1
|
Niu X, Zhang J, Yuan M, Liu Y, Wang Y, Li H, Wang K. Chiral nanoenzymes: synthesis and applications. Mikrochim Acta 2024; 191:723. [PMID: 39495306 DOI: 10.1007/s00604-024-06803-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Chiral nanoenzymes are a new type of material that possesses both chiral nanostructures and enzymatic catalytic activity. These materials exhibit selectivity in their catalytic activity towards organisms due to the introduction of chiral features in nanomaterials and have inherent chiral discrimination in organisms. As synthetic enzymes, chiral nanoenzymes offer significant advantages over natural enzymes. Due to their unique chiral structure and distinctive physicochemical properties, chiral nanoenzymes play an important role in various fields, including biology, medicine, and environmental protection. Their strong stereospecificity and biocompatibility make them useful in disease therapy, biosensing, and chiral catalysis, setting them apart from conventional and natural enzymes. In recent years, the design of synthetic methods and biological applications of chiral nanoenzymes has received significant attention and extensive research among scientists. This paper provides a systematic review of the research progress in the discovery, development, and application of chiral nanoenzymes in the last decade. Additionally, it presents various applications of chiral nanoenzymes, such as disease therapy, biosensing, and chiral catalysis. Finally, the challenges and future prospects of chiral nanoenzymes are discussed.
Collapse
Affiliation(s)
- Xiaohui Niu
- College of Petrochemical Technology, Lanzhou University of Technology, 730050, Lanzhou, P.R. China.
| | - Jianying Zhang
- College of Petrochemical Technology, Lanzhou University of Technology, 730050, Lanzhou, P.R. China
| | - Mei Yuan
- College of Petrochemical Technology, Lanzhou University of Technology, 730050, Lanzhou, P.R. China
| | - Yongqi Liu
- College of Petrochemical Technology, Lanzhou University of Technology, 730050, Lanzhou, P.R. China
| | - Yuewei Wang
- College of Petrochemical Technology, Lanzhou University of Technology, 730050, Lanzhou, P.R. China
| | - Hongxia Li
- College of Petrochemical Technology, Lanzhou University of Technology, 730050, Lanzhou, P.R. China
| | - Kunjie Wang
- College of Petrochemical Technology, Lanzhou University of Technology, 730050, Lanzhou, P.R. China.
| |
Collapse
|
2
|
D’Acquarica I, Agranat I. The Quest for Secondary Pharmaceuticals: Drug Repurposing/Chiral-Switches Combination Strategy. ACS Pharmacol Transl Sci 2023; 6:201-219. [PMID: 36798472 PMCID: PMC9926527 DOI: 10.1021/acsptsci.2c00151] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Indexed: 01/19/2023]
Abstract
Drug repurposing toward new medical uses and chiral switches are elements of secondary pharmaceuticals. The drug repurposing and chiral-switches strategies have mostly been applied independently in drug discovery. Drug repurposing has peaked in the search for therapeutic treatments of the Coronavirus Disease 2019 pandemic, whereas chiral switches have been overlooked. The current Perspective introduces the drug repurposing/chiral-switches combination strategy, overviewing representative cases of chiral drugs that have undergone this combination: ketamine, flurbiprofen, fenfluramine, and milnacipran. The deuterium-enabled chiral switches of racemic thalidomide analogs, a variation of the repurposing/chiral-switch combination strategy, is also included. Patenting and regulatory-exclusivity considerations of the combination strategy in the discovery of new medical uses are considered. The proposed combination creates a new synergy of its two elements, overcoming arguments against chiral switches, with better prospects for validation of patents and regulatory exclusivities. The combination strategy may be applied to chiral switches to paired enantiomers. Repurposing/chiral-switch drugs may be 'obvious-to-try'; however, their inventions may be unexpected and their patents nonobvious. Patenting repurposing/chiral-switch combination drugs is not 'evergreening', 'product hopping', and 'me-too'. The expected benefits and opportunities of the combined repurposing/chiral-switch strategy vis-à-vis its two elements are superior pharmacological properties, overcoming arguments against patent validities, challenges of chiral-switch patents, reduced expenses, shortened approval procedures, and higher expectations of regulatory exclusivities.
Collapse
Affiliation(s)
- Ilaria D’Acquarica
- Dipartimento
di Chimica e Tecnologie del Farmaco, Sapienza
Università di Roma, 00185 Rome, Italy
| | - Israel Agranat
- Organic
Chemistry, Institute of Chemistry, The Hebrew
University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190401, Israel
| |
Collapse
|
3
|
Thunberg L, Carlsson ACC, Jonson AC, Pithani S, Aurell CJ, Leek H. Unexpected carbonate salt formation during isolation of an enantiopure intermediate by supercritical fluid chromatography. J Chromatogr A 2020; 1624:461172. [DOI: 10.1016/j.chroma.2020.461172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 11/28/2022]
|
4
|
About the Misleading Use of Stereodescriptors in Labeling the Stereoisomers of Milnacipran and Levomilnacipran. J Clin Psychopharmacol 2020; 39:673-674. [PMID: 31688383 DOI: 10.1097/jcp.0000000000001116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Mikhael S, Abrol R. Chiral Graphs: Reduced Representations of Ligand Scaffolds for Stereoselective Biomolecular Recognition, Drug Design, and Enhanced Exploration of Chemical Structure Space. ChemMedChem 2019; 14:798-809. [PMID: 30821046 DOI: 10.1002/cmdc.201800761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/26/2019] [Indexed: 11/11/2022]
Abstract
Rational structure-based drug design relies on a detailed, atomic-level understanding of protein-ligand interactions. The chiral nature of drug binding sites in proteins has led to the discovery of predominantly chiral drugs. A mechanistic understanding of stereoselectivity (which governs how one stereoisomer of a drug might bind stronger than the others to a protein) depends on the topology of stereocenters in the chiral molecule. Chiral graphs and reduced chiral graphs, introduced here, are new topological representations of chiral ligands using graph theory, to facilitate a detailed understanding of chiral recognition of ligands/drugs by proteins. These representations are demonstrated by application to all ≈14 000+ chiral ligands in the Protein Data Bank (PDB), which will facilitate an understanding of protein-ligand stereoselectivity mechanisms. Ligand modifications during drug development can be easily incorporated into these chiral graphs. In addition, these chiral graphs present an efficient tool for a deep dive into the enormous chemical structure space to enable sampling of unexplored structural scaffolds.
Collapse
Affiliation(s)
- Simoun Mikhael
- Department of Chemistry and Biochemistry, College of Science and Mathematics, California State University, Northridge, CA, 91330, USA
| | - Ravinder Abrol
- Department of Chemistry and Biochemistry, College of Science and Mathematics, California State University, Northridge, CA, 91330, USA
| |
Collapse
|
6
|
Ballard A, Narduolo S, Ahmad HO, Cosgrove DA, Leach AG, Buurma NJ. The problem of racemization in drug discovery and tools to predict it. Expert Opin Drug Discov 2019; 14:527-539. [PMID: 30882254 DOI: 10.1080/17460441.2019.1588881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Racemization has long been an ignored risk in drug development, probably because of a lack of convenient access to good tools for its detection and an absence of methods to predict racemization risk. As a result, the potential effects of racemization have been systematically underestimated. Areas covered: Herein, the potential effects of racemization are discussed through a review of drugs for which activity and side effects for both enantiomers are known. Subsequently, drugs known to racemize are discussed and the authors review methods to predict racemization risk. Application of a method quantitatively predicting racemization risk to databases of compounds from the medicinal chemistry literature shows that success in clinical trials is negatively correlated with racemization risk. Expert opinion: It is envisioned that a quantitative method of predicting racemization risk will remove a blind spot from the drug development pipeline. Removal of the blind spot will make drug development more efficient and result in less late-stage attrition of the drug pipeline.
Collapse
Affiliation(s)
- Andrew Ballard
- a Physical Organic Chemistry Centre , School of Chemistry, Cardiff University , Cardiff , UK
| | - Stefania Narduolo
- a Physical Organic Chemistry Centre , School of Chemistry, Cardiff University , Cardiff , UK
| | - Hiwa O Ahmad
- a Physical Organic Chemistry Centre , School of Chemistry, Cardiff University , Cardiff , UK.,b Pharmaceutical Chemistry Department , College of Pharmacy, Hawler Medical University , Erbil , Kurdistan Region , Iraq
| | | | - Andrew G Leach
- d School of Pharmacy and Biomolecular Sciences , Liverpool John Moores University , Liverpool , UK
| | - Niklaas J Buurma
- a Physical Organic Chemistry Centre , School of Chemistry, Cardiff University , Cardiff , UK
| |
Collapse
|
7
|
Mazuela J, Antonsson T, Knerr L, Marsden SP, Munday RH, Johansson MJ. Iridium‐Catalyzed Asymmetric Hydrogenation of
N
‐Alkyl α‐Aryl Furan‐Containing Imines: an Efficient Route to Unnatural
N
‐Alkyl Arylalanines and Related Derivatives. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201801143] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Javier Mazuela
- Cardiovascular, Renal and Metabolism IMED Biotech UnitAstraZeneca Gothenburg Pepparedsleden 1 Mölndal, SE- 431 83 Sweden
| | - Thomas Antonsson
- Cardiovascular, Renal and Metabolism IMED Biotech UnitAstraZeneca Gothenburg Pepparedsleden 1 Mölndal, SE- 431 83 Sweden
| | - Laurent Knerr
- Cardiovascular, Renal and Metabolism IMED Biotech UnitAstraZeneca Gothenburg Pepparedsleden 1 Mölndal, SE- 431 83 Sweden
| | | | - Rachel H. Munday
- AZ Catalysis Hub, Pharmaceutical Technology and DevelopmentAstraZeneca Silk Road Business Park Macclesfield SK10 2NA U.K
| | - Magnus J. Johansson
- Cardiovascular, Renal and Metabolism IMED Biotech UnitAstraZeneca Gothenburg Pepparedsleden 1 Mölndal, SE- 431 83 Sweden
| |
Collapse
|
8
|
A new fundamental type of conformational isomerism. Nat Chem 2018; 10:615-624. [PMID: 29784991 DOI: 10.1038/s41557-018-0043-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 03/08/2018] [Indexed: 11/08/2022]
Abstract
Isomerism is a fundamental chemical concept, reflecting the fact that the arrangement of atoms in a molecular entity has a profound influence on its chemical and physical properties. Here we describe a previously unclassified fundamental form of conformational isomerism through four resolved stereoisomers of a transoid (BF)O(BF)-quinoxalinoporphyrin. These comprise two pairs of enantiomers that manifest structural relationships not describable within existing IUPAC nomenclature and terminology. They undergo thermal diastereomeric interconversion over a barrier of 104 ± 2 kJ mol-1, which we term 'akamptisomerization'. Feasible interconversion processes between conceivable synthesis products and reaction intermediates were mapped out by density functional theory calculations, identifying bond-angle inversion (BAI) at a singly bonded atom as the reaction mechanism. We also introduce the necessary BAI stereodescriptors parvo and amplo. Based on an extended polytope formalism of molecular structure and stereoisomerization, BAI-driven akamptisomerization is shown to be the final fundamental type of conformational isomerization.
Collapse
|
9
|
Gu J, Sui Z, Fang C, Tan Q. Stereochemical considerations in pharmacokinetic processes of representative antineoplastic agents. Drug Metab Rev 2017; 49:438-450. [PMID: 29078726 DOI: 10.1080/03602532.2017.1394322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The vast majority of chemical drugs or drug candidates contain stereocenter(s) in their molecular structures. In these molecules, stereochemical properties are vital properties that influence or even determine their drug actions. Therefore, studying the stereochemical issues of drugs (or drug candidates) is necessary for rational drug use. These stereochemical issues are usually involved with the stereoselectivity in pharmacokinetic processes, especially in the metabolism process. Thus, the investigation of the stereochemical issues in drug metabolism process deserves great attention, especially in those chiral/prochiral antineoplastic agents exhibiting pharmacodynamics and toxicologic differences between stereoisomers. Published reviews concerning this certain issue are inspiring, however they were covering all drug types and only limited antineoplastic drugs were discussed. Here in this review, the research on stereochemical issues in pharmacokinetic processes of some representative antineoplastic agents were described, especially focusing on some newly developed compounds. We highlight the chemical transformations in pharmacokinetic processes of these chiral/prochiral compounds and discuss their different behaviors with metabolic enzymes or transporter proteins, to explicate the observed stereoselectivity intrinsically.
Collapse
Affiliation(s)
- Jing Gu
- a Department of Thoracic Surgery, Institute of Surgery Research , Daping Hospital, Third Military Medical University , Chongqing , China
| | - Zheng Sui
- a Department of Thoracic Surgery, Institute of Surgery Research , Daping Hospital, Third Military Medical University , Chongqing , China
| | - Chunshu Fang
- b The Health Team of 77133th Troops , Chinese People's Liberation Army , Chongqing , China
| | - Qunyou Tan
- a Department of Thoracic Surgery, Institute of Surgery Research , Daping Hospital, Third Military Medical University , Chongqing , China
| |
Collapse
|
10
|
Graceffa RF, Boezio AA, Able J, Altmann S, Berry LM, Boezio C, Butler JR, Chu-Moyer M, Cooke M, DiMauro EF, Dineen TA, Feric Bojic E, Foti RS, Fremeau RT, Guzman-Perez A, Gao H, Gunaydin H, Huang H, Huang L, Ilch C, Jarosh M, Kornecook T, Kreiman CR, La DS, Ligutti J, Milgram BC, Lin MHJ, Marx IE, Nguyen HN, Peterson EA, Rescourio G, Roberts J, Schenkel L, Shimanovich R, Sparling BA, Stellwagen J, Taborn K, Vaida KR, Wang J, Yeoman J, Yu V, Zhu D, Moyer BD, Weiss MM. Sulfonamides as Selective NaV1.7 Inhibitors: Optimizing Potency, Pharmacokinetics, and Metabolic Properties to Obtain Atropisomeric Quinolinone (AM-0466) that Affords Robust in Vivo Activity. J Med Chem 2017; 60:5990-6017. [DOI: 10.1021/acs.jmedchem.6b01850] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | | | - Jessica Able
- Department
of Neuroscience, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Thomas Kornecook
- Department
of Neuroscience, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | | | | | - Joseph Ligutti
- Department
of Neuroscience, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Bryan D. Moyer
- Department
of Neuroscience, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | | |
Collapse
|
11
|
Leek H, Andersson S. Preparative Scale Resolution of Enantiomers Enables Accelerated Drug Discovery and Development. Molecules 2017; 22:molecules22010158. [PMID: 28106796 PMCID: PMC6155825 DOI: 10.3390/molecules22010158] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/12/2017] [Accepted: 01/13/2017] [Indexed: 01/18/2023] Open
Abstract
The provision of pure enantiomers is of increasing importance not only for the pharmaceutical industry but also for agro-chemistry and biotechnology. In drug discovery and development, the enantiomers of a chiral drug depict unique chemical and pharmacological behaviors in a chiral environment, such as the human body, in which the stereochemistry of the chiral drugs determines their pharmacokinetic, pharmacodynamic and toxicological properties. We present a number of challenging case studies of up-to-kilogram separations of racemic or enriched isomer mixtures using preparative liquid chromatography and super critical fluid chromatography to generate individual enantiomers that have enabled the development of new candidate drugs within AstraZeneca. The combination of chromatography and racemization as well as strategies on when to apply preparative chiral chromatography of enantiomers in a multi-step synthesis of a drug compound can further facilitate accelerated drug discovery and the early clinical evaluation of the drug candidates.
Collapse
Affiliation(s)
- Hanna Leek
- Respiratory, Inflammation and Autoimmunity, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, 431 83 Molndal, Sweden.
| | - Shalini Andersson
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, 431 83 Molndal, Sweden.
| |
Collapse
|
12
|
Maioli M, Varadi G, Kurdi R, Caglioti L, Pályi G. Limits of the Classical Concept of Concentration. J Phys Chem B 2016; 120:7438-45. [PMID: 27384879 DOI: 10.1021/acs.jpcb.6b02904] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Solutions of very low concentrations cannot be treated by the usual concept of concentration. Stochastic calculations are performed for the analysis of such solutions containing one or a few molecule(s). It is concluded that these systems escape the usual concentration parameters. Two "case histories" are also shown for demonstration of the practical consequences of the theoretical analysis.
Collapse
Affiliation(s)
- Marco Maioli
- Department of Mathematics, University of Modena and Reggio Emilia , Via Campi 213/B, I-41125 Modena, Italy
| | - Gyula Varadi
- Inpellis, Inc. , 100 Cummings Center, Suite 243C, Beverly, Massachusetts 01915-6133, United States
| | - Róbert Kurdi
- Institute of Environmental Engineering, University of Pannonia , Egyetem u. 10, H-8200 Veszprém, Hungary
| | - Luciano Caglioti
- Department of Chemistry and Technology of Biologically Active Compounds, University "La Sapienza"-Roma , P.le A. Moro 5, I-00185 Roma, Italy
| | - Gyula Pályi
- Department of Life Sciences, University of Modena and Reggio Emilia , Via Campi 103, I-41125 Modena, Italy
| |
Collapse
|
13
|
Testa B, Vistoli G, Pedretti A. Mechanisms and pharmaceutical consequences of processes of stereoisomerisation — A didactic excursion. Eur J Pharm Sci 2016; 88:101-23. [DOI: 10.1016/j.ejps.2016.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 04/02/2016] [Accepted: 04/05/2016] [Indexed: 11/29/2022]
|
14
|
Michman E, Agranat I. Classroom Enters the Courtroom: Stereochemistry of SN1 and SN2 Reactions in Enantiomer Patent Litigations of the Antidepressant Escitalopram. Chirality 2015; 28:39-43. [PMID: 26477341 DOI: 10.1002/chir.22501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 07/19/2015] [Indexed: 11/07/2022]
Abstract
The role of elementary stereochemistry is illustrated in the patent litigations of the blockbuster antidepressant drug escitalopram oxalate. An undergraduate student of organic chemistry would recognize the stereochemical courses of the intramolecular SN 2 and SN 1 reactions of the single-enantiomer (S)-diol intermediate in the synthesis of the blockbuster antidepressant drug escitalopram oxalate: retention of configuration of the chiral carbon atom under basic conditions and racemization under acidic conditions, respectively. He/she, in searching for a stereoselective ring-closure reaction of the enantiomeric diol, will think of an SN 2 reaction in a basic medium. From these points of view, the process claim in the enantiomer patents of escitalopram is obvious/lacks an inventive step. An organic chemistry examination problem based on this scenario is offered.
Collapse
Affiliation(s)
- Elisheva Michman
- Organic Chemistry, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Israel Agranat
- Organic Chemistry, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
15
|
Zask A, Ellestad GA. Recent Advances in Stereoselective Drug Targeting. Chirality 2015; 27:589-97. [PMID: 26096879 DOI: 10.1002/chir.22470] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 04/22/2015] [Indexed: 11/07/2022]
Abstract
Reviewed here are some recent examples of medically important protein targets for which stereoselective drugs have been identified. These include heat shock protein 90 (Hsp90) inhibitors as anticancer agents; transient receptor potential vanilloid type 1 antagonists as new analgesics; stereospecific inhibition of human mutT homolog MTH1 for cancer treatment; the stereoselective binding of R- and S-propranolol by the α1-acid glycoprotein transporter; metallohelical complexes that are nonpeptide α-helical mimetics that enantioselectively target Aβ amyloid for the treatment of Alzheimer's disease; metallohelical assemblies with promising antimicrobial activity that enantioselectively target DNA of resistant bacteria; nonpeptide α-helical metallohelices that target the DNA of cisplatin-resistant cancer cells; diastereomeric selectivity of phenanthriplatin-guanine adducts; and phenazine biosynthetic enzyme active sites that can host both enantiomers of a racemic ligand simultaneously.
Collapse
Affiliation(s)
- Arie Zask
- Department of Biological Sciences, Columbia University, New York, New York
| | | |
Collapse
|
16
|
Abstract
Stereochemical factors are known to play a significant role in the metabolism of drugs and other xenobiotics. Following Prelog's lead, types of metabolic stereoselectivity can be categorized as (i) substrate stereoselectivity (the differential metabolism of two or more stereoisomeric substrates) and (ii) product stereoselectivity (the differential formation of two or more stereoisomeric metabolites from a single substrate). Combinations of the two categories exist as (iii) substrate-product stereoselectivities, meaning that product stereoselectivity itself is substrate stereoselective. Here, published examples of metabolic stereoselectivities are examined in the light of these concepts. In parallel, a graphical scheme is presented with a view to facilitate learning and help researchers to solve classification problems.
Collapse
Affiliation(s)
- Bernard Testa
- Department of Pharmacy, Lausanne University Hospital , Lausanne , Switzerland
| |
Collapse
|
17
|
Smith D, Artursson P, Avdeef A, Di L, Ecker GF, Faller B, Houston JB, Kansy M, Kerns EH, Krämer SD, Lennernäs H, van de Waterbeemd H, Sugano K, Testa B. Passive Lipoidal Diffusion and Carrier-Mediated Cell Uptake Are Both Important Mechanisms of Membrane Permeation in Drug Disposition. Mol Pharm 2014; 11:1727-38. [DOI: 10.1021/mp400713v] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Per Artursson
- Department of Pharmacy, Biomedical Centre, Uppsala University, S-752 63 Uppsala, Box 580, Sweden
| | - Alex Avdeef
- 1732 First
Avenue, #102, New York, New
York 10128, United States
| | - Li Di
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Groton, Connecticut 06340, United States
| | - Gerhard F. Ecker
- Department of Medicinal Chemistry, University of Vienna,
Althanstrasse, 141090 Wien, Austria
| | - Bernard Faller
- Novartis Institutes for Biomedical Research, WSJ-350.3.04, CH-4002 Basel, Switzerland
| | - J. Brian Houston
- School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, U.K
| | - Manfred Kansy
- The Non-Clinical
Safety Department, F. Hoffmann-La Roche, CH-4070 Basel, Switzerland
| | - Edward H. Kerns
- National Center for Advancing Translational
Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | | | - Hans Lennernäs
- Department of Pharmacy, Biomedical Centre, Uppsala University, S-752 63 Uppsala, Box 580, Sweden
| | | | - Kiyohiko Sugano
- Research
Formulation, Sandwich Laboratories, Ramsgate Road, Sandwich, Kent CT13 9NJ, U.K
| | - Bernard Testa
- Department of Pharmacy, University Hospital Lausanne, CH-1011 Lausanne, Switzerland
| |
Collapse
|
18
|
Stereochemistry affects sesquiterpene lactone bioactivity against an herbivorous grasshopper. CHEMOECOLOGY 2013. [DOI: 10.1007/s00049-013-0144-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
|