1
|
Puhakka E, Ahmed H, Haikonen R, Leclercq S, Hanhineva K, Maccioni L, Amadieu C, Lehtonen M, Männistö V, Rysä J, Stärkel P, Kärkkäinen O. Serum Metabolite Profile in Progressive Versus Nonprogressive Alcohol-Related Liver Disease: A Cross-Sectional Metabolomics Study. Liver Int 2025; 45:e70128. [PMID: 40358071 PMCID: PMC12070861 DOI: 10.1111/liv.70128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 04/22/2025] [Accepted: 04/26/2025] [Indexed: 05/15/2025]
Abstract
BACKGROUND AND AIMS Alcohol-related liver disease (ALD) is a major cause of mortality and disability-adjusted life years. It is not fully understood why a small proportion of patients develop progressive forms of ALD (e.g., fibrosis and cirrhosis). Differences in the metabolic processes could be behind the individual progression of ALD. Our aim was to examine differences in serum metabolome between patients with nonprogressive ALD and patients with an early form of progressive ALD. METHODS The study had three study groups: progressive ALD (alcohol-related steatohepatitis or early-stage fibrosis, n = 50), nonprogressive ALD (simple steatosis, n = 50) and healthy controls (n = 32). Both ALD groups took part in a voluntary alcohol rehabilitation programme. A nontargeted metabolomics analysis and targeted analysis of short-chain fatty acids were done to the serum samples taken on the day of admission. RESULTS We found 111 significantly (p < 0.0005) altered identified metabolites between the study groups. Our main finding was that levels of glycine-conjugated bile acids (Cohen's d = 0.90-0.91), glutamic acid (d = 1.01), 7-methylguanine (d = 0.77) and several phosphatidylcholines (d = 0.61-0.85) were elevated in the progressive ALD group in comparison to the nonprogressive ALD group. Glycine-conjugated bile acids, glutamic acid and 7-methylguanine also positively correlated with increased levels of aspartate aminotransferase, alanine aminotransferase, gamma-glutamyl transferase, cell death biomarker M65 and liver stiffness. CONCLUSIONS Our results indicate that the enterohepatic cycle of glycine-conjugated bile acids, as well as lipid and energy metabolism, is altered in early forms of progressive ALD. These metabolic processes could be a target for preventing the progression of ALD.
Collapse
Affiliation(s)
- Eemeli Puhakka
- School of PharmacyUniversity of Eastern FinlandKuopioFinland
| | - Hany Ahmed
- Food Sciences Unit, Department of Life TechnologiesUniversity of TurkuTurkuFinland
| | - Retu Haikonen
- Institute of Public Health and Clinical NutritionUniversity of Eastern FinlandKuopioFinland
| | - Sophie Leclercq
- Laboratory of Nutritional Psychiatry, Institute of Neuroscience, UCLouvainUniversité Catholique de LouvainBrusselsBelgium
| | - Kati Hanhineva
- Food Sciences Unit, Department of Life TechnologiesUniversity of TurkuTurkuFinland
- Institute of Public Health and Clinical NutritionUniversity of Eastern FinlandKuopioFinland
| | - Luca Maccioni
- National Institute of Alcohol Abuse and AlcoholismBethesdaMarylandUSA
| | | | - Marko Lehtonen
- School of PharmacyUniversity of Eastern FinlandKuopioFinland
| | - Ville Männistö
- Institute of Clinical MedicineUniversity of Eastern FinlandKuopioFinland
- Department of MedicineKuopio University HospitalKuopioFinland
| | - Jaana Rysä
- School of PharmacyUniversity of Eastern FinlandKuopioFinland
| | - Peter Stärkel
- Department of Hepato‐Gastro‐EnterologyCliniques Universitaires Saint LucBrusselsBelgium
- Laboratory of Hepato‐Gastroenterology, Institute de Recherche Expérimentale et CliniqueUniversité Catholique de LouvainBrusselsBelgium
| | - Olli Kärkkäinen
- School of PharmacyUniversity of Eastern FinlandKuopioFinland
| |
Collapse
|
2
|
Feng J, He L, Ma X, Yin X, Mueller EG, Zhou Z, Feng W, McClain CJ, Zhang X. Comparison of liver bile acid profiles in chronic alcohol feeding and NIAAA binge-on-chronic alcohol feeding mouse models. J Chromatogr B Analyt Technol Biomed Life Sci 2025; 1262:124650. [PMID: 40413821 DOI: 10.1016/j.jchromb.2025.124650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 05/09/2025] [Accepted: 05/13/2025] [Indexed: 05/27/2025]
Abstract
Alcohol-associated liver disease (ALD) is associated with disturbances in bile acid (BA) metabolism. Several mouse models have been established to mimic human ALD in the clinical setting for mechanistic investigations, and differences in BA metabolism between these models have not been systematically studied. We quantified BA alterations by liquid chromatography-mass spectrometry (LC-MS) in the livers of two widely used mouse models: the chronic Lieber-DeCarli ethanol diet (CLD) model and the National Institute on Alcohol Abuse and Alcoholism binge-on-chronic alcohol feeding (NIAAA) model, both of which aim to mimic the early stages of human ALD. Statistical analysis showed that total BA levels did not change significantly in either model. However, unconjugated BAs were elevated in both models, and glycol-conjugated BAs were significantly increased only in the NIAAA model. The deconjugation capacity of ursodeoxycholic acid (UDCA) and β-muricholic acid (β-MCA) was increased in the CLD model, whereas that of cholic acid (CA) and lithocholic acid (LCA) was increased in the NIAAA model. NIAAA mice showed increased FXR affinity, implying that the classical biosynthetic pathway of hepatic BAs was inhibited. In conclusion, although total BA levels remained unchanged in the early stages of ALD in both models, the BA composition was more altered in the NIAAA model than in the CLD model, suggesting that different ALD mouse models may exhibit divergent regulatory mechanisms for BA metabolism.
Collapse
Affiliation(s)
- Jing Feng
- Department of Chemistry, University of Louisville, Louisville, KY 40292, USA; Alcohol Research Center, University of Louisville, Louisville, KY 40202, USA; Hepatobiology & Toxicology COBRE, University of Louisville, Louisville, KY 40202, USA; Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, KY 40208, USA
| | - Liqing He
- Department of Chemistry, University of Louisville, Louisville, KY 40292, USA; Alcohol Research Center, University of Louisville, Louisville, KY 40202, USA; Hepatobiology & Toxicology COBRE, University of Louisville, Louisville, KY 40202, USA; Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, KY 40208, USA
| | - Xipeng Ma
- Department of Chemistry, University of Louisville, Louisville, KY 40292, USA; Alcohol Research Center, University of Louisville, Louisville, KY 40202, USA; Hepatobiology & Toxicology COBRE, University of Louisville, Louisville, KY 40202, USA; Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, KY 40208, USA
| | - Xinmin Yin
- Department of Chemistry, University of Louisville, Louisville, KY 40292, USA; Alcohol Research Center, University of Louisville, Louisville, KY 40202, USA; Hepatobiology & Toxicology COBRE, University of Louisville, Louisville, KY 40202, USA; Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, KY 40208, USA
| | - Eugene G Mueller
- Department of Chemistry, University of Louisville, Louisville, KY 40292, USA
| | - Zhanxiang Zhou
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, Greensboro, NC 27412, USA; Department of Nutrition, University of North Carolina at Greensboro, Greensboro, NC 27412, USA
| | - Wenke Feng
- Department of Structural & Cellular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Craig J McClain
- Alcohol Research Center, University of Louisville, Louisville, KY 40202, USA; Hepatobiology & Toxicology COBRE, University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY 40202, USA; Department of Medicine, University of Louisville, Louisville, KY 40202, USA; Robley Rex Louisville VAMC, Louisville, KY 40206, USA
| | - Xiang Zhang
- Department of Chemistry, University of Louisville, Louisville, KY 40292, USA; Alcohol Research Center, University of Louisville, Louisville, KY 40202, USA; Hepatobiology & Toxicology COBRE, University of Louisville, Louisville, KY 40202, USA; Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, KY 40208, USA; Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
3
|
Wu D, Lin Q, Hou S, Cui X, Shou N, Yuan X, Xu W, Fu K, Wang Q, Shi Z. Gut Microbiota and Its Metabolite Taurine- β-Muricholic Acid Contribute to Antimony- and/or Copper-Induced Liver Inflammation. Int J Mol Sci 2025; 26:3332. [PMID: 40244173 PMCID: PMC11989503 DOI: 10.3390/ijms26073332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Antimony and copper can contaminate vegetables and enter the human body through the digestive tract, inducing severe and extensive biotoxicity. However, the role of bile acids (BAs) in the pathogenesis of liver inflammation by antimony or copper has not been elucidated. Our results indicated that antimony and/or copper induced liver inflammation, causing the disruption of gut microbiota, with the down-regulation of probiotics and up-regulation of harmful bacteria closely correlated to liver inflammation. Targeted metabolomics of BAs showed that antimony and/or copper significantly up-regulated the levels of taurine-β-muricholic acid (T-β-MCA) in serum and liver, which was due to the reduction of Lactobacillus spp. A farnesoid X receptor (FXR) antagonist, T-β-MCA inhibited the FXR-SHP pathway in liver and FXR-FGF15 pathway in ileum, thereby promoting the transcription of cholesterol 7-alpha hydroxylase (CYP7A1) and increasing total bile acid concentrations, ultimately leading to liver inflammation. These findings provide new insights into the underlying mechanisms of antimony- and/or copper-induced liver inflammation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Zunji Shi
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China; (D.W.); (Q.L.); (S.H.); (X.C.); (N.S.); (X.Y.); (W.X.); (K.F.); (Q.W.)
| |
Collapse
|
4
|
Antony F, Brough Z, Orangi M, Al-Seragi M, Aoki H, Babu M, Duong van Hoa F. Sensitive Profiling of Mouse Liver Membrane Proteome Dysregulation Following a High-Fat and Alcohol Diet Treatment. Proteomics 2024; 24:e202300599. [PMID: 39313981 DOI: 10.1002/pmic.202300599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024]
Abstract
Alcohol consumption and high-fat (HF) diets often coincide in Western society, resulting in synergistic negative effects on liver function. Although studies have analyzed the global protein expression in the context of alcoholic liver disease (ALD) and metabolic dysfunction-associated steatotic liver disease (MASLD), none has offered specific insights on liver dysregulation at the membrane proteome level. Membrane-specific profiling of metabolic and compensatory phenomena is usually overshadowed in conventional proteomic workflows. In this study, we use the Peptidisc method to isolate and compare the membrane protein (MP) content of the liver with its unique biological functions. From mice fed with an HF diet and ethanol in drinking water, we annotate over 1500 liver proteins with half predicted to have at least one transmembrane segment. Among them, we identify 106 integral MPs that are dysregulated compared to the untreated sample. Gene Ontology analysis reveals several dysregulated membrane-associated processes like lipid metabolism, cell adhesion, xenobiotic processing, and mitochondrial membrane formation. Pathways related to cholesterol and bile acid transport are also mutually affected, suggesting an adaptive mechanism to counter the upcoming steatosis of the liver model. Taken together, our Peptidisc-based profiling of the diet-dysregulated liver provides specific insights and hypotheses into the role of the transmembrane proteome in disease development, and flags desirable MPs for therapeutic and diagnostic targeting.
Collapse
Affiliation(s)
- Frank Antony
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Zora Brough
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mona Orangi
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mohammed Al-Seragi
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hiroyuki Aoki
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| | - Mohan Babu
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| | - Franck Duong van Hoa
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
5
|
Guo W, Zhong W, He L, Wei X, Hao L, Dong H, Yue R, Sun X, Yin X, Zhao J, Zhang X, Zhou Z. Reversal of hepatic accumulation of nordeoxycholic acid underlines the beneficial effects of cholestyramine on alcohol-associated liver disease in mice. Hepatol Commun 2024; 8:e0507. [PMID: 39082957 DOI: 10.1097/hc9.0000000000000507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/31/2024] [Indexed: 08/30/2024] Open
Abstract
BACKGROUND Dysregulation of bile acids (BAs) has been reported in alcohol-associated liver disease. However, the causal relationship between BA dyshomeostasis and alcohol-associated liver disease remains unclear. The study aimed to determine whether correcting BA perturbation protects against alcohol-associated liver disease and elucidate the underlying mechanism. METHODS BA sequestrant cholestyramine (CTM) was administered to C57BL/6J mice fed alcohol for 8 weeks to assess its protective effect and explore potential BA targets. The causal relationship between identified BA metabolite and cellular damage was examined in hepatocytes, with further manipulation of the detoxifying enzyme cytochrome p450 3A11. The toxicity of the BA metabolite was further validated in mice in an acute study. RESULTS We found that CTM effectively reversed hepatic BA accumulation, leading to a reversal of alcohol-induced hepatic inflammation, cell death, endoplasmic reticulum stress, and autophagy dysfunction. Specifically, nordeoxycholic acid (NorDCA), a hydrophobic BA metabolite, was identified as predominantly upregulated by alcohol and reduced by CTM. Hepatic cytochrome p450 3A11 expression was in parallel with NorDCA levels, being upregulated by alcohol and reduced by CTM. Moreover, CTM reversed alcohol-induced gut barrier disruption and endotoxin translocation. Mechanistically, NorDCA was implicated in causing endoplasmic reticulum stress, suppressing autophagy flux, and inducing cell injury, and such deleterious effects could be mitigated by cytochrome p450 3A11 overexpression. Acute NorDCA administration in mice significantly induced hepatic inflammation and injury along with disrupting gut barrier integrity, leading to subsequent endotoxemia. CONCLUSIONS Our study demonstrated that CTM treatment effectively reversed alcohol-induced liver injury in mice. The beneficial effects of BA sequestrant involve lowering toxic NorDCA levels. NorDCA not only worsens hepatic endoplasmic reticulum stress and inhibits autophagy but also mediates gut barrier disruption and systemic translocation of pathogen-associated molecular patterns in mice.
Collapse
Affiliation(s)
- Wei Guo
- Center for Translational Biomedical Research
| | - Wei Zhong
- Center for Translational Biomedical Research
- Department of Nutrition, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, USA
| | - Liqing He
- Department of Chemistry, University of Louisville, Louisville, Kentucky, USA
| | - Xiaoyuan Wei
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, USA
| | - Liuyi Hao
- Center for Translational Biomedical Research
| | - Haibo Dong
- Center for Translational Biomedical Research
| | - Ruichao Yue
- Center for Translational Biomedical Research
| | - Xinguo Sun
- Center for Translational Biomedical Research
| | - Xinmin Yin
- Department of Chemistry, University of Louisville, Louisville, Kentucky, USA
| | - Jiangchao Zhao
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, USA
| | - Xiang Zhang
- Department of Chemistry, University of Louisville, Louisville, Kentucky, USA
| | - Zhanxiang Zhou
- Center for Translational Biomedical Research
- Department of Nutrition, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, USA
| |
Collapse
|
6
|
Wang Y, Xu H, Zhou X, Chen W, Zhou H. Dysregulated bile acid homeostasis: unveiling its role in metabolic diseases. MEDICAL REVIEW (2021) 2024; 4:262-283. [PMID: 39135605 PMCID: PMC11317083 DOI: 10.1515/mr-2024-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/13/2024] [Indexed: 08/15/2024]
Abstract
Maintaining bile acid homeostasis is essential for metabolic health. Bile acid homeostasis encompasses a complex interplay between biosynthesis, conjugation, secretion, and reabsorption. Beyond their vital role in digestion and absorption of lipid-soluble nutrients, bile acids are pivotal in systemic metabolic regulation. Recent studies have linked bile acid dysregulation to the pathogenesis of metabolic diseases, including obesity, type 2 diabetes mellitus (T2DM), and metabolic dysfunction-associated steatotic liver disease (MASLD). Bile acids are essential signaling molecules that regulate many critical biological processes, including lipid metabolism, energy expenditure, insulin sensitivity, and glucose metabolism. Disruption in bile acid homeostasis contributes to metabolic disease via altered bile acid feedback mechanisms, hormonal dysregulation, interactions with the gut microbiota, and changes in the expression and function of bile acid transporters and receptors. This review summarized the essential molecular pathways and regulatory mechanisms through which bile acid dysregulation contributes to the pathogenesis and progression of obesity, T2DM, and MASLD. We aim to underscore the significance of bile acids as potential diagnostic markers and therapeutic agents in the context of metabolic diseases, providing insights into their application in translational medicine.
Collapse
Affiliation(s)
- Yanyan Wang
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond Veterans Affairs Medical Center, Richmond, VA, USA
- School of Pharmaceutical Science, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Huangru Xu
- School of Life Science, Nanjing University, Nanjing, Jiangsu, China
| | - Xiqiao Zhou
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Weidong Chen
- School of Pharmaceutical Science, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Huiping Zhou
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond Veterans Affairs Medical Center, Richmond, VA, USA
| |
Collapse
|
7
|
Moczeniat G, Jankowski M, Duda-Zalewska A, Gujski M. A Cross-Sectional Survey to Identify Sociodemographic Factors Associated with the Frequency of Urinalysis in a Representative Sample of Adults in Poland, 2024. Healthcare (Basel) 2024; 12:1475. [PMID: 39120178 PMCID: PMC11311361 DOI: 10.3390/healthcare12151475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
A general urine test is considered one of the basic diagnostic tests using in healthcare. This study aimed to analyze sociodemographic factors associated with the frequency of urine testing in Poland. This cross-sectional survey was conducted using computer-assisted web interviewing (CAWI) between 1 March and 4 March 2024. A representative sample of 1113 adults in Poland (aged 18-86 years, 52.5% of whom were females) took part in the study. The survey showed that 46.3% of adults in Poland had a urinalysis in the last 12 months. One-fifth (20.7%) of the participants had a urinalysis more than a year ago but not more than 2 years ago. Moreover, 26.7% had a urinalysis performed 2-3 years ago. Among all participants, female gender (OR = 1.31 [1.01-1.68]; p < 0.05), being aged 70 years and over (OR = 2.22 [1.23-4.02]; p < 0.01), having children (OR = 1.45 [1.01-2.09]; p < 0.05), and having urologic diseases (OR = 2.34 [1.79-3.02]; p < 0.001) were significantly associated with having urinalysis in the last 12 months. Among respondents without urologic diseases, female gender (OR = 1.33 [1.02-1.74]; p < 0.05), being aged 60 years and over (p < 0.05), and being married (OR = 1.45 [1.09-1.94]; p < 0.05) were significantly associated with having a urinalysis in the last 12 months. There was no significant impact of educational level, occupational status, or financial situation on the frequency of urinalysis.
Collapse
Affiliation(s)
- Gabriela Moczeniat
- Department of Public Health, Medical University of Warsaw, 02-097 Warsaw, Poland
- Department of Urology, Mazovia Hospital Warsaw, 02-797 Warsaw, Poland
| | - Mateusz Jankowski
- School of Public Health, Centre of Postgraduate Medical Education, 01-826 Warsaw, Poland
| | - Aneta Duda-Zalewska
- Department of Public Health, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Mariusz Gujski
- Department of Public Health, Medical University of Warsaw, 02-097 Warsaw, Poland
| |
Collapse
|
8
|
Zhao J, Adiele N, Gomes D, Malovichko M, Conklin DJ, Ekuban A, Luo J, Gripshover T, Watson WH, Banerjee M, Smith ML, Rouchka EC, Xu R, Zhang X, Gondim DD, Cave MC, O’Toole TE. Obesogenic polystyrene microplastic exposures disrupt the gut-liver-adipose axis. Toxicol Sci 2024; 198:210-220. [PMID: 38291899 PMCID: PMC10964747 DOI: 10.1093/toxsci/kfae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
Microplastics (MP) derived from the weathering of polymers, or synthesized in this size range, have become widespread environmental contaminants and have found their way into water supplies and the food chain. Despite this awareness, little is known about the health consequences of MP ingestion. We have previously shown that the consumption of polystyrene (PS) beads was associated with intestinal dysbiosis and diabetes and obesity in mice. To further evaluate the systemic metabolic effects of PS on the gut-liver-adipose tissue axis, we supplied C57BL/6J mice with normal water or that containing 2 sizes of PS beads (0.5 and 5 µm) at a concentration of 1 µg/ml. After 13 weeks, we evaluated indices of metabolism and liver function. As observed previously, mice drinking the PS-containing water had a potentiated weight gain and adipose expansion. Here we found that this was associated with an increased abundance of adipose F4/80+ macrophages. These exposures did not cause nonalcoholic fatty liver disease but were associated with decreased liver:body weight ratios and an enrichment in hepatic farnesoid X receptor and liver X receptor signaling. PS also increased hepatic cholesterol and altered both hepatic and cecal bile acids. Mice consuming PS beads and treated with the berry anthocyanin, delphinidin, demonstrated an attenuated weight gain compared with those mice receiving a control intervention and also exhibited a downregulation of cyclic adenosine monophosphate (cAMP) and peroxisome proliferator-activated receptor (PPAR) signaling pathways. This study highlights the obesogenic role of PS in perturbing the gut-liver-adipose axis and altering nuclear receptor signaling and intermediary metabolism. Dietary interventions may limit the adverse metabolic effects of PS consumption.
Collapse
Affiliation(s)
- Jingjing Zhao
- Division of Environmental Medicine, Department of Medicine, School of Medicine, Christina Lee Brown Envirome Institute, University of Louisville, Louisville, Kentucky 40202, USA
- The Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, Kentucky 40202, USA
| | - Ngozi Adiele
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, Kentucky 40202, USA
| | - Daniel Gomes
- Division of Environmental Medicine, Department of Medicine, School of Medicine, Christina Lee Brown Envirome Institute, University of Louisville, Louisville, Kentucky 40202, USA
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, Kentucky 40202, USA
| | - Marina Malovichko
- Division of Environmental Medicine, Department of Medicine, School of Medicine, Christina Lee Brown Envirome Institute, University of Louisville, Louisville, Kentucky 40202, USA
- The Superfund Research Center, University of Louisville, Louisville, Kentucky 40202, USA
| | - Daniel J Conklin
- Division of Environmental Medicine, Department of Medicine, School of Medicine, Christina Lee Brown Envirome Institute, University of Louisville, Louisville, Kentucky 40202, USA
- The Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, Kentucky 40202, USA
- The Superfund Research Center, University of Louisville, Louisville, Kentucky 40202, USA
| | - Abigail Ekuban
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, Kentucky 40202, USA
- The Hepatobiology and Toxicology Center, University of Louisville, Louisville, Kentucky 40202, USA
| | - Jianzhu Luo
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, Kentucky 40202, USA
| | - Tyler Gripshover
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, Kentucky 40202, USA
- The Superfund Research Center, University of Louisville, Louisville, Kentucky 40202, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, Kentucky 40202, USA
| | - Walter H Watson
- The Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, Kentucky 40202, USA
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, Kentucky 40202, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, Kentucky 40202, USA
- The Hepatobiology and Toxicology Center, University of Louisville, Louisville, Kentucky 40202, USA
| | - Mayukh Banerjee
- The Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, Kentucky 40202, USA
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, Kentucky 40202, USA
| | - Melissa L Smith
- The Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, Kentucky 40202, USA
- Department of Biochemistry & Molecular Genetics, School of Medicine, University of Louisville, Louisville, Kentucky 40202, USA
| | - Eric C Rouchka
- Department of Biochemistry & Molecular Genetics, School of Medicine, University of Louisville, Louisville, Kentucky 40202, USA
- KY INBRE Bioinformatics Core, University of Louisville, Louisville, Kentucky 40202, USA
| | - Raobo Xu
- Department of Chemistry, School of Arts and Sciences, University of Louisville, Louisville, Kentucky 40292, USA
- Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, Kentucky 40292, USA
| | - Xiang Zhang
- The Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, Kentucky 40202, USA
- The Hepatobiology and Toxicology Center, University of Louisville, Louisville, Kentucky 40202, USA
- Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, Kentucky 40292, USA
- Division of Analytic Chemistry, Department of Chemistry, School of Arts and Sciences, University of Louisville, Louisville, Kentucky 40292, USA
- The Alcohol Research Center, University of Louisville, Louisville, Kentucky 40202, USA
| | - Dibson D Gondim
- Department of Pathology and Laboratory, School of Medicine, University of Louisville, Louisville, Kentucky 40202, USA
| | - Matthew C Cave
- The Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, Kentucky 40202, USA
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, Kentucky 40202, USA
- The Superfund Research Center, University of Louisville, Louisville, Kentucky 40202, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, Kentucky 40202, USA
- The Hepatobiology and Toxicology Center, University of Louisville, Louisville, Kentucky 40202, USA
- Department of Biochemistry & Molecular Genetics, School of Medicine, University of Louisville, Louisville, Kentucky 40202, USA
- The Robley Rex Veterans Affairs Medical Center, Louisville, KY 40206, USA
| | - Timothy E O’Toole
- Division of Environmental Medicine, Department of Medicine, School of Medicine, Christina Lee Brown Envirome Institute, University of Louisville, Louisville, Kentucky 40202, USA
- The Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, Kentucky 40202, USA
- The Superfund Research Center, University of Louisville, Louisville, Kentucky 40202, USA
| |
Collapse
|
9
|
Vatsalya V, Royer AJ, Jha SK, Parthasarathy R, Tiwari H, Feng W, Ramchandani VA, Kirpich IA, McClain CJ. Drinking and laboratory biomarkers, and nutritional status characterize the clinical presentation of early-stage alcohol-associated liver disease. Adv Clin Chem 2023; 114:83-108. [PMID: 37268335 DOI: 10.1016/bs.acc.2023.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Chronic and heavy alcohol consumption is commonly observed in alcohol use disorder (AUD). AUD often leads to alcohol-associated organ injury, including alcohol-associated liver disease (ALD). Approximately 10-20% of patients with AUD progress to ALD. Progression of ALD from the development phase to more advanced states involve the interplay of several pathways, including nutritional alterations. Multiple pathologic processes have been identified in the progression and severity of ALD. However, there are major gaps in the characterization and understanding of the clinical presentation of early-stage ALD as assessed by clinical markers and laboratory measures. Several Institutions and Universities, including the University of Louisville, in collaboration with the National Institutes of Health, have published a series of manuscripts describing early-stage ALD over the past decade. Here, we comprehensively describe early-stage ALD using the liver injury and drinking history markers, and the laboratory biomarkers (with a focus on nutrition status) that are uniquely involved in the development and progression of early-stage ALD.
Collapse
Affiliation(s)
- Vatsalya Vatsalya
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, KY, United States; Alcohol Research Center, University of Louisville, Louisville, KY, United States; National Institute on Alcohol Abuse and Alcoholism, NIAAA, NIH, Bethesda, MD, United States; Robley Rex VA Medical Center, Louisville, KY, United States.
| | - Amor J Royer
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, KY, United States
| | - Suman Kumar Jha
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, KY, United States
| | - Ranganathan Parthasarathy
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, KY, United States
| | - Harsh Tiwari
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, KY, United States
| | - Wenke Feng
- Alcohol Research Center, University of Louisville, Louisville, KY, United States; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY United States
| | - Vijay A Ramchandani
- National Institute on Alcohol Abuse and Alcoholism, NIAAA, NIH, Bethesda, MD, United States
| | - Irina A Kirpich
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, KY, United States; Alcohol Research Center, University of Louisville, Louisville, KY, United States; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY United States; Department of Microbiology and Immunology, University of Louisville, Louisville KY United States
| | - Craig J McClain
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, KY, United States; Alcohol Research Center, University of Louisville, Louisville, KY, United States; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY United States; Robley Rex VA Medical Center, Louisville, KY, United States
| |
Collapse
|
10
|
Xu R, He L, Vatsalya V, Ma X, Kim S, Mueller EG, Feng W, McClain CJ, Zhang X. Metabolomics analysis of urine from patients with alcohol-associated liver disease reveals dysregulated caffeine metabolism. Am J Physiol Gastrointest Liver Physiol 2023; 324:G142-G154. [PMID: 36513601 PMCID: PMC9870580 DOI: 10.1152/ajpgi.00228.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/28/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Excess alcohol intake causes millions of deaths annually worldwide. Asymptomatic early-stage, alcohol-associated liver disease (ALD) is easily overlooked, and ALD is usually only diagnosed in more advanced stages. We explored the possibility of using polar urine metabolites as biomarkers of ALD for early-stage diagnosis and functional assessment of disease severity by quantifying the abundance of polar metabolites in the urine samples of healthy controls (n = 18), patients with mild or moderate liver injury (n = 21), and patients with severe alcohol-associated hepatitis (n = 25). The polar metabolites in human urine were first analyzed by untargeted metabolomics, showing that 209 urine metabolites are significantly changed in patients, and 17 of these are highly correlated with patients' model for end-stage liver disease (MELD) score. Pathway enrichment analysis reveals that the caffeine metabolic pathway is the most affected in ALD. We then developed a targeted metabolomics method and measured the concentration of caffeine and its metabolites in urine using internal and external standard calibration, respectively. The described method can quantify caffeine and its 14 metabolites in 35 min. The results of targeted metabolomics analysis agree with the results of untargeted metabolomics, showing that 13 caffeine metabolites are significantly decreased in patients. In particular, the concentrations of 1-methylxanthine, paraxanthine, and 5-acetylamino-6-amino-3-methyluracil are markedly decreased with increased disease severity. We suggest that these three metabolites could serve as functional biomarkers for differentiating early-stage ALD from more advanced liver injury.NEW & NOTEWORTHY Our study using both untargeted and targeted metabolomics reveals the caffeine metabolic pathway is dysregulated in ALD. Three caffeine metabolites, 1-methylxanthine, paraxanthine, and 5-acetylamino-6-amino-3-methyluracil, can differentiate the severity of early-stage ALD.
Collapse
Affiliation(s)
- Raobo Xu
- Department of Chemistry, University of Louisville, Louisville, Kentucky
- Alcohol Research Center, University of Louisville School of Medicine, Louisville, Kentucky
- Hepatobiology and Toxicology Center of Biomedical Research Excellence, University of Louisville School of Medicine Louisville, Louisville, Kentucky
- Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, Kentucky
| | - Liqing He
- Department of Chemistry, University of Louisville, Louisville, Kentucky
- Alcohol Research Center, University of Louisville School of Medicine, Louisville, Kentucky
- Hepatobiology and Toxicology Center of Biomedical Research Excellence, University of Louisville School of Medicine Louisville, Louisville, Kentucky
- Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, Kentucky
| | - Vatsalya Vatsalya
- Alcohol Research Center, University of Louisville School of Medicine, Louisville, Kentucky
- Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Xipeng Ma
- Department of Chemistry, University of Louisville, Louisville, Kentucky
- Alcohol Research Center, University of Louisville School of Medicine, Louisville, Kentucky
- Hepatobiology and Toxicology Center of Biomedical Research Excellence, University of Louisville School of Medicine Louisville, Louisville, Kentucky
- Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, Kentucky
| | - Seongho Kim
- Department of Oncology, Wayne State University, Detroit, Michigan
- Biostatistics and Bioinformatics Core, Karmanos Cancer Institute, Wayne State University, Detroit, Michigan
| | - Eugene G Mueller
- Department of Chemistry, University of Louisville, Louisville, Kentucky
| | - Wenke Feng
- Alcohol Research Center, University of Louisville School of Medicine, Louisville, Kentucky
- Hepatobiology and Toxicology Center of Biomedical Research Excellence, University of Louisville School of Medicine Louisville, Louisville, Kentucky
- Department of Medicine, University of Louisville, Louisville, Kentucky
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky
| | - Craig J McClain
- Alcohol Research Center, University of Louisville School of Medicine, Louisville, Kentucky
- Hepatobiology and Toxicology Center of Biomedical Research Excellence, University of Louisville School of Medicine Louisville, Louisville, Kentucky
- Department of Medicine, University of Louisville, Louisville, Kentucky
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky
- Robley Rex Louisville Veterans Affairs Medical Center, Louisville, Kentucky
| | - Xiang Zhang
- Department of Chemistry, University of Louisville, Louisville, Kentucky
- Alcohol Research Center, University of Louisville School of Medicine, Louisville, Kentucky
- Hepatobiology and Toxicology Center of Biomedical Research Excellence, University of Louisville School of Medicine Louisville, Louisville, Kentucky
- Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, Kentucky
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky
| |
Collapse
|
11
|
Fu K, Chen X, Shou N, Wang Z, Yuan X, Wu D, Wang Q, Cheng Y, Ling N, Shi Z. Swainsonine Induces Liver Inflammation in Mice via Disturbance of Gut Microbiota and Bile Acid Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1758-1767. [PMID: 36638362 DOI: 10.1021/acs.jafc.2c08519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Swainsonine induced liver inflammation in livestock; however, the underlying mechanisms, especially the role of bile acids (BAs), in the pathogenesis remained elusive. Here, our results showed that swainsonine induced hepatic inflammation via changing BA metabolism and gut microbiota in mice. Swainsonine significantly upregulated the levels of deoxycholic acid (DCA) and taurine-β-muricholic acid (T-β-MCA) in the serum and liver of mice due to the markedly increased genus Clostridium and the decreased genus Lactobacillus in the gut. As antagonists of the farnesoid X receptor (FXR), elevated DCA and T-β-MCA inhibited hepatic Fxr gene expression and thus suppressed FXR-SHP signaling and activated hepatic Cyp7a1 gene expression, which induced a significant upregulation of the total BA level in serum, contributing to liver inflammation. These findings offer new insights into the underlying mechanisms in which swainsonine induced liver inflammation in mice via the gut-liver axis and suggest that gut microbiota and its metabolite BAs may be underlying triggering factors.
Collapse
Affiliation(s)
- Keyi Fu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Xi Chen
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Na Shou
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Zilong Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Xuefeng Yuan
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Dandan Wu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Qi Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Yanfen Cheng
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Ning Ling
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Zunji Shi
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
12
|
Liu Y, Liu T, Zhao X, Gao Y. New insights into the bile acid-based regulatory mechanisms and therapeutic perspectives in alcohol-related liver disease. Cell Mol Life Sci 2022; 79:486. [PMID: 35978227 PMCID: PMC11073206 DOI: 10.1007/s00018-022-04509-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/22/2022] [Accepted: 07/31/2022] [Indexed: 11/27/2022]
Abstract
Cholestasis is a key causative factor in alcohol-related liver disease (ALD) and variable degrees of cholestasis occur in all stages of ALD. However, the pathogenetic mechanisms and biomarkers associated with cholestasis are not well characterized. Cholestatic disease is marked by the disruption of bile acids (BA) transport and homeostasis. Consequently, in both human and experimental ALD, the disease shows a direct correlation with an imbalance in BA equilibrium, which in turn may also affect the severity of the disease. Modulation of BA metabolism or signaling pathways is increasingly considered as a potential therapeutic strategy for ALD in humans. In this paper, we highlight the key advances made in the past two decades in characterizing the molecular regulatory mechanisms of BA synthesis, enterohepatic circulation, and BA homeostasis. We summarize recent insights into the nature of the linkage between BA dysregulation and ALD, including the abnormal expression of genes involved in BA metabolism, abnormal changes in receptors that regulate BA metabolism, and disturbance in the gut flora engaged in BA metabolism caused by alcohol consumption. Additionally, we provide novel perspectives on the changes in BAs in various stages of ALD. Finally, we propose potential pharmacological therapies for ALD targeting BA metabolism and signaling.
Collapse
Affiliation(s)
- Yali Liu
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun, 130021, Jilin, China
| | - Tao Liu
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun, 130021, Jilin, China
| | - Xu Zhao
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun, 130021, Jilin, China
| | - Yanhang Gao
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun, 130021, Jilin, China.
- Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
13
|
Singal AK, Kwo P, Kwong A, Liangpunsakul S, Louvet A, Mandrekar P, McClain C, Mellinger J, Szabo G, Terrault N, Thursz M, Winder GS, Kim WR, Shah VH. Research methodologies to address clinical unmet needs and challenges in alcohol-associated liver disease. Hepatology 2022; 75:1026-1037. [PMID: 34496071 PMCID: PMC9235468 DOI: 10.1002/hep.32143] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022]
Abstract
Alcohol-associated liver disease (ALD) is emerging worldwide as the leading cause of liver-related morbidity, mortality, and indication for liver transplantation. The ALD Special Interest Group and the Clinical Research Committee at the digital American Association for the Study of Liver Diseases meeting in November 2020 held the scientific sessions to identify clinical unmet needs in ALD, and addressing these needs using clinical research methodologies. Of several research methodologies, the sessions were focused on (a) studying disease burden of ALD using large administrative databases, (b) developing biomarkers for noninvasive diagnosis of alcohol-associated hepatitis (AH) and estimation of disease prognosis, (c) identifying therapeutic targets for ALD and AH, (d) deriving accurate models to predict prognosis or posttransplant alcohol relapse as a basis for developing treatment algorithm and a uniform protocol on patient-selection criteria for liver transplantation, and (e) examining qualitative research methodologies in studying the barriers to implementation of multidisciplinary integrated care model by hepatology and addiction teams for the management of dual pathology of liver disease and of alcohol use disorder. Prospective multicenter studies are required to address many of these clinical unmet needs. Further, multidisciplinary care models are needed to improve long-term outcomes in patients with ALD.
Collapse
Affiliation(s)
- Ashwani K. Singal
- Department of Internal Medicine, University of South Dakota Sanford School of Medicine, Sioux Falls, South Dakota, USA
- Division of Gastroenterology and Hepatology, Avera Transplant Institute, Sioux Falls, South Dakota, USA
| | - Paul Kwo
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Stanford, California, USA
| | - Allison Kwong
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Stanford, California, USA
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Indiana University, Indianapolis, Indiana, USA
| | | | - Pranoti Mandrekar
- Graduate School of Biomedical Sciences, UMass Medical School, Worcester, Massachusetts, USA
| | - Craig McClain
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, Kentucky, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Alcohol Research Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Robley Rex Veterans Affairs Medical Center, Louisville, Kentucky, USA
| | - Jessica Mellinger
- Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Gyongyi Szabo
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Norah Terrault
- Division of Gastroenterology and Hepatology, University of Southern California, Los Angeles, California, USA
| | - Mark Thursz
- Division of Digestive Diseases, Imperial College London, London, UK
| | - Gerald S. Winder
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan, USA
| | - W. Ray Kim
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Stanford, California, USA
| | - Vijay H. Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
14
|
Gallucci GM, Trottier J, Hemme C, Assis DN, Boyer JL, Barbier O, Ghonem NS. Adjunct Fenofibrate Up-regulates Bile Acid Glucuronidation and Improves Treatment Response For Patients With Cholestasis. Hepatol Commun 2021; 5:2035-2051. [PMID: 34558841 PMCID: PMC8631103 DOI: 10.1002/hep4.1787] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/10/2021] [Accepted: 06/25/2021] [Indexed: 12/26/2022] Open
Abstract
Accumulation of cytotoxic bile acids (BAs) during cholestasis can result in liver failure. Glucuronidation, a phase II metabolism pathway responsible for BA detoxification, is regulated by peroxisome proliferator-activated receptor alpha (PPARα). This study investigates the efficacy of adjunct fenofibrate therapy to up-regulate BA-glucuronidation and reduce serum BA toxicity during cholestasis. Adult patients with primary biliary cholangitis (PBC, n = 32) and primary sclerosing cholangitis (PSC, n = 23), who experienced an incomplete response while receiving ursodiol monotherapy (13-15 mg/kg/day), defined as serum alkaline phosphatase (ALP) ≥ 1.5 times the upper limit of normal, received additional fenofibrate (145-160 mg/day) as standard of care. Serum BA and BA-glucuronide concentrations were measured by liquid chromatography-mass spectrometry. Combination therapy with fenofibrate significantly decreased elevated serum ALP (-76%, P < 0.001), aspartate transaminase, alanine aminotransferase, bilirubin, total serum BAs (-54%), and increased serum BA-glucuronides (+2.1-fold, P < 0.01) versus ursodiol monotherapy. The major serum BA-glucuronides that were favorably altered following adjunct fenofibrate include hyodeoxycholic acid-6G (+3.7-fold, P < 0.01), hyocholic acid-6G (+2.6-fold, P < 0.05), chenodeoxycholic acid (CDCA)-3G (-36%), and lithocholic acid (LCA)-3G (-42%) versus ursodiol monotherapy. Fenofibrate also up-regulated the expression of uridine 5'-diphospho-glucuronosyltransferases and multidrug resistance-associated protein 3 messenger RNA in primary human hepatocytes. Pearson's correlation coefficients identified strong associations between serum ALP and metabolic ratios of CDCA-3G (r2 = 0.62, P < 0.0001), deoxycholic acid (DCA)-3G (r2 = 0.48, P < 0.0001), and LCA-3G (r2 = 0.40, P < 0.001), in ursodiol monotherapy versus control. Receiver operating characteristic analysis identified serum BA-glucuronides as measures of response to therapy. Conclusion: Fenofibrate favorably alters major serum BA-glucuronides, which correlate with reduced serum ALP levels and improved outcomes. A PPARα-mediated anti-cholestatic mechanism is involved in detoxifying serum BAs in patients with PBC and PSC who have an incomplete response on ursodiol monotherapy and receive adjunct fenofibrate. Serum BA-glucuronides may serve as a noninvasive measure of treatment response in PBC and PSC.
Collapse
Affiliation(s)
- Gina M. Gallucci
- College of Pharmacy, Biomedical and Pharmaceutical SciencesUniversity of Rhode IslandKingstonRIUSA
| | - Jocelyn Trottier
- Laboratory of Molecular PharmacologyEndocrinology and Nephrology AxisCHU de Québec Research CenterLavalQuébecCanada
| | - Christopher Hemme
- College of Pharmacy, Biomedical and Pharmaceutical SciencesUniversity of Rhode IslandKingstonRIUSA
- RI‐INBRE Bioinformatics CoreKingstonRIUSA
| | | | | | - Olivier Barbier
- Laboratory of Molecular PharmacologyEndocrinology and Nephrology AxisCHU de Québec Research CenterLavalQuébecCanada
- Faculty of PharmacyLaval UniversityLavalQuébecCanada
| | - Nisanne S. Ghonem
- College of Pharmacy, Biomedical and Pharmaceutical SciencesUniversity of Rhode IslandKingstonRIUSA
| |
Collapse
|