1
|
Lupu M, Pintilie IM, Teleanu RI, Marin GG, Vladâcenco OA, Severin EM. Early Cardiac Dysfunction in Duchenne Muscular Dystrophy: A Case Report and Literature Update. Int J Mol Sci 2025; 26:1685. [PMID: 40004149 PMCID: PMC11855830 DOI: 10.3390/ijms26041685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/09/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Duchenne Muscular Dystrophy (DMD) is a severe X-linked recessive disorder characterized by progressive muscle degeneration due to dystrophin deficiency. Cardiac involvement, particularly dilated cardiomyopathy, significantly impacts morbidity and mortality, typically manifesting after age 10. This case report presents a rare instance of early-onset cardiac involvement in a 3-year-old male with a confirmed deletion in exon 55 of the dystrophin gene. The patient developed dilated cardiomyopathy at 3 years and 8 months, with progressive left ventricular dysfunction despite early treatment with corticosteroids, ACE inhibitors, and beta-blockers. Genetic mechanisms and genotype-phenotype correlations related to cardiac involvement were reviewed, highlighting emerging therapies such as exon skipping, vamorolone, ifetroban, and rimeporide. Studies indicate that variants in exons 12, 14-17, 31-42, 45, and 48-49 are associated with more severe cardiac impairment. This case emphasizes the need for early, ongoing cardiac assessment and personalized treatment to address disease heterogeneity. While current DMD care standards improve survival, optimizing management through early intervention and novel therapies remains essential. Further research is needed to better understand genotype-phenotype correlations and improve cardiac outcomes for patients with DMD.
Collapse
Affiliation(s)
- Maria Lupu
- Clinical Neurosciences Department, Paediatric Neurology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.L.); (R.I.T.); (O.A.V.); (E.M.S.)
| | - Iustina Mihaela Pintilie
- Department of Paediatric Neurology, Dr. Victor Gomoiu Children’s Hospital, 022102 Bucharest, Romania
| | - Raluca Ioana Teleanu
- Clinical Neurosciences Department, Paediatric Neurology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.L.); (R.I.T.); (O.A.V.); (E.M.S.)
- Department of Paediatric Neurology, Dr. Victor Gomoiu Children’s Hospital, 022102 Bucharest, Romania
| | - Georgiana Gabriela Marin
- Clinical Cardiology Department of Oncological Institute, Prof. Dr. Alexandru Trestioreanu, 022328 Bucharest, Romania;
| | - Oana Aurelia Vladâcenco
- Clinical Neurosciences Department, Paediatric Neurology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.L.); (R.I.T.); (O.A.V.); (E.M.S.)
- Department of Paediatric Neurology, Dr. Victor Gomoiu Children’s Hospital, 022102 Bucharest, Romania
| | - Emilia Maria Severin
- Clinical Neurosciences Department, Paediatric Neurology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.L.); (R.I.T.); (O.A.V.); (E.M.S.)
| |
Collapse
|
2
|
Ye W, Siwko S, Tsai RYL. Sex and Race-Related DNA Methylation Changes in Hepatocellular Carcinoma. Int J Mol Sci 2021; 22:ijms22083820. [PMID: 33917049 PMCID: PMC8067720 DOI: 10.3390/ijms22083820] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/01/2021] [Accepted: 04/05/2021] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common cancer and fourth leading cause of cancer-related death worldwide. The number of HCC cases continues to rise despite advances in screening and therapeutic inventions. More importantly, HCC poses two major health disparity issues. First, HCC occurs more commonly in men than women. Second, with the global increase in non-alcoholic fatty liver diseases (NAFLD), it has also become evident that HCC is more prevalent in some races and/or ethnic groups compared to others, depending on its predisposing etiology. Most studies on HCC in the past have been focused on genetic factors as the driving force for HCC development, and the results revealed that genetic mutations associated with HCC are often heterogeneous and involve multiple pathogenic pathways. An emerging new research field is epigenetics, in which gene expression is modified without altering DNA sequences. In this article, we focus on reviewing current knowledge on HCC-related DNA methylation changes that show disparities among different sexes or different racial/ethnic groups, in an effort to establish a point of departure for resolving the broader issue of health disparities in gastrointestinal malignancies using cutting-edge epigenetic approaches.
Collapse
|
3
|
A Genotype-Phenotype Correlation Study of Exon Skip-Equivalent In-Frame Deletions and Exon Skip-Amenable Out-of-Frame Deletions across the DMD Gene to Simulate the Effects of Exon-Skipping Therapies: A Meta-Analysis. J Pers Med 2021; 11:jpm11010046. [PMID: 33466756 PMCID: PMC7830903 DOI: 10.3390/jpm11010046] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 01/16/2023] Open
Abstract
Dystrophinopathies are caused by mutations in the DMD gene. Out-of-frame deletions represent most mutational events in severe Duchenne muscular dystrophy (DMD), while in-frame deletions typically lead to milder Becker muscular dystrophy (BMD). Antisense oligonucleotide-mediated exon skipping converts an out-of-frame transcript to an in-frame one, inducing a truncated but partially functional dystrophin protein. The reading frame rule, however, has many exceptions. We thus sought to simulate clinical outcomes of exon-skipping therapies for DMD exons from clinical data of exon skip-equivalent in-frame deletions, in which the expressed quasi-dystrophins are comparable to those resulting from exon-skipping therapies. We identified a total of 1298 unique patients with exon skip-equivalent mutations in patient registries and the existing literature. We classified them into skip-equivalent deletions of each exon and statistically compared the ratio of DMD/BMD and asymptomatic individuals across the DMD gene. Our analysis identified that five exons are associated with significantly milder phenotypes than all other exons when corresponding exon skip-equivalent in-frame deletion mutations occur. Most exon skip-equivalent in-frame deletions were associated with a significantly milder phenotype compared to corresponding exon skip-amenable out-of-frame mutations. This study indicates the importance of genotype-phenotype correlation studies in the rational design of exon-skipping therapies.
Collapse
|
4
|
Bayat F, Sarmiento IG, Ahmadian N, Dehghani Z. Iranian Registry of Duchenne and Becker Muscular Dystrophies: Characterization and Preliminary Data. J Neuromuscul Dis 2020; 8:251-259. [PMID: 33325392 DOI: 10.3233/jnd-200540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Duchenne (DMD) and Becker muscular dystrophies (BMD) are rare neuromuscular disorders caused by mutations in the dystrophin gene and failure in its protein production. The absence or the reduced expression of dystrophin render muscles prone to damage, including the cardiac and respiratory muscles with reduced life expectancy. Careful planning for clinical trials will require a sufficient number of confirmed cases to meet the inclusion criteria. National registries for rare disorders serve as an essential tool for personalized medicines or mutation-specific trials to facilitate patient recruitment. The Iranian Registry of DMD and BMD (IRDAB) collects detailed molecular data of Iranian DMD/BMD patients and carriers according to the TREAT-NMD Global Neuromuscular Network guidelines. As of March 2020, five hundred and twenty-two cases are registered. The registry incorporates multi-level web and database technologies, where registrants can access their data and compare it to the cumulative data. The registry's objectives are to recruit eligible patients for clinical trials and provide sufficient data for the national program of disease surveillance and social planning. Furthermore, the registry provides accurate epidemiological data, phenotype/genotype correlation, and evaluate the standards of care in Iran.
Collapse
Affiliation(s)
- Farhad Bayat
- Department of Quality Control of Recombinant Vaccine Production, Karaj Research and Production Facilities, Tehran, Iran.,Incubator of Biotechnology, Pasteur Institute of Iran, Tehran, Iran
| | - Isis G Sarmiento
- Department of Quality Control of Recombinant Vaccine Production, Karaj Research and Production Facilities, Tehran, Iran
| | - Negar Ahmadian
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | | |
Collapse
|
5
|
Kumar SH, Athimoolam K, Suraj M, Das Christu Das MS, Muralidharan A, Jeyam D, Ashokan J, Karthikeyan P, Krishna R, Khanna-Gupta A, Bremadesam Raman L. Comprehensive genetic analysis of 961 unrelated Duchenne Muscular Dystrophy patients: Focus on diagnosis, prevention and therapeutic possibilities. PLoS One 2020; 15:e0232654. [PMID: 32559196 PMCID: PMC7304910 DOI: 10.1371/journal.pone.0232654] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 04/19/2020] [Indexed: 02/06/2023] Open
Abstract
Recently DNA sequencing analysis has played a vital role in the unambiguous diagnosis of clinically suspected patients with Duchenne Muscular Dystrophy (DMD). DMD is a monogenic, X-linked, recessive, degenerative pediatric neuromuscular disorder affecting males, invariably leading to fatal cardiopulmonary failure. Early and precise diagnosis of the disease is an essential part of an effective disease management strategy as care guidelines and prevention through counseling need to be initiated at the earliest particularly since therapies are now available for a subset of patients. In this manuscript we report the DMD gene mutational profiles of 961 clinically suspected male DMD patients, 99% of whom were unrelated. We utilized a molecular diagnostic approach which is cost-effective for most patients and follows a systematic process that sequentially involves identification of hotspot deletions using mPCR, large deletions and duplications using MLPA and small insertions/ deletions and point mutations using an NGS muscular dystrophy gene panel. Pathogenic DMD gene mutations were identified in 84% of patients. Our data compared well with the frequencies and distribution of deletions and duplications reported in the DMD gene in other published studies. We also describe a number of rare in-frame mutations, which appeared to be enriched in the 5’ proximal hotspot region of the DMD gene. Furthermore, we identified a family with a rare non-contiguous deletion mutation in the DMD gene where three males were affected and two females were deemed carriers. A subset of patients with mutations in the DMD gene who are likely to benefit therapeutically from new FDA and EMA approved drugs were found in our cohort. Given that the burden of care for DMD patients invariably falls on the mothers, particularly in rural India, effective genetic counseling followed by carrier screening is crucial for prevention of this disorder. We analyzed the carrier status of consented female relatives of 463 probands to gauge the percentage of patients with familial disease. Our analysis revealed 43.7% of mothers with DMD gene mutations. Our comprehensive efforts, involving complete genetic testing coupled with compassionate genetic counseling provided to DMD patients and their families, are intended to improve the quality of life of DMD patients and to empower carrier females to make informed reproductive choices to impede the propagation of this deadly disease.
Collapse
Affiliation(s)
- Shalini H. Kumar
- Molecular Diagnostics, Counseling, Care and Research Centre (MDCRC), Royal CareSuper Speciality Hospital, Neelambur, Coimbatore, Tamil Nadu, India
| | - Kalpana Athimoolam
- Molecular Diagnostics, Counseling, Care and Research Centre (MDCRC), Royal CareSuper Speciality Hospital, Neelambur, Coimbatore, Tamil Nadu, India
| | - Manikandan Suraj
- Molecular Diagnostics, Counseling, Care and Research Centre (MDCRC), Royal CareSuper Speciality Hospital, Neelambur, Coimbatore, Tamil Nadu, India
| | - Mary Shoba Das Christu Das
- Molecular Diagnostics, Counseling, Care and Research Centre (MDCRC), Royal CareSuper Speciality Hospital, Neelambur, Coimbatore, Tamil Nadu, India
| | - Aparna Muralidharan
- Molecular Diagnostics, Counseling, Care and Research Centre (MDCRC), Royal CareSuper Speciality Hospital, Neelambur, Coimbatore, Tamil Nadu, India
| | - Divya Jeyam
- Molecular Diagnostics, Counseling, Care and Research Centre (MDCRC), Royal CareSuper Speciality Hospital, Neelambur, Coimbatore, Tamil Nadu, India
| | - Jaicy Ashokan
- Molecular Diagnostics, Counseling, Care and Research Centre (MDCRC), Royal CareSuper Speciality Hospital, Neelambur, Coimbatore, Tamil Nadu, India
| | - Priya Karthikeyan
- Molecular Diagnostics, Counseling, Care and Research Centre (MDCRC), Royal CareSuper Speciality Hospital, Neelambur, Coimbatore, Tamil Nadu, India
| | - Ragav Krishna
- Molecular Diagnostics, Counseling, Care and Research Centre (MDCRC), Royal CareSuper Speciality Hospital, Neelambur, Coimbatore, Tamil Nadu, India
| | - Arati Khanna-Gupta
- Molecular Diagnostics, Counseling, Care and Research Centre (MDCRC), Royal CareSuper Speciality Hospital, Neelambur, Coimbatore, Tamil Nadu, India
| | - Lakshmi Bremadesam Raman
- Molecular Diagnostics, Counseling, Care and Research Centre (MDCRC), Royal CareSuper Speciality Hospital, Neelambur, Coimbatore, Tamil Nadu, India
- * E-mail:
| |
Collapse
|
6
|
Tomar S, Moorthy V, Sethi R, Chai J, Low PS, Hong STK, Lai PS. Mutational spectrum of dystrophinopathies in Singapore: Insights for genetic diagnosis and precision therapy. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2019; 181:230-244. [DOI: 10.1002/ajmg.c.31704] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 04/21/2019] [Accepted: 04/22/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Swati Tomar
- Department of Paediatrics, Yong Loo Lin School of MedicineNational University of Singapore Singapore
| | - Vikaesh Moorthy
- Yong Loo Lin School of MedicineNational University of Singapore Singapore
| | - Raman Sethi
- Department of Paediatrics, Yong Loo Lin School of MedicineNational University of Singapore Singapore
| | - Josiah Chai
- Department of Neurology, National Neuroscience Institute Singapore
| | - Poh Sim Low
- Department of Paediatrics, Yong Loo Lin School of MedicineNational University of Singapore Singapore
| | - Stacey Tay Kiat Hong
- Department of Paediatrics, Yong Loo Lin School of MedicineNational University of Singapore Singapore
| | - Poh San Lai
- Department of Paediatrics, Yong Loo Lin School of MedicineNational University of Singapore Singapore
| |
Collapse
|
7
|
Ramos E, Conde JG, Berrios RA, Pardo S, Gómez O, Mas Rodríguez MF. Prevalence and Genetic Profile of Duchene and Becker Muscular Dystrophy in Puerto Rico. J Neuromuscul Dis 2018; 3:261-266. [PMID: 27854217 DOI: 10.3233/jnd-160147] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Duchenne and Becker Muscular Dystrophy (DMD and BMD, respectively), are common forms of inherited muscle disease. Information regarding the epidemiology of these conditions, including genotype, is still sparse. OBJECTIVE To establish the prevalence and genetic profile of DMD and BMD in Puerto Rico. METHODS We collected data from medical records in all Muscular Dystrophy Association (MDA) clinics in Puerto Rico in order to estimate the prevalence of DMD and BMD and to describe the genotypic profile of these patients. Patients selected for data analysis matched "definite", "probable" and "possible" case definitions as established by MD STARnet. RESULTS A total of 141 patients matched the inclusion criteria, with 64.5% and 35.5% being categorized into DMD and BMD, respectively. DMD and BMD prevalence in Puerto Rico was estimated at 5.18 and 2.84 per 100,000 males, respectively. Deletion was the most common form of mutation (66.7%) in the dystrophin gene, with exons in segment 45 to 47 being the most frequently affected. CONCLUSIONS This is the first report of the prevalence and genetic profile characteristics of DMD and BMD in Puerto Rico. Prevalence of DMD was similar to that reported worldwide, while prevalence of BMD was higher. Genetic profile was consistent with that reported in the literature.
Collapse
Affiliation(s)
- Edwardo Ramos
- Department of Physical Medicine, Rehabilitation & Sport Medicine, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - José G Conde
- Biomedical Sciences Graduate Program, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - Rafael Arias Berrios
- Department of Physical Medicine, Rehabilitation & Sport Medicine, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - Sherly Pardo
- Department of Biochemistry & Pediatrics, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - Omar Gómez
- Department of Physical Medicine, Rehabilitation & Sport Medicine, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - Manuel F Mas Rodríguez
- Department of Physical Medicine, Rehabilitation & Sport Medicine, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| |
Collapse
|
8
|
Antisense Oligonucleotides Promote Exon Inclusion and Correct the Common c.-32-13T>G GAA Splicing Variant in Pompe Disease. MOLECULAR THERAPY. NUCLEIC ACIDS 2017. [PMID: 28624228 PMCID: PMC5415969 DOI: 10.1016/j.omtn.2017.03.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The most common variant causing Pompe disease is c.-32-13T>G (IVS1) in the acid α-glucosidase (GAA) gene, which weakens the splice acceptor of GAA exon 2 and induces partial and complete exon 2 skipping. It also allows a low level of leaky wild-type splicing, leading to a childhood/adult phenotype. We hypothesized that cis-acting splicing motifs may exist that could be blocked using antisense oligonucleotides (AONs) to promote exon inclusion. To test this, a screen was performed in patient-derived primary fibroblasts using a tiling array of U7 small nuclear RNA (snRNA)-based AONs. This resulted in the identification of a splicing regulatory element in GAA intron 1. We designed phosphorodiamidate morpholino oligomer-based AONs to this element, and these promoted exon 2 inclusion and enhanced GAA enzyme activity to levels above the disease threshold. These results indicate that the common IVS1 GAA splicing variant in Pompe disease is subject to negative regulation, and inhibition of a splicing regulatory element using AONs is able to restore canonical GAA splicing and endogenous GAA enzyme activity.
Collapse
|
9
|
Lim KRQ, Maruyama R, Yokota T. Eteplirsen in the treatment of Duchenne muscular dystrophy. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:533-545. [PMID: 28280301 PMCID: PMC5338848 DOI: 10.2147/dddt.s97635] [Citation(s) in RCA: 316] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Duchenne muscular dystrophy is a fatal neuromuscular disorder affecting around one in 3,500–5,000 male births that is characterized by progressive muscular deterioration. It is inherited in an X-linked recessive fashion and is caused by loss-of-function mutations in the DMD gene coding for dystrophin, a cytoskeletal protein that stabilizes the plasma membrane of muscle fibers. In September 2016, the US Food and Drug Administration granted accelerated approval for eteplirsen (or Exondys 51), a drug that acts to promote dystrophin production by restoring the translational reading frame of DMD through specific skipping of exon 51 in defective gene variants. Eteplirsen is applicable for approximately 14% of patients with DMD mutations. This article extensively reviews and discusses the available information on eteplirsen to date, focusing on pharmacological, efficacy, safety, and tolerability data from preclinical and clinical trials. Issues faced by eteplirsen, particularly those relating to its efficacy, will be identified. Finally, the place of eteplirsen and exon skipping as a general therapeutic strategy in Duchenne muscular dystrophy treatment will be discussed.
Collapse
Affiliation(s)
- Kenji Rowel Q Lim
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta
| | - Rika Maruyama
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta; The Friends of Garrett Cumming Research & Muscular Dystrophy Canada, HM Toupin Neurological Science Research Chair, Edmonton, AB, Canada
| |
Collapse
|
10
|
Harel T, Yoon WH, Garone C, Gu S, Coban-Akdemir Z, Eldomery MK, Posey JE, Jhangiani SN, Rosenfeld JA, Cho MT, Fox S, Withers M, Brooks SM, Chiang T, Duraine L, Erdin S, Yuan B, Shao Y, Moussallem E, Lamperti C, Donati MA, Smith JD, McLaughlin HM, Eng CM, Walkiewicz M, Xia F, Pippucci T, Magini P, Seri M, Zeviani M, Hirano M, Hunter JV, Srour M, Zanigni S, Lewis RA, Muzny DM, Lotze TE, Boerwinkle E, Gibbs RA, Hickey SE, Graham BH, Yang Y, Buhas D, Martin DM, Potocki L, Graziano C, Bellen HJ, Lupski JR, Bellen HJ, Lupski JR. Recurrent De Novo and Biallelic Variation of ATAD3A, Encoding a Mitochondrial Membrane Protein, Results in Distinct Neurological Syndromes. Am J Hum Genet 2016; 99:831-845. [PMID: 27640307 DOI: 10.1016/j.ajhg.2016.08.007] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/04/2016] [Indexed: 12/22/2022] Open
Abstract
ATPase family AAA-domain containing protein 3A (ATAD3A) is a nuclear-encoded mitochondrial membrane protein implicated in mitochondrial dynamics, nucleoid organization, protein translation, cell growth, and cholesterol metabolism. We identified a recurrent de novo ATAD3A c.1582C>T (p.Arg528Trp) variant by whole-exome sequencing (WES) in five unrelated individuals with a core phenotype of global developmental delay, hypotonia, optic atrophy, axonal neuropathy, and hypertrophic cardiomyopathy. We also describe two families with biallelic variants in ATAD3A, including a homozygous variant in two siblings, and biallelic ATAD3A deletions mediated by nonallelic homologous recombination (NAHR) between ATAD3A and gene family members ATAD3B and ATAD3C. Tissue-specific overexpression of borR534W, the Drosophila mutation homologous to the human c.1582C>T (p.Arg528Trp) variant, resulted in a dramatic decrease in mitochondrial content, aberrant mitochondrial morphology, and increased autophagy. Homozygous null bor larvae showed a significant decrease of mitochondria, while overexpression of borWT resulted in larger, elongated mitochondria. Finally, fibroblasts of an affected individual exhibited increased mitophagy. We conclude that the p.Arg528Trp variant functions through a dominant-negative mechanism that results in small mitochondria that trigger mitophagy, resulting in a reduction in mitochondrial content. ATAD3A variation represents an additional link between mitochondrial dynamics and recognizable neurological syndromes, as seen with MFN2, OPA1, DNM1L, and STAT2 mutations.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX 77030, USA; Howard Hughes Medical Institute, Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX 77030, USA; Program in Developmental Biology, Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA.
| |
Collapse
|
11
|
Pitfalls of Multiple Ligation-Dependent Probe Amplifications in Detecting DMD Exon Deletions or Duplications. J Mol Diagn 2015; 18:253-9. [PMID: 26743743 DOI: 10.1016/j.jmoldx.2015.11.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 10/22/2015] [Accepted: 11/02/2015] [Indexed: 12/26/2022] Open
Abstract
Multiple ligation-dependent probe amplifications (MLPAs) are a key technology for the molecular diagnosis of Duchenne/Becker muscular dystrophy, which is mainly caused by large gene arrangements. However, little is known about the false-positive rates of MLPA for this disease. Here, we review MLPA analysis results from 398 patients suspected to have Duchenne/Becker muscular dystrophy. MLPA assay was used for screening the entire coding region. If these amplifications produced normal results, direct sequencing was performed to search for sequence variations and to determine single-exon deletions, duplications, or indeterminate results. Using MLPA, 290 cases (72.9%) showed exon deletion or duplication results. Among those, 75 cases (25.9%) resulted in a deletion or duplication of a single exon. Direct sequencing revealed that 11 single-exon deletion cases resulted in false-positives due to sequence variations within the patient population interfering with probe binding at the probe-hybridization sites. Abnormal MLPA results were closely related to the type of sequence change and the position within the probe-hybridization locus. The most common type was C-T transition (n = 19, 55.9%). Abnormal MLPA results correlated with CA mismatch and low melting temperature (≤75°C). False-positive events for large gene rearrangements involving a single exon in DMD accounted for approximately 15% (11/75). Therefore, careful design of MLPA probes is required to avoid false-positive results.
Collapse
|
12
|
Guo R, Zhu G, Zhu H, Ma R, Peng Y, Liang D, Wu L. DMD mutation spectrum analysis in 613 Chinese patients with dystrophinopathy. J Hum Genet 2015; 60:435-42. [PMID: 25972034 DOI: 10.1038/jhg.2015.43] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 04/01/2015] [Accepted: 04/04/2015] [Indexed: 01/12/2023]
Abstract
Dystrophinopathy is a group of inherited diseases caused by mutations in the DMD gene. Within the dystrophinopathy spectrum, Duchenne and Becker muscular dystrophies are common X-linked recessive disorders that mainly feature striated muscle necrosis. We combined multiplex ligation-dependent probe amplification with Sanger sequencing to detect large deletions/duplications and point mutations in the DMD gene in 613 Chinese patients. A total of 571 (93.1%) patients were diagnosed, including 428 (69.8%) with large deletions/duplications and 143 (23.3%) with point mutations. Deletion/duplication breakpoints gathered mostly in introns 44-55. Reading frame rules could explain 88.6% of deletion mutations. We identified seventy novel point mutations that had not been previously reported. Spectrum expansion and genotype-phenotype analysis of DMD mutations on such a large sample size in Han Chinese population would provide new insights into the pathogenic mechanism underlying dystrophinopathies.
Collapse
Affiliation(s)
- Ruolan Guo
- State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, China
| | - Guosheng Zhu
- State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, China
| | - Huimin Zhu
- State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, China
| | - Ruiyu Ma
- State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, China
| | - Ying Peng
- State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, China
- Hunan Jiahui Genetics Hospital, Changsha, Hunan, China
| | - Desheng Liang
- State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, China
- Hunan Jiahui Genetics Hospital, Changsha, Hunan, China
| | - Lingqian Wu
- State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, China
- Hunan Jiahui Genetics Hospital, Changsha, Hunan, China
| |
Collapse
|
13
|
Nicolas A, Lucchetti-Miganeh C, Yaou RB, Kaplan JC, Chelly J, Leturcq F, Barloy-Hubler F, Le Rumeur E. Assessment of the structural and functional impact of in-frame mutations of the DMD gene, using the tools included in the eDystrophin online database. Orphanet J Rare Dis 2012; 7:45. [PMID: 22776072 PMCID: PMC3748829 DOI: 10.1186/1750-1172-7-45] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 06/18/2012] [Indexed: 12/21/2022] Open
Abstract
Background Dystrophin is a large essential protein of skeletal and heart muscle. It is a filamentous scaffolding protein with numerous binding domains. Mutations in the DMD gene, which encodes dystrophin, mostly result in the deletion of one or several exons and cause Duchenne (DMD) and Becker (BMD) muscular dystrophies. The most common DMD mutations are frameshift mutations resulting in an absence of dystrophin from tissues. In-frame DMD mutations are less frequent and result in a protein with partial wild-type dystrophin function. The aim of this study was to highlight structural and functional modifications of dystrophin caused by in-frame mutations. Methods and results We developed a dedicated database for dystrophin, the eDystrophin database. It contains 209 different non frame-shifting mutations found in 945 patients from a French cohort and previous studies. Bioinformatics tools provide models of the three-dimensional structure of the protein at deletion sites, making it possible to determine whether the mutated protein retains the typical filamentous structure of dystrophin. An analysis of the structure of mutated dystrophin molecules showed that hybrid repeats were reconstituted at the deletion site in some cases. These hybrid repeats harbored the typical triple coiled-coil structure of native repeats, which may be correlated with better function in muscle cells. Conclusion This new database focuses on the dystrophin protein and its modification due to in-frame deletions in BMD patients. The observation of hybrid repeat reconstitution in some cases provides insight into phenotype-genotype correlations in dystrophin diseases and possible strategies for gene therapy. The eDystrophin database is freely available: http://edystrophin.genouest.org/.
Collapse
|
14
|
Xie S, Lan Z, Qu N, Wei X, Yu P, Zhu Q, Yang G, Wang J, Shi Q, Wang W, Yang L, Yi X. Detection of truncated dystrophin lacking the C-terminal domain in a Chinese pedigree by next-generation sequencing. Gene 2012; 499:139-42. [PMID: 22425969 DOI: 10.1016/j.gene.2012.03.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 02/15/2012] [Accepted: 03/04/2012] [Indexed: 01/06/2023]
Abstract
Dystrophin (DMD) gene is the largest gene containing 79 exons involving various mutation types and regions, and targeted next-generation sequencing (NGS) was employed in detecting DMD gene mutation in the present study. A literature-annotated disease nonsense mutation (c.10141C>T, NM_004006.1) in exon 70 that has been reported as Duchenne Muscular Dystrophy (DMD)-causing mutation was found in our two patients, the proband and his cousin. In the present study two main methods were used, the next-generation sequencing and the classic Sanger sequencing. The exon capture followed by HiSeq2000 sequencing was specifically used in this study. Combined applications of the next-generation sequencing platform and bioinformatics are proved to be effective methods for DMD diagnosis.
Collapse
Affiliation(s)
- Shuqi Xie
- Beijing Genomics Institute at Shenzhen, Shenzhen 518083, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Cooper DN, Bacolla A, Férec C, Vasquez KM, Kehrer-Sawatzki H, Chen JM. On the sequence-directed nature of human gene mutation: the role of genomic architecture and the local DNA sequence environment in mediating gene mutations underlying human inherited disease. Hum Mutat 2011; 32:1075-99. [PMID: 21853507 PMCID: PMC3177966 DOI: 10.1002/humu.21557] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Accepted: 06/17/2011] [Indexed: 12/21/2022]
Abstract
Different types of human gene mutation may vary in size, from structural variants (SVs) to single base-pair substitutions, but what they all have in common is that their nature, size and location are often determined either by specific characteristics of the local DNA sequence environment or by higher order features of the genomic architecture. The human genome is now recognized to contain "pervasive architectural flaws" in that certain DNA sequences are inherently mutation prone by virtue of their base composition, sequence repetitivity and/or epigenetic modification. Here, we explore how the nature, location and frequency of different types of mutation causing inherited disease are shaped in large part, and often in remarkably predictable ways, by the local DNA sequence environment. The mutability of a given gene or genomic region may also be influenced indirectly by a variety of noncanonical (non-B) secondary structures whose formation is facilitated by the underlying DNA sequence. Since these non-B DNA structures can interfere with subsequent DNA replication and repair and may serve to increase mutation frequencies in generalized fashion (i.e., both in the context of subtle mutations and SVs), they have the potential to serve as a unifying concept in studies of mutational mechanisms underlying human inherited disease.
Collapse
Affiliation(s)
- David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom.
| | | | | | | | | | | |
Collapse
|
16
|
Tomiyasu A, Nakamura M, Ichiba M, Ueno S, Saiki S, Morimoto M, Kobal J, Kageyama Y, Inui T, Wakabayashi K, Yamada T, Kanemori Y, Jung HH, Tanaka H, Orimo S, Afawi Z, Blatt I, Aasly J, Ujike H, Babovic-Vuksanovic D, Josephs KA, Tohge R, Rodrigues GR, Dupré N, Yamada H, Yokochi F, Kotschet K, Takei T, Rudzińska M, Szczudlik A, Penco S, Fujiwara M, Tojo K, Sano A. Novel pathogenic mutations and copy number variations in the VPS13A gene in patients with chorea-acanthocytosis. Am J Med Genet B Neuropsychiatr Genet 2011; 156B:620-31. [PMID: 21598378 DOI: 10.1002/ajmg.b.31206] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 04/26/2011] [Indexed: 12/23/2022]
Abstract
Chorea-acanthocytosis (ChAc) is a rare autosomal recessive neurodegenerative disorder caused by loss of function mutations in the vacuolar protein sorting 13 homolog A (VPS13A) gene that encodes chorein. It is characterized by adult-onset chorea, peripheral acanthocytes, and neuropsychiatric symptoms. In the present study, we performed a comprehensive mutation screen, including sequencing and copy number variation (CNV) analysis, of the VPS13A gene in ChAc patients. All 73 exons and flanking regions of VPS13A were sequenced in 35 patients diagnosed with ChAc. To detect CNVs, we also performed real-time quantitative PCR and long-range PCR analyses for the VPS13A gene on patients in whom only a single heterozygous mutation was detected. We identified 36 pathogenic mutations, 20 of which were previously unreported, including two novel CNVs. In addition, we investigated the expression of chorein in 16 patients by Western blotting of erythrocyte ghosts. This demonstrated the complete absence of chorein in patients with pathogenic mutations. This comprehensive screen provides an accurate and useful method for the molecular diagnosis of ChAc.
Collapse
Affiliation(s)
- Akiyuki Tomiyasu
- Department of Psychiatry, Graduate School of Medical and Dental Sciences, Kagoshima University, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Methylation-mediated deamination of 5-methylcytosine appears to give rise to mutations causing human inherited disease in CpNpG trinucleotides, as well as in CpG dinucleotides. Hum Genomics 2011; 4:406-10. [PMID: 20846930 PMCID: PMC3525222 DOI: 10.1186/1479-7364-4-6-406] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The cytosine-guanine (CpG) dinucleotide has long been known to be a hotspot for pathological mutation in the human genome. This hypermutability is related to its role as the major site of cytosine methylation with the attendant risk of spontaneous deamination of 5-methylcytosine (5mC) to yield thymine. Cytosine methylation, however, also occurs in the context of CpNpG sites in the human genome, an unsurprising finding since the intrinsic symmetry of CpNpG renders it capable of supporting a semi-conservative model of replication of the methylation pattern. Recently, it has become clear that significant DNA methylation occurs in a CpHpG context (where H = A, C or T) in a variety of human somatic tissues. If we assume that CpHpG methylation also occurs in the germline, and that 5mC deamination can occur within a CpHpG context, then we might surmise that methylated CpHpG sites could also constitute mutation hotspots causing human genetic disease. To test this postulate, 54,625 missense and nonsense mutations from 2,113 genes causing inherited disease were retrieved from the Human Gene Mutation Database (http://www.hgmd.org). Some 18.2 per cent of these pathological lesions were found to be C → T and G → A transitions located in CpG dinucleotides (compatible with a model of methylation-mediated deamination of 5mC), an approximately ten-fold higher proportion than would have been expected by chance alone. The corresponding proportion for the CpHpG trinucleotide was 9.9 per cent, an approximately two-fold higher proportion than would have been expected by chance. We therefore estimate that ∼5 per cent of missense/nonsense mutations causing human inherited disease may be attributable to methylation-mediated deamination of 5mC within a CpHpG context.
Collapse
|
18
|
Reliable resequencing of the human dystrophin locus by universal long polymerase chain reaction and massive pyrosequencing. Anal Biochem 2010; 406:176-84. [PMID: 20670611 DOI: 10.1016/j.ab.2010.07.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 07/19/2010] [Accepted: 07/20/2010] [Indexed: 01/07/2023]
Abstract
The X-linked dystrophin gene is well known for its involvement in Duchenne/Becker muscular dystrophies and for its exceptional megabase size. This locus at Xp21 is prone to frequent random molecular changes, including large deletions and duplications, but also smaller variations. To cope with such huge sequence analysis requirements in forthcoming diagnostic applications, we employed the power of the parallel 454 GS-FLX pyrosequencer to the dystrophin locus. We enriched the genomic region of interest by the robust amplification of 62 fragments under universal conditions by the long-PCR protocol yielding 244,707 bp of sequence. Pooled PCR products were fragmented and used for library preparation and DNA sequencing. To evaluate the entire procedure we analyzed four male DNA samples for sequence coverage and accuracy in DNA sequence variation and for any potential bias. We identified 562 known variations and 55 additional variants not yet reported, among which we detected a causative Arg1844Stop mutation in one sample. Sanger sequencing confirmed all changes. Unexpectedly, only 3 x coverage was sufficient for 99.9993% accuracy. Our results show that long PCR combined to massive pyrosequencing is very reliable for the analysis of the biggest gene of the human genome and open the doors to other demanding applications in molecular diagnostics.
Collapse
|
19
|
Takeshima Y, Yagi M, Okizuka Y, Awano H, Zhang Z, Yamauchi Y, Nishio H, Matsuo M. Mutation spectrum of the dystrophin gene in 442 Duchenne/Becker muscular dystrophy cases from one Japanese referral center. J Hum Genet 2010; 55:379-88. [PMID: 20485447 DOI: 10.1038/jhg.2010.49] [Citation(s) in RCA: 182] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Recent developments in molecular therapies for Duchenne muscular dystrophy (DMD) demand accurate genetic diagnosis, because therapies are mutation specific. The KUCG (Kobe University Clinical Genetics) database for DMD and Becker muscular dystrophy is a hospital-based database comprising 442 cases. Using a combination of complementary DNA (cDNA) and chromosome analysis in addition to conventional genomic DNA-based method, mutation detection was successfully accomplished in all cases, and the largest mutation database of Japanese dystrophinopathy was established. Among 442 cases, deletions and duplications encompassing one or more exons were identified in 270 (61%) and 38 (9%) cases, respectively. Nucleotide changes leading to nonsense mutations or disrupting a splice site were identified in 69 (16%) or 24 (5%) cases, respectively. Small deletion/insertion mutations were identified in 34 (8%) cases. Remarkably, two retrotransposon insertion events were also identified. Dystrophin cDNA analysis successfully revealed novel transcripts with a pseudoexon created by a single-nucleotide change deep within an intron in four cases. X-chromosome abnormalities were identified in two cases. The reading frame rule was upheld for 93% of deletion and 66% of duplication mutation cases. For the application of molecular therapies, induction of exon skipping was deemed the first priority for dystrophinopathy treatment. At one Japanese referral center, the hospital-based mutation database of the dystrophin gene was for the first time established with the highest levels of quality and patient's number.
Collapse
Affiliation(s)
- Yasuhiro Takeshima
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Spitali P, Rimessi P, Fabris M, Perrone D, Falzarano S, Bovolenta M, Trabanelli C, Mari L, Bassi E, Tuffery S, Gualandi F, Maraldi NM, Sabatelli-Giraud P, Medici A, Merlini L, Ferlini A. Exon skipping-mediated dystrophin reading frame restoration for small mutations. Hum Mutat 2010; 30:1527-34. [PMID: 19760747 DOI: 10.1002/humu.21092] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Exon skipping using antisense oligonucleotides (AONs) has successfully been used to reframe the mRNA in various Duchenne muscular dystrophy patients carrying deletions in the DMD gene. In this study we tested the feasibility of the exon skipping approach for patients with small mutations in in-frame exons. We first identified 54 disease-causing point mutations. We selected five patients with nonsense or frameshifting mutations in exons 10, 16, 26, 33, and 34. Wild-type and mutation specific 2'OMePS AONs were tested in cell-free splicing assays and in cultured cells derived from the selected patients. The obtained results confirm cell-free splicing assay as an alternative system to test exon skipping propensity when patients' cells are unavailable. In myogenic cells, similar levels of exon skipping were observed for wild-type and mutation specific AONs for exons 16, 26, and 33, whereas for exon 10 and exon 34 the efficacy of the AONs was significantly different. Interestingly, in some cases skipping efficiencies for mutated exons were quite dissimilar when compared with previous reports on the respective wild-type exons. This behavior may be related to the effect of the mutations on exon skipping propensity, and highlights the complexity of identifying optimal AONs for skipping exons with small mutations.
Collapse
Affiliation(s)
- Pietro Spitali
- Department of Experimental and Diagnostic Medicine, Section of Medical Genetics, University of Ferrara, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Flanigan KM, Dunn DM, von Niederhausern A, Soltanzadeh P, Gappmaier E, Howard MT, Sampson JB, Mendell JR, Wall C, King WM, Pestronk A, Florence JM, Connolly AM, Mathews KD, Stephan CM, Laubenthal KS, Wong BL, Morehart PJ, Meyer A, Finkel RS, Bonnemann CG, Medne L, Day JW, Dalton JC, Margolis MK, Hinton VJ, Weiss RB. Mutational spectrum of DMD mutations in dystrophinopathy patients: application of modern diagnostic techniques to a large cohort. Hum Mutat 2010; 30:1657-66. [PMID: 19937601 DOI: 10.1002/humu.21114] [Citation(s) in RCA: 248] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mutations in the DMD gene, encoding the dystrophin protein, are responsible for the dystrophinopathies Duchenne Muscular Dystrophy (DMD), Becker Muscular Dystrophy (BMD), and X-linked Dilated Cardiomyopathy (XLDC). Mutation analysis has traditionally been challenging, due to the large gene size (79 exons over 2.2 Mb of genomic DNA). We report a very large aggregate data set comprised of DMD mutations detected in samples from patients enrolled in the United Dystrophinopathy Project, a multicenter research consortium, and in referral samples submitted for mutation analysis with a diagnosis of dystrophinopathy. We report 1,111 mutations in the DMD gene, including 891 mutations with associated phenotypes. These results encompass 506 point mutations (including 294 nonsense mutations) and significantly expand the number of mutations associated with the dystrophinopathies, highlighting the utility of modern diagnostic techniques. Our data supports the uniform hypermutability of CGA>TGA mutations, establishes the frequency of polymorphic muscle (Dp427m) protein isoforms and reveals unique genomic haplotypes associated with "private" mutations. We note that 60% of these patients would be predicted to benefit from skipping of a single DMD exon using antisense oligonucleotide therapy, and 62% would be predicted to benefit from an inclusive multiexonskipping approach directed toward exons 45 through 55.
Collapse
Affiliation(s)
- Kevin M Flanigan
- Departments of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Bennett RR, Schneider HE, Estrella E, Burgess S, Cheng AS, Barrett C, Lip V, Lai PS, Shen Y, Wu BL, Darras BT, Beggs AH, Kunkel LM. Automated DNA mutation detection using universal conditions direct sequencing: application to ten muscular dystrophy genes. BMC Genet 2009; 10:66. [PMID: 19835634 PMCID: PMC2781300 DOI: 10.1186/1471-2156-10-66] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Accepted: 10/18/2009] [Indexed: 11/10/2022] Open
Abstract
Background One of the most common and efficient methods for detecting mutations in genes is PCR amplification followed by direct sequencing. Until recently, the process of designing PCR assays has been to focus on individual assay parameters rather than concentrating on matching conditions for a set of assays. Primers for each individual assay were selected based on location and sequence concerns. The two primer sequences were then iteratively adjusted to make the individual assays work properly. This generally resulted in groups of assays with different annealing temperatures that required the use of multiple thermal cyclers or multiple passes in a single thermal cycler making diagnostic testing time-consuming, laborious and expensive. These factors have severely hampered diagnostic testing services, leaving many families without an answer for the exact cause of a familial genetic disease. A search of GeneTests for sequencing analysis of the entire coding sequence for genes that are known to cause muscular dystrophies returns only a small list of laboratories that perform comprehensive gene panels. The hypothesis for the study was that a complete set of universal assays can be designed to amplify and sequence any gene or family of genes using computer aided design tools. If true, this would allow automation and optimization of the mutation detection process resulting in reduced cost and increased throughput. Results An automated process has been developed for the detection of deletions, duplications/insertions and point mutations in any gene or family of genes and has been applied to ten genes known to bear mutations that cause muscular dystrophy: DMD; CAV3; CAPN3; FKRP; TRIM32; LMNA; SGCA; SGCB; SGCG; SGCD. Using this process, mutations have been found in five DMD patients and four LGMD patients (one in the FKRP gene, one in the CAV3 gene, and two likely causative heterozygous pairs of variations in the CAPN3 gene of two other patients). Methods and assay sequences are reported in this paper. Conclusion This automated process allows laboratories to discover DNA variations in a short time and at low cost.
Collapse
Affiliation(s)
- Richard R Bennett
- Program in Genomics and Division of Genetics, and The Manton Center for Orphan Disease Research, Children's Hospital Boston, Boston, Massachusetts, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Chen Z, Feng J, Buzin CH, Liu Q, Weiss L, Kernstine K, Somlo G, Sommer SS. Analysis of cancer mutation signatures in blood by a novel ultra-sensitive assay: monitoring of therapy or recurrence in non-metastatic breast cancer. PLoS One 2009; 4:e7220. [PMID: 19789704 PMCID: PMC2749210 DOI: 10.1371/journal.pone.0007220] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Accepted: 04/20/2009] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Tumor DNA has been shown to be present both in circulating tumor cells in blood and as fragments in the plasma of metastatic cancer patients. The identification of ultra-rare tumor-specific mutations in blood would be the ultimate marker to measure efficacy of cancer therapy and/or early recurrence. Herein we present a method for detecting microinsertions/deletions/indels (MIDIs) at ultra-high analytical selectivity. MIDIs comprise about 15% of mutations. METHODS AND FINDINGS We describe MIDI-Activated Pyrophosphorolysis (MAP), a method of ultra-high analytical selectivity for detecting MIDIs. The high analytical selectivity of MAP is putatively due to serial coupling of two rare events: heteroduplex slippage and mis-pyrophosphorolysis. MAP generally has an analytical selectivity of one mutant molecule per >1 billion wild type molecules and an analytical sensitivity of one mutant molecule per reaction. The analytical selectivity of MAP is about 100,000-fold better than that of our previously described method of Pyrophosphorolysis Activated Polymerization-Allele specific amplification (PAP-A) for detecting MIDIs. The utility of this method is illustrated in two ways. 1) We demonstrate that two EGFR deletions commonly found in lung cancers are not present in tissue from four normal human lungs (10(7) copies of gDNA each) or in blood samples from 10 healthy individuals (10(7) copies of gDNA each). This is inconsistent, at least at an analytical sensitivity of 10(-7), with the hypotheses of (a) hypermutation or (b) strong selection of these growth factor-mutated cells during normal lung development leads to accumulation of pre-neoplastic cells with these EGFR mutations, which sometimes can lead to lung cancer in late adulthood. Moreover, MAP was used for large scale, high throughput "gene pool" analysis. No germline or early embryonic somatic mosaic mutation was detected (at a frequency of >0.3%) for the 15/18 bp EGFR deletion mutations in 6,400 individuals, suggesting that early embryonic EGFR somatic mutation is very rare, inconsistent with hypermutation or strong selection of these deletions in the embryo. 2) The second illustration of MAP utility is in personalized monitoring of therapy and early recurrence in cancer. Tumor-specific p53 mutations identified at diagnosis in the plasma of six patients with stage II and III breast cancer were undetectable after therapy in four women, consistent with clinical remission, and continued to be detected after treatment in two others, reflecting tumor progression. CONCLUSIONS MAP has an analytical selectivity of one part per billion for detection of MIDIs and an analytical sensitivity of one molecule. MAP provides a general tool for monitoring ultra-rare mutations in tissues and blood. As an example, we show that the personalized cancer signature in six out of six patients with non-metastatic breast cancer can be detected and that levels over time are correlated with the clinical course of disease.
Collapse
Affiliation(s)
- Zhenbin Chen
- Department of Molecular Genetics, City of Hope National Medical Center, Duarte, California, United States of America
| | - Jinong Feng
- Department of Molecular Genetics, City of Hope National Medical Center, Duarte, California, United States of America
| | - Carolyn H. Buzin
- Department of Molecular Diagnosis, City of Hope National Medical Center, Duarte, California, United States of America
- MEDomics, LLC, Azusa, California, United States of America
| | - Qiang Liu
- Department of Molecular Diagnosis, City of Hope National Medical Center, Duarte, California, United States of America
| | - Lawrence Weiss
- Department of Anatomic Pathology, City of Hope National Medical Center, Duarte, California, United States of America
| | - Kemp Kernstine
- Division of Surgery, City of Hope National Medical Center, Duarte, California, United States of America
| | - George Somlo
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, California, United States of America
| | - Steve S. Sommer
- Department of Molecular Genetics, City of Hope National Medical Center, Duarte, California, United States of America
- Department of Molecular Diagnosis, City of Hope National Medical Center, Duarte, California, United States of America
- MEDomics, LLC, Azusa, California, United States of America
| |
Collapse
|
24
|
Cunniff C, Andrews J, Meaney FJ, Mathews KD, Matthews D, Ciafaloni E, Miller TM, Bodensteiner JB, Miller LA, James KA, Druschel CM, Romitti PA, Pandya S. Mutation analysis in a population-based cohort of boys with Duchenne or Becker muscular dystrophy. J Child Neurol 2009; 24:425-30. [PMID: 19074751 PMCID: PMC5882193 DOI: 10.1177/0883073808324770] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The type and frequency of diagnostic testing was analyzed in a population-based cohort of boys with Duchenne muscular dystrophy or Becker muscular dystrophy. Use of muscle biopsy declined from 66.0% of boys born between January 1982 and September 1987 to 32.6% born between April 1999 and September 2004. DMD mutation was documented for 345 (73.4%) boys. Deletions were more common and point mutations were less common than that has been reported in specialty clinic or laboratory-based cohorts. Deletion of one or more exons was detected in 270 individuals (57.4% of all patients and 78.3% with a DMD mutation). Duplication was identified in 39 individuals (8.3% of all patients and 11.3% with a DMD mutation). Point mutation, small insertion, or small deletion was found in 36 individuals (7.7% of all patients and 10.4% with a DMD mutation). Point mutation analysis was performed in only 37 of 130 (28.5%) individuals with negative deletion and/or duplication testing.
Collapse
Affiliation(s)
- Christopher Cunniff
- Department of Pediatrics, Steele Research Center, University of Arizona College of Medicine, 1501 N. Campbell Avenue, Tucson, Arizona 85724-5073, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Hegde MR, Chin ELH, Mulle JG, Okou DT, Warren ST, Zwick ME. Microarray-based mutation detection in the dystrophin gene. Hum Mutat 2008; 29:1091-9. [PMID: 18663755 DOI: 10.1002/humu.20831] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Duchenne and Becker muscular dystrophies (DMD and BMD) are X-linked recessive neuromuscular disorders caused by mutations in the dystrophin gene affecting approximately 1 in 3,500 males. The human dystrophin gene spans>2,200 kb, or roughly 0.1% of the genome, and is composed of 79 exons. The mutational spectrum of disease-causing alleles, including exonic copy number variations (CNVs), is complex. Deletions account for approximately 65% of DMD mutations and 85% of BMD mutations. Duplications occur in approximately 6 to 10% of males with either DMD or BMD. The remaining 30 to 35% of mutations consist of small deletions, insertions, point mutations, or splicing mutations, most of which introduce a premature stop codon. Laboratory analysis of dystrophin can be used to confirm a clinical diagnosis of DMD, characterize the type of dystrophin mutation, and perform prenatal testing and carrier testing for females. Current dystrophin diagnostic assays involve a variety of methodologies, including multiplex PCR, Southern blot analysis, multiplex ligation-dependent probe amplification (MLPA), detection of virtually all mutations-SSCP (DOVAM-S), and single condition amplification/internal primer sequencing (SCAIP); however, these methods are time-consuming, laborious, and do not accurately detect duplication mutations in the dystrophin gene. Furthermore, carrier testing in females is often difficult when a related affected male is unavailable. Here we describe the development, design, validation, and implementation of a high-resolution comparative genomic hybridization (CGH) microarray-based approach capable of accurately detecting both deletions and duplications in the dystrophin gene. This assay can be readily adopted by clinical molecular testing laboratories and represents a rapid, cost-effective approach for screening a large gene, such as dystrophin.
Collapse
Affiliation(s)
- Madhuri R Hegde
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Hwa HL, Chang YY, Huang CH, Chen CH, Kao YS, Jong YJ, Chao MC, Ko TM. Small Mutations of the DMD Gene in Taiwanese Families. J Formos Med Assoc 2008; 107:463-9. [DOI: 10.1016/s0929-6646(08)60154-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
27
|
Song W, Li W, Feng J, Heston LL, Scaringe WA, Sommer SS. Identification of high risk DISC1 structural variants with a 2% attributable risk for schizophrenia. Biochem Biophys Res Commun 2007; 367:700-6. [PMID: 18164685 DOI: 10.1016/j.bbrc.2007.12.117] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Accepted: 12/14/2007] [Indexed: 12/31/2022]
Abstract
The causes of schizophrenia remain elusive. In a large Scottish pedigree, a balanced translocation t(1;11) (q42.1;q14.3) disrupting the DISC1 and DISC2 genes segregates with major mental illness, including schizophrenia and unipolar depression. A frame-shift carboxyl-terminal deletion was reported in DISC1 in an American family, but subsequently found in two controls. A few common structural variants have been associated with less than a 2-fold increased risk for schizophrenia, but replication has not been uniform. No large scale case-control mutation study has been performed. We have analyzed the regions of likely functional significance in the DISC1 gene in 288 patients with schizophrenia and 288 controls (5 megabases of genomic sequence analyzed). Six patients with schizophrenia were heterozygous for ultra-rare missense variants not found in the 288 controls (p=0.015) and shown to be ultra-rare by their absence in a pool of 10,000 control alleles. We conclude that ultra-rare structural variants in DISC1 are associated with an attributable risk of about 2% for schizophrenia. In addition, we confirm that two common structural variants (Q264R and S704C) elevate the risk for schizophrenia slightly (odds ratio 1.3, 95% CI: 1.0-1.7). DISC1 illustrates how common/moderate risk alleles suggested by the HapMap project might be followed up by resequencing to identify genes with high risk, low frequency alleles of clinical relevance.
Collapse
Affiliation(s)
- Wenjia Song
- Department of Molecular Genetics, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA 91010-3000, USA
| | | | | | | | | | | |
Collapse
|
28
|
Feng J, Yan J, Li W, Chen J, Sommer SS. Candidate Gene Analyses by Scanning or Brute Force Fluorescent Sequencing: A Comparison of DOVAM-S with Gel-Based and Capillary-Based Sequencing. ACTA ACUST UNITED AC 2007; 11:235-40. [DOI: 10.1089/gte.2007.9992] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jinong Feng
- Departments of Molecular Genetics and Molecular Diagnosis, City of Hope National Medical Center, Duarte, California
| | - Jin Yan
- Departments of Molecular Genetics and Molecular Diagnosis, City of Hope National Medical Center, Duarte, California
| | - Wenyan Li
- Departments of Molecular Genetics and Molecular Diagnosis, City of Hope National Medical Center, Duarte, California
| | - Jiesheng Chen
- Departments of Molecular Genetics and Molecular Diagnosis, City of Hope National Medical Center, Duarte, California
| | - Steve S. Sommer
- Departments of Molecular Genetics and Molecular Diagnosis, City of Hope National Medical Center, Duarte, California
| |
Collapse
|
29
|
Vogiatzakis N, Kekou K, Sophocleous C, Kitsiou S, Mavrou A, Bakoula C, Kanavakis E. Screening Human Genes for Small Alterations Performing an Enzymatic Cleavage Mismatched Analysis (ECMA) Protocol. Mol Biotechnol 2007; 55:1-9. [DOI: 10.1007/s12033-007-0062-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Accepted: 06/26/2007] [Indexed: 12/12/2022]
|
30
|
Screening Human Genes for Small Alterations Performing an Enzymatic Cleavage Mismatched Analysis (ECMA) Protocol. Mol Biotechnol 2007; 37:212-9. [DOI: 10.1007/s12033-007-0065-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Accepted: 06/26/2007] [Indexed: 02/06/2023]
|
31
|
Stockley TL, Akber S, Bulgin N, Ray PN. Strategy for comprehensive molecular testing for Duchenne and Becker muscular dystrophies. ACTA ACUST UNITED AC 2007; 10:229-43. [PMID: 17253928 DOI: 10.1089/gte.2006.10.229] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Comprehensive molecular testing for mutations in the DMD gene causing Duchenne and Becker muscular dystrophy (DMD/BMD) is challenging because of the large size of the gene and the variety of mutation types. There is an increasing demand for comprehensive DMD gene molecular testing, including deletion/duplication testing of 79 exons and direct sequencing of the 14-kb coding region from genomic DNA, to provide confirmation of clinical diagnoses in affected patients and to determine carrier risk for family members. To determine an efficient strategy to prioritize patients for comprehensive molecular testing of the DMD gene, we tested a consecutive cohort of 165 males referred over a 4-year period because of a suspicion of DMD or BMD using: (1) a new quantitative multiplex polymerase chain reaction (PCR) assay designed to detect deletions or duplications in all exons of the gene and the brain promoter and (2) direct sequencing of the coding region and intron/exon boundaries. For the patients being tested because of a suspicion of DMD, deletion/duplication testing followed by direct sequencing detected pathogenic mutations in 98% (106/108 total patients). However, of the patients tested because of a suspicion of BMD, only 60% (34/57 total patients) had causative mutations identified, all of which were deletions or duplications. Our results suggest that direct genomic sequence analysis of the DMD gene is a useful addition to deletion/duplication testing for diagnosis of DMD, but does not provide an improved sensitivity compared to deletion/duplication analysis alone for the diagnosis of BMD. In addition, due to the relatively common finding of single exon deletions and duplications (22%, 27 of 125 total patients with deletions/duplications), methods to examine all exons of the gene for deletions/duplications should be used as the initial molecular quantitative test for DMD and BMD.
Collapse
Affiliation(s)
- Tracy L Stockley
- Molecular Genetics Laboratory, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.
| | | | | | | |
Collapse
|
32
|
Elespuru RK, Sankaranarayanan K. New approaches to assessing the effects of mutagenic agents on the integrity of the human genome. Mutat Res 2007; 616:83-9. [PMID: 17174354 DOI: 10.1016/j.mrfmmm.2006.11.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Heritable genetic alterations, although individually rare, have a substantial collective health impact. Approximately 20% of these are new mutations of unknown cause. Assessment of the effect of exposures to DNA damaging agents, i.e. mutagenic chemicals and radiations, on the integrity of the human genome and on the occurrence of genetic disease remains a daunting challenge. Recent insights may explain why previous examination of human exposures to ionizing radiation, as in Hiroshima and Nagasaki, failed to reveal heritable genetic effects. New opportunities to assess the heritable genetic damaging effects of environmental mutagens are afforded by: (1) integration of knowledge on the molecular nature of genetic disorders and the molecular effects of mutagens; (2) the development of more practical assays for germline mutagenesis; (3) the likely use of population-based genetic screening in personalized medicine.
Collapse
Affiliation(s)
- R K Elespuru
- Division of Biology, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD 20993, The Netherlands.
| | | |
Collapse
|
33
|
Deburgrave N, Daoud F, Llense S, Barbot JC, Récan D, Peccate C, Burghes AHM, Béroud C, Garcia L, Kaplan JC, Chelly J, Leturcq F. Protein- and mRNA-based phenotype-genotype correlations in DMD/BMD with point mutations and molecular basis for BMD with nonsense and frameshift mutations in the DMD gene. Hum Mutat 2007; 28:183-95. [PMID: 17041906 DOI: 10.1002/humu.20422] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Straightforward detectable Duchenne muscular dystrophy (DMD) gene rearrangements, such as deletions or duplications involving an entire exon or more, are involved in about 70% of dystrophinopathies. In the remaining 30% a variety of point mutations or "small" mutations are suspected. Due to their diversity and to the large size and complexity of the DMD gene, these point mutations are difficult to detect. To overcome this diagnostic issue, we developed and optimized a routine muscle biopsy-based diagnostic strategy. The mutation detection rate is almost as high as 100% and mutations were identified in all patients for whom the diagnosis of DMD and Becker muscular dystrophy (BMD) was clinically suspected and further supported by the detection on Western blot of quantitative and/or qualitative dystrophin protein abnormalities. Here we report a total of 124 small mutations including 11 nonsense and frameshift mutations detected in BMD patients. In addition to a comprehensive assessment of muscular phenotypes that takes into account consequences of mutations on the expression of the dystrophin mRNA and protein, we provide and discuss genomic, mRNA, and protein data that pinpoint molecular mechanisms underlying BMD phenotypes associated with nonsense and frameshift mutations.
Collapse
Affiliation(s)
- Nathalie Deburgrave
- Institut Cochin, INSERM Unité 567, CNR UMR 1408, Université René Descartes Paris 5 UM3, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Odom GL, Gregorevic P, Chamberlain JS. Viral-mediated gene therapy for the muscular dystrophies: successes, limitations and recent advances. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1772:243-62. [PMID: 17064882 PMCID: PMC1894910 DOI: 10.1016/j.bbadis.2006.09.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Revised: 09/16/2006] [Accepted: 09/20/2006] [Indexed: 02/07/2023]
Abstract
Much progress has been made over the past decade elucidating the molecular basis for a variety of muscular dystrophies (MDs). Accordingly, there are examples of mouse models of MD whose disease progression has been halted in large part with the use of viral vector technology. Even so, we must acknowledge significant limitations of present vector systems that must be overcome prior to successful treatment of humans with such approaches. This review will present a variety of viral-mediated therapeutic strategies aimed at counteracting the muscle-wasting symptoms associated with muscular dystrophy. We include viral vector systems used for muscle gene transfer, with a particular emphasis on adeno-associated virus. Findings of several encouraging studies focusing on repair of the mutant dystrophin gene are also included. Lastly, we present a discussion of muscle compensatory therapeutics being considered that include pathways involved in the up-regulation of utrophin, promotion of cellular adhesion, enhancement of muscle mass, and antagonism of the inflammatory response. Considering the complexity of the muscular dystrophies, it appears likely that a multilayered approach tailored to a patient sub-group may be warranted in order to effectively contest the progression of this devastating disease.
Collapse
Affiliation(s)
- Guy L. Odom
- Department of Neurology Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Washington School of Medicine, 1959 NE Pacific Street, Seattle, WA, 98195-7720, USA
| | - Paul Gregorevic
- Department of Neurology Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Washington School of Medicine, 1959 NE Pacific Street, Seattle, WA, 98195-7720, USA
| | - Jeffrey S. Chamberlain
- Department of Neurology Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Washington School of Medicine, 1959 NE Pacific Street, Seattle, WA, 98195-7720, USA
| |
Collapse
|
35
|
Taylor PJ, Maroulis S, Mullan GL, Pedersen RL, Baumli A, Elakis G, Piras S, Walsh C, Prósper-Gutiérrez B, De La Puente-Alonso F, Bell CG, Mowat DR, Johnston HM, Buckley MF. Measurement of the clinical utility of a combined mutation detection protocol in carriers of Duchenne and Becker muscular dystrophy. J Med Genet 2007; 44:368-72. [PMID: 17259292 PMCID: PMC2740880 DOI: 10.1136/jmg.2006.047464] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Recent methodological advances have improved the detection rate for dystrophin mutations, but there are no published studies that have measured the clinical utility of these protocols for carrier detection compared with conventional carrier testing protocols that use pedigree, serum creatine kinase levels and linkage analysis. METHODS AND SUBJECTS The clinical utility of a combined mutation detection protocol was measured. It involved quantitative PCR procedures followed by DNA sequence analysis for the identification of dystrophin mutation carriers in 2101 women at risk of being carriers from 348 mutation-known Duchenne or Becker muscular dystrophy pedigrees. RESULTS The combined mutation detection protocol identified a mutation in 96% and 82% of index cases of Duchenne muscular dystrophy and Becker muscular dystrophy, respectively. An additional 692 (33%) potential carriers were correctly classified by the combined mutation detection protocol compared with pedigree, serum creatine kinase levels and linkage analysis. Significantly lower mutation carrier rates were identified in the mothers of isolated cases with deletion mutations than predicted from theoretical considerations, but these findings were not confirmed for duplication and DNA sequence mutations. CONCLUSIONS There are significant clinical benefits to be gained from a combined mutation detection protocol for carrier detection. It is recommended that mutation-specific carrier frequencies for the different classes of dystrophin mutations should be taken into account in genetic counselling practice.
Collapse
Affiliation(s)
- Peter J Taylor
- Molecular and Cytogenetics Unit, Department of Haematology and Genetics, South Eastern Area Laboratory Services, Prince of Wales Hospital, Randwick, Sydney, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Muscarella LA, Piemontese MR, Barbano R, Fazio A, Guarnieri V, Quattrone A, Zelante L. Novel mutations of dystrophin gene in DMD patients detected by rapid scanning in biplex exons DHPLC analysis. ACTA ACUST UNITED AC 2006; 24:231-6. [PMID: 17145200 DOI: 10.1016/j.bioeng.2006.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Revised: 10/25/2006] [Accepted: 10/29/2006] [Indexed: 11/29/2022]
Abstract
Mutations in the dystrophin gene result in both Duchenne and Becher muscular dystrophies (DMD and BMD). Approximately 65% of all mutations causing DMD are deletions (60%) or duplications (5%) of large segments of this gene, spanning one exon or more. Due to the large size of the dystrophin gene (79 exons), finding point mutations has been prohibitively expensive and laborious. Recent studies confirm the utility of pre-screening methods, as denaturing high-performance liquid chromatography (DHPLC) analysis in the identification of point mutations in the dystrophin gene, with an increment of mutation detection rate from 65% to more than 92%. Here we suggest an alternative and convenient method of DHPLC analysis in order to find mutations in a more rapid and less expensive way by introducing the analysis of 16 couples of dystrophin amplicons, in biplex exons DHPLC runs. Using this new protocol of biplex exons DHPLC screening, new mutations were identified in four male patients affected by DMD who had tested negative for large DNA rearrangements.
Collapse
Affiliation(s)
- Lucia Anna Muscarella
- Medical Genetics Service, IRCCS Casa Sollievo della Sofferenza Hospital, Poliambulatorio Giovanni Paolo II, Viale Padre Pio, San Giovanni Rotondo (FG), Italy.
| | | | | | | | | | | | | |
Collapse
|
37
|
Klein RD, Thorland EC, Gonzales PR, Beck PA, Dykas DJ, McGrath JM, Bale AE. A multiplex assay for the detection and mapping of complex glycerol kinase deficiency. Clin Chem 2006; 52:1864-70. [PMID: 16887896 DOI: 10.1373/clinchem.2006.072397] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Glycerol kinase deficiency (GKD) is an X-linked recessive disorder that presents in both isolated and complex forms. The contiguous deletion that leads to GKD also commonly affects NR0B1 (DAX1), the gene associated with adrenal hypoplasia congenita, and DMD, the Duchenne muscular dystrophy gene. Molecular testing to delineate this deletion is expensive and has only limited availability. METHODS We designed a multiplex PCR assay for the detection and mapping of a contiguous deletion potentially affecting the IL1RAPL1, NR0B1, GK, and DMD genes in a 29-month-old male patient with GKD. RESULTS Multiplex PCR detected a contiguous deletion that involved the IL1RAPL1, NR0B1, GK, and DMD genes. Although the patient had a creatine kinase concentration within the reference interval, further mapping with PCR revealed that exon 74 was the last intact exon at the 3' end of the DMD gene. CONCLUSIONS Multiplex PCR is an effective and inexpensive way to detect and map the contiguous deletion in cases of complex GKD. The extension of a deletion to include DMD exon 75 in a patient with a creatine kinase concentration within the reference interval suggests that this region of the gene may not be essential for protein function.
Collapse
Affiliation(s)
- Roger D Klein
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55901, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
Templeton AR. Haplotype trees and modern human origins. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2006; Suppl 41:33-59. [PMID: 16369961 DOI: 10.1002/ajpa.20351] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A haplotype is a multisite haploid genotype at two or more polymorphic sites on the same chromosome in a defined DNA region. An evolutionary tree of the haplotypes can be estimated if the DNA region had little to no recombination. Haplotype trees can be used to reconstruct past human gene-flow patterns and historical events, but any single tree captures only a small portion of evolutionary history, and is subject to error. A fuller view of human evolution requires multiple DNA regions, and errors can be minimized by cross-validating inferences across loci. An analysis of 25 DNA regions reveals an out-of-Africa expansion event at 1.9 million years ago. Gene flow with isolation by distance was established between African and Eurasian populations by about 1.5 million years ago, with no detectable interruptions since. A second out-of-Africa expansion occurred about 700,000 years ago, and involved interbreeding with at least some Eurasian populations. A third out-of-Africa event occurred around 100,000 years ago, and was also characterized by interbreeding, with the hypothesis of a total Eurasian replacement strongly rejected (P < 10(-17)). This does not preclude the possibility that some Eurasian populations could have been replaced, and the status of Neanderthals is indecisive. Demographic inferences from haplotype trees have been inconsistent, so few definitive conclusions can be made at this time. Haplotype trees from human parasites offer additional insights into human evolution and raise the possibility of an Asian isolate of humanity, but once again not in a definitive fashion. Haplotype trees can also indicate which genes were subject to positive selection in the lineage leading to modern humans. Genetics provides many insights into human evolution, but those insights need to be integrated with fossil and archaeological data to yield a fuller picture of the origin of modern humans.
Collapse
Affiliation(s)
- Alan R Templeton
- Department of Biology, Washington University, St. Louis, Missouri 63130-4899, USA.
| |
Collapse
|
39
|
Warrington KH, Herzog RW. Treatment of human disease by adeno-associated viral gene transfer. Hum Genet 2006; 119:571-603. [PMID: 16612615 DOI: 10.1007/s00439-006-0165-6] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2006] [Accepted: 02/28/2006] [Indexed: 11/24/2022]
Abstract
During the past decade, in vivo administration of viral gene transfer vectors for treatment of numerous human diseases has been brought from bench to bedside in the form of clinical trials, mostly aimed at establishing the safety of the protocol. In preclinical studies in animal models of human disease, adeno-associated viral (AAV) vectors have emerged as a favored gene transfer system for this approach. These vectors are derived from a replication-deficient, non-pathogenic parvovirus with a single-stranded DNA genome. Efficient gene transfer to numerous target cells and tissues has been described. AAV is particularly efficient in transduction of non-dividing cells, and the vector genome persists predominantly in episomal forms. Substantial correction, and in some instances complete cure, of genetic disease has been obtained in animal models of hemophilia, lysosomal storage disorders, retinal diseases, disorders of the central nervous system, and other diseases. Therapeutic expression often lasted for months to years. Treatments of genetic disorders, cancer, and other acquired diseases are summarized in this review. Vector development, results in animals, early clinical experience, as well as potential hurdles and challenges are discussed.
Collapse
Affiliation(s)
- Kenneth H Warrington
- Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, FL 32615-9586, USA
| | | |
Collapse
|
40
|
Disset A, Bourgeois CF, Benmalek N, Claustres M, Stevenin J, Tuffery-Giraud S. An exon skipping-associated nonsense mutation in the dystrophin gene uncovers a complex interplay between multiple antagonistic splicing elements. Hum Mol Genet 2006; 15:999-1013. [PMID: 16461336 DOI: 10.1093/hmg/ddl015] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A nonsense mutation c.4250T>A (p.Leu1417X) in the dystrophin gene of a patient with an intermediate phenotype of muscular dystrophy induces partial in-frame skipping of exon 31. On the basis of UV cross-linking assays and pull-down analysis, we present evidence that the skipping of this exon is because of the creation of an exonic splicing silencer, which acts as a highly specific binding site (UAGACA) for a known repressor protein, hnRNP A1. Recombinant hnRNP A1 represses exon inclusion both in vitro and in vivo upon transient transfection of C2C12 cells with Duchenne muscular dystrophy (DMD) minigenes carrying the c.4250T>A mutation. Furthermore, we identified a downstream splicing enhancer in the central region of exon 31. This region functions as a Tra2beta-dependent exonic splicing enhancer (ESE) in vitro when inserted into a heterologous splicing reporter, and deletion of the ESE showed that incorporation of exon 31 depends on the Tra2beta-dependent enhancer both in the wild-type and mutant context. We conclude that dystrophin exon 31 contains juxtaposed sequence motifs that collaborate to regulate exon usage. This is the first elucidation of the molecular mechanism leading to exon skipping in the dystrophin gene and allowing the occurrence of a milder phenotype than the expected DMD phenotype. The knowledge of which cis-acting sequence within an exon is important for its definition will be essential for the alternative gene therapy approaches based on modulation of splicing to bypass DMD-causing mutations in the endogenous dystrophin gene.
Collapse
Affiliation(s)
- A Disset
- Laboratoire de Génétique Moléculaire, Institut Universitaire de Recherche Clinique (IURC), CHU Montpellier F34000, France
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
Gene therapy for muscular dystrophy represents a promising avenue of pursuit for a disease with a limited repertoire of treatment. Recent successes in the research arena using adeno-associated viral vectors should accelerate the movement of gene-based therapeutics for muscle disorders into the clinic. Nevertheless, significant challenges remain before gene therapy can deliver on the promises avowed by early pioneers of the field. This review examines recent progress and the hurdles remaining to achieve gene-based treatment therapies for muscular dystrophy.
Collapse
Affiliation(s)
- Jerry R Mendell
- Center for Gene Therapy, Columbus Children's Research Institute, Columbus, OH 43205, USA.
| | | |
Collapse
|
42
|
Blankinship MJ, Gregorevic P, Chamberlain JS. Gene Therapy Strategies for Duchenne Muscular Dystrophy Utilizing Recombinant Adeno-associated Virus Vectors. Mol Ther 2006; 13:241-9. [PMID: 16361117 DOI: 10.1016/j.ymthe.2005.11.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Revised: 11/04/2005] [Accepted: 11/04/2005] [Indexed: 10/25/2022] Open
Abstract
Gene transfer vectors based on adeno-associated virus (AAV) are now widely used in the field of gene therapy. These vectors have been studied for their potential use in treating many diseases, among them the muscular dystrophies, the most common of which is Duchenne muscular dystrophy (DMD). Several recent advances in the areas of AAV serotype analysis, transgene engineering, and vector delivery to muscle, together with novel means of rescuing mutant mRNA transcripts, have yielded impressive results in animal models of DMD. This minireview focuses on these recent advances and their implications for potential treatments for DMD and other neuromuscular disorders.
Collapse
Affiliation(s)
- Michael J Blankinship
- Department of Neurology, Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Washington, Seattle, 98195-7720, USA
| | | | | |
Collapse
|
43
|
Woodruff RC, Thomson JN. The Fundamental Theorem of Neutral Evolution: Rates of Substitution and Mutation Should Factor in Premeiotic Clusters. Genetica 2005; 125:333-9. [PMID: 16247704 DOI: 10.1007/s10709-005-4982-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2005] [Accepted: 04/01/2005] [Indexed: 01/27/2023]
Abstract
Mutations do not always arise as single events. Many new mutations actually occur in the cell lineage before germ cell formation or meiosis and are therefore replicated pre-meiotically. The increased likelihood of substitutions caused by these clusters of new mutant alleles can change the fundamental theorem of neutral evolution.
Collapse
Affiliation(s)
- R C Woodruff
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA.
| | | |
Collapse
|
44
|
Patsalis PC, Kousoulidou L, Sismani C, Männik K, Kurg A. MAPH: from gels to microarrays. Eur J Med Genet 2005; 48:241-9. [PMID: 16179220 DOI: 10.1016/j.ejmg.2005.04.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2005] [Revised: 03/18/2005] [Accepted: 04/07/2005] [Indexed: 12/15/2022]
Abstract
The development of accurate and sensitive methodologies to detect small chromosomal imbalances (<3 Mb) is extremely important in clinical diagnostics and research in human genetics. The technique of array-comparative genomic hybridization (CGH) using BAC and PAC clones is very sensitive methodology and is rapidly becoming the method of choice for high-resolution screening of genomic copy-number changes. An alternative methodology to CGH is the multiplex amplifiable probe hybridization (MAPH) methodology, a DNA based method that allows the accurate and reliable determination of changes in copy number in "known" or "unknown locations" in the human genome. MAPH uses probes of 100-500 bp in size, that can be specifically designed for any gene or locus in the genome and cover any gene exons, the subtelomeric or subcentromeric regions, any chromosomal segment, a whole chromosome or the total human genome. MAPH can provide extremely high resolution and enable the sensitive detection of loss or gain of genomic DNA sequences as small as 150 bp. Very recently we succeeded in the advancement of MAPH from gel and capillary analyses to microarrays. The array-MAPH methodology offers an alternative methodology to array-CGH and provides a new sensitive microarray-based method including several advantages for the detection of copy number changes in the human genome.
Collapse
Affiliation(s)
- Philippos C Patsalis
- Department of Cytogenetics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.
| | | | | | | | | |
Collapse
|