1
|
Abad-Jordà L, Martínez-Alcocer A, Guixé-Muntet S, Hunt NJ, Westwood LJ, Lozano JJ, Gallego-Durán R, Cogger VC, Fernández-Iglesias A, Gracia-Sancho J. miR-27b-3p modulates liver sinusoidal endothelium dedifferentiation in chronic liver disease. Hepatol Commun 2025; 9:e0700. [PMID: 40304581 PMCID: PMC12045533 DOI: 10.1097/hc9.0000000000000700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/19/2025] [Indexed: 05/02/2025] Open
Abstract
BACKGROUND During chronic liver diseases, LSECs undergo a dedifferentiation process contributing to the development of hepatic microvascular dysfunction. Although microRNAs (miRNAs) have been associated with chronic liver disease, their role as modulators of liver endothelial phenotype is mostly unknown. Therefore, the aim of this study was to analyze miRNAs as regulators of hepatic sinusoidal endothelial dysfunction in chronic liver disease to suggest novel and translatable therapeutic options for cirrhosis. METHODS Global expression of miRNAs was determined in primary LSECs from healthy and cirrhotic patients (alcohol abuse) and rats (CCl4 inhalation). LSECs were transfected with the mimetic or inhibitor of dysregulated miRNAs or with quantum dot nano-complexes containing miR-27b-3p or negative control, and endothelial phenotype was analyzed by RNA sequencing, quantitative PCR, and western blot. Endothelial or mesenchymal phenotypes were analyzed in LSEC by RNA sequencing, followed by pathway analyses and gene deconvolution. RESULTS In all, 30 and 69 dysregulated miRNAs were identified in human and rat cirrhosis, respectively, of which 6 miRNAs were commonly dysregulated. Specific exogenous downregulation of miR-27b-3p was associated with the upregulation of target genes, suggesting a correlation between loss of miR-27b-3p and LSEC dedifferentiation. Finally, the expression of miR-27b-3p was efficiently and physiologically re-established in cirrhotic LSECs using nano-miR-27b-3p, leading to modulation of 1055 genes compared with the negative control, ultimately leading to inhibition of the endothelial-to-mesenchymal transition process observed in cirrhosis. CONCLUSIONS Loss of miR-27b-3p expression contributes to LSECs dedifferentiation in cirrhosis. The use of nano-miR-27b-3p represents a new therapeutic option for hepatic diseases coursing with endothelial dysfunction.
Collapse
Affiliation(s)
- Laia Abad-Jordà
- Liver Vascular Biology Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Ana Martínez-Alcocer
- Liver Vascular Biology Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Sergi Guixé-Muntet
- Liver Vascular Biology Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Nicholas J. Hunt
- ANZAC Research Institute & Centre for Education and Research on Ageing, Concord Repatriation General Hospital, Concord, New South Wales, Australia
- Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Camperdown, New South Wales, Australia
| | - Lara J. Westwood
- ANZAC Research Institute & Centre for Education and Research on Ageing, Concord Repatriation General Hospital, Concord, New South Wales, Australia
- Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Camperdown, New South Wales, Australia
| | - Juan José Lozano
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Rocío Gallego-Durán
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
- SeLiver Group, Instituto de Biomedicina de Sevilla/CSIC/Hospital Virgen del Rocío, Sevilla, Spain
| | - Victoria C. Cogger
- ANZAC Research Institute & Centre for Education and Research on Ageing, Concord Repatriation General Hospital, Concord, New South Wales, Australia
- Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Camperdown, New South Wales, Australia
| | - Anabel Fernández-Iglesias
- Liver Vascular Biology Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Jordi Gracia-Sancho
- Liver Vascular Biology Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
2
|
Wang C, Felli E, Fallowfield JA, Dietrich CF, Rockey D, Hennig J, Teng GJ, Gracia-Sancho J, Qi X. Vasomics of the liver. Gut 2025:gutjnl-2024-334133. [PMID: 40044498 DOI: 10.1136/gutjnl-2024-334133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/07/2025] [Indexed: 03/09/2025]
Abstract
Chronic liver disease is a cluster of disorders associated with complex haemodynamic alterations, which is characterised by structural and functional disruptions of the intrahepatic and extrahepatic vasculature. 'Vasomics' is an emerging omics discipline that comprehensively analyses and models the vascular system by integrating pathophysiology of disease, biomechanics, medical imaging, computational science and artificial intelligence. Vasomics is further typified by its multidimensional, multiscale and high-throughput nature, which depends on the rapid and robust extraction of well-defined vascular phenotypes with clear clinical and/or biological interpretability. By leveraging multimodality medical imaging techniques, vascular functional assessments, pathological image evaluation, and related computational methods, integrated vasomics provides a deeper understanding of the associations between the vascular system and disease. This in turn reveals the crucial role of the vascular system in disease occurrence, progression and treatment responses, thereby supporting precision medicine approaches. Pathological vascular features have already demonstrated their key role in different clinical scenarios. Despite this, vasomics is yet to be widely recognised. Therefore, we furnished a comprehensive definition of vasomics providing a classification of existing hepatic vascular phenotypes into the following categories: anatomical, biomechanical, biochemical, pathophysiological and composite.
Collapse
Affiliation(s)
- Chengyan Wang
- State Key Laboratory of Digital Medical Engineering, Department of Radiology, Zhongda Hospital, Southeast University, Nanjing, China
- Shanghai Pudong Hospital and Human Phenome Institute, Fudan University, Shanghai, China
| | - Eric Felli
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, Visceral Surgery and Medicine, University of Bern, Bern, Switzerland
| | | | | | - Don Rockey
- Digestive Disease Research Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Jürgen Hennig
- Department of Radiology, Medical Center, University of Freiburg, Freiburg im Breisgau, Baden-Württemberg, Germany
| | - Gao-Jun Teng
- Center of Interventional Radiology and Vascular Surgery, Department of Radiology, Zhongda Hospital, Southeast University, Nanjing, China
- Liver Disease Center of Integrated Traditional Chinese and Western Medicine, Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Nanjing, China
| | - Jordi Gracia-Sancho
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Liver Vascular Biology Lab, Liver Unit IDIBAPS, Hospital Clínic Barcelona-CIBEREHD, Barcelona, Spain
| | - Xiaolong Qi
- State Key Laboratory of Digital Medical Engineering, Department of Radiology, Zhongda Hospital, Southeast University, Nanjing, China
- Liver Disease Center of Integrated Traditional Chinese and Western Medicine, Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Nanjing, China
| |
Collapse
|
3
|
Gibert-Ramos A, Andrés-Rozas M, Pastó R, Alfaro-Retamero P, Guixé-Muntet S, Gracia-Sancho J. Sinusoidal communication in chronic liver disease. Clin Mol Hepatol 2025; 31:32-55. [PMID: 39355871 PMCID: PMC11791556 DOI: 10.3350/cmh.2024.0734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/24/2024] [Accepted: 10/02/2024] [Indexed: 10/03/2024] Open
Abstract
The liver sinusoid, mainly composed of liver sinusoidal endothelial cells, hepatic macrophages and hepatic stellate cells, shapes the hepatic vasculature and is key to maintaining liver homeostasis and function. During chronic liver disease (CLD), the function of sinusoidal cells is impaired, being directly involved in the progression of liver fibrosis, cirrhosis, and main clinical complications including portal hypertension and hepatocellular carcinoma. In addition to their roles in liver diseases pathobiology, sinusoidal cells' paracrine communication or cross-talk is being studied as a mechanism of disease but also as a remarkable target for treatment. The aim of this review is to gather current knowledge of intercellular signalling in the hepatic sinusoid during the progression of liver disease. We summarise studies developed in pre-clinical models of CLD, especially emphasizing those pathways characterized in human-based clinically relevant models. Finally, we describe pharmacological treatments targeting sinusoidal communication as promising options to treat CLD and its clinical complications.
Collapse
Affiliation(s)
- Albert Gibert-Ramos
- Liver Vascular Biology Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - María Andrés-Rozas
- Liver Vascular Biology Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Raül Pastó
- Liver Vascular Biology Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Pablo Alfaro-Retamero
- Liver Vascular Biology Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Sergi Guixé-Muntet
- Liver Vascular Biology Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Jordi Gracia-Sancho
- Liver Vascular Biology Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
4
|
Lamas-Paz A, Hionides-Gutiérrez A, Guo F, Jorquera G, Morán-Blanco L, Benedé-Ubieto R, Mesquita M, Estévez-Vázquez O, Zheng K, Mazariegos M, Vázquez-Ogando E, Blázquez-López E, Asensio I, Mutlu B, Gomez-Santos B, Peligros MI, Vaquero J, Bañares R, Delgado TC, Martínez-Chantar ML, Martínez-Naves E, Sanz-García C, Mohamed MR, Tesolato S, Iniesta P, Gallego-Durán R, Maya-Miles D, Ampuero J, Romero-Gómez M, Martínez-Alcocer A, Sanfeliu-Redondo D, Fernández-Iglesias A, Gracia-Sancho J, Coll M, Graupera I, Ginès P, Ciudin A, Rivera-Esteban J, Pericàs JM, Ávila MA, Frutos MD, Martínez-Cáceres CM, Ramos-Molina B, Aspichueta P, Puigserver P, Nevzorova YA, Cubero FJ. Loss of Cdkn1a protects against MASLD alone or with alcohol intake by preserving lipid homeostasis. JHEP Rep 2025; 7:101230. [PMID: 39659733 PMCID: PMC11629569 DOI: 10.1016/j.jhepr.2024.101230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/14/2024] [Accepted: 10/01/2024] [Indexed: 12/12/2024] Open
Abstract
Background & Aims Expression of P21, encoded by the CDKN1A gene, has been associated with fibrosis progression in steatotic liver disease (SLD); however, the underlying mechanisms remain unknown. In the present study, we investigated the function of CDKN1A in SLD. Methods CDKN1A expression levels were evaluated in different patient cohorts with SLD, fibrosis, and advanced chronic liver disease (ACLD). Cdkn1a -/- and Cdkn1a +/+ mice were fed with either a Western diet (WD), a Lieber-DeCarli (LdC) diet plus multiple EtOH (ethanol) binges, or a DuAL diet (metabolic dysfunction-associated fatty liver disease and alcohol-related liver). Primary hepatocytes were isolated and functional assays performed. Results A significant increase in CDKN1A expression was observed in patients with steatohepatitis and fibrosis (with a positive correlation with both NAFLD Activity Score and fibrosis staging scores), cirrhosis and ACLD. Cdkn1a +/+ mice, fed a DuAL diet exhibited liver injury and cell death increased reactive oxygen species (ROS), and markers of senescence (γH2AX, β-GAL, Cdkn1a/p53) contributing to steatosis and inflammation. In contrast, Cdkn1a -/- mutant mice showed a significant decrease in senescence-associated markers as well as in markers of liver injury, hepatic steatosis and an increase in fatty acid oxidation and reduction in free fatty acid uptake as well as de novo lipogenesis. Mechanistically, activation of the AMPK-SIRT3 was observed in Cdkn1a-deleted animals. Conclusions Cdkn1a deletion protected against preclinical SLD by promoting fatty acid oxidation and preventing free fatty acid uptake and de novo lipogenesis via the AMPK-SIRT3 axis. CDKN1A expression was found to be directly correlated with increased severity of NAFLD Activity Score and fibrosis in patients with SLD. CDKN1A could be a potential theragnostic target for the treatment of metabolic dysregulation in patients with SLD, with and without alcohol consumption. Impact and implications Expression of p21, encoded by the CDKN1A gene, has been associated with fibrosis progression in steatotic liver disease (SLD), but the molecular mechanisms remain elusive. Interestingly, in this study we found that Cdkn1a deletion protected against preclinical SLD by promoting fatty acid oxidation and preventing free fatty acid uptake and de novo lipogenesis, via the AMPK-SIRT3 axis. Translationally, Cdkn1a expression was found to be directly correlated with increased severity of NAFLD Activity Score (NAS) and fibrosis in SLD patients, and therefore, CDKN1A might be used potential theragnostic target for the treatment of metabolically induced SLD, with and without alcohol consumption.
Collapse
Affiliation(s)
- Arantza Lamas-Paz
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | | | - Feifei Guo
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain
- Department of Obstetrics and Gynaecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Gonzalo Jorquera
- Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Santiago, Chile
- Physiology Institute, Science Faculty, Universidad de Valparaíso, Valparaíso, Chile
| | - Laura Morán-Blanco
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain
| | - Raquel Benedé-Ubieto
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain
| | - Mariana Mesquita
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain
- State University of Campinas, Campinas, Sao Paulo, Brazil
| | - Olga Estévez-Vázquez
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain
| | - Kang Zheng
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain
- Department of Anesthesiology, Nanjing Pukou District Hospital of Chinese Medicine Central Laboratory Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Marina Mazariegos
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain
| | - Elena Vázquez-Ogando
- Servicio de Aparato Digestivo, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Health Research Institute Gregorio Marañón (IiSGM), Madrid, Spain
- Centre for Biomedical Research, Network on Liver and Digestive Diseases (CIBEREHD), Madrid, Spain
| | - Elena Blázquez-López
- Servicio de Aparato Digestivo, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Health Research Institute Gregorio Marañón (IiSGM), Madrid, Spain
- Centre for Biomedical Research, Network on Liver and Digestive Diseases (CIBEREHD), Madrid, Spain
| | - Iris Asensio
- Servicio de Aparato Digestivo, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Health Research Institute Gregorio Marañón (IiSGM), Madrid, Spain
- Centre for Biomedical Research, Network on Liver and Digestive Diseases (CIBEREHD), Madrid, Spain
| | - Beste Mutlu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Beatriz Gomez-Santos
- Department of Physiology, Basque Country University (UPV/EHU) School of Medicine and Nursing, Bilbao, Spain
- Biobizkaia Health Institute, Barakaldo, Spain
| | - María Isabel Peligros
- Servicio de Anatomía Patológica Hospital General Universitario Gregorio Marañón Madrid, Spain
| | - Javier Vaquero
- Servicio de Aparato Digestivo, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Health Research Institute Gregorio Marañón (IiSGM), Madrid, Spain
- Centre for Biomedical Research, Network on Liver and Digestive Diseases (CIBEREHD), Madrid, Spain
| | - Rafael Bañares
- Servicio de Aparato Digestivo, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Health Research Institute Gregorio Marañón (IiSGM), Madrid, Spain
- Centre for Biomedical Research, Network on Liver and Digestive Diseases (CIBEREHD), Madrid, Spain
| | - Teresa C. Delgado
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - María Luz Martínez-Chantar
- Centre for Biomedical Research, Network on Liver and Digestive Diseases (CIBEREHD), Madrid, Spain
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Eduardo Martínez-Naves
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Carlos Sanz-García
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain
| | | | - Sofía Tesolato
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University, Madrid, Spain
- San Carlos Health Research Institute (IdISSC), Madrid, Spain
| | - Pilar Iniesta
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University, Madrid, Spain
- San Carlos Health Research Institute (IdISSC), Madrid, Spain
| | - Rocío Gallego-Durán
- Centre for Biomedical Research, Network on Liver and Digestive Diseases (CIBEREHD), Madrid, Spain
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Douglas Maya-Miles
- Centre for Biomedical Research, Network on Liver and Digestive Diseases (CIBEREHD), Madrid, Spain
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Javier Ampuero
- Centre for Biomedical Research, Network on Liver and Digestive Diseases (CIBEREHD), Madrid, Spain
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Manuel Romero-Gómez
- Centre for Biomedical Research, Network on Liver and Digestive Diseases (CIBEREHD), Madrid, Spain
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Ana Martínez-Alcocer
- Centre for Biomedical Research, Network on Liver and Digestive Diseases (CIBEREHD), Madrid, Spain
- Liver Vascular Biology, IDIBAPS Biomedical Research Institute, Barcelona, Spain
| | - David Sanfeliu-Redondo
- Centre for Biomedical Research, Network on Liver and Digestive Diseases (CIBEREHD), Madrid, Spain
- Liver Vascular Biology, IDIBAPS Biomedical Research Institute, Barcelona, Spain
| | - Anabel Fernández-Iglesias
- Centre for Biomedical Research, Network on Liver and Digestive Diseases (CIBEREHD), Madrid, Spain
- Liver Vascular Biology, IDIBAPS Biomedical Research Institute, Barcelona, Spain
| | - Jordi Gracia-Sancho
- Centre for Biomedical Research, Network on Liver and Digestive Diseases (CIBEREHD), Madrid, Spain
- Liver Vascular Biology, IDIBAPS Biomedical Research Institute, Barcelona, Spain
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Mar Coll
- Centre for Biomedical Research, Network on Liver and Digestive Diseases (CIBEREHD), Madrid, Spain
- Laboratorio de Plasticidad de Células Hepáticas y Reparación de Tejidos, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Isabel Graupera
- Centre for Biomedical Research, Network on Liver and Digestive Diseases (CIBEREHD), Madrid, Spain
- Laboratorio de Plasticidad de Células Hepáticas y Reparación de Tejidos, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Liver Unit, Hospital Clinic, Barcelona, Spain
| | - Pere Ginès
- Centre for Biomedical Research, Network on Liver and Digestive Diseases (CIBEREHD), Madrid, Spain
- Laboratorio de Plasticidad de Células Hepáticas y Reparación de Tejidos, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Liver Unit, Hospital Clinic, Barcelona, Spain
| | - Andrea Ciudin
- Endocrinology Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute for Research (VHIR), Barcelona, Spain
- Centre for Biomedical Research, Network on Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Jesús Rivera-Esteban
- Liver Unit, Vall d'Hebron University Hospital, Vall d'Hebron Institute for Research (VHIR), Barcelona, Spain
- Puerta de Hierro University Hospital, Instituto de Investigación Sanitaria Puerta de Hierro, Majadahonda, Madrid, Spain
| | - Juan M. Pericàs
- Centre for Biomedical Research, Network on Liver and Digestive Diseases (CIBEREHD), Madrid, Spain
- Liver Unit, Vall d'Hebron University Hospital, Vall d'Hebron Institute for Research (VHIR), Barcelona, Spain
| | - Matías A. Ávila
- Centre for Biomedical Research, Network on Liver and Digestive Diseases (CIBEREHD), Madrid, Spain
- Hepatology Laboratory, Solid Tumors Program, CIMA, University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Maria Dolores Frutos
- Department of General and Digestive System Surgery, Virgen de la Arrixaca University Hospital, Murcia, Spain
| | | | - Bruno Ramos-Molina
- Laboratorio de Obesidad y Metabolismo, Instituto de Investigación Biomédica de Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Patricia Aspichueta
- Centre for Biomedical Research, Network on Liver and Digestive Diseases (CIBEREHD), Madrid, Spain
- Department of Physiology, Basque Country University (UPV/EHU) School of Medicine and Nursing, Bilbao, Spain
- Biobizkaia Health Institute, Barakaldo, Spain
| | - Pere Puigserver
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Yulia A. Nevzorova
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain
- Health Research Institute Gregorio Marañón (IiSGM), Madrid, Spain
- Centre for Biomedical Research, Network on Liver and Digestive Diseases (CIBEREHD), Madrid, Spain
| | - Francisco Javier Cubero
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain
- Health Research Institute Gregorio Marañón (IiSGM), Madrid, Spain
- Centre for Biomedical Research, Network on Liver and Digestive Diseases (CIBEREHD), Madrid, Spain
| |
Collapse
|
5
|
Sánchez-Monteagudo A, Ripollés E, Murillo O, Domènech S, Álvarez-Sauco M, Girona E, Sastre-Bataller I, Bono A, García-Villarreal L, Tugores A, García-García F, González-Aseguinolaza G, Berenguer M, Espinós C. Profile of plasma microRNAs as a potential biomarker of Wilson's disease. J Gastroenterol 2024; 59:921-931. [PMID: 39060521 PMCID: PMC11415402 DOI: 10.1007/s00535-024-02135-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Wilson's disease (WD) is a rare condition resulting from autosomal recessive mutations in ATP7B, a copper transporter, manifesting with hepatic, neurological, and psychiatric symptoms. Timely diagnosis and appropriate treatment yield a positive prognosis, while delayed identification and/or insufficient therapy lead to a poor outcome. Our aim was to establish a prognostic method for WD by characterising biomarkers based on circulating microRNAs. METHODS We conducted investigations across three cohorts: discovery, validation (comprising unrelated patients), and follow-up (revisiting the discovery cohort 3 years later). All groups were compared to age- and gender-matched controls. Plasma microRNAs were analysed via RNA sequencing in the discovery cohort and subsequently validated using quantitative PCR in all three cohorts. To assess disease progression, we examined the microRNA profile in Atp7b-/- mice, analysing serum samples from 6 to 44 weeks of age and liver samples at three time points: 20, 30, and 40 weeks of age. RESULTS In patients, elevated levels of the signature microRNAs (miR-122-5p, miR-192-5p, and miR-885-5p) correlated with serum activities of aspartate transaminase, alanine aminotransferase and gamma-glutamyl transferase. In Atp7b-/- mice, levels of miR-122-5p and miR-192-5p (miR-885-5p lacking a murine orthologue) increased from 12 weeks of age in serum, while exhibiting fluctuations in the liver, possibly attributable to hepatocyte regenerative capacity post-injury and the release of hepatic microRNAs into the bloodstream. CONCLUSIONS The upregulation of the signature miR-122-5p, miR-192-5p, and miR-885-5p in patients and their correlation with liver disease progression in WD mice support their potential as biomarkers of WD.
Collapse
Affiliation(s)
- Ana Sánchez-Monteagudo
- Unit of Rare Neurodegenerative Diseases, Valencia Biomedical Research Foundation-Centro de Investigación Príncipe Felipe (CIPF), Calle Eduardo Primo Yúfera No. 13, 46012, Valencia, Spain
| | - Edna Ripollés
- Unit of Rare Neurodegenerative Diseases, Valencia Biomedical Research Foundation-Centro de Investigación Príncipe Felipe (CIPF), Calle Eduardo Primo Yúfera No. 13, 46012, Valencia, Spain
- Rare Diseases Joint Unit, CIPF-IIS La Fe, Valencia, Spain
| | - Oihana Murillo
- DNA@RNA Medicine Division, Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pamplona, Spain
| | - Sofia Domènech
- Unit of Rare Neurodegenerative Diseases, Valencia Biomedical Research Foundation-Centro de Investigación Príncipe Felipe (CIPF), Calle Eduardo Primo Yúfera No. 13, 46012, Valencia, Spain
- Rare Diseases Joint Unit, CIPF-IIS La Fe, Valencia, Spain
| | - María Álvarez-Sauco
- Department of Neurology, Hospital General Universitari d'Elx, Alicante, Spain
| | - Eva Girona
- Department of Internal Medicine, Hospital General Universitari d'Elx, Alicante, Spain
| | - Isabel Sastre-Bataller
- Rare Diseases Joint Unit, CIPF-IIS La Fe, Valencia, Spain
- Department of Neurology, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Ariadna Bono
- Rare Diseases Joint Unit, CIPF-IIS La Fe, Valencia, Spain
- Hepatology-Liver Transplantation Unit, Digestive Medicine Service, IIS La Fe and CIBER-EHD, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Luis García-Villarreal
- Research Unit, Complejo Hospitalario Universitario Insular Materno-Infantil, Las Palmas de Gran Canaria, Spain
| | - Antonio Tugores
- Research Unit, Complejo Hospitalario Universitario Insular Materno-Infantil, Las Palmas de Gran Canaria, Spain
| | - Francisco García-García
- Rare Diseases Joint Unit, CIPF-IIS La Fe, Valencia, Spain
- Unit of Bioinformatics and Biostatistics, Valencia Biomedical Research Foundation-Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - Gloria González-Aseguinolaza
- DNA@RNA Medicine Division, Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pamplona, Spain
- Vivet Therapeutics S.L., Pamplona, Spain
| | - Marina Berenguer
- Rare Diseases Joint Unit, CIPF-IIS La Fe, Valencia, Spain
- Hepatology-Liver Transplantation Unit, Digestive Medicine Service, IIS La Fe and CIBER-EHD, Hospital Universitari i Politècnic La Fe, Valencia, Spain
- Department of Medicine, Universitat de València, Valencia, Spain
| | - Carmen Espinós
- Unit of Rare Neurodegenerative Diseases, Valencia Biomedical Research Foundation-Centro de Investigación Príncipe Felipe (CIPF), Calle Eduardo Primo Yúfera No. 13, 46012, Valencia, Spain.
- Rare Diseases Joint Unit, CIPF-IIS La Fe, Valencia, Spain.
- Biotechnology Department, Universitat Politècnica de València, Valencia, Spain.
- Rare Diseases Networking Biomedical Research Centre (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| |
Collapse
|
6
|
Mushtaq I, Hsieh TH, Chen YC, Kao YH, Chen YJ. MicroRNA-452-5p regulates fibrogenesis via targeting TGF-β/SMAD4 axis in SCN5A-knockdown human cardiac fibroblasts. iScience 2024; 27:110084. [PMID: 38883840 PMCID: PMC11179076 DOI: 10.1016/j.isci.2024.110084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/20/2024] [Accepted: 05/20/2024] [Indexed: 06/18/2024] Open
Abstract
The mutated SCN5A gene encoding defective Nav1.5 protein causes arrhythmic ailments and is associated with enhanced cardiac fibrosis. This study investigated whether SCN5A mutation directly affects cardiac fibroblasts and explored how defective SCN5A relates to cardiac fibrosis. SCN5A knockdown (SCN5AKD) human cardiac fibroblasts (HCF) had higher collagen, α-SMA, and fibronectin expressions. Micro-RNA deep sequencing and qPCR analysis revealed the downregulation of miR-452-5p and bioinformatic analysis divulged maladaptive upregulation of transforming growth factor β (TGF-β) signaling in SCN5AKD HCF. Luciferase reporter assays validated miR-452-5p targets SMAD4 in SCN5AKD HCF. Moreover, miR-452-5p mimic transfection in SCN5AKD HCF or AAV9-mediated miR-452-5p delivery in isoproterenol-induced heart failure (HF) rats, resulted in the attenuation of TGF-β signaling and fibrogenesis. The exogenous miR-452-5p significantly improved the poor cardiac function in HF rats. In conclusion, miR-452-5p regulates cardiac fibrosis progression by targeting the TGF-β/SMAD4 axis under the loss of the SCN5A gene.
Collapse
Affiliation(s)
- Iqra Mushtaq
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tsung-Han Hsieh
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, Taiwan
| | - Yao-Chang Chen
- Department of Biomedical Engineering, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Hsun Kao
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yi-Jen Chen
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Cardiovascular Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
7
|
Zhang L, Dong X, Zhan Y, Ma S, Liu C, Gao Y. Expression profile of microRNAs in patients with decompensated cirrhosis by small RNA deep sequencing. Clin Biochem 2024; 123:110705. [PMID: 38159622 DOI: 10.1016/j.clinbiochem.2023.110705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/25/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
INTRODUCTION AND OBJECTIVE Decompensated cirrhosis (DCC) is a more advanced stage of liver cirrhosis (LC). It is important to identify biomarkers to predict DCC progression. The aim of this study was to analyze microRNA (miRNA) profiles of whole blood involved in the DCC process to gain a better understanding of the molecular mechanisms underlying its development. MATERIALS AND METHODS RNA-Seq analysis of blood samples from a discovery set, including four DCC patients and four LC individuals, was performed to identify differentially expressed miRNAs. The selected differentially expressed miRNAs were validated by using an independent validation set. RESULTS In this study, a total of 1,036 miRNAs were identified in whole blood samples. Forty differentially expressed miRNAs were identified, including 24 upregulated and 16 downregulated miRNAs. The expression levels of three upregulated miRNAs (hsa-miR-20b-5p, hsa-miR-421, and hsa-miR-1307-3p) and two downregulated miRNAs (hsa-miR-139-5p and hsa-miR-150-5p) were validated by quantitative reverse transcriptase polymerase chain reaction. The receiver operator characteristic curve for the logistic regression model based on hsa-miR-20b-5p, hsa-miR-421, and hsa-miR-150-5p could distinguish DCC patients with excellent diagnostic accuracy (area under the curve: 0.981, p < 0.01). CONCLUSION The miRNA expression profiles in patients with DCC and LC controls suggested that miR-20b-5p, miR-421, and miR-150-5p could be potential biomarkers and therapeutic targets for this condition.
Collapse
Affiliation(s)
- Li Zhang
- Department of Infectious Diseases, First Affiliated Hospital, Bengbu Medical College, Bengbu, China
| | - Xiang Dong
- Department of Biotechnology, School of Life Science, Bengbu Medical College, Bengbu, China; Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical College, Bengbu, China
| | - Yuling Zhan
- Department of Biotechnology, School of Life Science, Bengbu Medical College, Bengbu, China; Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical College, Bengbu, China
| | - Shasha Ma
- Department of Infectious Diseases, First Affiliated Hospital, Bengbu Medical College, Bengbu, China
| | - Chuanmiao Liu
- Department of Infectious Diseases, First Affiliated Hospital, Bengbu Medical College, Bengbu, China
| | - Yu Gao
- Department of Biotechnology, School of Life Science, Bengbu Medical College, Bengbu, China; Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China; Research Center for Laboratory Animal Science, Bengbu Medical College, Bengbu, China.
| |
Collapse
|
8
|
Chouik Y, Lebossé F, Plissonnier ML, Lega JC, Pradat P, Antonini T, Subic M, Hartig-Lavie K, Erard D, Villeret F, Guichon C, Payancé A, Radenne S, Rautou PE, Zoulim F, Levrero M. Circulating microRNAs improve bacterial infection diagnosis and overall survival prediction in acute decompensation of liver cirrhosis. iScience 2023; 26:107427. [PMID: 37575179 PMCID: PMC10415934 DOI: 10.1016/j.isci.2023.107427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/23/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023] Open
Abstract
Bacterial infections are the most frequent precipitating event in patients with acute decompensation of cirrhosis (AD) and are associated with high mortality. Early diagnosis is challenging due to cirrhosis-related systemic inflammation. Here we investigated the potential of circulating microRNAs to diagnose bacterial infections and predict survival in cirrhotic patients with AD. High throughput profiling of circulating microRNAs was performed using the Nanostring technology in 57 AD patients and 24 patients with compensated cirrhosis (CC). Circulating miRs profiling showed that: (a) miRs differentially detected in AD vs. CC were mostly down-regulated; (b) a composite score including absolute neutrophil count, C reactive protein and miR-362-3p could diagnose bacterial infection with an excellent performance (AUC of 0.825 [95% CI = 0.671-0.980; p < 0.001]); (c) a composite score including miR-382-5p, miR-592 and MELD-Na improved 6-month survival prediction. Circulating miRs are strongly dysregulated in patients with AD and may help to improve bacterial infection diagnosis and survival prediction.
Collapse
Affiliation(s)
- Yasmina Chouik
- Cancer Research Center of Lyon (CRCL), INSERM U1052, CNRS UMR5286, Lyon, France
- Department of Hepatology, Hôpital Croix-Rousse, Hospices Civils de Lyon, Lyon, France
- University of Lyon Claude Bernard 1 (UCLB1), Lyon, France
| | - Fanny Lebossé
- Cancer Research Center of Lyon (CRCL), INSERM U1052, CNRS UMR5286, Lyon, France
- Department of Hepatology, Hôpital Croix-Rousse, Hospices Civils de Lyon, Lyon, France
- University of Lyon Claude Bernard 1 (UCLB1), Lyon, France
| | | | - Jean-Christophe Lega
- Department of Internal Medicine, Hôpital Lyon Sud, Hospices Civils de Lyon, Lyon, France
| | - Pierre Pradat
- Clinical Research Center, GHN, Hospices Civils de Lyon, Lyon, France
| | - Teresa Antonini
- Department of Hepatology, Hôpital Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | | | - Kerstin Hartig-Lavie
- Department of Hepatology, Hôpital Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - Domitille Erard
- Department of Hepatology, Hôpital Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - François Villeret
- Department of Hepatology, Hôpital Croix-Rousse, Hospices Civils de Lyon, Lyon, France
- University of Lyon Claude Bernard 1 (UCLB1), Lyon, France
| | - Céline Guichon
- Department of Anesthesiology and Intensive Care, Hôpital Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - Audrey Payancé
- Université Paris-Cité, Inserm, Centre de recherche sur l’inflammation, UMR 1149, Paris, France
| | - Sylvie Radenne
- Department of Hepatology, Hôpital Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - Pierre-Emmanuel Rautou
- Université Paris-Cité, Inserm, Centre de recherche sur l’inflammation, UMR 1149, Paris, France
- Service d'Hépatologie, AP-HP, Hôpital Beaujon, DMU DIGEST, Centre de Référence des Maladies Vasculaires du Foie, FILFOIE, ERN RARE-LIVER, Clichy, France
| | - Fabien Zoulim
- Cancer Research Center of Lyon (CRCL), INSERM U1052, CNRS UMR5286, Lyon, France
- Department of Hepatology, Hôpital Croix-Rousse, Hospices Civils de Lyon, Lyon, France
- University of Lyon Claude Bernard 1 (UCLB1), Lyon, France
| | - Massimo Levrero
- Cancer Research Center of Lyon (CRCL), INSERM U1052, CNRS UMR5286, Lyon, France
- Department of Hepatology, Hôpital Croix-Rousse, Hospices Civils de Lyon, Lyon, France
- University of Lyon Claude Bernard 1 (UCLB1), Lyon, France
- Department of Medicine SCIAC and the Italian Institute of Technology (IIT) Center for Life Nanosciences (CLNS), University of Rome La Sapienza, Rome, Italy
| |
Collapse
|
9
|
Zheng K, Hao F, Medrano-Garcia S, Chen C, Guo F, Morán-Blanco L, Rodríguez-Perales S, Torres-Ruiz R, Peligros MI, Vaquero J, Bañares R, Gómez Del Moral M, Regueiro JR, Martínez-Naves E, Mohamed MR, Gallego-Durán R, Maya D, Ampuero J, Romero-Gómez M, Gilbert-Ramos A, Guixé-Muntet S, Fernández-Iglesias A, Gracia-Sancho J, Coll M, Graupera I, Ginès P, Ciudin A, Rivera-Esteban J, Pericàs JM, Frutos MD, Ramos Molina B, Herranz JM, Ávila MA, Nevzorova YA, Fernández-Malavé E, Cubero FJ. Neuroblastoma RAS viral oncogene homolog (N-RAS) deficiency aggravates liver injury and fibrosis. Cell Death Dis 2023; 14:514. [PMID: 37563155 PMCID: PMC10415403 DOI: 10.1038/s41419-023-06029-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/18/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023]
Abstract
Progressive hepatic damage and fibrosis are major features of chronic liver diseases of different etiology, yet the underlying molecular mechanisms remain to be fully defined. N-RAS, a member of the RAS family of small guanine nucleotide-binding proteins also encompassing the highly homologous H-RAS and K-RAS isoforms, was previously reported to modulate cell death and renal fibrosis; however, its role in liver damage and fibrogenesis remains unknown. Here, we approached this question by using N-RAS deficient (N-RAS-/-) mice and two experimental models of liver injury and fibrosis, namely carbon tetrachloride (CCl4) intoxication and bile duct ligation (BDL). In wild-type (N-RAS+/+) mice both hepatotoxic procedures augmented N-RAS expression in the liver. Compared to N-RAS+/+ counterparts, N-RAS-/- mice subjected to either CCl4 or BDL showed exacerbated liver injury and fibrosis, which was associated with enhanced hepatic stellate cell (HSC) activation and leukocyte infiltration in the damaged liver. At the molecular level, after CCl4 or BDL, N-RAS-/- livers exhibited augmented expression of necroptotic death markers along with JNK1/2 hyperactivation. In line with this, N-RAS ablation in a human hepatocytic cell line resulted in enhanced activation of JNK and necroptosis mediators in response to cell death stimuli. Of note, loss of hepatic N-RAS expression was characteristic of chronic liver disease patients with fibrosis. Collectively, our study unveils a novel role for N-RAS as a negative controller of the progression of liver injury and fibrogenesis, by critically downregulating signaling pathways leading to hepatocyte necroptosis. Furthermore, it suggests that N-RAS may be of potential clinical value as prognostic biomarker of progressive fibrotic liver damage, or as a novel therapeutic target for the treatment of chronic liver disease.
Collapse
Affiliation(s)
- Kang Zheng
- Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), Madrid, Spain
- Department of Anesthesiology, Nanjing Pukou District Hospital of Chinese Medicine Central Laboratory affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Fengjie Hao
- Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), Madrid, Spain
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Sandra Medrano-Garcia
- Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Chaobo Chen
- Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, Madrid, Spain
- Department of General Surgery, Wuxi Xishan People's Hospital, Wuxi, China
- Department of General Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Feifei Guo
- Department of Obstetrics and Gynaecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Laura Morán-Blanco
- Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, Madrid, Spain
| | - Sandra Rodríguez-Perales
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Raúl Torres-Ruiz
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - María Isabel Peligros
- Servicio de Anatomía Patológica Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Javier Vaquero
- Servicio de Aparato Digestivo, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Rafael Bañares
- Servicio de Aparato Digestivo, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Manuel Gómez Del Moral
- 12 de Octubre Health Research Institute (imas12), Madrid, Spain
- Department of Cell Biology, Complutense University School of Medicine, Madrid, Spain
| | - José R Regueiro
- Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Eduardo Martínez-Naves
- Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | | | - Rocío Gallego-Durán
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Instituto de Biomedicina de Sevilla/Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Sevilla, Spain
| | - Douglas Maya
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Instituto de Biomedicina de Sevilla/Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Sevilla, Spain
| | - Javier Ampuero
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Instituto de Biomedicina de Sevilla/Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Sevilla, Spain
| | - Manuel Romero-Gómez
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Instituto de Biomedicina de Sevilla/Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Sevilla, Spain
| | - Albert Gilbert-Ramos
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Liver Vascular Biology, IDIBAPS Biomedical Research Institute, Barcelona, Spain
| | - Sergi Guixé-Muntet
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Liver Vascular Biology, IDIBAPS Biomedical Research Institute, Barcelona, Spain
| | - Anabel Fernández-Iglesias
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Liver Vascular Biology, IDIBAPS Biomedical Research Institute, Barcelona, Spain
| | - Jordi Gracia-Sancho
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Liver Vascular Biology, IDIBAPS Biomedical Research Institute, Barcelona, Spain
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Mar Coll
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Laboratorio de Plasticidad de Células Hepáticas y Reparación de Tejidos, Institut d´Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Isabel Graupera
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Laboratorio de Plasticidad de Células Hepáticas y Reparación de Tejidos, Institut d´Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Liver Unit, Hospital Clinic, Barcelona, Spain
| | - Pere Ginès
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Liver Unit, Hospital Clinic, Barcelona, Spain
| | - Andreea Ciudin
- Endocrinology Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute for Research (VHIR), Barcelona, Spain
| | - Jesús Rivera-Esteban
- Liver Unit, Internal Medicine Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute for Research (VHIR), Barcelona, Spain
| | - Juan M Pericàs
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Liver Unit, Internal Medicine Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute for Research (VHIR), Barcelona, Spain
| | - María Dolores Frutos
- Department of General and Digestive System Surgery, Virgen de la Arrixaca University Hospital, Murcia, Spain
| | - Bruno Ramos Molina
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Laboratorio de Obesidad y Metabolismo, Instituto de Investigación Biomédica de Murcia (IMIB-Arrixaca), Murcia, Spain
| | - José María Herranz
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Hepatology Programme, Centre for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Matías A Ávila
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Hepatology Programme, Centre for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Yulia A Nevzorova
- Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Edgar Fernández-Malavé
- Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Francisco Javier Cubero
- Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, Madrid, Spain.
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain.
| |
Collapse
|
10
|
Xu L, Li Y, Ma W, Sun X, Fan R, Jin Y, Chen N, Zhu X, Guo H, Zhao K, Luo J, Li C, Zheng Y, Yu D. Diesel exhaust particles exposure induces liver dysfunction: Exploring predictive potential of human circulating microRNAs signature relevant to liver injury risk. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:132060. [PMID: 37454487 DOI: 10.1016/j.jhazmat.2023.132060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/30/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Diesel exhaust particles (DEP) pollution should be taken seriously because it is an extensive environmental and occupational health concern. Exploring early effect biomarkers is crucial for monitoring and managing DEP-associated health risk assessment. Here, we found that serum levels of 67 miRNAs were dysregulated in DEP exposure group. Notably, 20 miRNAs were identified as each having a significant dose-response relationship with the internal exposure level of DEP. Further, we revealed that the DEP exposure could affect the liver function of subjects and that 7 miRNAs (including the well-known liver injury indicator, miR-122-5p) could serve as the novel epigenetic-biomarkers (epi-biomarkers) to reflect the liver-specific response to the DEP exposure. Importantly, an unprecedented prediction model using these 7 miRNAs was established for the assessment of DEP-induced liver injury risk. Finally, bioinformatic analysis indicated that the unique set of miRNA panel in serum might also contribute to the molecular mechanism of DEP exposure-induced liver damage. These results broaden our understanding of the adverse health outcomes of DEP exposure. Noteworthy, we believe this study could shed light on roles and functions of epigenetic biomarkers from environmental exposure to health outcomes by revealing the full chain of exposure-miRNAs-molecular pathways-disease evidence.
Collapse
Affiliation(s)
- Lin Xu
- School of Public Health, Qingdao University, Qingdao, China
| | - Yanting Li
- School of Public Health, Qingdao University, Qingdao, China
| | - Wanli Ma
- School of Public Health, Qingdao University, Qingdao, China
| | - Xueying Sun
- School of Public Health, Qingdao University, Qingdao, China
| | - Rongrong Fan
- School of Public Health, Qingdao University, Qingdao, China
| | - Yuan Jin
- School of Public Health, Qingdao University, Qingdao, China
| | - Ningning Chen
- School of Public Health, Qingdao University, Qingdao, China
| | - Xiaoxiao Zhu
- School of Public Health, Qingdao University, Qingdao, China
| | - Huan Guo
- School of Public Health, Huazhong University of Science and Technology, Wuhan, China
| | - Kunming Zhao
- School of Public Health, Qingdao University, Qingdao, China
| | - Jiao Luo
- School of Public Health, Qingdao University, Qingdao, China
| | - Chuanhai Li
- School of Public Health, Qingdao University, Qingdao, China
| | - Yuxin Zheng
- School of Public Health, Qingdao University, Qingdao, China
| | - Dianke Yu
- School of Public Health, Qingdao University, Qingdao, China.
| |
Collapse
|
11
|
Liu M, Liu X, Pan M, Zhang Y, Tang X, Liu W, Zhao M, Ma J, Zhou N, Jiang Y, Wang W, Liu M. Characterization and microRNA Expression Analysis of Serum-Derived Extracellular Vesicles in Severe Liver Injury from Chronic HBV Infection. Life (Basel) 2023; 13:life13020347. [PMID: 36836704 PMCID: PMC9967308 DOI: 10.3390/life13020347] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Extracellular vesicle (EV) microRNAs have been documented in several studies to have significantly different expressions in hepatitis B virus (HBV)-related liver diseases, such as hepatocellular carcinoma (HCC). The current work aimed to observe the characteristics of EVs and EV miRNA expressions in patients with severe liver injury chronic hepatitis B (CHB) and patients with HBV-associated decompensated cirrhosis (DeCi). METHODS The characterization of the EVs in the serum was carried out for three different groups, namely, patients with severe liver injury-CHB, patients with DeCi, and healthy controls. EV miRNAs were analyzed using miRNA-seq and RT-qPCR arrays. Additionally, we assessed the predictive and observational values of the miRNAs with significant differential expressions in serum EVs. RESULTS Patients with severe liver injury-CHB had the highest EV concentrations when compared to the normal controls (NCs) and patients with DeCi (p < 0.001). The miRNA-seq of the NC and severe liver injury-CHB groups identified 268 differentially expressed miRNAs (|FC| > 2, p < 0.05). In this case, 15 miRNAs were verified using RT-qPCR, and it was found that novel-miR-172-5p and miR-1285-5p in the severe liver injury-CHB group showed marked downregulation in comparison to the NC group (p < 0.001). Furthermore, compared with the NC group, three EV miRNAs (novel-miR-172-5p, miR-1285-5p, and miR-335-5p) in the DeCi group showed various degrees of downregulated expression. However, when comparing the DeCi group with the severe liver injury-CHB group, only the expression of miR-335-5p in the DeCi group decreased significantly (p < 0.05). For the severe liver injury-CHB and DeCi groups, the addition of miR-335-5p improved the predictive accuracy of the serological levels, while miR-335-5p was significantly correlated with ALT, AST, AST/ALT, GGT, and AFP. Conclusions: The patients with severe liver injury-CHB had the highest number of EVs. The combination of novel-miR-172-5p and miR-1285-5p in serum EVs helped in predicting the progression of the NCs to severe liver injury-CHB, while the addition of EV miR-335-5p improved the serological accuracy of predicting the progression of severe liver injury-CHB to DeCi.
Collapse
Affiliation(s)
- Min Liu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| | - Xionghao Liu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
- Hunan Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410078, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha 410078, China
| | - Mengmeng Pan
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| | - Yu Zhang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| | - Xiangling Tang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| | - Wanxi Liu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| | - Mingri Zhao
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| | - Jing Ma
- Department of Infectious Disease, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Ning Zhou
- Department of Infectious Disease, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Yongfang Jiang
- Department of Infectious Disease, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Wenlong Wang
- Department of Infectious Disease, The Second Xiangya Hospital of Central South University, Changsha 410011, China
- Correspondence: (W.W.); (M.L.)
| | - Mujun Liu
- Hunan Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410078, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha 410078, China
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha 410013, China
- Correspondence: (W.W.); (M.L.)
| |
Collapse
|
12
|
Selvakumar SC, Auxzilia Preethi K, Veeraiyan DN, Sekar D. The role of microRNAs on the pathogenesis, diagnosis and management of portal hypertension in patients with chronic liver disease. Expert Rev Gastroenterol Hepatol 2022; 16:941-951. [PMID: 36315408 DOI: 10.1080/17474124.2022.2142562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 10/28/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Portal hypertension (PH) is the elevated pressure in the portal vein, which results in poor functioning of the liver and is influenced by various factors like liver cirrhosis, nonalcoholic fatty liver disease, schistosomiasis, thrombosis, and angiogenesis. Though the diagnosis and treatment have been advanced, early diagnosis of the disease remains a challenge, and the diagnosis methods are often invasive. Hence, the clear understanding of the molecular mechanisms of PH can give rise to the development of novel biomarkers which can pave way for early diagnosis in noninvasive methods, and also the identification of target genes can elucidate an efficient therapeutic target. AREAS COVERED PubMed and Embase database was used to search articles with search terms 'Portal Hypertension' or 'pathophysiology' and 'diagnosis' and 'treatment' or "role of miRNAs in portal hypertension. EXPERT OPINION Interestingly, biomarkers like microRNAs (miRNAs) have been studied for their potential role in various diseases including hypertension. In recent years, miRNAs have been proved to be an efficient biomarker and therapeutic target and few studies have assessed the roles of miRNAs in PH. The present paper highlights the potential roles of miRNAs in PH.
Collapse
Affiliation(s)
- Sushmaa Chandralekha Selvakumar
- Centre for Cellular and Molecular Research, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - K Auxzilia Preethi
- Centre for Cellular and Molecular Research, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Deepak Nallaswamy Veeraiyan
- Department of Prosthodontics, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Durairaj Sekar
- Centre for Cellular and Molecular Research, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences (SIMATS), Saveetha University, Chennai, India
| |
Collapse
|
13
|
Téllez L, Albillos A. Non-selective beta-blockers in patients with ascites: The complex interplay among the liver, kidney and heart. Liver Int 2022; 42:749-761. [PMID: 35051310 DOI: 10.1111/liv.15166] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/31/2021] [Accepted: 01/09/2022] [Indexed: 12/12/2022]
Abstract
Non-selective beta-blockers (NSBBs) are the cornerstone of the primary and secondary prophylaxis of variceal bleeding in cirrhotic patients. They additionally prevent ascites development and death in compensated patients with clinically significant portal hypertension. After ascites onset, NSBBs remain beneficial for preventing further decompensations. However, as the cirrhosis progresses, the inflammation increases, systemic vasodilatation worsens, ascites turns refractory and cardiodynamic equilibrium becomes extremely fragile. In this scenario, NSBBs can critically impair the cardiac reserve and facilitate a haemodynamic breakdown, imperilling renal perfusion. Consequently, NSBB treatment should be carefully monitored or even avoided in such patients, and other options for portal hypertension management should be considered. In the present review, we explore the effects of NSBBs in patients with ascites and discuss the complex interplay among their hepatic, systemic and renal haemodynamic effects in this scenario.
Collapse
Affiliation(s)
- Luis Téllez
- Department of Gastroenterology and Hepatology, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Universidad de Alcalá, Madrid, Spain
| | - Agustín Albillos
- Department of Gastroenterology and Hepatology, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Universidad de Alcalá, Madrid, Spain
| |
Collapse
|
14
|
Gallego-Durán R, Albillos A, Ampuero J, Arechederra M, Bañares R, Blas-García A, Berná G, Caparrós E, Delgado TC, Falcón-Pérez JM, Francés R, Fernández-Barrena MG, Graupera I, Iruzubieta P, Nevzorova YA, Nogueiras R, Macías RIR, Marín F, Sabio G, Soriano G, Vaquero J, Cubero FJ, Gracia-Sancho J. Metabolic-associated fatty liver disease: from simple steatosis towards liver cirrhosis and potential complications. Proceedings of the Third Translational Hepatology Meeting, endorsed by the Spanish Association for the Study of the Liver (AEEH). GASTROENTEROLOGIA Y HEPATOLOGIA 2022; 45:724-734. [PMID: 35248669 DOI: 10.1016/j.gastrohep.2022.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/21/2022] [Indexed: 11/28/2022]
|
15
|
Fang Q, Chen W, Jian Y, Li Y, Lian W, Wan H, Chen S, Li F, Chen Y. Serum Expression Level of MicroRNA-122 and Its Significance in Patients with Hepatitis B Virus Infection. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:8430276. [PMID: 35251580 PMCID: PMC8894023 DOI: 10.1155/2022/8430276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 01/26/2022] [Indexed: 12/18/2022]
Abstract
OBJECTIVES To analyze the expression of miR-122 and evaluate its significance in patients with HBV infection in different phases. METHODS Eleven chronic hepatitis B (CHB), 26 hepatitis B virus (HBV)-induced cirrhosis, 16 HBV-associated hepatocellular carcinoma (HCC) patients and 10 healthy control cases were enrolled. The serum levels of miR-122 were detected by RT-PCR and compared between healthy individuals and CHB at different stages. RESULTS Compared with healthy control cases, serum miR-122 levels were markedly increased in HBV infection cases (AUC = 0.795, P=0.002). In the CHB group, miR-122 levels were positively associated with albumin levels (P < 0.05) but had no significant associations with alanine aminotransferase (ALT) and aspartate aminotransferase (AST) (P > 0.05). In the cirrhosis group, miR-122 expression was remarkably lower in the Child C group in comparison with the Child A group (P=0.025). At the same time, miR-122 amounts had a negative correlation with HVPG (P < 0.05). In the HCC group, miR-122 amounts were negatively associated with alkaline phosphatase (AKP) and alpha-fetoprotein (AFP) (P < 0.05). Serum miR-122 amounts in 3 patients who died were lower than the survival group (5.520 ± 0.522 vs. 5.860 ± 1.183, P > 0.05). CONCLUSION Serum miR-122 can be leveraged to screen patients with HBV infection. In HBV sufferers, the serum miR-122 expression level is related to liver disease progression, hence making it an underlying molecular biomarker for predicting the development of CHB.
Collapse
Affiliation(s)
- Qingqing Fang
- Department of Gastroenterology, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Wei Chen
- Department of Gastroenterology, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Yourong Jian
- Department of Gastroenterology, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Yu Li
- Department of Gastroenterology, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Wei Lian
- Department of Gastroenterology, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Hongyu Wan
- Department of Gastroenterology, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Shiyao Chen
- Department of Gastroenterology, Minhang Hospital, Fudan University, Shanghai 201199, China
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Feng Li
- Department of Gastroenterology, Minhang Hospital, Fudan University, Shanghai 201199, China
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ying Chen
- Department of Gastroenterology, Minhang Hospital, Fudan University, Shanghai 201199, China
| |
Collapse
|
16
|
Garcia Garcia de Paredes A, Villanueva C, Blanco C, Genescà J, Manicardi N, Garcia-Pagan JC, Calleja JL, Aracil C, Morillas RM, Poca M, Peñas B, Augustin S, Abraldes JG, Alvarado E, Royo F, Garcia-Bermejo ML, Falcon-Perez JM, Bañares R, Bosch J, Gracia-Sancho J, Albillos A. Serum miR-181b-5p predicts ascites onset in patients with compensated cirrhosis. JHEP Rep 2021; 3:100368. [PMID: 34712934 PMCID: PMC8531668 DOI: 10.1016/j.jhepr.2021.100368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/19/2021] [Accepted: 09/08/2021] [Indexed: 11/30/2022] Open
Abstract
Background & Aims Treatment with non-selective beta-blockers (NSBBs) reduces the risk of ascites, which is the most common decompensating event in cirrhosis. This study aimed to assess the ability of a serum microRNA (miRNA) signature to predict ascites formation and the hemodynamic response to NSBBs in compensated cirrhosis. Methods Serum levels of miR-452-5p, miR-429, miR-885-5p, miR-181b-5p, and miR-122-5p were analyzed in patients with compensated cirrhosis (N = 105). Hepatic venous pressure gradient (HVPG) was measured at baseline, after intravenous propranolol, and 1 year after randomization to NSBBs (n = 52) or placebo (n = 53) (PREDESCI trial). miRNAs were analyzed at baseline and at 1 year. Results Nineteen patients (18%) developed ascites, of whom 17 developed ascites after 1 year. miR-181b-5p levels at 1 year, but not at baseline, were higher in patients that developed ascites. The AUC of miR-181b-5p at 1 year to predict ascites was 0.7 (95% CI 0.59–0.78). miR-429 levels were lower at baseline in acute HVPG responders to NSBBs (AUC 0.65; 95% CI, 0.53–0.76), but levels at baseline and at 1 year were not associated with the HVPG response to NSBBs at 1 year. Conclusions Serum miR-181b-5p is a promising non-invasive biomarker to identify patients with compensated cirrhosis at risk of ascites development. Lay summary Ascites marks the transition from the compensated to decompensated stage in cirrhosis and indicates a worsening in prognosis. There are currently no easily accessible tools to identify patients with compensated cirrhosis at risk of developing ascites. We evaluated the levels of novel molecules termed microRNAs in the blood of patients with compensated cirrhosis and observed that miR-181b-5p can predict which patients are going to develop ascites. miR-181b-5p appears to be a useful serum biomarker to anticipate ascites onset. Low serum miR-181b-5p indicates low risk of ascites in compensated cirrhosis. Low serum miR-429 reflects acute hemodynamic response to non-selective beta-blockers.
Collapse
Affiliation(s)
- Ana Garcia Garcia de Paredes
- Gastroenterology and Hepatology Department, Hospital Universitario Ramon y Cajal, Instituto Ramon y Cajal de Investigacion Sanitaria (IRYCIS), Universidad de Alcala, Madrid, Spain
| | - Càndid Villanueva
- Hospital of Santa Creu and Sant Pau, Autonomous University of Barcelona, Hospital Sant Pau Biomedical Research Institute (IIB Sant Pau) Barcelona, Spain.,Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Spain
| | - Carolina Blanco
- Biomarkers and Therapeutic Targets Group, Instituto Ramon y Cajal de Investigacion Sanitaria (IRYCIS), Madrid, Spain
| | - Joan Genescà
- Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Spain.,Liver Unit, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Research (VHIR), Vall d'Hebron Barcelona Hospital campus, Autonomous University of Barcelona, Barcelona, Spain
| | - Nicolo Manicardi
- Liver Vascular Biology Research Group, IDIBAPS Biomedical Research Institute, Barcelona, Spain
| | - Juan Carlos Garcia-Pagan
- Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Spain.,Barcelona Hepatic Haemodynamic Laboratory, Liver Unit, Institute of Digestive and Metabolic Diseases, August Pi i Sunyer Institute of Biomedical Research, Hospital Clínic, Barcelona, Spain
| | - Jose Luis Calleja
- Gastroenterology and Hepatology Department, Hospital Universitario Puerta de Hierro, Puerta de Hierro Hospital Research Institute, Autonomous University of Madrid, Madrid, Spain
| | - Carlos Aracil
- Institute of Biomedical Research, Arnau de Vilanova University Hospital (IRB Lleida), Lleida, Spain
| | - Rosa M Morillas
- Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Spain.,Liver Section, Hospital Universitari Germans Trias i Pujol, IGTP, Badalona, Spain.,Universitat Autònoma de Barcelona, Spain
| | - Maria Poca
- Hospital of Santa Creu and Sant Pau, Autonomous University of Barcelona, Hospital Sant Pau Biomedical Research Institute (IIB Sant Pau) Barcelona, Spain
| | - Beatriz Peñas
- Gastroenterology and Hepatology Department, Hospital Universitario Ramon y Cajal, Instituto Ramon y Cajal de Investigacion Sanitaria (IRYCIS), Universidad de Alcala, Madrid, Spain
| | - Salvador Augustin
- Liver Unit, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Research (VHIR), Vall d'Hebron Barcelona Hospital campus, Autonomous University of Barcelona, Barcelona, Spain
| | - Juan G Abraldes
- Barcelona Hepatic Haemodynamic Laboratory, Liver Unit, Institute of Digestive and Metabolic Diseases, August Pi i Sunyer Institute of Biomedical Research, Hospital Clínic, Barcelona, Spain.,Liver Unit, Division of Gastroenterology, University of Alberta, Edmonton, Canada
| | - Eldimar Alvarado
- Hospital of Santa Creu and Sant Pau, Autonomous University of Barcelona, Hospital Sant Pau Biomedical Research Institute (IIB Sant Pau) Barcelona, Spain
| | - Félix Royo
- Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Spain.,Exosomes Laboratory, Center for Cooperative Research in Biosciencies (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, 48160, Spain
| | - Maria Laura Garcia-Bermejo
- Biomarkers and Therapeutic Targets Group, Instituto Ramon y Cajal de Investigacion Sanitaria (IRYCIS), Madrid, Spain
| | - Juan Manuel Falcon-Perez
- Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Spain.,Exosomes Laboratory, Center for Cooperative Research in Biosciencies (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, 48160, Spain
| | - Rafael Bañares
- Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Spain.,Gastroenterology and Hepatology Department, Hospital Universitario Gregorio Marañon, Instituto de Investigacion Sanitaria Gregorio Marañon (IiSGM), Universidad Complutense de Madrid, Madrid, Spain
| | - Jaime Bosch
- Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Spain.,Barcelona Hepatic Haemodynamic Laboratory, Liver Unit, Institute of Digestive and Metabolic Diseases, August Pi i Sunyer Institute of Biomedical Research, Hospital Clínic, Barcelona, Spain.,Department of Biomedical Research and University Clinic for Visceral Medicine and Surgery, Inselspital, Bern, Switzerland
| | - Jordi Gracia-Sancho
- Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Spain.,Liver Vascular Biology Research Group, IDIBAPS Biomedical Research Institute, Barcelona, Spain
| | - Agustin Albillos
- Gastroenterology and Hepatology Department, Hospital Universitario Ramon y Cajal, Instituto Ramon y Cajal de Investigacion Sanitaria (IRYCIS), Universidad de Alcala, Madrid, Spain.,Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Spain
| |
Collapse
|
17
|
Su T, Hou J, Liu T, Dai P, Qin L, Ding L, Hu Y, Guo X. MiR-34a-5p and miR-452-5p: The Novel Regulators of Pancreatic Endocrine Dysfunction in Diabetic Zucker Rats? Int J Med Sci 2021; 18:3171-3181. [PMID: 34400887 PMCID: PMC8364455 DOI: 10.7150/ijms.62843] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/30/2021] [Indexed: 01/05/2023] Open
Abstract
Objective: The pancreatic endocrinal system dominates the regulation of blood glucose levels in vivo, and the dysfunction of pancreatic endocrine β-cells is a major cause of the occurrence and development of Type 2 diabetes (T2D). Although microRNA (miRNA) have been found to be key regulators of pancreatic β-cells proliferation, differentiation and apoptosis, the underlying mechanism remains enigmatic. The aim of this study was to identify several novel miRNAs which might be involved in the etiopathogenesis of diabetic β-cells dysfunction. Methods: The miRNA expression profiles in the pancreas of high-fat diet (HFD) fed Zucker diabetic fatty (ZDF) rats and Zucker lean (ZL) rats feed with normal-fat diet (NFD) were detected by using miRNA microarray chip, and individually verified the most significant factors by quantitative real-time polymerase chain reaction (qRT-PCR) assay. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were used to predict the target genes related to each of the identified miRNAs and the functions of these target genes in different metabolic signaling pathways. Results: Compared with the ZL rats, a total of 24 differentially expressed miRNAs were detected in ZDF rats. Among which miR-34a-5p and miR-452-5p were the most significantly up-regulated and down-regulated respectively. These miRNAs have not been reported in rats' pancreas before. By GO and KEGG enrichment analyses, we found that miR-34a-5p could negatively regulate pancreatic β-cell proliferation through the involvement of Wnt signaling pathway. In addition, it was also found to regulate insulin secretion through the insulin signaling pathway to modulate blood glucose levels. At the same time, miR-452-5p was found to positively regulate the activity of the key rate-limiting enzyme branched-chain α-keto acid dehydrogenase-β (BCKDHB) in the catabolism of branched chain amino acids (BCAA), leading to mitochondrial dysfunction in pancreatic β-cells. Conclusions: miR-34a-5p and miR-452-5p were identified as the novel regulators of pancreatic endocrine dysfunction. These miRNAs might have the potential to be utilized as the new predictive biomarkers for the diagnosis of the occurrence and development of T2D, as well as the therapeutic targets for T2D treatment.
Collapse
Affiliation(s)
- Tong Su
- Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, Beijing 100078, China
| | - Jiejun Hou
- Affiliated hospital of Shan'xi University of Chinese Medicine, Xianyang, Shanxi 712000, China
| | - Tonghua Liu
- Beijing University of Chinese Medicine, Beijing, Beijing 100029, China
| | - Pei Dai
- Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, Beijing 100078, China
| | - LingLing Qin
- Beijing University of Chinese Medicine, Beijing, Beijing 100029, China
| | - Lei Ding
- Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, Beijing 100078, China
| | - Yan Hu
- Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, Beijing 100078, China
| | - Xiangyu Guo
- Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, Beijing 100078, China
| |
Collapse
|