1
|
Courcelles EJ, Kjelsberg K, Convertino L, Nair RR, Witter MP, Nigro MJ. Association cortical areas in the mouse contain a large population of fast-spiking GABAergic neurons that do not express parvalbumin. Eur J Neurosci 2024; 59:3236-3255. [PMID: 38643976 DOI: 10.1111/ejn.16341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/23/2024]
Abstract
GABAergic neurons represent 10-15% of the neuronal population of the cortex but exert a powerful control over information flow in cortical circuits. The largest GABAergic class in the neocortex is represented by the parvalbumin-expressing fast-spiking neurons, which provide powerful somatic inhibition to their postsynaptic targets. Recently, the density of parvalbumin interneurons has been shown to be lower in associative areas of the mouse cortex as compared with sensory and motor areas. Modelling work based on these quantifications linked the low-density of parvalbumin interneurons with specific computations of associative cortices. However, it is still unknown whether the total GABAergic population of association cortices is smaller or whether another GABAergic type can compensate for the low density of parvalbumin interneurons. In the present study, we investigated these hypotheses using a combination of neuroanatomy, mouse genetics and neurophysiology. We found that the GABAergic population of association areas is comparable with that of primary sensory areas, and it is enriched of fast-spiking neurons that do not express parvalbumin and were not accounted for by previous quantifications. We developed an intersectional viral strategy to demonstrate that the population of fast-spiking neurons is comparable across cortical regions. Our results provide quantifications of the density of fast-spiking GABAergic neurons and offers new biological constrains to refine current models of cortical computations.
Collapse
Affiliation(s)
- Erik Justin Courcelles
- Kavli Institute for Systems Neuroscience, Center for Algorithms in the Cortex, Egil and Pauline Braathen and Fred Kavli Center for Cortical Microcircuits, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kasper Kjelsberg
- Kavli Institute for Systems Neuroscience, Center for Algorithms in the Cortex, Egil and Pauline Braathen and Fred Kavli Center for Cortical Microcircuits, Norwegian University of Science and Technology, Trondheim, Norway
| | - Laura Convertino
- Kavli Institute for Systems Neuroscience, Center for Algorithms in the Cortex, Egil and Pauline Braathen and Fred Kavli Center for Cortical Microcircuits, Norwegian University of Science and Technology, Trondheim, Norway
| | - Rajeevkumar Raveendran Nair
- Kavli Institute for Systems Neuroscience, Center for Algorithms in the Cortex, Egil and Pauline Braathen and Fred Kavli Center for Cortical Microcircuits, Norwegian University of Science and Technology, Trondheim, Norway
| | - Menno P Witter
- Kavli Institute for Systems Neuroscience, Center for Algorithms in the Cortex, Egil and Pauline Braathen and Fred Kavli Center for Cortical Microcircuits, Norwegian University of Science and Technology, Trondheim, Norway
| | - Maximiliano José Nigro
- Kavli Institute for Systems Neuroscience, Center for Algorithms in the Cortex, Egil and Pauline Braathen and Fred Kavli Center for Cortical Microcircuits, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
2
|
Limbic and olfactory cortical circuits in focal seizures. Neurobiol Dis 2023; 178:106007. [PMID: 36682502 DOI: 10.1016/j.nbd.2023.106007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
Epilepsies affecting the limbic regions are common and generate seizures often resistant to pharmacological treatment. Clinical evidence demonstrates that diverse regions of the mesial portion of the temporal lobe participate in limbic seizures; these include the hippocampus, the entorhinal, perirhinal and parahippocampal regions and the piriform cortex. The network mechanisms involved in the generation of olfactory-limbic epileptiform patterns will be here examined, with particular emphasis on acute interictal and ictal epileptiform discharges obtained by treatment with pro-convulsive drugs and by high-frequency stimulations on in vitro preparations, such as brain slices and the isolated guinea pig brain. The interactions within olfactory-limbic circuits can be summarized as follows: independent, region-specific seizure-like events (SLE) are generated in the olfactory and in the limbic cortex; SLEs generated in the hippocampal-parahippocampal regions tend to remain within these areas; the perirhinal region controls the neocortical propagation and the generalization of limbic seizures; interictal spiking in the olfactory regions prevents the invasion by SLEs generated in limbic regions. The potential relevance of these observations for human focal epilepsy is discussed.
Collapse
|
3
|
Lu S, Chu M, Wang X, Wu Y, Hou Y, Liu A. Anterior temporal lobectomy improved mood status and quality of life in Chinese patients with mesial temporal lobe epilepsy: a single-arm cohort study. Chin Med J (Engl) 2023; 136:407-414. [PMID: 36867545 PMCID: PMC10106264 DOI: 10.1097/cm9.0000000000002094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND Many studies have emphasized that selective resection of epileptic lesions in temoral lobe is associated with better preservation of cognition function; whether this applies to patients with refractory mesial temporal lobe epilepsy (MTLE) remains unknown. The objective of this study was to evaluate changes in cognitive functions, mood status, and quality of life after anterior temporal lobectomy in patients with refractory MTLE. METHODS This single-arm cohort study assessed cognitive function, mood status, and quality of life, as well as electroencephalography findings, in patients with refractory MTLE who underwent anterior temporal lobectomy at Xuanwu Hospital from January 2018 to March 2019. Pre- and post-operative characteristics were compared to evaluate the effects of surgery. RESULTS Anterior temporal lobectomy significantly reduced the frequencies of epileptiform discharges. The overall success rate of surgery was acceptable. Anterior temporal lobectomy did not result in significant changes in overall cognitive functions (P > 0.05), although changes in certain domains, including visuospatial ability, executive ability, and abstract thinking, were detected. Anterior temporal lobectomy resulted in improvements in anxiety and depression symptoms and quality of life. CONCLUSIONS Anterior temporal lobectomy reduced epileptiform discharges and incidence of post-operative seizures as well as resulted in improved mood status and quality of life without causing significant changes in cognitive function.
Collapse
Affiliation(s)
- Song Lu
- Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Fuxing Hospital, Capital Medical University, Beijing 100069, China
| | - Min Chu
- Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Xian Wang
- Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Yating Wu
- Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Yue Hou
- Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Aihua Liu
- Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| |
Collapse
|
4
|
Chloride ion dysregulation in epileptogenic neuronal networks. Neurobiol Dis 2023; 177:106000. [PMID: 36638891 DOI: 10.1016/j.nbd.2023.106000] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/25/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
GABA is the major inhibitory neurotransmitter in the mature CNS. When GABAA receptors are activated the membrane potential is driven towards hyperpolarization due to chloride entry into the neuron. However, chloride ion dysregulation that alters the ionic gradient can result in depolarizing GABAergic post-synaptic potentials instead. In this review, we highlight that GABAergic inhibition prevents and restrains focal seizures but then reexamine this notion in the context of evidence that a static and/or a dynamic chloride ion dysregulation, that increases intracellular chloride ion concentrations, promotes epileptiform activity and seizures. To reconcile these findings, we hypothesize that epileptogenic pathologically interconnected neuron (PIN) microcircuits, representing a small minority of neurons, exhibit static chloride dysregulation and should exhibit depolarizing inhibitory post-synaptic potentials (IPSPs). We speculate that chloride ion dysregulation and PIN cluster activation may generate fast ripples and epileptiform spikes as well as initiate the hypersynchronous seizure onset pattern and microseizures. Also, we discuss the genetic, molecular, and cellular players important in chloride dysregulation which regulate epileptogenesis and initiate the low-voltage fast seizure onset pattern. We conclude that chloride dysregulation in neuronal networks appears to be critical for epileptogenesis and seizure genesis, but feed-back and feed-forward inhibitory GABAergic neurotransmission plays an important role in preventing and restraining seizures as well.
Collapse
|
5
|
Cao Y, Sun C, Huang J, Sun P, Wang L, He S, Liao J, Lu Z, Lu Y, Zhong C. Dysfunction of the Hippocampal-Lateral Septal Circuit Impairs Risk Assessment in Epileptic Mice. Front Mol Neurosci 2022; 15:828891. [PMID: 35571372 PMCID: PMC9103201 DOI: 10.3389/fnmol.2022.828891] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 03/29/2022] [Indexed: 11/16/2022] Open
Abstract
Temporal lobe epilepsy, a chronic disease of the brain characterized by degeneration of the hippocampus, has impaired risk assessment. Risk assessment is vital for survival in complex environments with potential threats. However, the underlying mechanisms remain largely unknown. The intricate balance of gene regulation and expression across different brain regions is related to the structure and function of specific neuron subtypes. In particular, excitation/inhibition imbalance caused by hyperexcitability of glutamatergic neurons and/or dysfunction of GABAergic neurons, have been implicated in epilepsy. First, we estimated the risk assessment (RA) by evaluating the behavior of mice in the center of the elevated plus maze, and found that the kainic acid-induced temporal lobe epilepsy mice were specifically impaired their RA. This experiment evaluated approach-RA, with a forthcoming approach to the open arm, and avoid-RA, with forthcoming avoidance of the open arm. Next, results from free-moving electrophysiological recordings showed that in the hippocampus, ∼7% of putative glutamatergic neurons and ∼15% of putative GABAergic neurons were preferentially responsive to either approach-risk assessment or avoid-risk assessment, respectively. In addition, ∼12% and ∼8% of dorsal lateral septum GABAergic neurons were preferentially responsive to approach-risk assessment and avoid-risk assessment, respectively. Notably, during the impaired approach-risk assessment, the favorably activated dorsal dentate gyrus and CA3 glutamatergic neurons increased (∼9%) and dorsal dentate gyrus and CA3 GABAergic neurons decreased (∼7%) in the temporal lobe epilepsy mice. Then, we used RNA sequencing and immunohistochemical staining to investigate which subtype of GABAergic neuron loss may contribute to excitation/inhibition imbalance. The results show that temporal lobe epilepsy mice exhibit significant neuronal loss and reorganization of neural networks. In particular, the dorsal dentate gyrus and CA3 somatostatin-positive neurons and dorsal lateral septum cholecystokinin-positive neurons are selectively vulnerable to damage after temporal lobe epilepsy. Optogenetic activation of the hippocampal glutamatergic neurons or chemogenetic inhibition of the hippocampal somatostatin neurons directly disrupts RA, suggesting that an excitation/inhibition imbalance in the dHPC dorsal lateral septum circuit results in the impairment of RA behavior. Taken together, this study provides insight into epilepsy and its comorbidity at different levels, including molecular, cell, neural circuit, and behavior, which are expected to decrease injury and premature mortality in patients with epilepsy.
Collapse
Affiliation(s)
- Yi Cao
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
- Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Chongyang Sun
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Jianyu Huang
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
- Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Peng Sun
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
- College of Electronic and Information Engineering, Hebei University, Baoding, China
| | - Lulu Wang
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Shuyu He
- Shenzhen Children’s Hospital, China Medical University, Shenzhen, China
| | - Jianxiang Liao
- Epilepsy Center, Shenzhen Children’s Hospital, Shenzhen, China
| | - Zhonghua Lu
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Yi Lu
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Cheng Zhong
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| |
Collapse
|
6
|
Voltage-Dependent Calcium Channels, Calcium Binding Proteins, and Their Interaction in the Pathological Process of Epilepsy. Int J Mol Sci 2018; 19:ijms19092735. [PMID: 30213136 PMCID: PMC6164075 DOI: 10.3390/ijms19092735] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 01/08/2023] Open
Abstract
As an important second messenger, the calcium ion (Ca2+) plays a vital role in normal brain function and in the pathophysiological process of different neurodegenerative diseases including Alzheimer’s disease (AD), Parkinson’s disease (PD), and epilepsy. Ca2+ takes part in the regulation of neuronal excitability, and the imbalance of intracellular Ca2+ is a trigger factor for the occurrence of epilepsy. Several anti-epileptic drugs target voltage-dependent calcium channels (VDCCs). Intracellular Ca2+ levels are mainly controlled by VDCCs located in the plasma membrane, the calcium-binding proteins (CBPs) inside the cytoplasm, calcium channels located on the intracellular calcium store (particular the endoplasmic reticulum/sarcoplasmic reticulum), and the Ca2+-pumps located in the plasma membrane and intracellular calcium store. So far, while many studies have established the relationship between calcium control factors and epilepsy, the mechanism of various Ca2+ regulatory factors in epileptogenesis is still unknown. In this paper, we reviewed the function, distribution, and alteration of VDCCs and CBPs in the central nervous system in the pathological process of epilepsy. The interaction of VDCCs with CBPs in the pathological process of epilepsy was also summarized. We hope this review can provide some clues for better understanding the mechanism of epileptogenesis, and for the development of new anti-epileptic drugs targeting on VDCCs and CBPs.
Collapse
|
7
|
Di Cristo G, Awad PN, Hamidi S, Avoli M. KCC2, epileptiform synchronization, and epileptic disorders. Prog Neurobiol 2018; 162:1-16. [DOI: 10.1016/j.pneurobio.2017.11.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 11/09/2017] [Accepted: 11/28/2017] [Indexed: 12/31/2022]
|
8
|
Keller SS, Glenn GR, Weber B, Kreilkamp BAK, Jensen JH, Helpern JA, Wagner J, Barker GJ, Richardson MP, Bonilha L. Preoperative automated fibre quantification predicts postoperative seizure outcome in temporal lobe epilepsy. Brain 2017; 140:68-82. [PMID: 28031219 PMCID: PMC5226062 DOI: 10.1093/brain/aww280] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 09/10/2016] [Accepted: 09/26/2016] [Indexed: 11/12/2022] Open
Abstract
Approximately one in every two patients with pharmacoresistant temporal lobe epilepsy will not be rendered completely seizure-free after temporal lobe surgery. The reasons for this are unknown and are likely to be multifactorial. Quantitative volumetric magnetic resonance imaging techniques have provided limited insight into the causes of persistent postoperative seizures in patients with temporal lobe epilepsy. The relationship between postoperative outcome and preoperative pathology of white matter tracts, which constitute crucial components of epileptogenic networks, is unknown. We investigated regional tissue characteristics of preoperative temporal lobe white matter tracts known to be important in the generation and propagation of temporal lobe seizures in temporal lobe epilepsy, using diffusion tensor imaging and automated fibre quantification. We studied 43 patients with mesial temporal lobe epilepsy associated with hippocampal sclerosis and 44 healthy controls. Patients underwent preoperative imaging, amygdalohippocampectomy and postoperative assessment using the International League Against Epilepsy seizure outcome scale. From preoperative imaging, the fimbria-fornix, parahippocampal white matter bundle and uncinate fasciculus were reconstructed, and scalar diffusion metrics were calculated along the length of each tract. Altogether, 51.2% of patients were rendered completely seizure-free and 48.8% continued to experience postoperative seizure symptoms. Relative to controls, both patient groups exhibited strong and significant diffusion abnormalities along the length of the uncinate bilaterally, the ipsilateral parahippocampal white matter bundle, and the ipsilateral fimbria-fornix in regions located within the medial temporal lobe. However, only patients with persistent postoperative seizures showed evidence of significant pathology of tract sections located in the ipsilateral dorsal fornix and in the contralateral parahippocampal white matter bundle. Using receiver operating characteristic curves, diffusion characteristics of these regions could classify individual patients according to outcome with 84% sensitivity and 89% specificity. Pathological changes in the dorsal fornix were beyond the margins of resection, and contralateral parahippocampal changes may suggest a bitemporal disorder in some patients. Furthermore, diffusion characteristics of the ipsilateral uncinate could classify patients from controls with a sensitivity of 98%; importantly, by co-registering the preoperative fibre maps to postoperative surgical lacuna maps, we observed that the extent of uncinate resection was significantly greater in patients who were rendered seizure-free, suggesting that a smaller resection of the uncinate may represent insufficient disconnection of an anterior temporal epileptogenic network. These results may have the potential to be developed into imaging prognostic markers of postoperative outcome and provide new insights for why some patients with temporal lobe epilepsy continue to experience postoperative seizures.
Collapse
Affiliation(s)
- Simon S Keller
- 1 Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, UK
- 2 Department of Neuroradiology, The Walton Centre NHS Foundation Trust, Liverpool, UK
- 3 Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - G Russell Glenn
- 4 Center for Biomedical Imaging, Medical University of South Carolina, Charleston, USA
- 5 Department of Radiology and Radiological Sciences, Medical University of South Carolina, Charleston, USA
- 6 Department of Neurosciences, Medical University of South Carolina, Charleston, USA
| | - Bernd Weber
- 7 Department of Epileptology, University of Bonn, Germany
- 8 Department of Neurocognition / Imaging, Life and Brain Research Centre, Bonn, Germany
| | - Barbara A K Kreilkamp
- 1 Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, UK
- 2 Department of Neuroradiology, The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Jens H Jensen
- 4 Center for Biomedical Imaging, Medical University of South Carolina, Charleston, USA
- 5 Department of Radiology and Radiological Sciences, Medical University of South Carolina, Charleston, USA
| | - Joseph A Helpern
- 4 Center for Biomedical Imaging, Medical University of South Carolina, Charleston, USA
- 5 Department of Radiology and Radiological Sciences, Medical University of South Carolina, Charleston, USA
- 6 Department of Neurosciences, Medical University of South Carolina, Charleston, USA
| | - Jan Wagner
- 7 Department of Epileptology, University of Bonn, Germany
- 8 Department of Neurocognition / Imaging, Life and Brain Research Centre, Bonn, Germany
- 9 Department of Neurology, Epilepsy Centre Hessen-Marburg, University of Marburg Medical Centre, Germany
| | - Gareth J Barker
- 10 Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Mark P Richardson
- 3 Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
- 11 Engineering and Physical Sciences Research Council Centre for Predictive Modelling in Healthcare, University of Exeter, UK
| | - Leonardo Bonilha
- 12 Department of Neurology, Medical University of South Carolina, Charleston, USA
| |
Collapse
|
9
|
Musto AE, Rosencrans RF, Walker CP, Bhattacharjee S, Raulji CM, Belayev L, Fang Z, Gordon WC, Bazan NG. Dysfunctional epileptic neuronal circuits and dysmorphic dendritic spines are mitigated by platelet-activating factor receptor antagonism. Sci Rep 2016; 6:30298. [PMID: 27444269 PMCID: PMC4957208 DOI: 10.1038/srep30298] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 06/30/2016] [Indexed: 01/28/2023] Open
Abstract
Temporal lobe epilepsy or limbic epilepsy lacks effective therapies due to a void in understanding the cellular and molecular mechanisms that set in motion aberrant neuronal network formations during the course of limbic epileptogenesis (LE). Here we show in in vivo rodent models of LE that the phospholipid mediator platelet-activating factor (PAF) increases in LE and that PAF receptor (PAF-r) ablation mitigates its progression. Synthetic PAF-r antagonists, when administered intraperitoneally in LE, re-establish hippocampal dendritic spine density and prevent formation of dysmorphic dendritic spines. Concomitantly, hippocampal interictal spikes, aberrant oscillations, and neuronal hyper-excitability, evaluated 15–16 weeks after LE using multi-array silicon probe electrodes implanted in the dorsal hippocampus, are reduced in PAF-r antagonist-treated mice. We suggest that over-activation of PAF-r signaling induces aberrant neuronal plasticity in LE and leads to chronic dysfunctional neuronal circuitry that mediates epilepsy.
Collapse
Affiliation(s)
- Alberto E Musto
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, 2020 Gravier Street, New Orleans, Louisiana 70112, USA
| | - Robert F Rosencrans
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, 2020 Gravier Street, New Orleans, Louisiana 70112, USA
| | - Chelsey P Walker
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, 2020 Gravier Street, New Orleans, Louisiana 70112, USA
| | - Surjyadipta Bhattacharjee
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, 2020 Gravier Street, New Orleans, Louisiana 70112, USA
| | - Chittalsinh M Raulji
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, 2020 Gravier Street, New Orleans, Louisiana 70112, USA.,Department of Pediatrics, Hematology-Oncology, Louisiana State University Health Sciences Center and Children's Hospital of New Orleans, New Orleans, Louisiana 70118, USA
| | - Ludmila Belayev
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, 2020 Gravier Street, New Orleans, Louisiana 70112, USA
| | - Zhide Fang
- Biostatistics, School of Public Health, Louisiana State University Health Sciences Center, 2020 Gravier Street, New Orleans, Louisiana 70112, USA
| | - William C Gordon
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, 2020 Gravier Street, New Orleans, Louisiana 70112, USA
| | - Nicolas G Bazan
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, 2020 Gravier Street, New Orleans, Louisiana 70112, USA
| |
Collapse
|
10
|
Salaj M, Druga R, Cerman J, Kubová H, Barinka F. Calretinin and parvalbumin immunoreactive interneurons in the retrosplenial cortex of the rat brain: Qualitative and quantitative analyses. Brain Res 2015; 1627:201-15. [DOI: 10.1016/j.brainres.2015.09.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 09/20/2015] [Accepted: 09/26/2015] [Indexed: 02/04/2023]
|
11
|
Vismer MS, Forcelli PA, Skopin MD, Gale K, Koubeissi MZ. The piriform, perirhinal, and entorhinal cortex in seizure generation. Front Neural Circuits 2015; 9:27. [PMID: 26074779 PMCID: PMC4448038 DOI: 10.3389/fncir.2015.00027] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 05/15/2015] [Indexed: 12/11/2022] Open
Abstract
Understanding neural network behavior is essential to shed light on epileptogenesis and seizure propagation. The interconnectivity and plasticity of mammalian limbic and neocortical brain regions provide the substrate for the hypersynchrony and hyperexcitability associated with seizure activity. Recurrent unprovoked seizures are the hallmark of epilepsy, and limbic epilepsy is the most common type of medically-intractable focal epilepsy in adolescents and adults that necessitates surgical evaluation. In this review, we describe the role and relationships among the piriform (PIRC), perirhinal (PRC), and entorhinal cortex (ERC) in seizure-generation and epilepsy. The inherent function, anatomy, and histological composition of these cortical regions are discussed. In addition, the neurotransmitters, intrinsic and extrinsic connections, and the interaction of these regions are described. Furthermore, we provide evidence based on clinical research and animal models that suggest that these cortical regions may act as key seizure-trigger zones and, even, epileptogenesis.
Collapse
Affiliation(s)
- Marta S Vismer
- Department of Neurology, The George Washington University Washington, DC, USA
| | | | - Mark D Skopin
- Department of Neurology, The George Washington University Washington, DC, USA
| | - Karen Gale
- Department of Pharmacology, Georgetown University Washington, DC, USA
| | - Mohamad Z Koubeissi
- Department of Neurology, The George Washington University Washington, DC, USA
| |
Collapse
|
12
|
Kouis P, Mikroulis A, Psarropoulou C. A single episode of juvenile status epilepticus reduces the threshold to adult seizures in a stimulus-specific way. Epilepsy Res 2014; 108:1564-71. [DOI: 10.1016/j.eplepsyres.2014.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 07/29/2014] [Accepted: 08/02/2014] [Indexed: 11/29/2022]
|
13
|
Curia G, Lucchi C, Vinet J, Gualtieri F, Marinelli C, Torsello A, Costantino L, Biagini G. Pathophysiogenesis of mesial temporal lobe epilepsy: is prevention of damage antiepileptogenic? Curr Med Chem 2014; 21:663-88. [PMID: 24251566 PMCID: PMC4101766 DOI: 10.2174/0929867320666131119152201] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/04/2013] [Accepted: 08/29/2013] [Indexed: 12/26/2022]
Abstract
Temporal lobe epilepsy (TLE) is frequently associated with hippocampal sclerosis, possibly caused by a primary brain injury that occurred a long time before the appearance of neurological symptoms. This type of epilepsy is characterized by refractoriness to drug treatment, so to require surgical resection of mesial temporal regions involved in seizure onset. Even this last therapeutic approach may fail in giving relief to patients. Although prevention of hippocampal damage and epileptogenesis after a primary event could be a key innovative approach to TLE, the lack of clear data on the pathophysiological mechanisms leading to TLE does not allow any rational therapy. Here we address the current knowledge on mechanisms supposed to be involved in epileptogenesis, as well as on the possible innovative treatments that may lead to a preventive approach. Besides loss of principal neurons and of specific interneurons, network rearrangement caused by axonal sprouting and neurogenesis are well known phenomena that are integrated by changes in receptor and channel functioning and modifications in other cellular components. In particular, a growing body of evidence from the study of animal models suggests that disruption of vascular and astrocytic components of the blood-brain barrier takes place in injured brain regions such as the hippocampus and piriform cortex. These events may be counteracted by drugs able to prevent damage to the vascular component, as in the case of the growth hormone secretagogue ghrelin and its analogues. A thoroughly investigation on these new pharmacological tools may lead to design effective preventive therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - G Biagini
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Laboratorio di Epilettologia Sperimentale, Universita di Modena e Reggio Emilia, Via Campi, 287, 41125 Modena, Italy.
| |
Collapse
|
14
|
Yang L, Cai X, Zhou J, Chen S, Chen Y, Chen Z, Wang Q, Fang Z, Zhou L. STE20/SPS1-related proline/alanine-rich kinase is involved in plasticity of GABA signaling function in a mouse model of acquired epilepsy. PLoS One 2013; 8:e74614. [PMID: 24058604 PMCID: PMC3772887 DOI: 10.1371/journal.pone.0074614] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 08/06/2013] [Indexed: 12/04/2022] Open
Abstract
The intracellular concentration of chloride ([Cl-]i) determines the strength and polarity of GABA neurotransmission. STE20/SPS1-related proline/alanine-rich kinase (SPAK) is known as an indirect regulator of [Cl-]i for its activation of Na-K-2 Cl-co-transporters (NKCC) and inhibition of K-Cl-co-transporters (KCC) in many organs. NKCC1 or KCC2 expression changes have been demonstrated previously in the hippocampal neurons of mice with pilocarpine-induced status epilepticus (PISE). However, it remains unclear whether SPAK modulates [Cl-]i via NKCC1 or KCC2 in the brain. Also, there are no data clearly characterizing SPAK expression in cortical or hippocampal neurons or confirming an association between SPAK and epilepsy. In the present study, we examined SPAK expression and co-expression with NKCC1 and KCC2 in the hippocampal neurons of mice with PISE, and we investigated alterations in SPAK expression in the hippocampus of such mice. Significant increases in SPAK mRNA and protein levels were detected during various stages of PISE in the PISE mice in comparison to levels in age-matched sham (control) and blank treatment (control) mice. SPAK and NKCC1 expression increased in vitro, while KCC2 was down-regulated in hippocampal neurons following hypoxic conditioning. However, SPAK overexpression did not influence the expression levels of NKCC1 or KCC2. Using co-immunoprecipitation, we determined that the intensity of interaction between SPAK and NKCC1 and between SPAK and KCC2 increased markedly after oxygen-deprivation, whereas SPAK overexpression strengthened the relationships. The [Cl-]i of hippocampal neurons changed in a corresponding manner under the different conditions. Our data suggests that SPAK is involved in the plasticity of GABA signaling function in acquired epilepsy via adjustment of [Cl-]i in hippocampal neurons.
Collapse
Affiliation(s)
- Libai Yang
- Department of Neurology, the 1st Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Neurology, Shanxi Academy of Medical Sciences & Shanxi Dayi Hospital, Taiyuan, Shanxi, China
| | - Xiaodong Cai
- Department of Neurology, the 1st Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Neurology, the 6th Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jueqian Zhou
- Department of Neurology, the 1st Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shuda Chen
- Department of Neurology, the 1st Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yishu Chen
- Department of Neurology, the 1st Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ziyi Chen
- Department of Neurology, the 1st Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qian Wang
- Department of Neurology, the 1st Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ziyan Fang
- Department of Neurology, the 1st Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liemin Zhou
- Department of Neurology, the 1st Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- * E-mail:
| |
Collapse
|
15
|
Butler C, van Erp W, Bhaduri A, Hammers A, Heckemann R, Zeman A. Magnetic resonance volumetry reveals focal brain atrophy in transient epileptic amnesia. Epilepsy Behav 2013; 28:363-9. [PMID: 23832133 DOI: 10.1016/j.yebeh.2013.05.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 05/20/2013] [Indexed: 12/19/2022]
Abstract
Transient epileptic amnesia (TEA) is a recently described epilepsy syndrome characterized by recurrent episodes of isolated memory loss. It is associated with two unusual forms of interictal memory impairment: accelerated long-term forgetting (ALF) and autobiographical amnesia. We investigated the neural basis of TEA using manual volumetry and automated multi-atlas-based segmentation of whole-brain magnetic resonance imaging data from 40 patients with TEA and 20 healthy controls. Both methods confirmed the presence of subtle, bilateral hippocampal atrophy. Additional atrophy was revealed in perirhinal and orbitofrontal cortices. The volumes of these regions correlated with anterograde memory performance. No structural correlates were found for ALF or autobiographical amnesia. The results support the hypothesis that TEA is a focal medial temporal lobe epilepsy syndrome but reveal additional pathology in connected brain regions. The unusual interictal memory deficits of TEA remain unexplained by structural pathology and may reflect physiological disruption of memory networks by subclinical epileptiform activity.
Collapse
Affiliation(s)
- Christopher Butler
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| | | | | | | | | | | |
Collapse
|
16
|
Biagini G, D'Antuono M, Benini R, de Guzman P, Longo D, Avoli M. Perirhinal cortex and temporal lobe epilepsy. Front Cell Neurosci 2013; 7:130. [PMID: 24009554 PMCID: PMC3756799 DOI: 10.3389/fncel.2013.00130] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 08/01/2013] [Indexed: 12/30/2022] Open
Abstract
The perirhinal cortex—which is interconnected with several limbic structures and is intimately involved in learning and memory—plays major roles in pathological processes such as the kindling phenomenon of epileptogenesis and the spread of limbic seizures. Both features may be relevant to the pathophysiology of mesial temporal lobe epilepsy that represents the most refractory adult form of epilepsy with up to 30% of patients not achieving adequate seizure control. Compared to other limbic structures such as the hippocampus or the entorhinal cortex, the perirhinal area remains understudied and, in particular, detailed information on its dysfunctional characteristics remains scarce; this lack of information may be due to the fact that the perirhinal cortex is not grossly damaged in mesial temporal lobe epilepsy and in models mimicking this epileptic disorder. However, we have recently identified in pilocarpine-treated epileptic rats the presence of selective losses of interneuron subtypes along with increased synaptic excitability. In this review we: (i) highlight the fundamental electrophysiological properties of perirhinal cortex neurons; (ii) briefly stress the mechanisms underlying epileptiform synchronization in perirhinal cortex networks following epileptogenic pharmacological manipulations; and (iii) focus on the changes in neuronal excitability and cytoarchitecture of the perirhinal cortex occurring in the pilocarpine model of mesial temporal lobe epilepsy. Overall, these data indicate that perirhinal cortex networks are hyperexcitable in an animal model of temporal lobe epilepsy, and that this condition is associated with a selective cellular damage that is characterized by an age-dependent sensitivity of interneurons to precipitating injuries, such as status epilepticus.
Collapse
Affiliation(s)
- Giuseppe Biagini
- Laboratory of Experimental Epileptology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia Modena, Italy
| | | | | | | | | | | |
Collapse
|
17
|
Žiburkus J, Cressman JR, Schiff SJ. Seizures as imbalanced up states: excitatory and inhibitory conductances during seizure-like events. J Neurophysiol 2012; 109:1296-306. [PMID: 23221405 DOI: 10.1152/jn.00232.2012] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Precisely timed and dynamically balanced excitatory (E) and inhibitory (I) conductances underlie the basis of neural network activity. Normal E/I balance is often shifted in epilepsy, resulting in neuronal network hyperexcitability and recurrent seizures. However, dynamics of the actual excitatory and inhibitory synaptic conductances (ge and gi, respectively) during seizures remain unknown. To study the dynamics of E and I network balance, we calculated ge and gi during the initiation, body, and termination of seizure-like events (SLEs) in the rat hippocampus in vitro. Repetitive emergent SLEs in 4-aminopyridine (100 μM) and reduced extracellular magnesium (0.6 mM) were recorded in the identified CA1 pyramidal cells (PC) and oriens-lacunosum moleculare (O-LM) interneurons. Calculated ge/gi ratio dynamics showed that the initiation stage of the SLEs was dominated by inhibition in the PCs and was more balanced in the O-LM cells. During the body of the SLEs, the balance shifted toward excitation, with ge and gi peaking in both cell types at nearly the same time. In the termination phase, PCs were again dominated by inhibition, whereas O-LM cells experienced persistent excitatory synaptic barrage. In this way, increased excitability of interneurons may play roles in both seizure initiation (žiburkus J, Cressman JR, Barreto E, Schiff SJ. J Neurophysiol 95: 3948-3954, 2006) and in their termination. Overall, SLE stages can be characterized in PC and O-LM cells by dynamically distinct changes in the balance of ge and gi, where a temporal sequence of imbalance shifts with the changing firing patterns of the cellular subtypes comprising the hyperexcitable microcircuits.
Collapse
Affiliation(s)
- Jokubas Žiburkus
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA.
| | | | | |
Collapse
|
18
|
Hypoxia markers are expressed in interneurons exposed to recurrent seizures. Neuromolecular Med 2012; 15:133-46. [PMID: 23073716 DOI: 10.1007/s12017-012-8203-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 10/05/2012] [Indexed: 10/27/2022]
Abstract
An early but transient decrease in oxygen availability occurs during experimentally induced seizures. Using pimonidazole, which probes hypoxic insults, we found that by increasing the duration of pilocarpine-induced status epilepticus (SE) from 30 to 120 min, counts of pimonidazole-immunoreactive neurons also increased (P < 0.01, 120 vs 60 and 30 min). All the animals exposed to SE were immunopositive to pimonidazole, but a different scenario emerged during epileptogenesis when a decrease in pimonidazole-immunostained cells occurred from 7 to 14 days, so that only 1 out of 4 rats presented with pimonidazole-immunopositive cells. Pimonidazole-immunoreactive cells robustly reappeared at 21 days post-SE induction when all animals (7 out of 7) had developed spontaneous recurrent seizures. Specific neuronal markers revealed that immunopositivity to pimonidazole was present in cells identified by neuropeptide Y (NPY) or somatostatin antibodies. At variance, neurons immunopositive to parvalbumin or cholecystokinin were not immunopositive to pimonidazole. Pimonidazole-immunopositive neurons expressed remarkable immunoreactivity to hypoxia-inducible factor 1α (HIF-1α). Interestingly, surgical samples obtained from pharmacoresistant patients showed neurons co-labeled by HIF-1α and NPY antibodies. These interneurons, along with parvalbumin-positive interneurons that were negative to HIF-1α, showed immunopositivity to markers of cell damage, such as high-mobility group box 1 in the cytoplasm and cleaved caspase-3 in the nucleus. These findings suggest that interneurons are continuously endangered in rodent and human epileptogenic tissue. The presence of hypoxia and cell damage markers in NPY interneurons of rats and patients presenting with recurrent seizures indicates a mechanism of selective vulnerability in a specific neuronal subpopulation.
Collapse
|
19
|
Calretinin, parvalbumin and calbindin immunoreactive interneurons in perirhinal cortex and temporal area Te3V of the rat brain: Qualitative and quantitative analyses. Brain Res 2012; 1436:68-80. [DOI: 10.1016/j.brainres.2011.12.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 12/05/2011] [Accepted: 12/07/2011] [Indexed: 11/23/2022]
|
20
|
Avoli M, de Curtis M. GABAergic synchronization in the limbic system and its role in the generation of epileptiform activity. Prog Neurobiol 2011; 95:104-32. [PMID: 21802488 PMCID: PMC4878907 DOI: 10.1016/j.pneurobio.2011.07.003] [Citation(s) in RCA: 197] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 07/14/2011] [Accepted: 07/15/2011] [Indexed: 11/30/2022]
Abstract
GABA is the main inhibitory neurotransmitter in the adult forebrain, where it activates ionotropic type A and metabotropic type B receptors. Early studies have shown that GABA(A) receptor-mediated inhibition controls neuronal excitability and thus the occurrence of seizures. However, more complex, and at times unexpected, mechanisms of GABAergic signaling have been identified during epileptiform discharges over the last few years. Here, we will review experimental data that point at the paradoxical role played by GABA(A) receptor-mediated mechanisms in synchronizing neuronal networks, and in particular those of limbic structures such as the hippocampus, the entorhinal and perirhinal cortices, or the amygdala. After having summarized the fundamental characteristics of GABA(A) receptor-mediated mechanisms, we will analyze their role in the generation of network oscillations and their contribution to epileptiform synchronization. Whether and how GABA(A) receptors influence the interaction between limbic networks leading to ictogenesis will be also reviewed. Finally, we will consider the role of altered inhibition in the human epileptic brain along with the ability of GABA(A) receptor-mediated conductances to generate synchronous depolarizing events that may lead to ictogenesis in human epileptic disorders as well.
Collapse
Affiliation(s)
- Massimo Avoli
- Montreal Neurological Institute and Departments of Neurology & Neurosurgery, and of Physiology, McGill University, Montreal H3A 2B4 Quebec, Canada.
| | | |
Collapse
|
21
|
Iannetti P, Papetti L, Nicita F, Castronovo A, Ursitti F, Parisi P, Spalice A, Verrotti A. Developmental anomalies of the medial septal area: possible implication for limbic epileptogenesis. Childs Nerv Syst 2011; 27:765-70. [PMID: 21057954 DOI: 10.1007/s00381-010-1322-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2010] [Accepted: 10/20/2010] [Indexed: 10/18/2022]
Abstract
INTRODUCTION The maldevelopment of the midline structures is connected with neurologic disorders. The cavum septum pellucidum (CSP) exists in the fetal period, then it is re-absorbed. The presence of unfused leaflets/fornices may be considered important in the genesis of neurodevelopmental abnormalities inclunding epilepsy. The limbic system includes a group of interconnected gray and white matter structures; in this circuit, the fornix is an important white matter connection with the septum pellucidum. METHODS Five children, 3-10 years of age, with epilepsy and an unfused septum pellucidum and fornices on MRI, were evaluated by diffusion tensor imaging-fiber tracking (DTI-FT) in order to explore the integrity of the axonal microenviroment of these structures. RESULTS The patients had generalized tonic-clonic seizures (GTCS). The electroencephalogram (EEG) showed focal-temporal abnormalities with secondary generalization. Magnetic resonance imaging (MRI) and DTI-FT demonstrated the CSP, and the presence of the fornix's body split into two bundles with the fornices separated. CONCLUSION The fornix appears more involved than CSP alone, as suggested by fornix atrophy observed in MTLE. Even if epilepsy is suggested to be a grey matter disorder, changes in the underlying brain connectivity have an important contribution in seizure generation and diffusion. In addition, the interconnections of medial septal area with hyppocampus, amygdala and entorhinal cortex, have led to the hypothesis of functional limbic epilepsy. In our patients, the role of DTI was not conclusive since the definition of the number of unmyelinated fibers responsible for epilepsy could not be demonstrated probably for a limited number of seizures and for a short period of drug administration.
Collapse
Affiliation(s)
- Paola Iannetti
- Department of Pediatrics, Child Neurology Division, Sapienza University, La Sapienza Roma, Viale Regina Elena 324, 00161, Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|