1
|
Thomas CI, Ryan MA, McNabb MC, Kamasawa N, Scholl B. Astrocyte coverage of excitatory synapses correlates to measures of synapse structure and function in ferret primary visual cortex. Glia 2024; 72:1785-1800. [PMID: 38856149 PMCID: PMC11324397 DOI: 10.1002/glia.24582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/25/2024] [Accepted: 06/02/2024] [Indexed: 06/11/2024]
Abstract
Most excitatory synapses in the mammalian brain are contacted or ensheathed by astrocyte processes, forming tripartite synapses. Astrocytes are thought to be critical regulators of the structural and functional dynamics of synapses. While the degree of synaptic coverage by astrocytes is known to vary across brain regions and animal species, the reason for and implications of this variability remains unknown. Further, how astrocyte coverage of synapses relates to in vivo functional properties of individual synapses has not been investigated. Here, we characterized astrocyte coverage of synapses of pyramidal neurons in the ferret visual cortex and, using correlative light and electron microscopy, examined their relationship to synaptic strength and sensory-evoked Ca2+ activity. Nearly, all synapses were contacted by astrocytes, and most were contacted along the axon-spine interface. Structurally, we found that the degree of synaptic astrocyte coverage directly scaled with synapse size and postsynaptic density complexity. Functionally, we found that the amount of astrocyte coverage scaled with how selectively a synapse responds to a particular visual stimulus and, at least for the largest synapses, scaled with the reliability of visual stimuli to evoke postsynaptic Ca2+ events. Our study shows astrocyte coverage is highly correlated with structural metrics of synaptic strength of excitatory synapses in the visual cortex and demonstrates a previously unknown relationship between astrocyte coverage and reliable sensory activation.
Collapse
Affiliation(s)
- Connon I Thomas
- Electron Microscopy Core Facility, Max Planck Florida Institute for Neuroscience, Jupiter, Florida, USA
| | - Melissa A Ryan
- Electron Microscopy Core Facility, Max Planck Florida Institute for Neuroscience, Jupiter, Florida, USA
| | - Micaiah C McNabb
- Electron Microscopy Core Facility, Max Planck Florida Institute for Neuroscience, Jupiter, Florida, USA
| | - Naomi Kamasawa
- Electron Microscopy Core Facility, Max Planck Florida Institute for Neuroscience, Jupiter, Florida, USA
| | - Benjamin Scholl
- Department of Physiology and Biophysics, University of Colorado Denver, Aurora, Colorado, USA
| |
Collapse
|
2
|
Thomas CI, Ryan MA, McNabb MC, Kamasawa N, Scholl B. Astrocyte coverage of excitatory synapses correlates to measures of synapse structure and function in primary visual cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.01.569664. [PMID: 38106030 PMCID: PMC10723302 DOI: 10.1101/2023.12.01.569664] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Most excitatory synapses in the mammalian brain are contacted by astrocytes, forming the tripartite synapse. This interface is thought to be critical for glutamate turnover and structural or functional dynamics of synapses. While the degree of synaptic contact of astrocytes is known to vary across brain regions and animal species, the implications of this variability remain unknown. Furthermore, precisely how astrocyte coverage of synapses relates to in vivo functional properties of individual dendritic spines has yet to be investigated. Here, we characterized perisynaptic astrocyte processes (PAPs) contacting synapses of pyramidal neurons of the ferret visual cortex and, using correlative light and electron microscopy, examined their relationship to synaptic strength and to sensory-evoked Ca2+ activity. Nearly all synapses were contacted by PAPs, and most were contacted along the axon-spine interface (ASI). Structurally, we found that the degree of PAP coverage scaled with synapse size and complexity. Functionally, we found that PAP coverage scaled with the selectivity of Ca2+ responses of individual synapses to visual stimuli and, at least for the largest synapses, scaled with the reliability of visual stimuli to evoke postsynaptic Ca2+ events. Our study shows astrocyte coverage is highly correlated with structural properties of excitatory synapses in the visual cortex and implicates astrocytes as a contributor to reliable sensory activation.
Collapse
Affiliation(s)
- Connon I Thomas
- Electron Microscopy Core Facility, Max Planck Florida Institute for Neuroscience, 1 Max Planck Way, Jupiter, FL 33458, USA
| | - Melissa A Ryan
- Electron Microscopy Core Facility, Max Planck Florida Institute for Neuroscience, 1 Max Planck Way, Jupiter, FL 33458, USA
- Department of Neuroscience, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Micaiah C McNabb
- Electron Microscopy Core Facility, Max Planck Florida Institute for Neuroscience, 1 Max Planck Way, Jupiter, FL 33458, USA
- Department of Neuroscience, The Ohio State University, 460 Medical Center Drive, Columbus, OH 43210, USA
| | - Naomi Kamasawa
- Electron Microscopy Core Facility, Max Planck Florida Institute for Neuroscience, 1 Max Planck Way, Jupiter, FL 33458, USA
| | - Benjamin Scholl
- Department of Physiology and Biophysics, University of Colorado Denver, 12800 East 19th Ave, Aurora, CO 80045, USA
| |
Collapse
|
3
|
Andersen JV, Schousboe A. Glial Glutamine Homeostasis in Health and Disease. Neurochem Res 2023; 48:1100-1128. [PMID: 36322369 DOI: 10.1007/s11064-022-03771-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 08/25/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022]
Abstract
Glutamine is an essential cerebral metabolite. Several critical brain processes are directly linked to glutamine, including ammonia homeostasis, energy metabolism and neurotransmitter recycling. Astrocytes synthesize and release large quantities of glutamine, which is taken up by neurons to replenish the glutamate and GABA neurotransmitter pools. Astrocyte glutamine hereby sustains the glutamate/GABA-glutamine cycle, synaptic transmission and general brain function. Cerebral glutamine homeostasis is linked to the metabolic coupling of neurons and astrocytes, and relies on multiple cellular processes, including TCA cycle function, synaptic transmission and neurotransmitter uptake. Dysregulations of processes related to glutamine homeostasis are associated with several neurological diseases and may mediate excitotoxicity and neurodegeneration. In particular, diminished astrocyte glutamine synthesis is a common neuropathological component, depriving neurons of an essential metabolic substrate and precursor for neurotransmitter synthesis, hereby leading to synaptic dysfunction. While astrocyte glutamine synthesis is quantitatively dominant in the brain, oligodendrocyte-derived glutamine may serve important functions in white matter structures. In this review, the crucial roles of glial glutamine homeostasis in the healthy and diseased brain are discussed. First, we provide an overview of cellular recycling, transport, synthesis and metabolism of glutamine in the brain. These cellular aspects are subsequently discussed in relation to pathological glutamine homeostasis of hepatic encephalopathy, epilepsy, Alzheimer's disease, Huntington's disease and amyotrophic lateral sclerosis. Further studies on the multifaceted roles of cerebral glutamine will not only increase our understanding of the metabolic collaboration between brain cells, but may also aid to reveal much needed therapeutic targets of several neurological pathologies.
Collapse
Affiliation(s)
- Jens V Andersen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| | - Arne Schousboe
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
4
|
Ji C, Tang Y, Zhang Y, Li C, Liang H, Ding L, Xia X, Xiong L, Qi XR, Zheng JC. Microglial glutaminase 1 deficiency mitigates neuroinflammation associated depression. Brain Behav Immun 2022; 99:231-245. [PMID: 34678461 DOI: 10.1016/j.bbi.2021.10.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/28/2021] [Accepted: 10/14/2021] [Indexed: 02/06/2023] Open
Abstract
Glutaminase 1 (GLS1) has recently been reported to be expressed in microglia and plays a crucial role in neuroinflamation. Significantly increased level of GLS1 mRNA expression together with neuroinflammation pathway were observed in postmortem prefrontal cortex from depressed patients. To find out the function of microglial GLS1 in depression and neuroinflammation, we generated transgenic mice (GLS1 cKO), postnatally losing GLS1 in microglia, to detect changes in the lipopolysaccharide (LPS)-induced depression model. LPS-induced anxiety/depression-like behavior was attenuated in GLS1 cKO mice, paralleled by a significant reduction in pro-inflammatory cytokines and an abnormal microglia morphological phenotype in the prefrontal cortex. Reduced neuroinflammation by GLS1 deficient microglia was a result of less reactive astrocytes, as GLS1 deficiency enhanced miR-666-3p and miR-7115-3p levels in extracellular vesicles released from microglia, thus suppressing astrocyte activation via inhibiting Serpina3n expression. Together, our data reveal a novel mechanism of GLS1 in neuroinflammation and targeting GLS1 in microglia may be a novel strategy to alleviate neuroinflammation-related depression and other disease.
Collapse
Affiliation(s)
- Chenhui Ji
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200072, China
| | - Yalin Tang
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200072, China
| | - Yanyan Zhang
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200072, China
| | - Congcong Li
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200072, China
| | - Huazheng Liang
- Department of Anaesthesiology, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200070, China; Translational Research Institute of Brain and Brain-Like Intelligence Affiliated to Tongji University School of Medicine, Shanghai 200070, China
| | - Lu Ding
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200072, China
| | - Xiaohuan Xia
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200072, China
| | - Lize Xiong
- Department of Anaesthesiology, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200070, China; Translational Research Institute of Brain and Brain-Like Intelligence Affiliated to Tongji University School of Medicine, Shanghai 200070, China
| | - Xin-Rui Qi
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200072, China.
| | - Jialin C Zheng
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200072, China.
| |
Collapse
|
5
|
Kosten L, Chowdhury GMI, Mingote S, Staelens S, Rothman DL, Behar KL, Rayport S. Glutaminase activity in GLS1 Het mouse brain compared to putative pharmacological inhibition by ebselen using ex vivo MRS. Neurochem Int 2019; 129:104508. [PMID: 31326460 DOI: 10.1016/j.neuint.2019.104508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/28/2019] [Accepted: 07/18/2019] [Indexed: 01/13/2023]
Abstract
Glutaminase mediates the recycling of neurotransmitter glutamate, supporting most excitatory neurotransmission in the mammalian central nervous system. A constitutive heterozygous reduction in GLS1 engenders in mice a model of schizophrenia resilience and associated increases in Gln, reductions in Glu and activity-dependent attenuation of excitatory synaptic transmission. Hippocampal brain slices from GLS1 heterozygous mice metabolize less Gln to Glu. Whether glutaminase activity is diminished in the intact brain in GLS1 heterozygous mice has not been assessed, nor the regional impact. Moreover, it is not known whether pharmacological inhibition would mimic the genetic reduction. We addressed this using magnetic resonance spectroscopy to assess amino acid content and 13C-acetate loading to assess glutaminase activity, in multiple brain regions. Glutaminase activity was reduced significantly in the hippocampus of GLS1 heterozygous mice, while acute treatment with the putative glutaminase inhibitor ebselen did not impact glutaminase activity, but did significantly increase GABA. This approach identifies a molecular imaging strategy for testing target engagement by comparing genetic and pharmacological inhibition, across brain regions.
Collapse
Affiliation(s)
- Lauren Kosten
- Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium
| | - Golam M I Chowdhury
- Department of Psychiatry, Magnetic Resonance Research Center, Yale University School of Medicine, USA
| | - Susana Mingote
- Department of Psychiatry, Columbia University, USA; Department of Molecular Therapeutics, NYS Psychiatric Institute, USA; Neuroscience, Advanced Science Research Center at the Graduate Center of the City University of New York, USA
| | - Steven Staelens
- Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium
| | - Douglas L Rothman
- Department of Radiology & Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, USA
| | - Kevin L Behar
- Department of Psychiatry, Magnetic Resonance Research Center, Yale University School of Medicine, USA.
| | - Stephen Rayport
- Department of Psychiatry, Columbia University, USA; Department of Molecular Therapeutics, NYS Psychiatric Institute, USA.
| |
Collapse
|
6
|
Kosten L, Deleye S, Stroobants S, Wyffels L, Mingote S, Rayport S, Staelens S. Molecular Imaging of mGluR5 Availability with [ 11C]ABP68 in Glutaminase Heterozygous Mice. Cell Mol Neurobiol 2019; 39:255-263. [PMID: 30552621 PMCID: PMC11469798 DOI: 10.1007/s10571-018-0645-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 12/10/2018] [Indexed: 11/26/2022]
Abstract
Many PET tracers enable determination of fluctuations in neurotransmitter release, yet glutamate specifically can not be visualized in a noninvasive manner. Several studies point to the possibility of visualizing fluctuations in glutamate release by changes in affinity of the mGluR5 radioligand [11C]ABP688. These studies use pharmacological challenges to alter glutamate levels, and so probe release, but have not measured chronic alterations in receptor occupancy due to altered neurotransmission relevant to chronic neuropsychiatric disorders or their treatment. In this regard, the GLS1 heterozygous mouse has known reductions in activity of the glutamate-synthetic enzyme glutaminase, brain glutamate levels and release. We imaged this model to elucidate glutamatergic systems. Dynamic [11C]ABP688 microPET scans were performed for mGluR5. Western blot was used as an ex vivo validation. No significant differences were found in BPND between WT and GLS1 Hets. SPM showed voxel-wise increased in BPND in GLS1 Hets compared to WT consistent with lower synaptic glutamate. This was not due to alterations in mGluR5 levels, as western blot results showed lower mGluR5 levels in GLS1 Hets. We conclude that because of the chronic glutaminase deficiency and subsequent decrease in glutamate, the mGluR5 protein levels are lowered. Due to these decreased endogenous glutamate levels, however, there is increased [11C]ABP688 binding to the allosteric site in selected regions. We speculate that lower endogenous glutamate leads to less conformational change to the receptors, and thus higher availability of the binding site. The lower mGluR5 levels, however, lessen [11C]ABP688 binding in GLS1 Hets, in part masking the increase in binding due to diminished endogenous glutamate levels as confirmed with voxel-wise analysis.
Collapse
Affiliation(s)
- Lauren Kosten
- Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium
| | - Steven Deleye
- Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium
| | - Sigrid Stroobants
- Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium
- Department of Nuclear Medicine, University Hospital Antwerp, Antwerp, Belgium
| | - Leonie Wyffels
- Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium
- Department of Nuclear Medicine, University Hospital Antwerp, Antwerp, Belgium
| | - Susana Mingote
- Department of Psychiatry, Columbia University, New York, USA
- Molecular Therapeutics, NYS Psychiatric Institute, New York, USA
| | - Stephen Rayport
- Department of Psychiatry, Columbia University, New York, USA
- Molecular Therapeutics, NYS Psychiatric Institute, New York, USA
| | - Steven Staelens
- Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
7
|
Dutar P, Tolle V, Kervern M, Carcenac C, Carola V, Gross C, Savasta M, Darmon M, Masson J. GLS1 Mutant Mice Display Moderate Alterations of Hippocampal Glutamatergic Neurotransmission Associated with Specific Adaptive Behavioral Changes. Neuroscience 2019; 396:175-186. [PMID: 30472430 DOI: 10.1016/j.neuroscience.2018.11.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 11/13/2018] [Accepted: 11/14/2018] [Indexed: 11/29/2022]
Abstract
Significant alterations in glutamatergic neurotransmission have been reported in major depressive disorder (MDD) that could underlie psychiatric traits. Studies were mainly interested in synaptic dysfunction in the prefrontal cortex, a key structure involved in depressive-like behavior, however hippocampus has been shown to be important in MDD. As cognitive deficits such as hippocampus-memory process were observed in MDD, we investigated in a mild hypoglutamatergic model behaviors related to depression and memory, synaptic transmission parameters and glutamatergic state specifically in the hippocampus. We thus characterized these phenotypes in adult male mice partially depleted in glutaminase type 1 or GLS1 (GLS1 HET), the enzyme responsible for glutamate synthesis in neurons, that we previously characterized as displaying moderate lower levels of glutamate in brain. We showed that GLS1 mutant mice display AMPA-R-mediated response deficits after prolonged repetitive stimulation with electrophysiological recording and inability to sustain glutamate release by microdialysis experiments with no consequences on behavioral spatial learning performances. However, their ability to escape from unpleasant but repeated escapable condition was attenuated whereas they were more immobile in the unescapable situation in the FST during re-test. These results show that GLS1 mutant mice display moderate impairments of hippocampal glutamatergic neurotransmission and moderate changes in adaptive behaviors that have been shown to participate to the development of depressive-like state.
Collapse
Affiliation(s)
- Patrick Dutar
- Centre de Psychiatrie et Neuroscience, INSERM UMR894, Paris F-75014 France Université Paris Descartes, Sorbonne Paris Cité, Paris 5, France
| | - Virginie Tolle
- Centre de Psychiatrie et Neuroscience, INSERM UMR894, Paris F-75014 France Université Paris Descartes, Sorbonne Paris Cité, Paris 5, France
| | - Myriam Kervern
- Centre de Psychiatrie et Neuroscience, INSERM UMR894, Paris F-75014 France Université Paris Descartes, Sorbonne Paris Cité, Paris 5, France
| | - Carole Carcenac
- Université Grenoble Alpes, Grenoble Institut des neuroscience (GIN), 38000 Grenoble, France
| | - Valeria Carola
- Department of Experimental Neuroscience, Fondazione Santa Lucia, Rome, Italy; Epigenetics & Neurobiology Unit, European Molecular Biology Laboratory, EMBL-Rome, Italy
| | - Cornelius Gross
- Epigenetics & Neurobiology Unit, European Molecular Biology Laboratory, EMBL-Rome, Italy
| | - Marc Savasta
- Université Grenoble Alpes, Grenoble Institut des neuroscience (GIN), 38000 Grenoble, France
| | - Michèle Darmon
- Centre de Psychiatrie et Neuroscience, INSERM UMR894, Paris F-75014 France Université Paris Descartes, Sorbonne Paris Cité, Paris 5, France
| | - Justine Masson
- Centre de Psychiatrie et Neuroscience, INSERM UMR894, Paris F-75014 France Université Paris Descartes, Sorbonne Paris Cité, Paris 5, France.
| |
Collapse
|
8
|
Mingote S, Chuhma N, Kalmbach A, Thomsen GM, Wang Y, Mihali A, Sferrazza C, Zucker-Scharff I, Siena AC, Welch MG, Lizardi-Ortiz J, Sulzer D, Moore H, Gaisler-Salomon I, Rayport S. Dopamine neuron dependent behaviors mediated by glutamate cotransmission. eLife 2017; 6. [PMID: 28703706 PMCID: PMC5599237 DOI: 10.7554/elife.27566] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/06/2017] [Indexed: 12/11/2022] Open
Abstract
Dopamine neurons in the ventral tegmental area use glutamate as a cotransmitter. To elucidate the behavioral role of the cotransmission, we targeted the glutamate-recycling enzyme glutaminase (gene Gls1). In mice with a dopamine transporter (Slc6a3)-driven conditional heterozygous (cHET) reduction of Gls1 in their dopamine neurons, dopamine neuron survival and transmission were unaffected, while glutamate cotransmission at phasic firing frequencies was reduced, enabling a selective focus on the cotransmission. The mice showed normal emotional and motor behaviors, and an unaffected response to acute amphetamine. Strikingly, amphetamine sensitization was reduced and latent inhibition potentiated. These behavioral effects, also seen in global GLS1 HETs with a schizophrenia resilience phenotype, were not seen in mice with an Emx1-driven forebrain reduction affecting most brain glutamatergic neurons. Thus, a reduction in dopamine neuron glutamate cotransmission appears to mediate significant components of the GLS1 HET schizophrenia resilience phenotype, and glutamate cotransmission appears to be important in attribution of motivational salience.
Collapse
Affiliation(s)
- Susana Mingote
- Department of Psychiatry, Columbia University, New York, United States.,Department of Molecular Therapeutics, NYS Psychiatric Institute, New York, United States
| | - Nao Chuhma
- Department of Psychiatry, Columbia University, New York, United States.,Department of Molecular Therapeutics, NYS Psychiatric Institute, New York, United States
| | - Abigail Kalmbach
- Department of Psychiatry, Columbia University, New York, United States.,Department of Molecular Therapeutics, NYS Psychiatric Institute, New York, United States
| | | | - Yvonne Wang
- Department of Psychiatry, Columbia University, New York, United States
| | - Andra Mihali
- Department of Psychiatry, Columbia University, New York, United States
| | | | | | - Anna-Claire Siena
- Department of Molecular Therapeutics, NYS Psychiatric Institute, New York, United States
| | - Martha G Welch
- Department of Psychiatry, Columbia University, New York, United States.,Department of Pediatrics, Columbia University, New York, United States.,Department of Developmental Neuroscience, NYS Psychiatric Institute, New York, United States
| | | | - David Sulzer
- Department of Psychiatry, Columbia University, New York, United States.,Department of Molecular Therapeutics, NYS Psychiatric Institute, New York, United States.,Department of Neurology, Columbia University, New York, United States.,Department of Pharmacology, Columbia University, New York, United States
| | - Holly Moore
- Department of Psychiatry, Columbia University, New York, United States.,Department of Integrative Neuroscience, NYS Psychiatric Institute, New York, United States
| | - Inna Gaisler-Salomon
- Department of Psychiatry, Columbia University, New York, United States.,Department of Psychology, University of Haifa, Haifa, Israel
| | - Stephen Rayport
- Department of Psychiatry, Columbia University, New York, United States.,Department of Molecular Therapeutics, NYS Psychiatric Institute, New York, United States
| |
Collapse
|
9
|
Bolkan SS, Carvalho Poyraz F, Kellendonk C. Using human brain imaging studies as a guide toward animal models of schizophrenia. Neuroscience 2016; 321:77-98. [PMID: 26037801 PMCID: PMC4664583 DOI: 10.1016/j.neuroscience.2015.05.055] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/15/2015] [Accepted: 05/21/2015] [Indexed: 12/17/2022]
Abstract
Schizophrenia is a heterogeneous and poorly understood mental disorder that is presently defined solely by its behavioral symptoms. Advances in genetic, epidemiological and brain imaging techniques in the past half century, however, have significantly advanced our understanding of the underlying biology of the disorder. In spite of these advances clinical research remains limited in its power to establish the causal relationships that link etiology with pathophysiology and symptoms. In this context, animal models provide an important tool for causally testing hypotheses about biological processes postulated to be disrupted in the disorder. While animal models can exploit a variety of entry points toward the study of schizophrenia, here we describe an approach that seeks to closely approximate functional alterations observed with brain imaging techniques in patients. By modeling these intermediate pathophysiological alterations in animals, this approach offers an opportunity to (1) tightly link a single functional brain abnormality with its behavioral consequences, and (2) to determine whether a single pathophysiology can causally produce alterations in other brain areas that have been described in patients. In this review we first summarize a selection of well-replicated biological abnormalities described in the schizophrenia literature. We then provide examples of animal models that were studied in the context of patient imaging findings describing enhanced striatal dopamine D2 receptor function, alterations in thalamo-prefrontal circuit function, and metabolic hyperfunction of the hippocampus. Lastly, we discuss the implications of findings from these animal models for our present understanding of schizophrenia, and consider key unanswered questions for future research in animal models and human patients.
Collapse
Affiliation(s)
- S S Bolkan
- Department of Pharmacology, Columbia University, New York, NY 10032, USA; Department of Psychiatry, Columbia University, New York, NY 10032, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - F Carvalho Poyraz
- Department of Pharmacology, Columbia University, New York, NY 10032, USA; Department of Psychiatry, Columbia University, New York, NY 10032, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - C Kellendonk
- Department of Pharmacology, Columbia University, New York, NY 10032, USA; Department of Psychiatry, Columbia University, New York, NY 10032, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA.
| |
Collapse
|
10
|
Mingote S, Masson J, Gellman C, Thomsen GM, Lin CS, Merker RJ, Gaisler-Salomon I, Wang Y, Ernst R, Hen R, Rayport S. Genetic Pharmacotherapy as an Early CNS Drug Development Strategy: Testing Glutaminase Inhibition for Schizophrenia Treatment in Adult Mice. Front Syst Neurosci 2016; 9:165. [PMID: 26778975 PMCID: PMC4705219 DOI: 10.3389/fnsys.2015.00165] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 11/12/2015] [Indexed: 01/23/2023] Open
Abstract
Genetic pharmacotherapy is an early drug development strategy for the identification of novel CNS targets in mouse models prior to the development of specific ligands. Here for the first time, we have implemented this strategy to address the potential therapeutic value of a glutamate-based pharmacotherapy for schizophrenia involving inhibition of the glutamate recycling enzyme phosphate-activated glutaminase. Mice constitutively heterozygous for GLS1, the gene encoding glutaminase, manifest a schizophrenia resilience phenotype, a key dimension of which is an attenuated locomotor response to propsychotic amphetamine challenge. If resilience is due to glutaminase deficiency in adulthood, then glutaminase inhibitors should have therapeutic potential. However, this has been difficult to test given the dearth of neuroactive glutaminase inhibitors. So, we used genetic pharmacotherapy to ask whether adult induction of GLS1 heterozygosity would attenuate amphetamine responsiveness. We generated conditional floxGLS1 mice and crossed them with global CAGERT2cre∕+ mice to produce GLS1 iHET mice, susceptible to tamoxifen induction of GLS1 heterozygosity. One month after tamoxifen treatment of adult GLS1 iHET mice, we found a 50% reduction in GLS1 allelic abundance and glutaminase mRNA levels in the brain. While GLS1 iHET mice showed some recombination prior to tamoxifen, there was no impact on mRNA levels. We then asked whether induction of GLS heterozygosity would attenuate the locomotor response to propsychotic amphetamine challenge. Before tamoxifen, control and GLS1 iHET mice did not differ in their response to amphetamine. One month after tamoxifen treatment, amphetamine-induced hyperlocomotion was blocked in GLS1 iHET mice. The block was largely maintained after 5 months. Thus, a genetically induced glutaminase reduction—mimicking pharmacological inhibition—strongly attenuated the response to a propsychotic challenge, suggesting that glutaminase may be a novel target for the pharmacotherapy of schizophrenia. These results demonstrate how genetic pharmacotherapy can be implemented to test a CNS target in advance of the development of specific neuroactive inhibitors. We discuss further the advantages, limitations, and feasibility of the wider application of genetic pharmacotherapy for neuropsychiatric drug development.
Collapse
Affiliation(s)
- Susana Mingote
- Department of Psychiatry, Columbia UniversityNew York, NY, USA; Department of Molecular Therapeutics, New York State Psychiatric InstituteNew York, NY, USA
| | - Justine Masson
- Department of Psychiatry, Columbia UniversityNew York, NY, USA; Centre de Psychiatrie et Neurosciences, Institut National de la Santé et de la Recherche Médicale UMR 894 and Université Paris DescartesParis, France
| | - Celia Gellman
- Department of Psychiatry, Columbia University New York, NY, USA
| | | | - Chyuan-Sheng Lin
- Department of Pathology and Cell Biology, Columbia University New York, NY, USA
| | - Robert J Merker
- Department of Integrative Neuroscience, New York State Psychiatric Institute New York, NY, USA
| | - Inna Gaisler-Salomon
- Department of Psychiatry, Columbia UniversityNew York, NY, USA; Psychobiology Labs, Department of Psychology, University of HaifaHaifa, Israel
| | - Yvonne Wang
- Department of Molecular Therapeutics, New York State Psychiatric Institute New York, NY, USA
| | - Rachel Ernst
- Department of Molecular Therapeutics, New York State Psychiatric Institute New York, NY, USA
| | - René Hen
- Department of Integrative Neuroscience, New York State Psychiatric InstituteNew York, NY, USA; Departments of Neuroscience and Pharmacology, Columbia UniversityNew York, NY, USA
| | - Stephen Rayport
- Department of Psychiatry, Columbia UniversityNew York, NY, USA; Department of Molecular Therapeutics, New York State Psychiatric InstituteNew York, NY, USA
| |
Collapse
|
11
|
Altered nociception in mice with genetically induced hypoglutamatergic tone. Neuroscience 2015; 293:80-91. [PMID: 25743253 DOI: 10.1016/j.neuroscience.2015.02.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/23/2015] [Accepted: 02/24/2015] [Indexed: 12/11/2022]
Abstract
Extensive pharmacological evidence supports the idea that glutamate plays a key role in both acute and chronic pain. In the present study, we investigated the implication of the excitatory amino acid in physiological nociception by using mutant mice deficient in phosphate-activated glutaminase type 1 (GLS1), the enzyme that synthesizes glutamate in central glutamatergic neurons. Because homozygous GLS1-/- mutants die shortly after birth, assays for assessing mechanical, thermal and chemical (formalin) nociception were performed on heterozygous GLS1+/- mutants, which present a clear-cut decrease in glutamate synthesis in central neurons. As compared to paired wild-type mice, adult male GLS1+/- mutants showed decreased responsiveness to mechanical (von Frey filament and tail-pressure, but not tail-clip, tests) and thermal (Hargreaves' plantar, tail-immersion and hot-plate tests) nociceptive stimuli. Genotype-related differences were also found in the formalin test for which GLS1+/- mice exhibited marked decreases in the nociceptive responses (hindlimb lift, lick and flinch) during both phase 1 (0-5 min) and phase 2 (16-45 min) after formalin injection. On the other hand, acute treatment with memantine (1mg/kg i.p.), an uncompetitive antagonist at NMDA glutamate receptors, reduced nociception responses in wild-type but not GLS1+/- mice. Conversely, antinociceptive response to acute administration of a low dose (1mg/kg s.c.) of morphine was significantly larger in GLS1+/- mutants versus wild-type mice. Our findings indicate that genetically driven hypoactivity of central glutamatergic neurotransmission renders mice hyposensitive to nociceptive stimulations, and promotes morphine antinociception, further emphasizing the critical role of glutamate in physiological nociception and its opioid-mediated control.
Collapse
|
12
|
Marx MC, Billups D, Billups B. Maintaining the presynaptic glutamate supply for excitatory neurotransmission. J Neurosci Res 2015; 93:1031-44. [PMID: 25648608 DOI: 10.1002/jnr.23561] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/04/2015] [Accepted: 01/05/2015] [Indexed: 01/09/2023]
Abstract
Glutamate released from synapses during excitatory neurotransmission must be rapidly recycled to maintain neuronal communication. This review evaluates data from physiological experiments at hippocampal CA3 to CA1 synapses and the calyx of Held synapse in the brainstem to analyze quantitatively the rates of release and resupply of glutamate required to sustain neurotransmission. We calculate that, without efficient recycling, the presynaptic glutamate supply will be exhausted within about a minute of normal synaptic activity. We also discuss replenishment of the presynaptic pool by diffusion from the soma, direct uptake of glutamate back into the presynaptic terminal, and uptake of glutamate precursor molecules. Diffusion of glutamate from the soma is calculated to be fast enough to resupply presynaptic glutamate in the hippocampus but not at the calyx of Held. However, because the somatic cytoplasm will also quickly run out of glutamate and synapses can function continually even if the presynaptic axon is severed, mechanisms other than diffusion must be present to resupply glutamate for release. Direct presynaptic uptake of glutamate is not present at the calyx of Held but may play a role in glutamate recycling in the hippocampus. Alternatively, glutamine or tricarboxylic acid cycle intermediates released from glia can serve as a precursor for glutamate in synaptic terminals, and we calculate that the magnitude of presynaptic glutamine uptake is sufficient to supply enough glutamate to sustain neurotransmission. The nature of these mechanisms, their relative abundance, and the co-ordination between them remain areas of intensive investigation.
Collapse
Affiliation(s)
- Mari-Carmen Marx
- Eccles Institute of Neuroscience, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Daniela Billups
- Eccles Institute of Neuroscience, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Brian Billups
- Eccles Institute of Neuroscience, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
13
|
Brande-Eilat N, Golumbic YN, Zaidan H, Gaisler-Salomon I. Acquisition of conditioned fear is followed by region-specific changes in RNA editing of glutamate receptors. Stress 2015; 18:309-18. [PMID: 26383032 DOI: 10.3109/10253890.2015.1073254] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Adenosine (A) to inosine (I) RNA editing is a post-transcriptional modification process that can affect synaptic function. Transcripts encoding the kainate GRIK1 and AMPA GluA2 glutamate receptor subunits undergo editing that leads to a glycine/arginine (Q/R) exchange and reduced Ca(2+) permeability. We hypothesized that editing at these sites could be experience-dependent, temporally dynamic and region-specific. We trained C57/Bl6 mice in trace and contextual fear conditioning protocols, and examined editing levels at GRIK1 and GluA2 Q/R sites in the amygdala (CeA) and hippocampus (CA1 and CA3), at two time points after training. We also examined experience-dependent changes in the expression of RNA editing enzymes and editing targets. Animals trained in the trace fear conditioning protocol exhibited a transient increase in unedited GRIK1 RNA in the amygdala, and their learning efficiency correlated with unedited RNA levels in CA1. In line with previous reports, GluA2 RNA editing levels were nearly 100%. Additionally, we observed experience-dependent changes in mRNA expression of the RNA editing enzymes ADAR2 and ADAR1 in amygdala and hippocampus, and a learning-dependent increase in the alternatively spliced inactive form of ADAR2 in the amygdala. Since unedited transcripts code for Ca(2+)-permeable receptor subunits, these findings suggest that RNA editing at Q/R sites of glutamate receptors plays an important role in experience-dependent synaptic modification processes.
Collapse
Affiliation(s)
- Noa Brande-Eilat
- a Psychology Department , University of Haifa , Haifa , Israel and
| | - Yaela N Golumbic
- a Psychology Department , University of Haifa , Haifa , Israel and
| | - Hiba Zaidan
- a Psychology Department , University of Haifa , Haifa , Israel and
| | - Inna Gaisler-Salomon
- a Psychology Department , University of Haifa , Haifa , Israel and
- b Department of Psychiatry , Columbia University , New York , NY , USA
| |
Collapse
|
14
|
Hazan L, Gaisler-Salomon I. Glutaminase1 heterozygous mice show enhanced trace fear conditioning and Arc/Arg3.1 expression in hippocampus and cingulate cortex. Eur Neuropsychopharmacol 2014; 24:1916-24. [PMID: 25453483 DOI: 10.1016/j.euroneuro.2014.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 07/22/2014] [Accepted: 10/11/2014] [Indexed: 01/27/2023]
Abstract
Mice heterozygous for a mutation in the glutaminase (GLS1) gene (GLS1 HZ mice), with reduced glutamate recycling and release, display reduced hippocampal function as well as memory of contextual cues in a delay fear conditioning (FC) paradigm. Here, we asked whether this deficit reflects an inability to process contextual information or a selective alteration in salience attribution. In addition, we asked whether baseline and activity-induced hippocampal activity were diminished in GLS1 HZ mice. For this purpose, we manipulated the relative salience of the conditioned stimulus (CS) and contextual cues in FC tasks, and examined gene expression of the immediate early gene Arc (Arc/Arg3.1) in hippocampus and anterior cingulate cortex (ACC) following trace FC (tFC). The results indicate that GLS1 HZ mice succeed in processing contextual information when the salient CS is absent or less predictive. In addition, in the hippocampus-dependent tFC paradigm GLS1 HZ mice display enhanced CS learning. Furthermore, while baseline arc activation was reduced in GLS1 HZ mice in the hippocampus, in line with previous fMRI findings, it was enhanced in the hippocampus and anterior cingulate cortex following tFC. These findings suggest that GLS1 HZ mice have a pro-cognitive profile in the tFC paradigm, and this phenotype involves activation of both hippocampus and ACC. Taken together with previous work on the GLS1 HZ mouse, this study sheds light on the importance of glutamate transmission to memory processes that require the allocation of attentional resources, and extends our understanding of the underpinnings of attention deficits in SZ.
Collapse
Affiliation(s)
- Liran Hazan
- Department of Psychology, University of Haifa, Haifa 3498838, Israel
| | - Inna Gaisler-Salomon
- Department of Psychology, University of Haifa, Haifa 3498838, Israel; Department of Psychiatry, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
15
|
Abstract
The metabolic adaptations that support oncogenic growth can also render cancer cells dependent on certain nutrients. Along with the Warburg effect, increased utilization of glutamine is one of the metabolic hallmarks of the transformed state. Glutamine catabolism is positively regulated by multiple oncogenic signals, including those transmitted by the Rho family of GTPases and by c-Myc. The recent identification of mechanistically distinct inhibitors of glutaminase, which can selectively block cellular transformation, has revived interest in the possibility of targeting glutamine metabolism in cancer therapy. Here, we outline the regulation and roles of glutamine metabolism within cancer cells and discuss possible strategies for, and the consequences of, impacting these processes therapeutically.
Collapse
|
16
|
Zaidan H, Leshem M, Gaisler-Salomon I. Prereproductive stress to female rats alters corticotropin releasing factor type 1 expression in ova and behavior and brain corticotropin releasing factor type 1 expression in offspring. Biol Psychiatry 2013; 74:680-7. [PMID: 23726318 DOI: 10.1016/j.biopsych.2013.04.014] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 03/24/2013] [Accepted: 04/11/2013] [Indexed: 12/17/2022]
Abstract
BACKGROUND Human and animal studies indicate that vulnerability to stress may be heritable and that changes in germline may mediate some transgenerational effects. Corticotropin releasing factor type 1 (CRF1) is a key component in the stress response. We investigated changes in CRF1 expression in brain and ova of stressed female rats and in the brain of their neonate and adult offspring. Behavioral changes in adulthood were also assessed. METHODS Adult female rats underwent chronic unpredictable stress. We extracted mature oocytes and brain regions from a subset of rats and mated the rest 2 weeks following the stress procedure. CRF1 expression was assessed using quantitative reverse-transcription polymerase chain reaction. Tests of anxiety and aversive learning were used to examine behavior of offspring in adulthood. RESULTS We show that chronic unpredictable stress leads to an increase in CRF1 messenger RNA expression in frontal cortex and mature oocytes. Neonatal offspring of stressed female rats show an increase in brain CRF1 expression. In adulthood, offspring of stressed female rats show sex differences in both CRF1 messenger RNA expression and behavior. Moreover, CRF1 expression patterns in frontal cortex of female offspring depend upon both maternal and individual adverse experience. CONCLUSIONS Our findings demonstrate that stress affects CRF1 expression in brain but also in ova, pointing to a possible mechanism of transgenerational transmission. In offspring, stress-induced changes are evident at birth and are thus unlikely to result from altered maternal nurturance. Finally, brain CRF1 expression in offspring depends upon gender and upon maternal and individual exposure to adverse environment.
Collapse
Affiliation(s)
- Hiba Zaidan
- Department of Psychology, University of Haifa, Haifa, Israel
| | | | | |
Collapse
|
17
|
Gulsuner S, Walsh T, Watts AC, Lee MK, Thornton AM, Casadei S, Rippey C, Shahin H, Nimgaonkar VL, Go RCP, Savage RM, Swerdlow NR, Gur RE, Braff DL, King MC, McClellan JM. Spatial and temporal mapping of de novo mutations in schizophrenia to a fetal prefrontal cortical network. Cell 2013; 154:518-29. [PMID: 23911319 DOI: 10.1016/j.cell.2013.06.049] [Citation(s) in RCA: 420] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 06/03/2013] [Accepted: 06/28/2013] [Indexed: 11/28/2022]
Abstract
Genes disrupted in schizophrenia may be revealed by de novo mutations in affected persons from otherwise healthy families. Furthermore, during normal brain development, genes are expressed in patterns specific to developmental stage and neuroanatomical structure. We identified de novo mutations in persons with schizophrenia and then mapped the responsible genes onto transcriptome profiles of normal human brain tissues from age 13 weeks gestation to adulthood. In the dorsolateral and ventrolateral prefrontal cortex during fetal development, genes harboring damaging de novo mutations in schizophrenia formed a network significantly enriched for transcriptional coexpression and protein interaction. The 50 genes in the network function in neuronal migration, synaptic transmission, signaling, transcriptional regulation, and transport. These results suggest that disruptions of fetal prefrontal cortical neurogenesis are critical to the pathophysiology of schizophrenia. These results also support the feasibility of integrating genomic and transcriptome analyses to map critical neurodevelopmental processes in time and space in the brain.
Collapse
Affiliation(s)
- Suleyman Gulsuner
- Department of Medicine and Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Mihali A, Subramani S, Kaunitz G, Rayport S, Gaisler-Salomon I. Modeling resilience to schizophrenia in genetically modified mice: a novel approach to drug discovery. Expert Rev Neurother 2012; 12:785-99. [PMID: 22853787 PMCID: PMC3509194 DOI: 10.1586/ern.12.60] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Complex psychiatric disorders, such as schizophrenia, arise from a combination of genetic, developmental, environmental and social factors. These vulnerabilities can be mitigated by adaptive factors in each of these domains engendering resilience. Modeling resilience in mice using transgenic approaches offers a direct path to intervention, as resilience mutations point directly to therapeutic targets. As prototypes for this approach, we discuss the three mouse models of schizophrenia resilience, all based on modulating glutamatergic synaptic transmission. This motivates the broader development of schizophrenia resilience mouse models independent of specific pathophysiological hypotheses as a strategy for drug discovery. Three guiding validation criteria are presented. A resilience-oriented approach should identify pharmacologically tractable targets and in turn offer new insights into pathophysiological mechanisms.
Collapse
Affiliation(s)
- Andra Mihali
- Department of Psychiatry, Columbia University, New York State Psychiatric Institute, 1051 Riverside Drive, Unit 62, New York, NY 10032, USA
- Department of Molecular Therapeutics, New York State Psychiatric Institute, 1051 Riverside Drive, Unit 62, New York, NY 10032, USA
| | - Shreya Subramani
- Department of Psychiatry, Columbia University, New York State Psychiatric Institute, 1051 Riverside Drive, Unit 62, New York, NY 10032, USA
- Department of Molecular Therapeutics, New York State Psychiatric Institute, 1051 Riverside Drive, Unit 62, New York, NY 10032, USA
| | - Genevieve Kaunitz
- Department of Psychiatry, Columbia University, New York State Psychiatric Institute, 1051 Riverside Drive, Unit 62, New York, NY 10032, USA
- Department of Molecular Therapeutics, New York State Psychiatric Institute, 1051 Riverside Drive, Unit 62, New York, NY 10032, USA
| | - Stephen Rayport
- Department of Psychiatry, Columbia University, New York State Psychiatric Institute, 1051 Riverside Drive, Unit 62, New York, NY 10032, USA
- Department of Molecular Therapeutics, New York State Psychiatric Institute, 1051 Riverside Drive, Unit 62, New York, NY 10032, USA
| | - Inna Gaisler-Salomon
- Department of Psychology, University of Haifa, Psychobiology Labs, Rabin Building 5059, Haifa 31905, Israel
| |
Collapse
|
19
|
Lubec G. Introduction to the special section on proteins and proteomics. Hippocampus 2012; 22:927-8. [PMID: 22488714 DOI: 10.1002/hipo.22022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2012] [Indexed: 11/09/2022]
|