1
|
Sequence analysis in Familial Mediterranean Fever patients with no confirmatory genotype. Rheumatol Int 2021; 42:15-22. [PMID: 34120219 DOI: 10.1007/s00296-021-04913-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/03/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION/OBJECTIVES Familial Mediterranean Fever (FMF) is a genetic disorder of the innate immunity characterized by chronic inflammatory state. The diagnosis is mainly based on clinical criteria and supported by genotyping, especially in atypical phenotypes. The primary objective was to depict the Familial Mediterranean Fever (FMF) genotype of Greek patients and investigate the contribution of Next Generation Sequencing (NGS) beyond the contemporary techniques [(Polymerase Chain Reaction (PCR)/hybridization and Non-Isotopic RNase Cleavage Assay (NIRCA). The secondary objective was to unravel any associations between the mutated genes with the disease course and response to treatment. METHODS In this single center, retrospective study 31 patients with clinical diagnosis with FMF, but non-conclusive genetic analysis with PCR/hybridization and NIRCA, underwent NGS genotyping. RESULTS PCR/NIRCA detected ≥ 1 mutation in 25/31 patients, most frequently M694V (29%), while NGS in 26/31 (83.9%), most frequently R202Q (61.3%). NGS genetically confirmed the clinical diagnosis (heterozygosity to compound or complex genotype) in 19 (61.3%) patients of our cohort. R202Q was significantly more prevalent by NGS than by contemporary techniques (61.3 vs 12.9%, p = 0.0002) and was associated with FMF. Rare mutations were detected by NGS in 19.2% patients. CONCLUSION NGS clarifies the genetic profile of patients with atypical phenotypes and supports therapeutic management decisions. NGS unveiled the frequent involvement of R202Q in the pathogenesis of our FMF patients.
Collapse
|
2
|
Orsini L, Jansen M, Souche EL, Geldof S, De Meester L. Single nucleotide polymorphism discovery from expressed sequence tags in the waterflea Daphnia magna. BMC Genomics 2011; 12:309. [PMID: 21668940 PMCID: PMC3146954 DOI: 10.1186/1471-2164-12-309] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 06/13/2011] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Daphnia (Crustacea: Cladocera) plays a central role in standing aquatic ecosystems, has a well known ecology and is widely used in population studies and environmental risk assessments. Daphnia magna is, especially in Europe, intensively used to study stress responses of natural populations to pollutants, climate change, and antagonistic interactions with predators and parasites, which have all been demonstrated to induce micro-evolutionary and adaptive responses. Although its ecology and evolutionary biology is intensively studied, little is known on the functional genomics underpinning of phenotypic responses to environmental stressors. The aim of the present study was to find genes expressed in presence of environmental stressors, and target such genes for single nucleotide polymorphic (SNP) marker development. RESULTS We developed three expressed sequence tag (EST) libraries using clonal lineages of D. magna exposed to ecological stressors, namely fish predation, parasite infection and pesticide exposure. We used these newly developed ESTs and other Daphnia ESTs retrieved from NCBI GeneBank to mine for SNP markers targeting synonymous as well as non synonymous genetic variation. We validate the developed SNPs in six natural populations of D. magna distributed at regional scale. CONCLUSIONS A large proportion (47%) of the produced ESTs are Daphnia lineage specific genes, which are potentially involved in responses to environmental stress rather than to general cellular functions and metabolic activities, or reflect the arthropod's aquatic lifestyle. The characterization of genes expressed under stress and the validation of their SNPs for population genetic study is important for identifying ecologically responsive genes in D. magna.
Collapse
Affiliation(s)
- Luisa Orsini
- Laboratory of Aquatic Ecology and Evolutionary Biology, K,U, Leuven, Ch, Deberiotstraat 32, 3000 Leuven, Belgium.
| | | | | | | | | |
Collapse
|
3
|
Liu XP, Hou JL, Liu JH. A novel single nucleotide polymorphism detection of a double-stranded DNA target by a ribonucleotide-carrying molecular beacon and thermostable RNase HII. Anal Biochem 2009; 398:83-92. [PMID: 19891952 DOI: 10.1016/j.ab.2009.10.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 10/26/2009] [Accepted: 10/29/2009] [Indexed: 12/21/2022]
Abstract
Single nucleotide polymorphisms (SNPs) are the most abundant form of genetic variation. SNPs are important markers that link sequence variations to phenotypic changes. Because of the importance of SNPs in the life and medical sciences, a great deal of effort has been devoted to developing accurate, rapid, and cost-effective technologies for SNP analysis. In this article, we describe a novel method for SNP genotyping based on differential fluorescence emission due to cleavage by Thermus thermophilus RNase HII (TthRNase HII) of DNA heteroduplexes containing an SNP site-specific chimeric DNA-rN(1)-DNA molecular beacon (cMB). We constructed a loop sequence for a cMB that contains a single SNP-specific ribonucleotide at the central site. When the cMB probe is hybridized to a target double-stranded DNA (dsDNA), a perfect match of the cMB/DNA duplex permits efficient cleavage with TthRNase HII, whereas a mismatch in the duplex due to an SNP greatly reduces efficiency. Cleavage efficiency is measured by the incremental difference of fluorescence emission of the beacon. We show that the genotypes of 10 individuals at 12 SNP sites across a series of human leukocyte antigen (HLA) can be determined correctly with respect to conventional DNA sequencing. This novel TthRNase HII-based method offers a platform for easy and accurate SNP analysis.
Collapse
Affiliation(s)
- Xi-Peng Liu
- College of Life Science and Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | | |
Collapse
|
4
|
Kambas K, Mitroulis I, Kourtzelis I, Chrysanthopoulou A, Speletas M, Ritis K. Fast and reliable mutation detection of the complete exon 11-15JAK2coding region using non-isotopic RNase cleavage assay (NIRCA). Eur J Haematol 2009; 83:215-9. [DOI: 10.1111/j.1600-0609.2009.01279.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
5
|
Abstract
Single nucleotide polymorphisms (SNPs) are high-density natural sequence variations in genomes. They are considered to be the major genetic source of phenotypic variability within a given species and serve as excellent genetic markers. SNPs are useful in identifying candidate genes that contribute to disease and phenotypic traits. In non-model organisms, the application of SNPs has been limited, because of the expense and technical difficulties entailed in currently available SNP isolation techniques. In the present study, we have developed a rapid and effective method to isolate SNPs throughout the genome randomly. The DNA fragments containing SNPs could be isolated efficiently from background DNA. We analyzed ten isolated DNA fragments with this method in half-smooth tongue sole (Cynoglossus semilaevis)—a newly exploited and commercially important cultured marine flatfish in China—and found that nine of the fragments contained SNPs. The findings were confirmed successfully in different individuals. The method presented here is cost-effective and applicable to essentially any organism.
Collapse
|
6
|
Gopinath SCB. Mapping of RNA-protein interactions. Anal Chim Acta 2009; 636:117-28. [PMID: 19264161 DOI: 10.1016/j.aca.2009.01.052] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 01/26/2009] [Accepted: 01/26/2009] [Indexed: 12/19/2022]
Abstract
RNA-protein interactions are important biological events that perform multiple functions in all living organisms. The wide range of RNA interactions demands diverse conformations to provide contacts for the selective recognition of proteins. Various analytical procedures are presently available for quantitative analyses of RNA-protein complexes, but analytical-based mapping of these complexes is essential to probe specific interactions. In this overview, interactions of functional RNAs and RNA-aptamers with target proteins are discussed by means of mapping strategies.
Collapse
Affiliation(s)
- Subash Chandra Bose Gopinath
- Institute for Biological Resources and Functions & Center for Applied Near Field Optics Research (CAN-FOR), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba City 305-8562, Ibaraki, Japan
| |
Collapse
|
7
|
Hou J, Liu X, Zheng Y, Liu J. A method for HLA genotyping using the specific cleavage of DNA-rN1-DNA/DNA with RNase HII from Chlamydia pneumoniae. Oligonucleotides 2008; 17:433-43. [PMID: 18154453 DOI: 10.1089/oli.2007.0090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Single nucleotide polymorphisms (SNPs) provide a great opportunity for the study of human disease and bacterial drug resistance. However, many SNP typing techniques require dedicated instruments and high cost. Here, we develop a novel method for SNP genotyping based on specific cleavage properties of RNase HII from Chlamydia pneumoniae (CpRNase HII), termed the "CpRNase HII-based method." CpRNase HII cleaves the DNA-rN(1)-DNA/DNA duplex at the 5'-side of the ribonucleotide (rN(1) = one ribonucleotide). Moreover, the cleavage efficiencies of the perfectly matched DNA-rN(1)-DNA/DNA duplexes are higher than those carrying a mismatched ribonucleotide. DNA-rN(1)-DNA fragments are modified with a fluorophore at the 5'-end and a quencher at the 3'-end to generate molecular beacons (MBs), which hybridize with single-stranded DNA (analyte) to be cleaved by CpRNase HII. As perfectly matched duplexes can be cleaved efficiently and mismatched duplexes cannot, CpRNase HII-catalyzed reactions can differentiate between one-nucleotide variations on the DNA-rN(1)-DNA/DNA duplexes. We have validated this method with nine SNPs of the HLA gene, which were successfully determined by endpoint measurements of fluorescence intensity. The new method is simple and effective, because the design of MBs is easy, and all steps of the genotyping consist of simple additions of solutions and incubation. This method will be suitable for large-scale genotyping.
Collapse
Affiliation(s)
- Jingli Hou
- College of Life Science & Technology, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | | | | | | |
Collapse
|
8
|
Paulson KE, Rieger-Christ K, McDevitt MA, Kuperwasser C, Kim J, Unanue VE, Zhang X, Hu M, Ruthazer R, Berasi SP, Huang CY, Giri D, Kaufman S, Dugan JM, Blum J, Netto G, Wazer DE, Summerhayes IC, Yee AS. Alterations of the HBP1 transcriptional repressor are associated with invasive breast cancer. Cancer Res 2007; 67:6136-45. [PMID: 17616670 DOI: 10.1158/0008-5472.can-07-0567] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Invasive breast cancer has a high risk of recurrence to incurable disease and needs improved prognostic and therapeutic tools. Our work combines clinical and molecular analyses to show that the transcriptional repressor HBP1 may be a new target for invasive breast cancer. Previous work indicated that HBP1 regulated proliferation and senescence and inhibited Wnt signaling. Two of these functions have been associated with invasive breast cancer. In 76 breast tumors, we identified 10 HBP1 mutations/variants that were associated with fully invasive breast cancer. In a separate analysis, we found that a subset of invasive breast cancer specimens also had reduced HBP1 mRNA levels. These clinical correlations suggested that mutation or reduction of HBP1 occurs in invasive breast cancer and that HBP1 might regulate the proliferation and invasiveness of this breast cancer type. Analysis of the HBP1 mutants showed they were functionally defective for suppressing Wnt signaling. To test the consequences of reduced HBP1 levels, we used RNA interference to knock down HBP1 and observed increased Wnt signaling, tumorigenic proliferation, and invasiveness in cell and animal breast cancer models. Lastly, statistical analysis of a breast cancer patient database linked reduced HBP1 expression to breast cancer recurrence. In considering two-gene criteria for relapse potential, reduced expression of HBP1 and SFRP1, which is another Wnt inhibitor that was recently linked to invasive breast cancer, strikingly correlated with recurrence. Together, these data indicate that HBP1 may be a molecularly and clinically relevant regulator of breast cancer transitions that eventually lead to poor prognosis.
Collapse
Affiliation(s)
- K Eric Paulson
- Department of Biochemistry and Program in Genetics, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Orsini L, Pajunen M, Hanski I, Savilahti H. SNP discovery by mismatch-targeting of Mu transposition. Nucleic Acids Res 2007; 35:e44. [PMID: 17311815 PMCID: PMC1874615 DOI: 10.1093/nar/gkm070] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Single nucleotide polymorphisms (SNPs) represent a valuable resource for the mapping of human disease genes and induced mutations in model organisms. SNPs may become the markers of choice also for population ecology and evolutionary studies, but their isolation for non-model organisms with unsequenced genomes is often difficult. Here, we describe a rapid and cost-effective strategy to isolate SNPs that exploits the property of the bacteriophage Mu transposition machinery to target mismatched DNA sites and thereby to effectively detect polymorphic loci. To demonstrate the methodology, we isolated 164 SNPs from the unsequenced genome of the Glanville fritillary butterfly (Melitaea cinxia), a much-studied species in population biology, and we validated 24 of them. The strategy involves standard molecular biology techniques as well as undemanding MuA transposase-catalyzed in vitro transposition reactions, and it is applicable to any organism.
Collapse
Affiliation(s)
- Luisa Orsini
- Metapopulation Research Group, Department of Biological and Environmental Sciences, PO Box 65, and Research Program in Cellular Biotechnology, Institute of Biotechnology, PO Box 56, FIN-00014, University of Helsinki, Finland and Division of Genetics and Physiology, Department of Biology, FIN-20014, University of Turku, Finland
| | - Maria Pajunen
- Metapopulation Research Group, Department of Biological and Environmental Sciences, PO Box 65, and Research Program in Cellular Biotechnology, Institute of Biotechnology, PO Box 56, FIN-00014, University of Helsinki, Finland and Division of Genetics and Physiology, Department of Biology, FIN-20014, University of Turku, Finland
| | - Ilkka Hanski
- Metapopulation Research Group, Department of Biological and Environmental Sciences, PO Box 65, and Research Program in Cellular Biotechnology, Institute of Biotechnology, PO Box 56, FIN-00014, University of Helsinki, Finland and Division of Genetics and Physiology, Department of Biology, FIN-20014, University of Turku, Finland
| | - Harri Savilahti
- Metapopulation Research Group, Department of Biological and Environmental Sciences, PO Box 65, and Research Program in Cellular Biotechnology, Institute of Biotechnology, PO Box 56, FIN-00014, University of Helsinki, Finland and Division of Genetics and Physiology, Department of Biology, FIN-20014, University of Turku, Finland
- *To whom correspondence should be addressed. +358 9 191 59516+358 9 191 59366
| |
Collapse
|
10
|
Maruyama T, Sonokawa S, Matsushita H, Goto M. Inhibitiory effects of gold(III) ions on ribonuclease and deoxyribonuclease. J Inorg Biochem 2007; 101:180-6. [PMID: 17084460 DOI: 10.1016/j.jinorgbio.2006.09.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Revised: 09/18/2006] [Accepted: 09/18/2006] [Indexed: 11/29/2022]
Abstract
Inhibitory effects of gold(III) ions (Au(III)) on ribonuclease A (RNase A) and deoxyribonuclease I (DNase I) were investigated at neutral pH. RNase A was completely inhibited by 3 molar equivalents of Au(III) ions. DNase I was inhibited by 10 molar equivalents of Au(III) ions. Stoichiometric analyses suggest that Au(III) ions were coordinated to RNase A molecules. The Au(III)-inhibited RNase A and DNase I were renatured to exhibit 80% and 60% of their intrinsic activity, when the bound Au(III) ions were eliminated from the nucleases by addition of thiourea, which forms a strong complex with gold ions. This suggests that RNase A and DNase I were not oxidized to lose their activity, but reversibly complexed with Au(III) ions to lose their activity. Au(III) ions were probably considered to be bound to histidine and methionine residues in the nucleases, resulting in the inhibition of their activity. CD spectra revealed that the Au(III)-induced inhibition caused a conformational change in RNase A molecules and that the addition of thiourea induced refolding of the Au(III)-inhibited RNase A.
Collapse
Affiliation(s)
- Tatsuo Maruyama
- Department of Applied Chemistry, Graduate School of Engineering and Center for Future Chemistry, Kyushu University, 744 Moto-oka, Fukuoka 819-0395, Japan.
| | | | | | | |
Collapse
|
11
|
Tabone T, Sallmann G, Webb E, Cotton RGH. Detection of 100% of mutations in 124 individuals using a standard UV/Vis microplate reader: a novel concept for mutation scanning. Nucleic Acids Res 2006; 34:e45. [PMID: 16554551 PMCID: PMC1409816 DOI: 10.1093/nar/gkl077] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2006] [Revised: 01/20/2006] [Accepted: 03/03/2006] [Indexed: 11/12/2022] Open
Abstract
We report the development of a simple and inexpensive assay for the detection of DNA polymorphisms and mutations that is based on the modification of mismatched bases by potassium permanganate. Unlike the chemical cleavage of mismatch assay, which also exploits the reactivity of potassium permanganate to detect genomic variants, the assay we describe here does not require a cleavage manipulation and therefore does not require expensive or toxic chemicals or a separation step, as mismatches are detected using direct optical methods in a microplate format. Studies with individual deoxynucleotides demonstrated that the reactivity with potassium permanganate resulted in a specific colour change. Furthermore, studies with synthetic oligonucleotide heteroduplexes demonstrated that this colour change phenomenon could be applied to detect mismatched bases spectrophotometrically. A collection of plasmids carrying single point mutations in the mouse beta-globin promoter region was used as a model system to develop a functional mutation detection assay. Finally, the assay was validated as 100% effective in detecting mismatches in a blinded manner using DNA from patients previously screened for mutations using established techniques, such as sequencing, SSCP and denaturing high-performance liquid chromatography (DHPLC) analysis in DNA fragments up to 300 bp in length.
Collapse
Affiliation(s)
- Tania Tabone
- Genomic Disorders Research Centre Fitzroy, Victoria 3065, Australia.
| | | | | | | |
Collapse
|
12
|
Twist CR, Winson MK, Rowland JJ, Kell DB. Single-nucleotide polymorphism detection using nanomolar nucleotides and single-molecule fluorescence. Anal Biochem 2004; 327:35-44. [PMID: 15033508 DOI: 10.1016/j.ab.2003.12.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2003] [Indexed: 11/23/2022]
Abstract
We have exploited three methods for discriminating single-nucleotide polymorphisms (SNPs) by detecting the incorporation or otherwise of labeled dideoxy nucleotides at the end of a primer chain using single-molecule fluorescence detection methods. Good discrimination of incorporated vs free nucleotide may be obtained in a homogeneous assay (without washing steps) via confocal fluorescence correlation spectroscopy or by polarization anisotropy obtained from confocal fluorescence intensity distribution analysis. Moreover, the ratio of the fluorescence intensities on each polarization channel may be used directly to discriminate the nucleotides incorporated. Each measurement took just a few seconds and was done in microliter volumes with nanomolar concentrations of labeled nucleotides. Since the confocal volumes interrogated are approximately 1fL and the reaction volume could easily be lowered to nanoliters, the possibility of SNP analysis with attomoles of reagents opens up a route to very rapid and inexpensive SNP detection. The method was applied with success to the detections of SNPs that are known to occur in the BRCA1 and CFTR genes.
Collapse
Affiliation(s)
- Charles R Twist
- Institute of Biological Sciences, Cledwyn Building, University of Wales, Aberystwyth SY23 3DD, Wales, UK
| | | | | | | |
Collapse
|
13
|
Pincas H, Pingle MR, Huang J, Lao K, Paty PB, Friedman AM, Barany F. High sensitivity EndoV mutation scanning through real-time ligase proofreading. Nucleic Acids Res 2004; 32:e148. [PMID: 15514109 PMCID: PMC528826 DOI: 10.1093/nar/gnh150] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The ability to associate mutations in cancer genes with the disease and its subtypes is critical for understanding oncogenesis and identifying biomarkers for clinical diagnosis. A two-step mutation scanning method that sequentially used endonuclease V (EndoV) to nick at mismatches and DNA ligase to reseal incorrectly or nonspecifically nicked sites was previously developed in our laboratory. Herein we report an optimized single-step assay that enables ligase to proofread EndoV cleavage in real-time under a compromise between buffer conditions. Real-time proofreading results in a dramatic reduction of background cleavage. A universal PCR strategy that employs both unlabeled gene-specific primers and labeled universal primers, allows for multiplexed gene amplification and precludes amplification of primer dimers. Internally labeled PCR primers eliminate EndoV cleavage at the 5' terminus, enabling high-throughput capillary electrophoresis readout. Furthermore, signal intensity is increased and artifacts are reduced by generating heteroduplexes containing only one of the two possible mismatches (e.g. either A/C or G/T). The single-step assay improves sensitivity to 1:50 and 1:100 (mutant:wild type) for unknown mutations in the p53 and K-ras genes, respectively, opening prospects as an early detection tool.
Collapse
Affiliation(s)
- Hanna Pincas
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Ritis K, Giaglis S, Spathari N, Micheli A, Zonios D, Tzoanopoulos D, Deltas CC, Rafail S, Mean R, Papadopoulos V, Tzioufas AG, Moutsopoulos HM, Kartalis G. Non-isotopic RNase cleavage assay for mutation detection in MEFV, the gene responsible for familial Mediterranean fever, in a cohort of Greek patients. Ann Rheum Dis 2004; 63:438-443. [PMID: 15020340 PMCID: PMC1754936 DOI: 10.1136/ard.2003.009258] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND The MEFV gene is responsible for familial Mediterranean fever (FMF). Several disease associated mutations have been identified. The range of genetic variation in MEFV in Greek patients has not been determined. OBJECTIVE To describe a method that facilitates the routine screening of the entire coding sequence of MEFV (excluding exon 1). METHODS The non-isotopic RNase cleavage assay (NIRCA) was optimised and used as a first step screening method to screen exons 2 to 10 of MEFV. Exons 2 and 10 were analysed separately at DNA level, while exons 3 to 9 were analysed together at cDNA level. The sample group consisted of 26 FMF patients diagnosed using established clinical criteria, six asymptomatic relatives, 12 patients with atypical clinical manifestations, nine patients suffering from various inflammatory diseases, and three normal individuals. All were analysed by NIRCA for mutations in the MEFV gene and direct sequencing was applied subsequently to confirm the results. RESULTS MEFV mutations were identified in 25 of 26 typical FMF patients and in two of 12 patients with atypical manifestations. NIRCA results were in concordance with sequencing findings in all sequences analysed, suggesting that the method is highly reliable in this disease. Sixteen alterations of MEFV were identified (eight missense mutations and eight single nucleotide polymorphisms). CONCLUSIONS NIRCA can be used for rapid screening of the coding sequence of the MEFV gene in patients suspected of suffering from FMF.
Collapse
Affiliation(s)
- K Ritis
- First Division of Internal Medicine, Democritus University of Thrace, Alexandroupolis, Greece.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|