1
|
Verkhratsky A, Semyanov A. Physiology of neuroglia of the central nervous system. HANDBOOK OF CLINICAL NEUROLOGY 2025; 209:69-91. [PMID: 40122632 DOI: 10.1016/b978-0-443-19104-6.00005-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Neuroglia of the central nervous system (CNS) are a diverse and highly heterogeneous population of cells of ectodermal, neuroepithelial origin (macroglia, that includes astroglia and oligodendroglia) and mesodermal, myeloid origin (microglia). Neuroglia are primary homeostatic cells of the CNS, responsible for the support, defense, and protection of the nervous tissue. The extended class of astroglia (which includes numerous parenchymal astrocytes, such as protoplasmic, fibrous, velate, marginal, etc., radial astrocytes such as Bergmann glia, Muller glia, etc., and ependymoglia lining the walls of brain ventricles and central canal of the spinal cord) is primarily responsible for overall homeostasis of the nervous tissue. Astroglial cells control homeostasis of ions, neurotransmitters, hormones, metabolites, and are responsible for neuroprotection and defense of the CNS. Oligodendroglia provide for myelination of axons, hence supporting and sustaining CNS connectome. Microglia are tissue macrophages adapted to the CNS environment which contribute to the host of physiologic functions including regulation of synaptic connectivity through synaptic pruning, regulation of neurogenesis, and even modifying neuronal excitability. Neuroglial cells express numerous receptors, transporters, and channels that allow neuroglia to perceive and follow neuronal activity. Activation of these receptors triggers intracellular ionic signals that govern various homeostatic cascades underlying glial supportive and defensive capabilities. Ionic signaling therefore represents the substrate of glial excitability.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Bizkaia, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Alexey Semyanov
- Department of Physiology, Jiaxing University College of Medicine, Jiaxing, Zhejiang, China
| |
Collapse
|
2
|
Kompier N, Semtner M, Walter S, Kakabadze N, Steinhäuser C, Nolte C, Kettenmann H. Membrane properties and coupling of macroglia in the optic nerve. CURRENT RESEARCH IN NEUROBIOLOGY 2024; 7:100137. [PMID: 39253555 PMCID: PMC11382002 DOI: 10.1016/j.crneur.2024.100137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/18/2024] [Accepted: 08/10/2024] [Indexed: 09/11/2024] Open
Abstract
We established a longitudinal acute slice preparation of transgenic mouse optic nerve to characterize membrane properties and coupling of glial cells by patch-clamp and dye-filling, complemented by immunohistochemistry. Unlike in cortex or hippocampus, the majority of EGFP + cells in optic nerve of the hGFAP-EGFP transgenic mouse, a tool to identify astrocytes, were characterized by time and voltage dependent K+-currents including A-type K+-currents, properties previously described for NG2 glia. Indeed, the majority of transgene expressing cells in optic nerve were immunopositive for NG2 proteoglycan, whereas only a minority show GFAP immunoreactivity. Similar physiological properties were seen in YFP + cells from NG2-YFP transgenic mice, indicating that in optic nerve the transgene of hGFAP-EGFP animals is expressed by NG2 glia instead of astrocytes. Using Cx43kiECFP transgenic mice as another astrocyte-indicator revealed that astrocytes had passive membrane currents. Dye-filling showed that hGFAP-EGFP+ cells in optic nerve were coupled to none or few neighboring cells while hGFAP-EGFP+ cells in the cortex form large networks. Similarly, dye-filling of NG2-YFP+ and Cx43-CFP+ cells in optic nerve revealed small networks. Our work shows that identification of astrocytes in optic nerve requires distinct approaches, that the cells express membrane current patterns distinct from cortex and that they form small networks.
Collapse
Affiliation(s)
- Nine Kompier
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Dep. of Cellular Neurosciences, 13125, Berlin, Germany
| | - Marcus Semtner
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Dep. of Cellular Neurosciences, 13125, Berlin, Germany
- Charité Universitätsmedizin, Experimental Ophtalmology, Campus Virchow, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Sophie Walter
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Dep. of Cellular Neurosciences, 13125, Berlin, Germany
- Free University of Berlin, Institute for Biology, Virchowweg 6, 10117 Berlin
| | - Natali Kakabadze
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Dep. of Cellular Neurosciences, 13125, Berlin, Germany
- Department of Pathology, NYU Langone Medical Center, 550 First Avenue, NY, 10016, New York, USA
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Christiane Nolte
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Dep. of Cellular Neurosciences, 13125, Berlin, Germany
| | - Helmut Kettenmann
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Dep. of Cellular Neurosciences, 13125, Berlin, Germany
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
3
|
Tizabi Y, Bennani S, El Kouhen N, Getachew B, Aschner M. Heavy Metal Interactions with Neuroglia and Gut Microbiota: Implications for Huntington's Disease. Cells 2024; 13:1144. [PMID: 38994995 PMCID: PMC11240758 DOI: 10.3390/cells13131144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/01/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024] Open
Abstract
Huntington's disease (HD) is a rare but progressive and devastating neurodegenerative disease characterized by involuntary movements, cognitive decline, executive dysfunction, and neuropsychiatric conditions such as anxiety and depression. It follows an autosomal dominant inheritance pattern. Thus, a child who has a parent with the mutated huntingtin (mHTT) gene has a 50% chance of developing the disease. Since the HTT protein is involved in many critical cellular processes, including neurogenesis, brain development, energy metabolism, transcriptional regulation, synaptic activity, vesicle trafficking, cell signaling, and autophagy, its aberrant aggregates lead to the disruption of numerous cellular pathways and neurodegeneration. Essential heavy metals are vital at low concentrations; however, at higher concentrations, they can exacerbate HD by disrupting glial-neuronal communication and/or causing dysbiosis (disturbance in the gut microbiota, GM), both of which can lead to neuroinflammation and further neurodegeneration. Here, we discuss in detail the interactions of iron, manganese, and copper with glial-neuron communication and GM and indicate how this knowledge may pave the way for the development of a new generation of disease-modifying therapies in HD.
Collapse
Affiliation(s)
- Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC 20059, USA
| | - Samia Bennani
- Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Casablanca 20670, Morocco
| | - Nacer El Kouhen
- Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Casablanca 20670, Morocco
| | - Bruk Getachew
- Department of Pharmacology, Howard University College of Medicine, Washington, DC 20059, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
4
|
Benarroch E. What Are the Roles of Oligodendrocyte Precursor Cells in Normal and Pathologic Conditions? Neurology 2023; 101:958-965. [PMID: 37985182 PMCID: PMC10663025 DOI: 10.1212/wnl.0000000000208000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 11/22/2023] Open
|
5
|
Yi C, Verkhratsky A, Niu J. Pathological potential of oligodendrocyte precursor cells: terra incognita. Trends Neurosci 2023:S0166-2236(23)00103-0. [PMID: 37183154 DOI: 10.1016/j.tins.2023.04.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/12/2023] [Accepted: 04/13/2023] [Indexed: 05/16/2023]
Abstract
Adult oligodendrocyte precursor cells (aOPCs), transformed from fetal OPCs, are idiosyncratic neuroglia of the central nervous system (CNS) that are distinct in many ways from other glial cells. OPCs have been classically studied in the context of their remyelinating capacity. Recent studies, however, revealed that aOPCs not only contribute to post-lesional remyelination but also play diverse crucial roles in multiple neurological diseases. In this review we briefly present the physiology of aOPCs and summarize current knowledge of the beneficial and detrimental roles of aOPCs in different CNS diseases. We discuss unique features of aOPC death, reactivity, and changes during senescence, as well as aOPC interactions with other glial cells and pathological remodeling during disease. Finally, we outline future perspectives for the study of aOPCs in brain pathologies which may instigate the development of aOPC-targeting therapeutic strategies.
Collapse
Affiliation(s)
- Chenju Yi
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China; Department of Pathology, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China; Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen 518107, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, China.
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PL, UK; Achucarro Centre for Neuroscience, Basque Foundation for Science (IKERBASQUE), Bilbao 48011, Spain; Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102 Vilnius, Lithuania; Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
| | - Jianqin Niu
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
6
|
Zhong S, Kiyoshi CM, Du Y, Wang W, Luo Y, Wu X, Taylor AT, Ma B, Aten S, Liu X, Zhou M. Genesis of a functional astrocyte syncytium in the developing mouse hippocampus. Glia 2023; 71:1081-1098. [PMID: 36598109 PMCID: PMC10777263 DOI: 10.1002/glia.24327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/03/2022] [Accepted: 12/15/2022] [Indexed: 01/05/2023]
Abstract
Astrocytes are increasingly shown to operate as an isopotential syncytium in brain function. Protoplasmic astrocytes acquire this ability to functionally go beyond the single-cell level by evolving into a spongiform morphology, cytoplasmically connecting into a syncytium, and expressing a high density of K+ conductance. However, none of these cellular/functional features exist in neonatal newborn astrocytes, which imposes a basic question of when a functional syncytium evolves in the developing brain. Our results show that the spongiform morphology of individual astrocytes and their spatial organization all reach stationary levels by postnatal day (P) 15 in the hippocampal CA1 region. Functionally, astrocytes begin to uniformly express a mature level of passive K+ conductance by P11. We next used syncytial isopotentiality measurement to monitor the maturation of the astrocyte syncytium. In uncoupled P1 astrocytes, the substitution of endogenous K+ by a Na+ -electrode solution ([Na+ ]p ) resulted in the total elimination of the physiological membrane potential (VM ), and outward K+ conductance as predicted by the Goldman-Hodgkin-Katz (GHK) equation. As more astrocytes are coupled to each other through gap junctions during development, the [Na+ ]p -induced loss of physiological VM and the outward K+ conductance is progressively compensated by the neighboring astrocytes. By P15, a stably established syncytial isopotentiality (-73 mV), and a fully compensated outward K+ conductance appeared in all [Na+ ]p -recorded astrocytes. Thus, in view of the developmental timeframe wherein a singular syncytium is anatomically and functionally established for intra-syncytium K+ equilibration, an astrocyte syncytium becomes fully operational at P15 in the mouse hippocampus.
Collapse
Affiliation(s)
- Shiying Zhong
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- Department of Neurology, Shanghai 10Hospital of Tongji University, School of Medicine, Shanghai, 200072, China
| | - Conrad M. Kiyoshi
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Yixing Du
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Wei Wang
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- Department of Physiology, Tongji Medical College, Wuhan, 430030, China
| | - Yumeng Luo
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Xiao Wu
- Department of Neurology, Wuhan First Hospital, Wuhan 430022, China
| | - Anne T. Taylor
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Baofeng Ma
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Sydney Aten
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Xueyuan Liu
- Department of Neurology, Shanghai 10Hospital of Tongji University, School of Medicine, Shanghai, 200072, China
| | - Min Zhou
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
7
|
Ultrastructural view of astrocyte arborization, astrocyte-astrocyte and astrocyte-synapse contacts, intracellular vesicle-like structures, and mitochondrial network. Prog Neurobiol 2022; 213:102264. [DOI: 10.1016/j.pneurobio.2022.102264] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 02/25/2022] [Accepted: 03/08/2022] [Indexed: 12/15/2022]
|
8
|
Mouse Neural Stem Cell Differentiation and Human Adipose Mesenchymal Stem Cell Transdifferentiation Into Neuron- and Oligodendrocyte-like Cells With Myelination Potential. Stem Cell Rev Rep 2021; 18:732-751. [PMID: 34780018 DOI: 10.1007/s12015-021-10218-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2021] [Indexed: 01/09/2023]
Abstract
Stem cell therapy is an interesting approach for neural repair, once it can improve and increase processes, like angiogenesis, neurogenesis, and synaptic plasticity. In this regard, adult neural stem cells (NSC) are studied for their mechanisms of proliferation, differentiation and functionality in neural repair. Here, we describe novel neural differentiation methods. NSC from adult mouse brains and human adipose-derived stem cells (hADSC) were isolated and characterized regarding their neural differentiation potential based on neural marker expression profiles. For both cell types, their capabilities of differentiating into neuron-, astrocyte- and oligodendrocytes-like cells (NLC, ALC and OLC, respectively) were analyzed. Our methodologies were capable of producing NLC, ALC and OLC from adult murine and human transdifferentiated NSC. NSC showed augmented gene expression of NES, TUJ1, GFAP and PDGFRA/Cnp. Following differentiation induction into NLC, OLC or ALC, specific neural phenotypes were obtained expressing MAP2, GalC/O4 or GFAP with compatible morphologies, respectively. Accordingly, immunostaining for nestin+ in NSC, GFAP+ in astrocytes and GalC/O4+ in oligodendrocytes was detected. Co-cultured NLC and OLC showed excitability in 81.3% of cells and 23.5% of neuron/oligodendrocyte marker expression overlap indicating occurrence of in vitro myelination. We show here that hADSC can be transdifferentiated into NSC and distinct neural phenotypes with the occurrence of neuron myelination in vitro, providing novel strategies for CNS regeneration therapy. Superior Part: Schematic organization of obtaining and generating hNSC from hADSC and differentiation processes and phenotypic expression of neuron, astrocyte and oligodendrocyte markers (MAP2, GFAP and O4, respectively) and stem cell marker (NES) of differentiating hNSC 14 days after induction. The nuclear staining in blue corresponds to DAPI. bar = 100 μm. Inferior part: Neural phenotype fates in diverse differentiation media. NES: nestin; GFAP: Glial fibrillary acidic protein. MAP2: Microtubule-associated protein 2. TUJ1: β-III tubulin. PDGFRA: PDGF receptor alpha. Two-way ANOVA with Bonferroni post-test with n = 3. * p < 0.05 and ** p < 0.01: (NSCiM1 NSC induction medium 1) vs differentiation media.
Collapse
|
9
|
Zhou M, Du Y, Aten S, Terman D. On the electrical passivity of astrocyte potassium conductance. J Neurophysiol 2021; 126:1403-1419. [PMID: 34525325 DOI: 10.1152/jn.00330.2021] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Predominant expression of leak-type K+ channels provides astrocytes a high membrane permeability to K+ ions and a hyperpolarized membrane potential that are crucial for astrocyte function in brain homeostasis. In functionally mature astrocytes, the expression of leak K+ channels creates a unique membrane K+ conductance that lacks voltage-dependent rectification. Accordingly, the conductance is named ohmic or passive K+ conductance. Several inwardly rectifying and two-pore domain K+ channels have been investigated for their contributions to passive conductance. Meanwhile, gap junctional coupling has been postulated to underlie the passive behavior of membrane conductance. It is now clear that the intrinsic properties of K+ channels and gap junctional coupling can each act alone or together to bring about a passive behavior of astrocyte conductance. Additionally, while the passive conductance can generally be viewed as a K+ conductance, the actual representation of this conductance is a combined expression of multiple known and unknown K+ channels, which has been further modified by the intricate morphology of individual astrocytes and syncytial gap junctional coupling. The expression of the inwardly rectifying K+ channels explains the inward-going component of passive conductance disobeying Goldman-Hodgkin-Katz constant field outward rectification. However, the K+ channels encoding the outward-going passive currents remain to be determined in the future. Here, we review our current understanding of ion channels and biophysical mechanisms engaged in the passive astrocyte K+ conductance, propose new studies to resolve this long-standing puzzle in astrocyte physiology, and discuss the functional implication(s) of passive behavior of K+ conductance on astrocyte physiology.
Collapse
Affiliation(s)
- Min Zhou
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Yixing Du
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Sydney Aten
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, Ohio
| | - David Terman
- Department of Mathematics, Ohio State University, Columbus, Ohio
| |
Collapse
|
10
|
Refaeli R, Doron A, Benmelech-Chovav A, Groysman M, Kreisel T, Loewenstein Y, Goshen I. Features of hippocampal astrocytic domains and their spatial relation to excitatory and inhibitory neurons. Glia 2021; 69:2378-2390. [PMID: 34117643 DOI: 10.1002/glia.24044] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 11/07/2022]
Abstract
The mounting evidence for the involvement of astrocytes in neuronal circuits function and behavior stands in stark contrast to the lack of detailed anatomical description of these cells and the neurons in their domains. To fill this void, we imaged >30,000 astrocytes in hippocampi made transparent by CLARITY, and determined the elaborate structure, distribution, and neuronal content of astrocytic domains. First, we characterized the spatial distribution of >19,000 astrocytes across CA1 lamina, and analyzed the morphology of thousands of reconstructed domains. We then determined the excitatory somatic content of CA1 astrocytes, and measured the distance between inhibitory neuronal somata to the nearest astrocyte soma. We find that on average, there are almost 14 pyramidal neurons per domain in the CA1, increasing toward the pyramidal layer midline, compared to only five excitatory neurons per domain in the amygdala. Finally, we discovered that somatostatin neurons are found in close proximity to astrocytes, compared to parvalbumin and VIP inhibitory neurons. This work provides a comprehensive large-scale quantitative foundation for studying neuron-astrocyte interactions.
Collapse
Affiliation(s)
- Ron Refaeli
- Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Adi Doron
- Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Aviya Benmelech-Chovav
- Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maya Groysman
- ELSC Vector Core Facility, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tirzah Kreisel
- Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yonatan Loewenstein
- Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, Israel.,Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.,Federmann Center for the Study of Rationality, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Inbal Goshen
- Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
11
|
Stephan J, Eitelmann S, Zhou M. Approaches to Study Gap Junctional Coupling. Front Cell Neurosci 2021; 15:640406. [PMID: 33776652 PMCID: PMC7987795 DOI: 10.3389/fncel.2021.640406] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/03/2021] [Indexed: 12/17/2022] Open
Abstract
Astrocytes and oligodendrocytes are main players in the brain to ensure ion and neurotransmitter homeostasis, metabolic supply, and fast action potential propagation in axons. These functions are fostered by the formation of large syncytia in which mainly astrocytes and oligodendrocytes are directly coupled. Panglial networks constitute on connexin-based gap junctions in the membranes of neighboring cells that allow the passage of ions, metabolites, and currents. However, these networks are not uniform but exhibit a brain region-dependent heterogeneous connectivity influencing electrical communication and intercellular ion spread. Here, we describe different approaches to analyze gap junctional communication in acute tissue slices that can be implemented easily in most electrophysiology and imaging laboratories. These approaches include paired recordings, determination of syncytial isopotentiality, tracer coupling followed by analysis of network topography, and wide field imaging of ion sensitive dyes. These approaches are capable to reveal cellular heterogeneity causing electrical isolation of functional circuits, reduced ion-transfer between different cell types, and anisotropy of tracer coupling. With a selective or combinatory use of these methods, the results will shed light on cellular properties of glial cells and their contribution to neuronal function.
Collapse
Affiliation(s)
- Jonathan Stephan
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sara Eitelmann
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Min Zhou
- Department of Neuroscience, Wexner Medical Center, Ohio State University, Columbus, OH, United States
| |
Collapse
|
12
|
Epileptiform Neuronal Discharges Impair Astrocyte Syncytial Isopotentiality in Acute Hippocampal Slices. Brain Sci 2020; 10:brainsci10040208. [PMID: 32252295 PMCID: PMC7226063 DOI: 10.3390/brainsci10040208] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/21/2020] [Accepted: 03/31/2020] [Indexed: 12/25/2022] Open
Abstract
Astrocyte syncytial isopotentiality is a physiological mechanism resulting from a strong electrical coupling among astrocytes. We have previously shown that syncytial isopotentiality exists as a system-wide feature that coordinates astrocytes into a system for high efficient regulation of brain homeostasis. Neuronal activity is known to regulate gap junction coupling through alteration of extracellular ions and neurotransmitters. However, the extent to which epileptic neuronal activity impairs the syncytial isopotentiality is unknown. Here, the neuronal epileptiform bursts were induced in acute hippocampal slices by removal of Mg2+ (Mg2+ free) from bath solution and inhibition of γ-aminobutyric acid A (GABAA) receptors by 100 µM picrotoxin (PTX). The change in syncytial coupling was monitored by using a K+ free-Na+-containing electrode solution ([Na+]p) in the electrophysiological recording where the substitution of intracellular K+ by Na+ ions dissipates the physiological membrane potential (VM) to ~0 mV in the recorded astrocyte. However, in a syncytial coupled astrocyte, the [Na+]p induced VM loss can be compensated by the coupled astrocytes to a quasi-physiological membrane potential of ~73 mV. After short-term exposure to this experimental epileptic condition, a significant closure of syncytial coupling was indicated by a shift of the quasi-physiological membrane potential to −60 mV, corresponding to a 90% reduction of syncytial coupling strength. Consequently, the closure of syncytial coupling significantly decreased the ability of the syncytium for spatial redistribution of K+ ions. Altogether, our results show that epileptiform neuronal discharges weaken the strength of syncytial coupling and that in turn impairs the capacity of a syncytium for spatial redistribution of K+ ions.
Collapse
|
13
|
Eitelmann S, Hirtz JJ, Stephan J. A Vector-Based Method to Analyze the Topography of Glial Networks. Int J Mol Sci 2019; 20:ijms20112821. [PMID: 31185593 PMCID: PMC6600595 DOI: 10.3390/ijms20112821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 05/28/2019] [Accepted: 06/05/2019] [Indexed: 12/22/2022] Open
Abstract
Anisotropy of tracer-coupled networks is a hallmark in many brain regions. In the past, the topography of these networks was analyzed using various approaches, which focused on different aspects, e.g., position, tracer signal, or direction of coupled cells. Here, we developed a vector-based method to analyze the extent and preferential direction of tracer spreading. As a model region, we chose the lateral superior olive—a nucleus that exhibits specialized network topography. In acute slices, sulforhodamine 101-positive astrocytes were patch-clamped and dialyzed with the GJ-permeable tracer neurobiotin, which was subsequently labeled with avidin alexa fluor 488. A predetermined threshold was used to differentiate between tracer-coupled and tracer-uncoupled cells. Tracer extent was calculated from the vector means of tracer-coupled cells in four 90° sectors. We then computed the preferential direction using a rotating coordinate system and post hoc fitting of these results with a sinusoidal function. The new method allows for an objective analysis of tracer spreading that provides information about shape and orientation of GJ networks. We expect this approach to become a vital tool for the analysis of coupling anisotropy in many brain regions.
Collapse
Affiliation(s)
- Sara Eitelmann
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, Erwin Schrödinger-Straße 13, D 67663 Kaiserslautern, Germany.
| | - Jan J Hirtz
- Physiology of Neuronal Networks Group, Department of Biology, University of Kaiserslautern, Erwin Schrödinger-Straße 13, D 67663 Kaiserslautern, Germany.
| | - Jonathan Stephan
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, Erwin Schrödinger-Straße 13, D 67663 Kaiserslautern, Germany.
| |
Collapse
|
14
|
Vejar S, Oyarzún JE, Retamal MA, Ortiz FC, Orellana JA. Connexin and Pannexin-Based Channels in Oligodendrocytes: Implications in Brain Health and Disease. Front Cell Neurosci 2019; 13:3. [PMID: 30760982 PMCID: PMC6361860 DOI: 10.3389/fncel.2019.00003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/07/2019] [Indexed: 11/13/2022] Open
Abstract
Oligodendrocytes are the myelin forming cells in the central nervous system (CNS). In addition to this main physiological function, these cells play key roles by providing energy substrates to neurons as well as information required to sustain proper synaptic transmission and plasticity at the CNS. The latter requires a fine coordinated intercellular communication with neurons and other glial cell types, including astrocytes. In mammals, tissue synchronization is mainly mediated by connexins and pannexins, two protein families that underpin the communication among neighboring cells through the formation of different plasma membrane channels. At one end, gap junction channels (GJCs; which are exclusively formed by connexins in vertebrates) connect the cytoplasm of contacting cells allowing electrical and metabolic coupling. At the other end, hemichannels and pannexons (which are formed by connexins and pannexins, respectively) communicate the intra- and extracellular compartments, serving as diffusion pathways of ions and small molecules. Here, we briefly review the current knowledge about the expression and function of hemichannels, pannexons and GJCs in oligodendrocytes, as well as the evidence regarding the possible role of these channels in metabolic and synaptic functions at the CNS. In particular, we focus on oligodendrocyte-astrocyte coupling during axon metabolic support and its implications in brain health and disease.
Collapse
Affiliation(s)
- Sebastián Vejar
- Mechanisms of Myelin Formation and Repair Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Juan E. Oyarzún
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mauricio A. Retamal
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Fernando C. Ortiz
- Mechanisms of Myelin Formation and Repair Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Juan A. Orellana
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
15
|
Wadle SL, Augustin V, Langer J, Jabs R, Philippot C, Weingarten DJ, Rose CR, Steinhäuser C, Stephan J. Anisotropic Panglial Coupling Reflects Tonotopic Organization in the Inferior Colliculus. Front Cell Neurosci 2018; 12:431. [PMID: 30542265 PMCID: PMC6277822 DOI: 10.3389/fncel.2018.00431] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/31/2018] [Indexed: 12/17/2022] Open
Abstract
Astrocytes and oligodendrocytes in different brain regions form panglial networks and the topography of such networks can correlate with neuronal topography and function. Astrocyte-oligodendrocyte networks in the lateral superior olive (LSO)-an auditory brainstem nucleus-were found to be anisotropic with a preferred orientation orthogonally to the tonotopic axis. We hypothesized that such a specialization might be present in other tonotopically organized brainstem nuclei, too. Thus, we analyzed gap junctional coupling in the center of the inferior colliculus (IC)-another nucleus of the auditory brainstem that exhibits tonotopic organization. In acute brainstem slices obtained from mice, IC networks were traced employing whole-cell patch-clamp recordings of single sulforhodamine (SR) 101-identified astrocytes and concomitant intracellular loading of the gap junction-permeable tracer neurobiotin. The majority of dye-coupled networks exhibited an oval topography, which was preferentially oriented orthogonal to the tonotopic axis. Astrocyte processes showed preferentially the same orientation indicating a correlation between astrocyte and network topography. In addition to SR101-positive astrocytes, IC networks contained oligodendrocytes. Using Na+ imaging, we analyzed the capability of IC networks to redistribute small ions. Na+ bi-directionally diffused between SR101-positive astrocytes and SR101-negative cells-presumably oligodendrocytes-showing the functionality of IC networks. Taken together, our results demonstrate that IC astrocytes and IC oligodendrocytes form functional anisotropic panglial networks that are preferentially oriented orthogonal to the tonotopic axis. Thus, our data indicate that the topographic specialization of glial networks seen in IC and LSO might be a general feature of tonotopically organized auditory brainstem nuclei.
Collapse
Affiliation(s)
- Simon L Wadle
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Vanessa Augustin
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Julia Langer
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ronald Jabs
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Camille Philippot
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Dennis J Weingarten
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Christine R Rose
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Jonathan Stephan
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| |
Collapse
|
16
|
Kiyoshi CM, Du Y, Zhong S, Wang W, Taylor AT, Xiong B, Ma B, Terman D, Zhou M. Syncytial isopotentiality: A system-wide electrical feature of astrocytic networks in the brain. Glia 2018; 66:2756-2769. [PMID: 30277621 DOI: 10.1002/glia.23525] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 08/06/2018] [Accepted: 08/06/2018] [Indexed: 01/05/2023]
Abstract
Syncytial isopotentiality, resulting from a strong electrical coupling, emerges as a physiological mechanism that coordinates individual astrocytes to function as a highly efficient system in brain homeostasis. However, whether syncytial isopotentiality occurs selectively to certain brain regions or is universal to astrocytic networks remains unknown. Here, we have explored the correlation of syncytial isopotentiality with different astrocyte subtypes in various brain regions. Using a nonphysiological K+ -free/Na+ electrode solution to depolarize a recorded astrocyte in situ, the existence of syncytial isopotentiality can be revealed: the recorded astrocyte's membrane potential remains at a quasi-physiological level due to strong electrical coupling with neighboring astrocytes. Syncytial isopotentiality appears in Layer I of the motor, sensory, and visual cortical regions, where astrocytes are organized with comparable cell densities, interastrocytic distances, and the quantity of directly coupled neighbors. Second, though astrocytes vary in their cytoarchitecture in association with neuronal circuits from Layers I-VI, the established syncytial isopotentiality remains comparable among different layers in the visual cortex. Third, neurons and astrocytes are uniquely organized as barrels in Layer IV somatosensory cortex; interestingly, astrocytes both inside and outside of the barrels do electrically communicate with each other and also share syncytial isopotentiality. Fourth, syncytial isopotentiality appears in radial-shaped Bergmann glia and velate astrocytes in the cerebellar cortex. Fifth, although fibrous astrocytes in white matter exhibit a distinct morphology, their network syncytial isopotentiality is comparable with protoplasmic astrocytes. Altogether, syncytial isopotentiality appears as a system-wide electrical feature of astrocytic networks in the brain.
Collapse
Affiliation(s)
- Conrad M Kiyoshi
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Yixing Du
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Shiying Zhong
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Neurology, Shanghai 10th Hospital of Tongji University College of Medicine, Shanghai, China
| | - Wei Wang
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Anne T Taylor
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Bangyan Xiong
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Baofeng Ma
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - David Terman
- Department of Mathematics, Ohio State University, Columbus, Ohio, USA
| | - Min Zhou
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
17
|
Abstract
Neuron-glia antigen 2-expressing glial cells (NG2 glia) serve as oligodendrocyte progenitors during development and adulthood. However, recent studies have shown that these cells represent not only a transitional stage along the oligodendroglial lineage, but also constitute a specific cell type endowed with typical properties and functions. Namely, NG2 glia (or subsets of NG2 glia) establish physical and functional interactions with neurons and other central nervous system (CNS) cell types, that allow them to constantly monitor the surrounding neuropil. In addition to operating as sensors, NG2 glia have features that are expected for active modulators of neuronal activity, including the expression and release of a battery of neuromodulatory and neuroprotective factors. Consistently, cell ablation strategies targeting NG2 glia demonstrate that, beyond their role in myelination, these cells contribute to CNS homeostasis and development. In this review, we summarize and discuss the advancements achieved over recent years toward the understanding of such functions, and propose novel approaches for further investigations aimed at elucidating the multifaceted roles of NG2 glia.
Collapse
|
18
|
Morphological characterization of NG2 glia and their association with neuroglial cells in the 3-nitropropionic acid-lesioned striatum of rat. Sci Rep 2018; 8:5942. [PMID: 29654253 PMCID: PMC5899159 DOI: 10.1038/s41598-018-24385-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 04/03/2018] [Indexed: 01/18/2023] Open
Abstract
Our aim was to examine the spatiotemporal profiles and phenotypic characteristics of neuron-glia antigen 2 (NG2) glia and their associations with neuroglial cells in striatal lesions due to the mitochondrial toxin 3-nitropropionic acid (3-NP). In control striatum, weak NG2 immunoreactivity was restricted to resting NG2 glia with thin processes, but prominent NG2 expression was noted on activated microglia/macrophages, and reactive NG2 glia in the lesion core after 3-NP injection. Activation of NG2 glia, including enhanced proliferation and morphological changes, had a close spatiotemporal relationship with infiltration of activated microglia into the lesion core. Thick and highly branched processes of reactive NG2 glia formed a cellular network in the astrocyte-free lesion core and primarily surrounded developing cavities 2–4 weeks post-lesion. NG2 glia became associated with astrocytes in the lesion core and the border of cavities over the chronic interval of 4–8 weeks. Immunoelectron microscopy indicated that reactive NG2 glia had large euchromatic nuclei with prominent nucleoli and thick and branched processes that ramified distally. Thus, our data provide detailed information regarding the morphologies of NG2 glia in the lesion core, and support the link between transformation of NG2 glia to the reactive form and microglial activation/recruitment in response to brain insults.
Collapse
|
19
|
Huguet G, Joglekar A, Messi LM, Buckalew R, Wong S, Terman D. Neuroprotective Role of Gap Junctions in a Neuron Astrocyte Network Model. Biophys J 2017; 111:452-462. [PMID: 27463146 DOI: 10.1016/j.bpj.2016.05.051] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/23/2016] [Accepted: 05/31/2016] [Indexed: 12/27/2022] Open
Abstract
A detailed biophysical model for a neuron/astrocyte network is developed to explore mechanisms responsible for the initiation and propagation of cortical spreading depolarizations and the role of astrocytes in maintaining ion homeostasis, thereby preventing these pathological waves. Simulations of the model illustrate how properties of spreading depolarizations, such as wave speed and duration of depolarization, depend on several factors, including the neuron and astrocyte Na(+)-K(+) ATPase pump strengths. In particular, we consider the neuroprotective role of astrocyte gap junction coupling. The model demonstrates that a syncytium of electrically coupled astrocytes can maintain a physiological membrane potential in the presence of an elevated extracellular K(+) concentration and efficiently distribute the excess K(+) across the syncytium. This provides an effective neuroprotective mechanism for delaying or preventing the initiation of spreading depolarizations.
Collapse
Affiliation(s)
- Gemma Huguet
- Department de Matematiques, Universitat Politecnica de Catalunya, Barcelona, Spain
| | | | | | - Richard Buckalew
- Mathematical Bioscience Institute, Ohio State University, Columbus, Ohio
| | - Sarah Wong
- Department of Mathematics, Ohio State University, Columbus, Ohio
| | - David Terman
- Department of Mathematics, Ohio State University, Columbus, Ohio.
| |
Collapse
|
20
|
López-Hidalgo M, Hoover WB, Schummers J. Spatial organization of astrocytes in ferret visual cortex. J Comp Neurol 2016; 524:3561-3576. [PMID: 27072916 PMCID: PMC5113791 DOI: 10.1002/cne.24015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 04/01/2016] [Accepted: 04/04/2015] [Indexed: 12/14/2022]
Abstract
Astrocytes form an intricate partnership with neural circuits to influence numerous cellular and synaptic processes. One prominent organizational feature of astrocytes is the “tiling” of the brain with non‐overlapping territories. There are some documented species and brain region–specific astrocyte specializations, but the extent of astrocyte diversity and circuit specificity are still unknown. We quantitatively defined the rules that govern the spatial arrangement of astrocyte somata and territory overlap in ferret visual cortex using a combination of in vivo two‐photon imaging, morphological reconstruction, immunostaining, and model simulations. We found that ferret astrocytes share, on average, half of their territory with other astrocytes. However, a specific class of astrocytes, abundant in thalamo‐recipient cortical layers (“kissing” astrocytes), overlap markedly less. Together, these results demonstrate novel features of astrocyte organization indicating that different classes of astrocytes are arranged in a circuit‐specific manner and that tiling does not apply universally across brain regions and species. J. Comp. Neurol. 524:3561–3576, 2016. © 2016 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Walter B Hoover
- Max Planck Florida Institute for Neuroscience, Jupiter, Florida, 33458
| | - James Schummers
- Max Planck Florida Institute for Neuroscience, Jupiter, Florida, 33458.
| |
Collapse
|
21
|
Niu J, Li T, Yi C, Huang N, Koulakoff A, Weng C, Li C, Zhao CJ, Giaume C, Xiao L. Connexin-based channels contribute to metabolic pathways in the oligodendroglial lineage. J Cell Sci 2016; 129:1902-14. [PMID: 27006115 DOI: 10.1242/jcs.178731] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 03/14/2016] [Indexed: 12/22/2022] Open
Abstract
Oligodendrocyte precursor cells (OPCs) undergo a series of energy-consuming developmental events; however, the uptake and trafficking pathways for their energy metabolites remain unknown. In the present study, we found that 2-NBDG, a fluorescent glucose analog, can be delivered between astrocytes and oligodendrocytes through connexin-based gap junction channels but cannot be transferred between astrocytes and OPCs. Instead, connexin hemichannel-mediated glucose uptake supports OPC proliferation, and ethidium bromide uptake or increase of 2-NBDG uptake rate is correlated with intracellular Ca(2+) elevation in OPCs, indicating a Ca(2+)-dependent activation of connexin hemichannels. Interestingly, deletion of connexin 43 (Cx43, also known as GJA1) in astrocytes inhibits OPC proliferation by decreasing matrix glucose levels without impacting on OPC hemichannel properties, a process that also occurs in corpus callosum from acute brain slices. Thus, dual functions of connexin-based channels contribute to glucose supply in oligodendroglial lineage, which might pave a new way for energy-metabolism-directed oligodendroglial-targeted therapies.
Collapse
Affiliation(s)
- Jianqin Niu
- Department of Histology and Embryology, Faculty of Basic Medicine, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China
| | - Tao Li
- Department of Histology and Embryology, Faculty of Basic Medicine, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China
| | - Chenju Yi
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Institut National de la Santé et de la Recherche Médicale U1050, Paris 75231, Cedex 05, France
| | - Nanxin Huang
- Department of Histology and Embryology, Faculty of Basic Medicine, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China
| | - Annette Koulakoff
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Institut National de la Santé et de la Recherche Médicale U1050, Paris 75231, Cedex 05, France
| | - Chuanhuang Weng
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Chengren Li
- Department of Histology and Embryology, Faculty of Basic Medicine, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China
| | - Cong-Jian Zhao
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Christian Giaume
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Institut National de la Santé et de la Recherche Médicale U1050, Paris 75231, Cedex 05, France
| | - Lan Xiao
- Department of Histology and Embryology, Faculty of Basic Medicine, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
22
|
Zhong S, Du Y, Kiyoshi CM, Ma B, Alford CC, Wang Q, Yang Y, Liu X, Zhou M. Electrophysiological behavior of neonatal astrocytes in hippocampal stratum radiatum. Mol Brain 2016; 9:34. [PMID: 27004553 PMCID: PMC4802662 DOI: 10.1186/s13041-016-0213-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 03/12/2016] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Neonatal astrocytes are diverse in origin, and undergo dramatic change in gene expression, morphological differentiation and syncytial networking throughout development. Neonatal astrocytes also play multifaceted roles in neuronal circuitry establishment. However, the extent to which neonatal astrocytes differ from their counterparts in the adult brain remains unknown. RESULTS Based on ALDH1L1-eGFP expression or sulforhodamine 101 staining, neonatal astrocytes at postnatal day 1-3 can be reliably identified in hippocampal stratum radiatum. They exhibit a more negative resting membrane potential (V M), -85 mV, than mature astrocytes, -80 mV and a variably rectifying whole-cell current profile due to complex expression of voltage-gated outward transient K(+) (IKa), delayed rectifying K(+) (IKd) and inward K(+) (IKin) conductances. Differing from NG2 glia, depolarization-induced inward Na(+) currents (INa) could not be detected in neonatal astrocytes. A quasi-physiological V M of -69 mV was retained when inwardly rectifying Kir4.1 was inhibited by 100 μM Ba(2+) in both wild type and TWIK-1/TREK-1 double gene knockout astrocytes, indicating expression of additional leak K(+) channels yet unknown. In dual patch recording, electrical coupling was detected in 74 % (14/19 pairs) of neonatal astrocytes with largely variable coupling coefficients. The increasing gap junction coupling progressively masked the rectifying K(+) conductances to account for an increasing number of linear voltage-to-current relationship passive astrocytes (PAs). Gap junction inhibition, by 100 μM meclofenamic acid, substantially reduced membrane conductance and converted all the neonatal PAs to variably rectifying astrocytes. The low density expression of leak K(+) conductance in neonatal astrocytes corresponded to a ~50 % less K(+) uptake capacity compared to adult astrocytes. CONCLUSIONS Neonatal astrocytes predominantly express a variety of rectifying K(+) conductances, form discrete cell-to-cell gap junction coupling and are deficient in K(+) homeostatic capacity.
Collapse
Affiliation(s)
- Shiying Zhong
- />Department of Neurology, Shanghai 10th Hospital of Tongji University, School of Medicine, 301 Yan Chang Zhong Road, Shanghai, 200072 China
- />Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH 43210 USA
| | - Yixing Du
- />Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH 43210 USA
| | - Conrad M. Kiyoshi
- />Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH 43210 USA
| | - Baofeng Ma
- />Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH 43210 USA
| | - Catherine C. Alford
- />Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH 43210 USA
| | - Qi Wang
- />Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH 43210 USA
| | - Yongjie Yang
- />Department of Neuroscience, Tufts University School of Medicine, Boston, MA USA
| | - Xueyuan Liu
- />Department of Neurology, Shanghai 10th Hospital of Tongji University, School of Medicine, 301 Yan Chang Zhong Road, Shanghai, 200072 China
| | - Min Zhou
- />Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH 43210 USA
| |
Collapse
|
23
|
Ma B, Buckalew R, Du Y, Kiyoshi CM, Alford CC, Wang W, McTigue DM, Enyeart JJ, Terman D, Zhou M. Gap junction coupling confers isopotentiality on astrocyte syncytium. Glia 2015; 64:214-26. [PMID: 26435164 DOI: 10.1002/glia.22924] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 08/31/2015] [Accepted: 09/11/2015] [Indexed: 02/04/2023]
Abstract
Astrocytes are extensively coupled through gap junctions into a syncytium. However, the basic role of this major brain network remains largely unknown. Using electrophysiological and computational modeling methods, we demonstrate that the membrane potential (VM) of an individual astrocyte in a hippocampal syncytium, but not in a single, freshly isolated cell preparation, can be well-maintained at quasi-physiological levels when recorded with reduced or K(+) free pipette solutions that alter the K(+) equilibrium potential to non-physiological voltages. We show that an astrocyte's associated syncytium provides powerful electrical coupling, together with ionic coupling at a lesser extent, that equalizes the astrocyte's VM to levels comparable to its neighbors. Functionally, this minimizes VM depolarization attributable to elevated levels of local extracellular K(+) and thereby maintains a sustained driving force for highly efficient K(+) uptake. Thus, gap junction coupling functions to achieve isopotentiality in astrocytic networks, whereby a constant extracellular environment can be powerfully maintained for crucial functions of neural circuits.
Collapse
Affiliation(s)
- Baofeng Ma
- Department of Neuroscience, the Ohio State University Wexner Medical Center, Columbus, Ohio, 43210
| | - Richard Buckalew
- Mathematical Biosciences Institute, the Ohio State University, Columbus, Ohio, 43210
| | - Yixing Du
- Department of Neuroscience, the Ohio State University Wexner Medical Center, Columbus, Ohio, 43210
| | - Conrad M Kiyoshi
- Department of Neuroscience, the Ohio State University Wexner Medical Center, Columbus, Ohio, 43210
| | - Catherine C Alford
- Department of Neuroscience, the Ohio State University Wexner Medical Center, Columbus, Ohio, 43210
| | - Wei Wang
- Department of Neuroscience, the Ohio State University Wexner Medical Center, Columbus, Ohio, 43210
| | - Dana M McTigue
- Department of Neuroscience, the Ohio State University Wexner Medical Center, Columbus, Ohio, 43210
| | - John J Enyeart
- Department of Neuroscience, the Ohio State University Wexner Medical Center, Columbus, Ohio, 43210
| | - David Terman
- Department of Mathematics, the Ohio State University, Columbus, Ohio, 43210
| | - Min Zhou
- Department of Neuroscience, the Ohio State University Wexner Medical Center, Columbus, Ohio, 43210
| |
Collapse
|
24
|
Lineage, fate, and fate potential of NG2-glia. Brain Res 2015; 1638:116-128. [PMID: 26301825 DOI: 10.1016/j.brainres.2015.08.013] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/20/2015] [Accepted: 08/13/2015] [Indexed: 11/22/2022]
Abstract
NG2 cells represent a fourth major glial cell population in the mammalian central nervous system (CNS). They arise from discrete germinal zones in mid-gestation embryos and expand to occupy the entire CNS parenchyma. Genetic fate mapping studies have shown that oligodendrocytes and a subpopulation of ventral protoplasmic astrocytes arise from NG2 cells. This review describes recent findings on the fate and fate potential of NG2 cells under physiological and pathological conditions. We discuss age-dependent changes in the fate and fate potential of NG2 cells and possible mechanisms that could be involved in restricting their oligodendrocyte differentiation or fate plasticity. This article is part of a Special Issue entitled SI:NG2-glia(Invited only).
Collapse
|
25
|
Lee KM, MacLean AG. New advances on glial activation in health and disease. World J Virol 2015; 4:42-55. [PMID: 25964871 PMCID: PMC4419121 DOI: 10.5501/wjv.v4.i2.42] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 01/23/2015] [Accepted: 02/11/2015] [Indexed: 02/05/2023] Open
Abstract
In addition to being the support cells of the central nervous system (CNS), astrocytes are now recognized as active players in the regulation of synaptic function, neural repair, and CNS immunity. Astrocytes are among the most structurally complex cells in the brain, and activation of these cells has been shown in a wide spectrum of CNS injuries and diseases. Over the past decade, research has begun to elucidate the role of astrocyte activation and changes in astrocyte morphology in the progression of neural pathologies, which has led to glial-specific interventions for drug development. Future therapies for CNS infection, injury, and neurodegenerative disease are now aimed at targeting astrocyte responses to such insults including astrocyte activation, astrogliosis and other morphological changes, and innate and adaptive immune responses.
Collapse
|
26
|
Somkuwar SS, Staples MC, Galinato MH, Fannon MJ, Mandyam CD. Role of NG2 expressing cells in addiction: a new approach for an old problem. Front Pharmacol 2014; 5:279. [PMID: 25566075 PMCID: PMC4271769 DOI: 10.3389/fphar.2014.00279] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 11/30/2014] [Indexed: 12/17/2022] Open
Abstract
Neuron-glial antigen 2 (NG2) is a proteoglycan expressed predominantly in oligodendrocyte progenitor cells (OPCs). NG2-expressing OPCs (NG2-OPCs) are self-renewing cells that are widely distributed in the gray and white matter areas of the central nervous system. NG2-OPCs can mature into premyelinating oligodendrocytes and myelinating oligodendroglia which serve as the primary source of myelin in the brain. This review characterizes NG2-OPCs in brain structure and function, conceptualizes the role of NG2-OPCs in brain regions associated with negative reinforcement and relapse to drug seeking and discusses how NG2-OPCs are regulated by neuromodulators linked to motivational withdrawal. We hope to provide the readers with an overview of the role of NG2-OPCs in brain structure and function in the context of negative affect state in substance abuse disorders and to integrate our current understanding of the physiological significance of the NG2-OPCs in the adult brain.
Collapse
Affiliation(s)
- Sucharita S Somkuwar
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute La Jolla, CA, USA
| | - Miranda C Staples
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute La Jolla, CA, USA
| | - Melissa H Galinato
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute La Jolla, CA, USA
| | - McKenzie J Fannon
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute La Jolla, CA, USA
| | - Chitra D Mandyam
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute La Jolla, CA, USA
| |
Collapse
|
27
|
Nishiyama A, Suzuki R, Zhu X. NG2 cells (polydendrocytes) in brain physiology and repair. Front Neurosci 2014; 8:133. [PMID: 25018689 PMCID: PMC4072963 DOI: 10.3389/fnins.2014.00133] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 05/14/2014] [Indexed: 01/27/2023] Open
Abstract
NG2 cells, also referred to as oligodendrocyte precursor cells (OPCs) or polydendrocytes, represent a major resident glial cell population that is distinct from mature astrocytes, oligodendrocytes, microglia, and neural stem cells and exist throughout the gray and white matter of the developing and mature central nervous system (CNS). While their most established fate is the oligodendrocyte, they retain lineage plasticity in an age- and region-specific manner. During development, they contribute to 36% of protoplasmic astrocytes in the ventral forebrain. Despite intense investigation on the neuronal fate of NG2 cells, there is no definitive evidence that they contribute substantially to the neuronal population. NG2 cells have attributes that suggest that they have functions other than to generate oligodendrocytes, but their exact role in the neural network remains unknown. Under pathological states, NG2 cells not only contribute to myelin repair, but they become activated in response to a wide variety of insults and could play a primary role in pathogenesis.
Collapse
Affiliation(s)
- Akiko Nishiyama
- Department of Physiology and Neurobiology, University of Connecticut Storrs, CT, USA
| | - Ryusuke Suzuki
- Department of Physiology and Neurobiology, University of Connecticut Storrs, CT, USA
| | - Xiaoqin Zhu
- Department of Physiology and Neurobiology, University of Connecticut Storrs, CT, USA
| |
Collapse
|