the male BALB/C mouse model by inhibiting oxidative stress, inflammation, and apoptosis via TGF-β1/Smads signaling.
Collapse
Affiliation(s)
- Amit Kundu
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon 440-746, Republic of Korea
- School of Medical Sciences, Örebro University, Örebro, Sweden; Cardiovascular Research Centre (CVRC), School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Sreevarsha Gali
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon 440-746, Republic of Korea
| | - Swati Sharma
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon 440-746, Republic of Korea
| | - Sam Kacew
- McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, ON, Canada
| | - Sungpil Yoon
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon 440-746, Republic of Korea
| | - Hye Gwang Jeong
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-Gu, Daejeon 34134, Republic of Korea
| | - Jong Hwan Kwak
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon 440-746, Republic of Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon 440-746, Republic of Korea
| |
Collapse
|
15
|
Wan X, Xiang J, Fan H, Jiang Y, Lu Y, Zhang C, Zhang Y, Chen Q, Lei Y. Ciclopirox Olamine Induces Proliferation Inhibition and Protective Autophagy in Hepatocellular Carcinoma. Pharmaceuticals (Basel) 2023; 16:ph16010113. [PMID: 36678610 PMCID: PMC9863056 DOI: 10.3390/ph16010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Hepatocellular carcinoma is one of the most common fatal malignancies worldwide. Thus far, the hepatocellular carcinoma prognosis has been bleak due to deficiencies in the identification and diagnosis of early hepatocellular carcinoma. Ciclopirox olamine (CPX) is a synthetic antifungal agent and has been considered as an anti-cancer candidate drug recently, though the detailed mechanisms related to its anti-cancer effect in hepatocellular carcinoma have not yet been revealed. Here, we found that CPX could inhibit proliferation in HCC cells but not in intrahepatic cholangiocarcinoma cells by arresting the cell cycle. Moreover, the anti-cancer effects of CPX in HCC cells were also attributed to CPX-triggered ROS accumulation and DJ-1 downregulation. Additionally, CPX could promote complete autophagic flux, which alleviated the anti-cancer effect of CPX in HCC cells, whereas the ROS scavenger (NAC) would attenuate CPX-induced protective autophagy. Interestingly, CPX could also induce glycogen clustering in HCC cells. Altogether, this study provides a new insight into the detailed molecular mechanisms of CPX as an anti-cancer therapy and a strategy for treating hepatocellular carcinoma.
Collapse
|
16
|
Tang J, Wu Y, Zhang B, Liang S, Guo Z, Hu J, Zhou Z, Xie M, Hou S. Integrated liver proteomics and metabolomics identify metabolic pathways affected by pantothenic acid deficiency in Pekin ducks. ANIMAL NUTRITION 2022; 11:1-14. [PMID: 35950191 PMCID: PMC9356036 DOI: 10.1016/j.aninu.2022.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 02/07/2022] [Accepted: 03/18/2022] [Indexed: 10/25/2022]
|
17
|
D’Acierno M, Resaz R, Iervolino A, Nielsen R, Sardella D, Siccardi S, Costanzo V, D’Apolito L, Suzumoto Y, Segalerba D, Astigiano S, Perna AF, Capasso G, Eva A, Trepiccione F. Dapagliflozin Prevents Kidney Glycogen Accumulation and Improves Renal Proximal Tubule Cell Functions in a Mouse Model of Glycogen Storage Disease Type 1b. J Am Soc Nephrol 2022; 33:1864-1875. [PMID: 35820785 PMCID: PMC9528317 DOI: 10.1681/asn.2021070935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 06/14/2022] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Mutations in SLC37A4, which encodes the intracellular glucose transporter G6PT, cause the rare glycogen storage disease type 1b (GSD1b). A long-term consequence of GSD1b is kidney failure, which requires KRT. The main protein markers of proximal tubule function, including NaPi2A, NHE3, SGLT2, GLUT2, and AQP1, are downregulated as part of the disease phenotype. METHODS We utilized an inducible mouse model of GSD1b, TM-G6PT-/-, to show that glycogen accumulation plays a crucial role in altering proximal tubule morphology and function. To limit glucose entry into proximal tubule cells and thus to prevent glycogen accumulation, we administered an SGLT2-inhibitor, dapagliflozin, to TM-G6PT-/- mice. RESULTS In proximal tubule cells, G6PT suppression stimulates the upregulation and activity of hexokinase-I, which increases availability of the reabsorbed glucose for intracellular metabolism. Dapagliflozin prevented glycogen accumulation and improved kidney morphology by promoting a metabolic switch from glycogen synthesis toward lysis and by restoring expression levels of the main proximal tubule functional markers. CONCLUSION We provide proof of concept for the efficacy of dapagliflozin in preserving kidney function in GSD1b mice. Our findings could represent the basis for repurposing this drug to treat patients with GSD1b.
Collapse
Affiliation(s)
| | - Roberta Resaz
- Laboratory of Molecular Biology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Anna Iervolino
- Biogem Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
- Department of Translational Medical Sciences, University of Campania “L. Vanvitelli,” Naples, Italy
| | - Rikke Nielsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Donato Sardella
- Biogem Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
| | - Sabrina Siccardi
- Biogem Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
| | - Vincenzo Costanzo
- Biogem Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
| | - Luciano D’Apolito
- Biogem Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
| | - Yoko Suzumoto
- Biogem Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
| | - Daniela Segalerba
- Laboratory of Molecular Biology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Alessandra F. Perna
- Department of Translational Medical Sciences, University of Campania “L. Vanvitelli,” Naples, Italy
| | - Giovambattista Capasso
- Biogem Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
- Department of Translational Medical Sciences, University of Campania “L. Vanvitelli,” Naples, Italy
| | - Alessandra Eva
- Laboratory of Molecular Biology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Francesco Trepiccione
- Biogem Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
- Department of Translational Medical Sciences, University of Campania “L. Vanvitelli,” Naples, Italy
| |
Collapse
|
18
|
Arends CJ, Wilson LH, Estrella A, Kwon OS, Weinstein DA, Lee YM. A Mouse Model of Glycogen Storage Disease Type IX-Beta: A Role for Phkb in Glycogenolysis. Int J Mol Sci 2022; 23:ijms23179944. [PMID: 36077341 PMCID: PMC9456097 DOI: 10.3390/ijms23179944] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Glycogen storage disease type IX (GSD-IX) constitutes nearly a quarter of all GSDs. This ketotic form of GSD is caused by mutations in phosphorylase kinase (PhK), which is composed of four subunits (α, β, γ, δ). PhK is required for the activation of the liver isoform of glycogen phosphorylase (PYGL), which generates free glucose-1-phosphate monomers to be used as energy via cleavage of the α -(1,4) glycosidic linkages in glycogen chains. Mutations in any of the PhK subunits can negatively affect the regulatory and catalytic activity of PhK during glycogenolysis. To understand the pathogenesis of GSD-IX-beta, we characterized a newly created PHKB knockout (Phkb−/−) mouse model. In this study, we assessed fasting blood glucose and ketone levels, serum metabolite concentrations, glycogen phosphorylase activity, and gene expression of gluconeogenic genes and fibrotic genes. Phkb−/− mice displayed hepatomegaly with lower fasting blood glucose concentrations. Phkb−/− mice showed partial liver glycogen phosphorylase activity and increased sensitivity to pyruvate, indicative of partial glycogenolytic activity and upregulation of gluconeogenesis. Additionally, gene expression analysis demonstrated increased lipid metabolism in Phkb−/− mice. Gene expression analysis and liver histology in the livers of old Phkb−/− mice (>40 weeks) showed minimal profibrogenic features when analyzed with age-matched wild-type (WT) mice. Collectively, the Phkb−/− mouse recapitulates mild clinical features in patients with GSD-IX-beta. Metabolic and molecular analysis confirmed that Phkb−/− mice were capable of sustaining energy homeostasis during prolonged fasting by using partial glycogenolysis, increased gluconeogenesis, and potentially fatty acid oxidation in the liver.
Collapse
Affiliation(s)
- Charles J. Arends
- Department of Pediatrics, University of Connecticut School of Medicine, Farmington, CT 06030, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Lane H. Wilson
- Department of Pediatrics, University of Connecticut School of Medicine, Farmington, CT 06030, USA
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ana Estrella
- Department of Pediatrics, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Oh Sung Kwon
- Department of Kinesiology, University of Connecticut, Storrs, CT 06269, USA
- Department of Orthopaedic Surgery and Center on Aging, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - David A. Weinstein
- Department of Pediatrics, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Young Mok Lee
- Department of Pediatrics, University of Connecticut School of Medicine, Farmington, CT 06030, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
- Correspondence:
| |
Collapse
|
19
|
Glycogen Storage Disease Phenotypes Accompanying the Perturbation of the Methionine Cycle in NDRG3-Deficient Mouse Livers. Cells 2022; 11:cells11091536. [PMID: 35563842 PMCID: PMC9103136 DOI: 10.3390/cells11091536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 02/01/2023] Open
Abstract
N-Myc downstream regulated gene 3 (NDRG3) is a unique pro-tumorigenic member among NDRG family genes, mediating growth signals. Here, we investigated the pathophysiological roles of NDRG3 in relation to cell metabolism by disrupting its functions in liver. Mice with liver-specific KO of NDRG3 (Ndrg3 LKO) exhibited glycogen storage disease (GSD) phenotypes including excessive hepatic glycogen accumulation, hypoglycemia, elevated liver triglyceride content, and several signs of liver injury. They suffered from impaired hepatic glucose homeostasis, due to the suppression of fasting-associated glycogenolysis and gluconeogenesis. Consistently, the expression of glycogen phosphorylase (PYGL) and glucose-6-phosphate transporter (G6PT) was significantly down-regulated in an Ndrg3 LKO-dependent manner. Transcriptomic and metabolomic analyses revealed that NDRG3 depletion significantly perturbed the methionine cycle, redirecting its flux towards branch pathways to upregulate several metabolites known to have hepatoprotective functions. Mechanistically, Ndrg3 LKO-dependent downregulation of glycine N-methyltransferase in the methionine cycle and the resultant elevation of the S-adenosylmethionine level appears to play a critical role in the restructuring of the methionine metabolism, eventually leading to the manifestation of GSD phenotypes in Ndrg3 LKO mice. Our results indicate that NDRG3 is required for the homeostasis of liver cell metabolism upstream of the glucose–glycogen flux and methionine cycle and suggest therapeutic values for regulating NDRG3 in disorders with malfunctions in these pathways.
Collapse
|
20
|
Fan H, He Y, Xiang J, Zhou J, Wan X, You J, Du K, Li Y, Cui L, Wang Y, Zhang C, Bu Y, Lei Y. ROS generation attenuates the anti-cancer effect of CPX on cervical cancer cells by inducing autophagy and inhibiting glycophagy. Redox Biol 2022; 53:102339. [PMID: 35636017 PMCID: PMC9144037 DOI: 10.1016/j.redox.2022.102339] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/08/2022] [Accepted: 05/12/2022] [Indexed: 01/07/2023] Open
Abstract
Cervical cancer is one of the most common gynecological malignancies with poor prognosis due to constant chemoresistance and repeated relapse. Ciclopirox olamine (CPX), a synthetic antifungal agent, has recently been identified to be a promising anti-cancer candidate. However, the detailed mechanisms related to its anti-cancer effects remain unclear and need to be further elucidated. In this study, we found that CPX could induce proliferation inhibition in cervical cancer cells by targeting PARK7. Further results demonstrated that CPX could induce cytoprotective autophagy by downregulating the expression of PARK7 to activate PRKAA1 or by PARK7-independent accumulation of ROS to inhibit mTOR signaling. Meanwhile, CPX treatment increased the glycogen clustering and glycophagy in cervical cancer cells. The presence of N-acetyl-l-cysteine (NAC), a ROS scavenger, led to further clustering of glycogen in cells by reducing autophagy and enhancing glycophagy, which promoted CPX-induced inhibition of cervical cancer cell proliferation. Together, our study provides new insights into the molecular mechanisms of CPX in the anti-cancer therapy and opens new avenues for the glycophagy in cancer therapeutics. CPX induces cytoprotective autophagy and inhibits proliferation of cervical cancer cells by targeting PARK7. ROS generation attenuates the anticancer effect of CPX by inducing cytoprotective autophagy and inhibiting glycophagy. ROS-triggered glycogen clustering and inactivation of YAP1 are involved in the anti-cancer effects of CPX.
Collapse
Affiliation(s)
- Hui Fan
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Yujia He
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 610041, PR China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Junqi Xiang
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Jing Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Xinyan Wan
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Jiawei You
- Department of Basic Medicine, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Kailong Du
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Yue Li
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Lin Cui
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Yitao Wang
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Chundong Zhang
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Youquan Bu
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Yunlong Lei
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
21
|
Liu Q, Li J, Zhang W, Xiao C, Zhang S, Nian C, Li J, Su D, Chen L, Zhao Q, Shao H, Zhao H, Chen Q, Li Y, Geng J, Hong L, Lin S, Wu Q, Deng X, Ke R, Ding J, Johnson RL, Liu X, Chen L, Zhou D. Glycogen accumulation and phase separation drives liver tumor initiation. Cell 2021; 184:5559-5576.e19. [PMID: 34678143 DOI: 10.1016/j.cell.2021.10.001] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 05/31/2021] [Accepted: 09/30/2021] [Indexed: 12/16/2022]
Abstract
Glucose consumption is generally increased in tumor cells to support tumor growth. Interestingly, we report that glycogen accumulation is a key initiating oncogenic event during liver malignant transformation. We found that glucose-6-phosphatase (G6PC) catalyzing the last step of glycogenolysis is frequently downregulated to augment glucose storage in pre-malignant cells. Accumulated glycogen undergoes liquid-liquid phase separation, which results in the assembly of the Laforin-Mst1/2 complex and consequently sequesters Hippo kinases Mst1/2 in glycogen liquid droplets to relieve their inhibition on Yap. Moreover, G6PC or another glycogenolysis enzyme-liver glycogen phosphorylase (PYGL) deficiency in both human and mice results in glycogen storage disease along with liver enlargement and tumorigenesis in a Yap-dependent manner. Consistently, elimination of glycogen accumulation abrogates liver growth and cancer incidence, whereas increasing glycogen storage accelerates tumorigenesis. Thus, we concluded that cancer-initiating cells adapt a glycogen storing mode, which blocks Hippo signaling through glycogen phase separation to augment tumor incidence.
Collapse
Affiliation(s)
- Qingxu Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Jiaxin Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Weiji Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Chen Xiao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Shihao Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Cheng Nian
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Junhong Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Dongxue Su
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Lihong Chen
- Department of Pathology, School of Basic Medical Sciences of Fujian Medical University, Fuzhou, Fujian 350004, China
| | - Qian Zhao
- Eastern Hepatobiliary Surgery Hospital/Institute, Second Military Medical University, Shanghai 200433, China
| | - Hui Shao
- School of Biomedical Sciences and School of Medicine, Huaqiao University, Quanzhou, Fujian 362021, China
| | - Hao Zhao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Qinghua Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yuxi Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Jing Geng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Lixin Hong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Shuhai Lin
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Qiao Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Xianming Deng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Rongqin Ke
- School of Biomedical Sciences and School of Medicine, Huaqiao University, Quanzhou, Fujian 362021, China
| | - Jin Ding
- Eastern Hepatobiliary Surgery Hospital/Institute, Second Military Medical University, Shanghai 200433, China
| | - Randy L Johnson
- Department of Biochemistry and Molecular Biology, University of Texas, M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, The Liver Center of Fujian Province, Fuzhou 350025, P.R. China
| | - Lanfen Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| | - Dawang Zhou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
22
|
Kawakubo-Yasukochi T, Yano E, Kimura S, Nishinakagawa T, Mizokami A, Hayashi Y, Hatakeyama Y, Ohe K, Yasukochi A, Nakamura S, Jimi E, Hirata M. Hepatic glycogenolysis is determined by maternal high-calorie diet via methylation of Pygl and it is modified by oteocalcin administration in mice. Mol Metab 2021; 54:101360. [PMID: 34673295 PMCID: PMC8606545 DOI: 10.1016/j.molmet.2021.101360] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/11/2021] [Accepted: 10/17/2021] [Indexed: 12/24/2022] Open
Abstract
Objective Accumulating evidence indicates that an adverse perinatal environment contributes to a higher risk of metabolic disorders in the later life of the offspring. However, the underlying molecular mechanisms remain largely unknown. Thus, we investigated the contribution of maternal high-calorie diet and osteocalcin to metabolic homeostasis in the offspring. Methods Eight-week-old C57Bl/6N female mice were mated with age-matched males and allocated randomly to three groups: a normal-diet (ND) or a high-fat, high-sucrose diet group, which was administered either saline (control) or GluOC (10 ng/g body mass) from the day of mating to that of delivery, and the dams were fed a ND after the delivery. Pups weaned at 24 days after birth were analyzed. Results A maternal high-fat, high-sucrose diet during pregnancy causes metabolic disorders in the liver of the offspring via hypermethylation of the Pygl gene, encoding glycogen phosphorylase L, which mediates hepatic glycogenolysis. The reduced expression of Pygl induced by the maternal diet causes the hepatic accumulation of glycogen and triglyceride in the offspring, which remains in adulthood. In addition, the administration of uncarboxylated osteocalcin during pregnancy upregulates Pygl expression via both direct CREBH and ATF4 and indirect epigenomic pathways, mitigating the maternal diet-induced obesity and abnormal glucose and lipid metabolism in adulthood. Conclusions We propose that maternal energy status is reflected in the hepatic glycogenolysis capacity of the offspring via epigenetic modification of Pygl and uncarboxylated osteocalcin regulates glycogenolysis. A high-calorie diet during pregnancy causes metabolic disorders in mouse offspring. These are mediated by low liver expression of Pygl encoding glycogen phosphorylase. Hypermethylation of the Pygl promoter in utero suppresses subsequent gene expression. Modification and phenotypic changes are prevented by GluOC administration during pregnancy.
Collapse
Affiliation(s)
- Tomoyo Kawakubo-Yasukochi
- OBT Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Ena Yano
- OBT Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Soi Kimura
- OBT Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takuya Nishinakagawa
- Department of Immunological and Molecular Pharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Akiko Mizokami
- OBT Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yoshikazu Hayashi
- Division of Functional Structure, Department of Morphological Biology, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan
| | - Yuji Hatakeyama
- Division of Functional Structure, Department of Morphological Biology, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan
| | - Kenji Ohe
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Atsushi Yasukochi
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Seiji Nakamura
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Eijiro Jimi
- OBT Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masato Hirata
- Oral Medicine Research Center, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan.
| |
Collapse
|
23
|
Grünert SC, Hannibal L, Spiekerkoetter U. The Phenotypic and Genetic Spectrum of Glycogen Storage Disease Type VI. Genes (Basel) 2021; 12:genes12081205. [PMID: 34440378 PMCID: PMC8391619 DOI: 10.3390/genes12081205] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/27/2021] [Accepted: 08/01/2021] [Indexed: 01/24/2023] Open
Abstract
Glycogen storage disease type VI (GSD VI) is an autosomal recessive disorder of glycogen metabolism due to mutations in the glycogen phosphorylase gene (PYGL), resulting in a deficiency of hepatic glycogen phosphorylase. We performed a systematic literature review in order to collect information on the clinical phenotypes and genotypes of all published GSD VI patients and to compare the data to those for GSD IX, a biochemically and clinically very similar disorder caused by a deficiency of phosphorylase kinase. A total of 63 genetically confirmed cases of GSD VI with clinical information were identified (median age: 5.3 years). The age at presentation ranged from 5 weeks to 38 years, with a median of 1.8 years. The main presenting symptoms were hepatomegaly and poor growth, while the most common laboratory findings at initial presentation comprised elevated activity of liver transaminases, hypertriglyceridemia, fasting hypoglycemia and postprandial hyperlactatemia. Liver biopsies (n = 37) showed an increased glycogen content in 89.2%, liver fibrosis in 32.4% and early liver cirrhosis in 10.8% of cases, respectively. No patient received a liver transplant, and one successful pregnancy was reported. Our review demonstrates that GSD VI is a disorder with broad clinical heterogeneity and a small number of patients with a severe phenotype and liver cirrhosis. Neither clinical nor laboratory findings allow for a differentiation between GSD VI and GSD IX. Early biochemical markers of disease severity or clear genotype phenotype correlations are missing. Given the overall benign and unspecific phenotype and the need for enzymatic or genetic analyses for confirmation of the diagnosis, GSD VI is likely underdiagnosed. With new treatment approaches in sight, early, pre-symptomatic diagnosis, especially with respect to hepatic cirrhosis, will become even more important.
Collapse
Affiliation(s)
- Sarah Catharina Grünert
- Department of General Paediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Centre-University of Freiburg, 79106 Freiburg, Germany;
- Correspondence: ; Tel.: +49-761-270-43000; Fax: +49-761-270-45270
| | - Luciana Hannibal
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Paediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Centre-University of Freiburg, 79106 Freiburg, Germany;
| | - Ute Spiekerkoetter
- Department of General Paediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Centre-University of Freiburg, 79106 Freiburg, Germany;
| |
Collapse
|
24
|
Gibson RA, Lim JA, Choi SJ, Flores L, Clinton L, Bali D, Young S, Asokan A, Sun B, Kishnani PS. Characterization of liver GSD IX γ2 pathophysiology in a novel Phkg2 -/- mouse model. Mol Genet Metab 2021; 133:269-276. [PMID: 34083142 PMCID: PMC9792075 DOI: 10.1016/j.ymgme.2021.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 05/15/2021] [Accepted: 05/22/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Liver Glycogen Storage Disease IX is a rare metabolic disorder of glycogen metabolism caused by deficiency of the phosphorylase kinase enzyme (PhK). Variants in the PHKG2 gene, encoding the liver-specific catalytic γ2 subunit of PhK, are associated with a liver GSD IX subtype known as PHKG2 GSD IX or GSD IX γ2. There is emerging evidence that patients with GSD IX γ2 can develop severe and progressive liver disease, yet research regarding the disease has been minimal to date. Here we characterize the first mouse model of liver GSD IX γ2. METHODS A Phkg2-/- mouse model was generated via targeted removal of the Phkg2 gene. Knockout (Phkg2-/-, KO) and wild type (Phkg2+/+, WT) mice up to 3 months of age were compared for morphology, Phkg2 transcription, PhK enzyme activity, glycogen content, histology, serum liver markers, and urinary glucose tetrasaccharide Glcα1-6Glcα1-4Glcα1-4Glc (Glc4). RESULTS When compared to WT controls, KO mice demonstrated significantly decreased liver PhK enzyme activity, increased liver: body weight ratio, and increased glycogen in the liver, with no glycogen accumulation observed in the brain, quadricep, kidney, and heart. KO mice demonstrated elevated liver blood markers as well as elevated urine Glc4, a commonly used biomarker for glycogen storage disease. KO mice demonstrated features of liver structural damage. Hematoxylin & Eosin and Masson's Trichrome stained KO mice liver histology slides revealed characteristic GSD hepatocyte architectural changes and early liver fibrosis, as have been reported in liver GSD patients. DISCUSSION This study provides the first evidence of a mouse model that recapitulates the liver-specific pathology of patients with GSD IX γ2. The model will provide the first platform for further study of disease progression in GSD IX γ2 as well as for the evaluation of novel therapeutics.
Collapse
Affiliation(s)
- Rebecca A Gibson
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA; Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Jeong-A Lim
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Su Jin Choi
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Leticia Flores
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Lani Clinton
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Deeksha Bali
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Sarah Young
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Aravind Asokan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA; Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Baodong Sun
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Priya S Kishnani
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA; Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
25
|
Zhan Q, Lv Z, Tang Q, Huang L, Chen X, Yang M, Lan L, Shan Q. Glycogen storage disease type VI with a novel PYGL mutation: Two case reports and literature review. Medicine (Baltimore) 2021; 100:e25520. [PMID: 33879691 PMCID: PMC8078372 DOI: 10.1097/md.0000000000025520] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/25/2021] [Indexed: 11/26/2022] Open
Abstract
RATIONALE Glycogen storage disease (GSD) type VI is a rare disease caused by the inherited deficiency of liver phosphorylase. PATIENT CONCERNS The proband, a 61-month-old Chinese boy, manifested intermittent hematochezia, growth retardation, hepatomegaly, damage of liver function, mild hypoglycemia, and hyperlactatemia. The other patient was a 107-month-old Chinese girl with growth retardation, hepatomegaly, mild hypoglycemia, and hyperlactatemia. In order to further confirm the diagnosis, we conducted a liver biopsy and detected blood samples for their gene using IDT exon chip capture and high-throughput sequencing. DIAGNOSES According to the clinical symptoms, physical examination, laboratory examinations, liver biopsy, and the genetic test finding, the 2 patients were diagnosed GSD VI. INTERVENTIONS They were treated mainly with uncooked cornstarch. OUTCOMES There were 2 mutations of PYGL gene in this pedigree. c.2467C>T (p. Q823X) and c.2178-2A>C occurred both in the proband and his second sister. LESSONS As a novel mutation, c.2178-2A>C enriches the mutation spectrum of PYGL gene. The different degrees of elevated lactate is an unusual phenotype in GSD VI patients. It is not clear if this is caused by the new mutation of c. 2178-2A > C. Long-term complications remains to be observed.
Collapse
Affiliation(s)
| | - Zili Lv
- Department of Pathology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | | | | | | | | | | | | |
Collapse
|
26
|
Almodóvar-Payá A, Villarreal-Salazar M, de Luna N, Nogales-Gadea G, Real-Martínez A, Andreu AL, Martín MA, Arenas J, Lucia A, Vissing J, Krag T, Pinós T. Preclinical Research in Glycogen Storage Diseases: A Comprehensive Review of Current Animal Models. Int J Mol Sci 2020; 21:ijms21249621. [PMID: 33348688 PMCID: PMC7766110 DOI: 10.3390/ijms21249621] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 12/19/2022] Open
Abstract
GSD are a group of disorders characterized by a defect in gene expression of specific enzymes involved in glycogen breakdown or synthesis, commonly resulting in the accumulation of glycogen in various tissues (primarily the liver and skeletal muscle). Several different GSD animal models have been found to naturally present spontaneous mutations and others have been developed and characterized in order to further understand the physiopathology of these diseases and as a useful tool to evaluate potential therapeutic strategies. In the present work we have reviewed a total of 42 different animal models of GSD, including 26 genetically modified mouse models, 15 naturally occurring models (encompassing quails, cats, dogs, sheep, cattle and horses), and one genetically modified zebrafish model. To our knowledge, this is the most complete list of GSD animal models ever reviewed. Importantly, when all these animal models are analyzed together, we can observe some common traits, as well as model specific differences, that would be overlooked if each model was only studied in the context of a given GSD.
Collapse
Affiliation(s)
- Aitana Almodóvar-Payá
- Mitochondrial and Neuromuscular Disorders Unit, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (A.A.-P.); (M.V.-S.); (A.R.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; (N.d.L.); (G.N.-G.); (M.A.M.); (J.A.)
| | - Mónica Villarreal-Salazar
- Mitochondrial and Neuromuscular Disorders Unit, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (A.A.-P.); (M.V.-S.); (A.R.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; (N.d.L.); (G.N.-G.); (M.A.M.); (J.A.)
| | - Noemí de Luna
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; (N.d.L.); (G.N.-G.); (M.A.M.); (J.A.)
- Laboratori de Malalties Neuromusculars, Institut de Recerca Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
| | - Gisela Nogales-Gadea
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; (N.d.L.); (G.N.-G.); (M.A.M.); (J.A.)
- Grup de Recerca en Malalties Neuromusculars i Neuropediàtriques, Department of Neurosciences, Institut d’Investigacio en Ciencies de la Salut Germans Trias i Pujol i Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Alberto Real-Martínez
- Mitochondrial and Neuromuscular Disorders Unit, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (A.A.-P.); (M.V.-S.); (A.R.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; (N.d.L.); (G.N.-G.); (M.A.M.); (J.A.)
| | - Antoni L. Andreu
- EATRIS, European Infrastructure for Translational Medicine, 1081 HZ Amsterdam, The Netherlands;
| | - Miguel Angel Martín
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; (N.d.L.); (G.N.-G.); (M.A.M.); (J.A.)
- Mitochondrial and Neuromuscular Diseases Laboratory, 12 de Octubre Hospital Research Institute (i+12), 28041 Madrid, Spain
| | - Joaquin Arenas
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; (N.d.L.); (G.N.-G.); (M.A.M.); (J.A.)
- Mitochondrial and Neuromuscular Diseases Laboratory, 12 de Octubre Hospital Research Institute (i+12), 28041 Madrid, Spain
| | - Alejandro Lucia
- Faculty of Sport Sciences, European University, 28670 Madrid, Spain;
| | - John Vissing
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, DK-2100 Copenhagen, Denmark; (J.V.); (T.K.)
| | - Thomas Krag
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, DK-2100 Copenhagen, Denmark; (J.V.); (T.K.)
| | - Tomàs Pinós
- Mitochondrial and Neuromuscular Disorders Unit, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (A.A.-P.); (M.V.-S.); (A.R.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; (N.d.L.); (G.N.-G.); (M.A.M.); (J.A.)
- Correspondence: ; Tel.: +34-934894057
| |
Collapse
|
27
|
Zingariello M, Rosti V, Vannucchi AM, Guglielmelli P, Mazzarini M, Barosi G, Genova ML, Migliaccio AR. Shared and Distinctive Ultrastructural Abnormalities Expressed by Megakaryocytes in Bone Marrow and Spleen From Patients With Myelofibrosis. Front Oncol 2020; 10:584541. [PMID: 33312951 PMCID: PMC7701330 DOI: 10.3389/fonc.2020.584541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/19/2020] [Indexed: 12/21/2022] Open
Abstract
Numerous studies have documented ultrastructural abnormalities in malignant megakaryocytes from bone marrow (BM) of myelofibrosis patients but the morphology of these cells in spleen, an important extramedullary site in this disease, was not investigated as yet. By transmission-electron microscopy, we compared the ultrastructural features of megakaryocytes from BM and spleen of myelofibrosis patients and healthy controls. The number of megakaryocytes was markedly increased in both BM and spleen. However, while most of BM megakaryocytes are immature, those from spleen appear mature with well-developed demarcation membrane systems (DMS) and platelet territories and are surrounded by platelets. In BM megakaryocytes, paucity of DMS is associated with plasma (thick with protrusions) and nuclear (dilated with large pores) membrane abnormalities and presence of numerous glycosomes, suggesting a skewed metabolism toward insoluble polyglucosan accumulation. By contrast, the membranes of the megakaryocytes from the spleen were normal but these cells show mitochondria with reduced crests, suggesting deficient aerobic energy-metabolism. These distinctive morphological features suggest that malignant megakaryocytes from BM and spleen express distinctive metabolic impairments that may play different roles in the pathogenesis of myelofibrosis.
Collapse
Affiliation(s)
- Maria Zingariello
- Unit of Microscopic and Ultrastructural Anatomy, Department of Medicine, University Campus Bio-Medico, Rome, Italy
| | - Vittorio Rosti
- Center for the Study of Myelofibrosis, Laboratory of Biochemistry Biotechnology and Advanced Diagnosis, IRCCS Policlinico San Matteo, Pavia, Italy
| | - Alessandro M Vannucchi
- CRIMM; Center Research and Innovation of Myeloproliferative Neoplasms, AOUC, University of Florence, Florence, Italy
| | - Paola Guglielmelli
- CRIMM; Center Research and Innovation of Myeloproliferative Neoplasms, AOUC, University of Florence, Florence, Italy
| | - Maria Mazzarini
- Biomedical and Neuromotor Sciences, Alma Mater University Bologna, Bologna, Italy
| | - Giovanni Barosi
- Center for the Study of Myelofibrosis, Laboratory of Biochemistry Biotechnology and Advanced Diagnosis, IRCCS Policlinico San Matteo, Pavia, Italy
| | - Maria Luisa Genova
- Biomedical and Neuromotor Sciences, Alma Mater University Bologna, Bologna, Italy
| | - Anna Rita Migliaccio
- Biomedical and Neuromotor Sciences, Alma Mater University Bologna, Bologna, Italy.,Myeloproliferative Neoplasm-Research Consortium, New York, NY, United States
| |
Collapse
|
28
|
Kawai T, Kayama K, Tatsumi S, Akter S, Miyawaki N, Okochi Y, Abe M, Sakimura K, Yamamoto H, Kihara S, Okamura Y. Regulation of hepatic oxidative stress by voltage-gated proton channels (Hv1/VSOP) in Kupffer cells and its potential relationship with glucose metabolism. FASEB J 2020; 34:15805-15821. [PMID: 33040408 DOI: 10.1096/fj.202001056rrr] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/01/2020] [Accepted: 09/04/2020] [Indexed: 01/20/2023]
Abstract
Voltage-gated proton channels (Hv1/VSOP), encoded by Hvcn1, are important regulator of reactive oxygen species (ROS) production in many types of immune cells. While in vitro studies indicate that Hv1/VSOP regulates ROS production by maintaining pH homeostasis, there are few studies investigating the functional importance of Hv1/VSOP in vivo. In the present study, we first show that Hv1/VSOP is functionally expressed in liver resident macrophage, Kupffer cells, regulating the hepatic oxidative stress in vivo. Our immunocytochemistry and electrophysiology data showed that Hvcn1 is specifically expressed in Kupffer cells, but not in hepatocytes. Furthermore, Hvcn1-deficiency drastically altered the hepatic oxidative stress. The Hvcn1-deficient mice showed high blood glucose and serum insulin but normal insulin sensitivity, indicating that these phenotypes were not linked to insulin resistance. Transcriptome analysis indicated that the gene expression of glycogen phosphorylase (Pygl) and Glucose-6-phosphatase, catalytic subunit (G6pc) were upregulated in Hvcn1-deficient liver tissues, and quantitative PCR confirmed the result for Pygl. Furthermore, we observed higher amount of glucose-6-phosphate, a key sugar intermediate for glucose in Hvcn1-deficient liver than WT, suggesting that glucose production in liver is accelerated in Hvcn1-deficient mice. The present study sheds light on the functional importance of Kupffer cells in hepatic oxidative stress and its potential relationship with glucose metabolism.
Collapse
Affiliation(s)
- Takafumi Kawai
- Integrative Physiology, Graduate School of Medicine & Frontier Biosciences, Osaka University, Suita, Japan
| | - Kento Kayama
- Integrative Physiology, Graduate School of Medicine & Frontier Biosciences, Osaka University, Suita, Japan.,Department of Biomedical Informatics, Division of Health Sciences, Osaka University Graduate School of Medicine, Suita, Japan
| | - Shoki Tatsumi
- Integrative Physiology, Graduate School of Medicine & Frontier Biosciences, Osaka University, Suita, Japan.,Department of Biomedical Informatics, Division of Health Sciences, Osaka University Graduate School of Medicine, Suita, Japan
| | - Sharmin Akter
- Integrative Physiology, Graduate School of Medicine & Frontier Biosciences, Osaka University, Suita, Japan
| | - Nana Miyawaki
- Integrative Physiology, Graduate School of Medicine & Frontier Biosciences, Osaka University, Suita, Japan
| | - Yoshifumi Okochi
- Integrative Physiology, Graduate School of Medicine & Frontier Biosciences, Osaka University, Suita, Japan
| | - Manabu Abe
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Hiroyasu Yamamoto
- Department of Biomedical Informatics, Division of Health Sciences, Osaka University Graduate School of Medicine, Suita, Japan
| | - Shinji Kihara
- Department of Biomedical Informatics, Division of Health Sciences, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yasushi Okamura
- Integrative Physiology, Graduate School of Medicine & Frontier Biosciences, Osaka University, Suita, Japan
| |
Collapse
|
29
|
Barber GC, Chong BF. SnapshotDx Quiz: October 2020. J Invest Dermatol 2020. [DOI: 10.1016/j.jid.2020.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Lu SQ, Feng JY, Liu J, Xie XB, Lu Y, Abuduxikuer K. Glycogen storage disease type VI can progress to cirrhosis: ten Chinese patients with GSD VI and a literature review. J Pediatr Endocrinol Metab 2020; 33:1321-1333. [PMID: 32892177 DOI: 10.1515/jpem-2020-0173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 05/30/2020] [Indexed: 02/07/2023]
Abstract
Objectives The aim of our study is to systematically describe the genotypic and phenotypic spectrum of Glycogen storage disease type VI (GSD VI), especially in Chinses population. Methods We retrospectively analyzed ten Chinese children diagnosed as having GSD VI confirmed by next generation sequencing in Children's Hospital of Fudan University and Jinshan Hospital of Fudan University. We described the genotypic and phenotypic spectrum of GSD VI through the clinical and genetic data we collected. Moreover, we conducted a literature review, and we compared the genotypic and phenotypic spectrum of GSD VI between Chinese population and non Chinese population. Results For the first time, we found that four Chinese patients showed cirrhosis in liver biopsy characterized by the formation of regenerative nodules. In addition, c.772+1G>A and c.1900G>C, p.(Asp634His) were recurrent in three Chinese families and four European families respectively indicating that the genotypic spectrum of PYGL gene may vary among the population. Furthermore, we identified seven novel variants in PYGL gene. Conclusions Our study enriched the genotypic and phenotypic spectrum of GSD VI, and provided a new clue for management of GSD VI.
Collapse
Affiliation(s)
- Shi-Qi Lu
- The Center for Liver Diseases, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Jia-Yan Feng
- The Department of Pathology, Children's Hospital of Fudan University, Shanghai, China
| | - Jie Liu
- The Department of Pediatrics, Jinshan Hospital of Fudan University, Shanghai, China
| | - Xin-Bao Xie
- The Center for Liver Diseases, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Yi Lu
- The Center for Liver Diseases, Children's Hospital of Fudan University, Shanghai 201102, China
| | | |
Collapse
|
31
|
Luo X, Hu J, Gao X, Fan Y, Sun Y, Gu X, Qiu W. Novel PYGL mutations in Chinese children leading to glycogen storage disease type VI: two case reports. BMC MEDICAL GENETICS 2020; 21:74. [PMID: 32268899 PMCID: PMC7140494 DOI: 10.1186/s12881-020-01010-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 03/24/2020] [Indexed: 12/02/2022]
Abstract
Background PYGL mutations can cause liver phosphorylase deficiency, resulting in a glycogenolysis disorder, namely, glycogen storage disease (GSD) VI. The disease is rarely reported in the Chinese population. GSD VI is mainly characterized in untreated children by hepatomegaly, growth retardation and elevated liver transaminases. Case presentation In this study, we report two GSD VI patients with growth retardation and abnormal liver function. There was no obvious hepatomegaly for one of them. Whole exome sequencing (WES) combined with copy number variation analysis was performed. We found a novel homozygous gross deletion, c.1621-258_2178-23del, including exons 14–17 of PYGL in patient 1. The exons 14–17 deletion of PYGL resulted in an in-frame deletion of 186 amino acids. Compound heterozygous mutations of PYGL were identified in patient 2, including a novel missense mutation c.1832C > T/p.A611V and a recurrent nonsense mutation c.280C > T/p.R94X. After treatment with uncooked cornstarch (UCS) 8 months for patient 1 and 13 months for patient 2, the liver transaminases of both patients decreased to a normal range and their stature was improved. However, patient 1 still showed mild hypertriglyceridemia. Conclusions We describe two GSD VI patients and expand the spectrum of PYGL mutations. Patient 1 in this study is the first GSD VI case that showed increased transaminases without obvious hepatomegaly due to a novel homozygous gross deletion of PYGL identified through WES.
Collapse
Affiliation(s)
- Xiaomei Luo
- Department of Pediatric Endocrinology/Genetics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.,Shanghai Institute for Pediatric Research, Shanghai, 200092, China
| | - Jiacheng Hu
- Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xueren Gao
- Department of Pediatric Endocrinology/Genetics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.,Shanghai Institute for Pediatric Research, Shanghai, 200092, China
| | - Yanjie Fan
- Department of Pediatric Endocrinology/Genetics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.,Shanghai Institute for Pediatric Research, Shanghai, 200092, China
| | - Yu Sun
- Department of Pediatric Endocrinology/Genetics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.,Shanghai Institute for Pediatric Research, Shanghai, 200092, China
| | - Xuefan Gu
- Department of Pediatric Endocrinology/Genetics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.,Shanghai Institute for Pediatric Research, Shanghai, 200092, China
| | - Wenjuan Qiu
- Department of Pediatric Endocrinology/Genetics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China. .,Shanghai Institute for Pediatric Research, Shanghai, 200092, China.
| |
Collapse
|
32
|
Ying S, Zhihua Z, Yucan Z, Yu J, Qian L, Bixia Z, Weixia C, Zhifeng L. Molecular Diagnosis of Panel-Based Next-Generation Sequencing Approach and Clinical Symptoms in Patients With Glycogen Storage Disease: A Single Center Retrospective Study. Front Pediatr 2020; 8:600446. [PMID: 33344388 PMCID: PMC7744419 DOI: 10.3389/fped.2020.600446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 11/05/2020] [Indexed: 01/01/2023] Open
Abstract
Aim: The aim of this study was to investigate the clinical utility of panel-based next-generation sequencing (NGS) in the diagnostic approach of glycogen storage disease (GSD). Methods: We performed a retrospective review of the 32 cases with suspected GSDs between April 2013 and November 2019 through panel-based NGS, clinical and biochemical data and long-term complications. Results: Of the 32 clinical cases, we identified 41 different variants, including 24 missense (58.5%), one synonymous (2.4%), three nonsense (8%), one splice (2.4%), four frameshift (9.8%), one deletion (2.4%), four insertions (9.8%), two deletion-insertion (4.9%) and one duplication(2.4%), of which 13(31.7%) were previously unreported in the literature. In addition, patients with different types of GSDs showed important differences in biochemical parameters (i.e., CK, rGGT, TG, and UA). Conclusions: The panel-based NGS played an important diagnostic role in the suspicious GSDs patients, especially in the mild phenotype and ruled out detectable pathologic conditions. Besides, differences between our GSDs patients reflect biochemical heterogeneity.
Collapse
Affiliation(s)
- Shen Ying
- Department of Gastroenterology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Zhang Zhihua
- Department of Gastroenterology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Zheng Yucan
- Department of Gastroenterology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jin Yu
- Department of Gastroenterology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Lin Qian
- Department of Gastroenterology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Zheng Bixia
- Department of Gastroenterology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Cheng Weixia
- Department of Gastroenterology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Liu Zhifeng
- Department of Gastroenterology, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|