1
|
Wu X, Gong J, Qiu L, Yang G, Yuan H, Shen X, Shen Y, Tian F, Gao Z. Electrophysiological Abnormalities and Pharmacological Corrections of Pathogenic Missense Variants in KCNQ3. Neurosci Bull 2025:10.1007/s12264-025-01378-4. [PMID: 40095209 DOI: 10.1007/s12264-025-01378-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/02/2025] [Indexed: 03/19/2025] Open
Abstract
The KCNQ potassium channels play a crucial role in modulating neural excitability, and their dysfunction is closely associated with epileptic disorders. While variants in KCNQ2 have been extensively studied, KCNQ3-related disorders have rarely been reported. With advances in next-generation sequencing technologies, an increasing number of cases of KCNQ3-related disorders have been identified. However, the correlation between genotype and phenotype remains poorly understood. In this study, we established a variant library consisting of 24 missense mutations in KCNQ3 and introduced these mutations into three different template types: KCNQ3, KCNQ3-A315T (Q3*), and KCNQ3-KCNQ2 tandem (Q3-Q2). We then analyzed the effects of these mutations on the KCNQ3 channel function using patch-clamp recording. The most informative parameter across all three backgrounds was the current density of the mutant channels. The current density patterns in the Q3* and Q3-Q2 backgrounds were similar, with most mutations resulting in an almost complete loss of function (LOF), they were concentrated in the pore-forming domain of KCNQ3. In contrast, mutations in the voltage-sensing domain or C-terminus did not show significant differences from the wild-type channel. Interestingly, these LOF mutations were typically associated with self-limited familial neonatal epilepsy, while neurodevelopmental disorders (NDD) were more closely associated with mutations that did not significantly differ from the wild-type. V1/2, another important parameter of the electrophysiological properties, could not be accurately determined in the majority of KCNQ3 mutations due to its nearly complete LOF in the Q3* and Q3-Q2 backgrounds. Intriguingly, the V1/2 of functional mutations were primarily leftward shifted, indicating a gain-of-function (GOF) effect, which was typically associated with NDD. In addition to previously reported mutations, we identified G553R as a novel GOF mutation. In the co-transfection background, parameters such as V1/2 could be determined, but the dysfunctional effects of these mutations were mitigated by the co-expression of wild-type KCNQ3 and KCNQ2 subunits, resulting in no significant differences between most mutations and the wild-type channel. Furthermore, we applied KCNQ modulators to reverse the electrophysiological abnormalities caused by KCNQ3 variants. The LOF mutations were reversed by the application of Pynegabine (HN37), a KCNQ opener, while the GOF mutation responded well to Amitriptyline (AMI), a KCNQ inhibitor. These findings provide essential insights into the pathogenic mechanisms underlying KCNQ3-related disorders and may inform clinical decision-making.
Collapse
Affiliation(s)
- Xiaorong Wu
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550025, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - Jili Gong
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550025, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - Li Qiu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Guimei Yang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Hui Yuan
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Xiangchun Shen
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550025, China
| | - Yanwen Shen
- Translational Research Center for the Nervous System, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China.
- Faculty of Pediatrics, Chinese PLA General Hospital, Graduate School of the PLA General Hospital, Beijing, 100853, China.
| | - Fuyun Tian
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China.
| | - Zhaobing Gao
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550025, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China.
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
2
|
Hinojo-Perez A, Eldstrom J, Dou Y, Marinho-Alcara A, Edmond MA, de la Cruz A, Perez Rodriguez ME, Diaz-Solares M, Dykxhoorn DM, Fedida D, Barro-Soria R. The conductance of KCNQ2 and its pathogenic variants is determined by individual subunit gating. SCIENCE ADVANCES 2025; 11:eadr7012. [PMID: 40043113 PMCID: PMC11881901 DOI: 10.1126/sciadv.adr7012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 01/29/2025] [Indexed: 03/09/2025]
Abstract
KCNQ2 channel subunits form part of the M-current and underlie one of the major potassium currents throughout the human nervous system, regulating resting membrane potentials, shaping action potentials, and impeding repetitive neuronal firing. However, how individual subunits within tetramers control channel functionality remains unresolved. Here, we investigate (i) whether opening of KCNQ2 channels requires a concerted step or can result from independent subunit activation and (ii) how individual subunits regulate gate opening and conductance. The E140R mutation in the S2 segment prevents activated voltage sensor conformations, but concatemeric constructs containing up to three E140R subunits retain KCNQ2-like currents. The underlying single-channel currents show subconductance levels resulting from limitations in inner gate dimensions, determined by the number of activated subunits and their spatial arrangement. Channel opening is allosteric and requires activation of only a single subunit, which can accentuate the influence of clinically relevant heterozygous mutations at threshold voltages.
Collapse
Affiliation(s)
- Andy Hinojo-Perez
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Jodene Eldstrom
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Ying Dou
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Allan Marinho-Alcara
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Michaela A. Edmond
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Alicia de la Cruz
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Marta E. Perez Rodriguez
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Maykelis Diaz-Solares
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Derek M. Dykxhoorn
- John P. Hussman Institute for Human Genomics, John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - David Fedida
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Rene Barro-Soria
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
3
|
Mohamed ZA, Li J, Wen J, Jia F, Banerjee S. The KCNB2 gene and its role in neurodevelopmental disorders: Implications for genetics and therapeutic advances. Clin Chim Acta 2025; 566:120056. [PMID: 39577484 DOI: 10.1016/j.cca.2024.120056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 11/24/2024]
Abstract
Neurodevelopmental disorders (NDDs) are increasingly linked to genetic mutations that disrupt key neuronal processes. The KCNB2 gene encodes a crucial component of voltage-gated potassium channels, essential for regulating neuronal excitability and synaptic transmission. Mutations in KCNB2 typically alter potassium channel inactivation, leading to various NDDs, including autism spectrum disorders (ASD), intellectual disabilities (ID), and epilepsy. This narrative review synthesizes findings from genetic, molecular, and clinical studies on the KCNB2 gene and its role in NDDs. Relevant literature was identified through database searches in PubMed, Embase, PsycINFO, Scopus, and Web of Science, focusing on studies that examine KCNB2's molecular mechanisms, pathogenic mutations, and clinical implications in NDDs. In addition to its role in excitability, KCNB2's impact on cognitive processes, such as memory and attention, is considered, highlighting the need for further research. Potential interventions, including pharmacological modulation and gene therapy, are also discussed. Future research should focus on characterizing KCNB2 variants, expanding genetic screening, and advancing targeted therapies to improve outcomes for individuals affected by KCNB2-related disorders.
Collapse
Affiliation(s)
- Zakaria Ahmed Mohamed
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; Department of Developmental and Behavioral Pediatrics, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Jinghua Li
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Jianping Wen
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Feiyong Jia
- Department of Developmental and Behavioral Pediatrics, The First Hospital of Jilin University, Jilin University, Changchun, China.
| | - Santasree Banerjee
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| |
Collapse
|
4
|
Ma K, Zhang D, McDaniel K, Webb M, Newton SS, Lee FS, Qin L. A sexually dimorphic signature of activity-dependent BDNF signaling on the intrinsic excitability of pyramidal neurons in the prefrontal cortex. Front Cell Neurosci 2024; 18:1496930. [PMID: 39569070 PMCID: PMC11576208 DOI: 10.3389/fncel.2024.1496930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/25/2024] [Indexed: 11/22/2024] Open
Abstract
Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders with strong genetic heterogeneity and more prevalent in males than females. We and others hypothesize that diminished activity-dependent neural signaling is a common molecular pathway dysregulated in ASD caused by diverse genetic mutations. Brain-derived neurotrophic factor (BDNF) is a key growth factor mediating activity-dependent neural signaling in the brain. A common single nucleotide polymorphism (SNP) in the pro-domain of the human BDNF gene that leads to a methionine (Met) substitution for valine (Val) at codon 66 (Val66Met) significantly decreases activity-dependent BDNF release without affecting basal BDNF secretion. By using mice with genetic knock-in of this human BDNF methionine (Met) allele, our previous studies have shown differential severity of autism-like social deficits in male and female BDNF+/Met mice. Pyramidal neurons are the principal neurons in the prefrontal cortex (PFC), a key brain region for social behaviors. Here, we investigated the impact of diminished activity-dependent BDNF signaling on the intrinsic excitability of pyramidal neurons in the PFC. Surprisingly, diminished activity-dependent BDNF signaling significantly increased the intrinsic excitability of pyramidal neurons in male mice, but not in female mice. Notably, significantly decreased thresholds of action potentials were observed in male BDNF+/Met mice, but not in female BDNF+/Met mice. Voltage-clamp recordings revealed that the sodium current densities were significantly increased in the pyramidal neurons of male BDNF+/Met mice, which were mediated by increased transcriptional level of Scn2a encoding sodium channel NaV 1.2. Medium after hyperpolarization (mAHP), another important parameter to determine intrinsic neuronal excitability, is strongly associated with neuronal firing frequency. Further, the amplitudes of mAHP were significantly decreased in male BDNF+/Met mice only, which were mediated by the downregulation of Kcnn2 encoding small conductance calcium-activated potassium channel 2 (SK2). This study reveals a sexually dimorphic signature of diminished activity-dependent BDNF signaling on the intrinsic neuronal excitability of pyramidal neurons in the PFC, which provides possible cellular and molecular mechanisms underpinning the sex differences in idiopathic ASD patients and human autism victims who carry BDNF Val66Met SNP.
Collapse
Affiliation(s)
- Kaijie Ma
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States
| | - Daoqi Zhang
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States
| | - Kylee McDaniel
- Department of Biotechnology, Mount Marty University, Yankton, SD, United States
| | - Maria Webb
- School of Health Sciences, University of South Dakota, Vermillion, SD, United States
| | - Samuel S. Newton
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States
| | - Francis S. Lee
- Department of Psychiatry, Department of Pharmacology, Sackler Institute for Developmental Psychobiology, Weill Cornell Medicine, New York, NY, United States
| | - Luye Qin
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States
| |
Collapse
|
5
|
Wang C, Zhai J, Chen Y. Novel KCNQ2 missense variant expands the genotype spectrum of DEE7. Neurol Sci 2024; 45:5481-5488. [PMID: 38880853 DOI: 10.1007/s10072-024-07655-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/05/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND KCNQ is a voltage-gated K + channel that controls neuronal excitability and is mutated in epilepsy and autism spectrum disorder (ASD). We focus on the KV7.2 voltage-gated potassium channel gene (KCNQ2), which is known for its association with developmental delay and various seizures (including self-limited benign familial neonatal epilepsy and epileptic encephalopathy). But the pathogenicity of many variants remains unproven, potentially leading to misinterpretation of their functional consequences. METHODS In this study, we studied a patient who visited Nanhua Hospital. Targeted next-generation sequencing and Sanger sequencing were used to identify the pathogenic variants. Meanwhile, computational models, including hydrogen bonding and docking analyses, suggest that variants cause functional impairment. In addition, functional validation was performed in the drosophila to further evaluate the missense variant in the KCNQ2 gene as the cause of this patient. RESULTS A new missense variant in the KCNQ2 gene was identified: NM_172107.4:c.1007C > A(p.ALa336Glu), which resulted in the change from alanine to glutamate at amino acid position 336 in the KCNQ2 gene. After computational modeling, including hydrogen bond analysis and docking analysis, it is indicated that the variants cause functional impairment. Furthermore, RNAi-mediated KCNQ knockout in flies led to the onset of epileptic behavior, lifespan and climbing capacity were affected, expression of the normal human KCNQ2 rescues the in flies RNAi-mediated KCNQ knockout behavioral abnormalities. CONCLUSION Our findings expands the genetic profile of KCNQ2 and enhances the genotype - phenotype link.
Collapse
Affiliation(s)
- Chao Wang
- Department of Neurology, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - JinXia Zhai
- Department of Neurology, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - YongJun Chen
- Department of Neurology, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China.
| |
Collapse
|
6
|
Edmond MA, Hinojo-Perez A, Efrem M, Yi-Chun L, Shams I, Hayoz S, de la Cruz A, Perez Rodriguez ME, Diaz-Solares M, Dykxhoorn DM, Luo YL, Barro-Soria R. Lipophilic compounds restore function to neurodevelopmental-associated KCNQ3 mutations. Commun Biol 2024; 7:1181. [PMID: 39300259 DOI: 10.1038/s42003-024-06873-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024] Open
Abstract
A major driver of neuronal hyperexcitability is dysfunction of K+ channels, including voltage-gated KCNQ2/3 channels. Their hyperpolarized midpoint of activation and slow activation and deactivation kinetics produce a current that regulates membrane potential and impedes repetitive firing. Inherited mutations in KCNQ2 and KCNQ3 are linked to a wide spectrum of neurodevelopmental disorders (NDDs), ranging from benign familial neonatal seizures to severe epileptic encephalopathies and autism spectrum disorders. However, the impact of these variants on the molecular mechanisms underlying KCNQ3 channel function remains poorly understood and existing treatments have significant side effects. Here, we use voltage clamp fluorometry, molecular dynamic simulations, and electrophysiology to investigate NDD-associated variants in KCNQ3 channels. We identified two distinctive mechanisms by which loss- and gain-of function NDD-associated mutations in KCNQ3 affect channel gating: one directly affects S4 movement while the other changes S4-to-pore coupling. MD simulations and electrophysiology revealed that polyunsaturated fatty acids (PUFAs) primarily target the voltage-sensing domain in its activated conformation and form a weaker interaction with the channel's pore. Consistently, two such compounds yielded partial and complete functional restoration in R227Q- and R236C-containing channels, respectively. Our results reveal the potential of PUFAs to be developed into therapies for diverse KCNQ3-based channelopathies.
Collapse
Affiliation(s)
- Michaela A Edmond
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
- Texas A&M University Health Science Center, Department of Neuroscience & Experimental Therapeutics, Bryan, USA
| | - Andy Hinojo-Perez
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Mekedlawit Efrem
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, USA
| | - Lin Yi-Chun
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, USA
| | - Iqra Shams
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Sebastien Hayoz
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Physiology, University of Arizona, Tucson, USA
| | - Alicia de la Cruz
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
- Linkoping University, Department of Biomedical and Clinical Sciences (BKV), Linkoping, Sweden
| | | | - Maykelis Diaz-Solares
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Derek M Dykxhoorn
- John P. Hussman Institute for Human Genomics, John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Yun Lyna Luo
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, USA
| | - Rene Barro-Soria
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
7
|
Ng ACH, Chahine M, Scantlebury MH, Appendino JP. Channelopathies in epilepsy: an overview of clinical presentations, pathogenic mechanisms, and therapeutic insights. J Neurol 2024; 271:3063-3094. [PMID: 38607431 DOI: 10.1007/s00415-024-12352-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024]
Abstract
Pathogenic variants in genes encoding ion channels are causal for various pediatric and adult neurological conditions. In particular, several epilepsy syndromes have been identified to be caused by specific channelopathies. These encompass a spectrum from self-limited epilepsies to developmental and epileptic encephalopathies spanning genetic and acquired causes. Several of these channelopathies have exquisite responses to specific antiseizure medications (ASMs), while others ASMs may prove ineffective or even worsen seizures. Some channelopathies demonstrate phenotypic pleiotropy and can cause other neurological conditions outside of epilepsy. This review aims to provide a comprehensive exploration of the pathophysiology of seizure generation, ion channels implicated in epilepsy, and several genetic epilepsies due to ion channel dysfunction. We outline the clinical presentation, pathogenesis, and the current state of basic science and clinical research for these channelopathies. In addition, we briefly look at potential precision therapy approaches emerging for these disorders.
Collapse
Affiliation(s)
- Andy Cheuk-Him Ng
- Clinical Neuroscience and Pediatric Neurology, Department of Pediatrics, Cumming School of Medicine, Alberta Children's Hospital, University of Calgary, 28 Oki Drive NW, Calgary, AB, T3B 6A8, Canada
- Division of Neurology, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta and Stollery Children's Hospital, Edmonton, AB, Canada
| | - Mohamed Chahine
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- CERVO, Brain Research Centre, Quebec City, Canada
| | - Morris H Scantlebury
- Clinical Neuroscience and Pediatric Neurology, Department of Pediatrics, Cumming School of Medicine, Alberta Children's Hospital, University of Calgary, 28 Oki Drive NW, Calgary, AB, T3B 6A8, Canada
- Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Calgary, Canada
| | - Juan P Appendino
- Clinical Neuroscience and Pediatric Neurology, Department of Pediatrics, Cumming School of Medicine, Alberta Children's Hospital, University of Calgary, 28 Oki Drive NW, Calgary, AB, T3B 6A8, Canada.
| |
Collapse
|
8
|
Innes EA, Marne FAL, Macintosh R, Nevin SM, Briggs NE, Vivekanandarajah S, Webster RI, Sachdev RK, Bye AME. Neurodevelopmental outcomes in a cohort of Australian families with self-limited familial epilepsy of neonatal/infantile onset. Seizure 2024; 115:1-13. [PMID: 38160512 DOI: 10.1016/j.seizure.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/27/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024] Open
Abstract
OBJECTIVES To determine: i) seizure recurrence; ii) developmental disability; iii) co-morbidities and risk factors in self-limited familial neonatal and/or infantile epilepsy (SeLFE) in a multigenerational study. METHODS Families were retrospectively recruited from epilepsy databases (2021-2022) in 2 paediatric hospitals, Sydney, Australia. Eligible families had 2 first degree relatives with seizures and underwent genetic testing. Demographics/clinical data were collected from interviews and medical records. Vineland Adaptive Behaviour Scales-Third Edition measured adaptive function. RESULTS Fifteen families participated. Fourteen had a genetic diagnosis (93%): 11 pathogenic; PRRT2 (n=4), KCNQ2 (n=3), SCN2A (n=4), 3 likely pathogenic; KCNQ2 (n=1), SCN8A (n=2). Seizures affected 73 individuals (ages 1-76 years); 30 children and 20 adults had in-depth phenotyping. Ten of 50 individuals (20%) had seizure recurrence, aged 8-65 years. Median time from last neonatal/infantile seizure was 11.8/12.8 years. Predictors of recurrence were high seizure number (p=0.05) and longer treatment duration (p=0.03). Seven children had global developmental delay (GDD): mild (n=4), moderate (n=1) and severe (n=2). Vineland-3 identified 3 had low-average and 3 had mild-moderately impaired functioning. The majority (82%) were average. GDD was associated with older age at last seizure (p=0.03), longer epilepsy duration (p=0.02), and higher number of anti-seizure medications (p=0.05). Four children had speech delay, 5 (10%) had Autism Spectrum Disorder. Paroxysmal kinesiogenic dyskinesia (n=5) occurred in 4 families and hemiplegic migraine (n=8) in 3 families. CONCLUSIONS Individuals with SeLFE have a small risk of recurrent seizures (20%) and neurodevelopmental disability. Significant predictors are higher seizure number and longer epilepsy duration. Developmental surveillance is imperative.
Collapse
Affiliation(s)
- Emily A Innes
- Department of Neurology, Sydney Children's Hospital Network, Randwick, Australia; TY Nelson Department of Neurology and Neurosurgery, Sydney Children's Hospital Network, Westmead, Australia; School of Medicine Sydney, The University of Notre Dame, Australia; Kids Research Centre, The Children's Hospital at Westmead, Australia.
| | - Fleur Annette Le Marne
- Department of Neurology, Sydney Children's Hospital Network, Randwick, Australia; School of Clinical Medicine, UNSW Medicine & Health, Randwick Clinical Campus, Discipline of Paediatrics, UNSW Sydney, Australia
| | - Rebecca Macintosh
- School of Clinical Medicine, UNSW Medicine & Health, Randwick Clinical Campus, Discipline of Paediatrics, UNSW Sydney, Australia; Centre for Clinical Genetics, Sydney Children's Hospital Network, Randwick, Australia
| | - Suzanne M Nevin
- Department of Neurology, Sydney Children's Hospital Network, Randwick, Australia; School of Clinical Medicine, UNSW Medicine & Health, Randwick Clinical Campus, Discipline of Paediatrics, UNSW Sydney, Australia; Centre for Clinical Genetics, Sydney Children's Hospital Network, Randwick, Australia
| | - Nancy E Briggs
- Stats Central, Mark Wainwright Analytical Centre, UNSW Sydney, Australia
| | - Sinthu Vivekanandarajah
- School of Clinical Medicine, UNSW Medicine & Health, Randwick Clinical Campus, Discipline of Paediatrics, UNSW Sydney, Australia; Liverpool Community Paediatrics, Liverpool Community Health Centre, Liverpool, Australia
| | - Richard I Webster
- TY Nelson Department of Neurology and Neurosurgery, Sydney Children's Hospital Network, Westmead, Australia; Kids Research Centre, The Children's Hospital at Westmead, Australia; Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Australia
| | - Rani K Sachdev
- School of Clinical Medicine, UNSW Medicine & Health, Randwick Clinical Campus, Discipline of Paediatrics, UNSW Sydney, Australia; Centre for Clinical Genetics, Sydney Children's Hospital Network, Randwick, Australia
| | - Ann M E Bye
- Department of Neurology, Sydney Children's Hospital Network, Randwick, Australia; School of Clinical Medicine, UNSW Medicine & Health, Randwick Clinical Campus, Discipline of Paediatrics, UNSW Sydney, Australia
| |
Collapse
|
9
|
Jiang S, Liu B, Lin K, Li L, Li R, Tan S, Zhang X, Jiang L, Ni H, Wang Y, Ding H, Hu J, Qian H, Ge R. Impacted spike frequency adaptation associated with reduction of KCNQ2/3 exacerbates seizure activity in temporal lobe epilepsy. Hippocampus 2024; 34:58-72. [PMID: 38049972 DOI: 10.1002/hipo.23587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 09/21/2023] [Accepted: 10/28/2023] [Indexed: 12/06/2023]
Abstract
Numerous epilepsy-related genes have been identified in recent decades by unbiased genome-wide screens. However, the available druggable targets for temporal lobe epilepsy (TLE) remain limited. Furthermore, a substantial pool of candidate genes potentially applicable to TLE therapy awaits further validation. In this study, we reveal the significant role of KCNQ2 and KCNQ3, two M-type potassium channel genes, in the onset of seizures in TLE. Our investigation began with a quantitative analysis of two publicly available TLE patient databases to establish a correlation between seizure onset and the downregulated expression of KCNQ2/3. We then replicated these pathological changes in a pilocarpine seizure mouse model and observed a decrease in spike frequency adaptation due to the affected M-currents in dentate gyrus granule neurons. In addition, we performed a small-scale simulation of the dentate gyrus network and confirmed that the impaired spike frequency adaptation of granule cells facilitated epileptiform activity throughout the network. This, in turn, resulted in prolonged seizure duration and reduced interictal intervals. Our findings shed light on an underlying mechanism contributing to ictogenesis in the TLE hippocampus and suggest a promising target for the development of antiepileptic drugs.
Collapse
Affiliation(s)
- Shicheng Jiang
- Department of Pathophysiology, Bengbu Medical College, Bengbu, Anhui, China
- Laboratory of Brain and Psychiatric Disease, Bengbu Medical College, Bengbu, Anhui, China
| | - Bei Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Kaiwen Lin
- Department of Pathophysiology, Bengbu Medical College, Bengbu, Anhui, China
- Laboratory of Brain and Psychiatric Disease, Bengbu Medical College, Bengbu, Anhui, China
| | - Lianjun Li
- Department of Pathophysiology, Bengbu Medical College, Bengbu, Anhui, China
- Laboratory of Brain and Psychiatric Disease, Bengbu Medical College, Bengbu, Anhui, China
| | - Rongrong Li
- Department of Pathophysiology, Bengbu Medical College, Bengbu, Anhui, China
- Laboratory of Brain and Psychiatric Disease, Bengbu Medical College, Bengbu, Anhui, China
| | - Shuo Tan
- Department of Pathophysiology, Bengbu Medical College, Bengbu, Anhui, China
- Laboratory of Brain and Psychiatric Disease, Bengbu Medical College, Bengbu, Anhui, China
| | - Xinyu Zhang
- Department of Pathophysiology, Bengbu Medical College, Bengbu, Anhui, China
- Laboratory of Brain and Psychiatric Disease, Bengbu Medical College, Bengbu, Anhui, China
| | - Lei Jiang
- Department of General Surgery, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Hong Ni
- Department of Pathophysiology, Bengbu Medical College, Bengbu, Anhui, China
- Laboratory of Brain and Psychiatric Disease, Bengbu Medical College, Bengbu, Anhui, China
| | - Yuanyuan Wang
- Department of Pathophysiology, Bengbu Medical College, Bengbu, Anhui, China
- Laboratory of Brain and Psychiatric Disease, Bengbu Medical College, Bengbu, Anhui, China
| | - Haihu Ding
- Department of Pathophysiology, Bengbu Medical College, Bengbu, Anhui, China
- Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Bengbu Medical College, Bengbu, Anhui, China
| | - Jing Hu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Hao Qian
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Rongjing Ge
- Department of Pathophysiology, Bengbu Medical College, Bengbu, Anhui, China
- Laboratory of Brain and Psychiatric Disease, Bengbu Medical College, Bengbu, Anhui, China
- Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Bengbu Medical College, Bengbu, Anhui, China
| |
Collapse
|
10
|
Iftimovici A, Charmet A, Desnous B, Ory A, Delorme R, Coutton C, Devillard F, Milh M, Maruani A. Familial KCNQ2 mutation: a psychiatric perspective. Psychiatr Genet 2024; 34:24-27. [PMID: 38108335 PMCID: PMC10766091 DOI: 10.1097/ypg.0000000000000360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/28/2023] [Indexed: 12/19/2023]
Abstract
KCNQ2 mutations are a common cause of early-onset epileptic syndromes. They are associated with heterogeneous developmental profiles, from mild to severe cognitive and social impairments that need better characterization. We report a case of an inherited KCNQ2 mutation due to a deletion c.402delC in a heterozygous state, in the exon 3 of the KCNQ2 gene. A 5-year-old boy presented a cluster of sudden-onset generalized tonic-clonic seizures at three months of age, after an unremarkable postnatal period. Multiplex ligation-dependent probe amplification identified a familial mutation after an investigation in the family revealed that this mutation was present on the father's side. The patient was diagnosed with autism and intellectual deficiency in a context of KCNQ2 -encephalopathy. We describe his clinical features in light of current literature. This report highlights the importance of appropriate genetic counseling and psychiatric assessment in planning the medical and social follow-up of a disorder with complex socio-behavioral features.
Collapse
Affiliation(s)
- Anton Iftimovici
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, “Physiopathology of psychiatric disorders” team
- GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne
| | - Angeline Charmet
- Department of Child and Adolescent Psychiatry, Robert Debré Hospital, APHP, Paris
| | - Béatrice Desnous
- Aix Marseille University, Department of pediatric neurology, La Timone Children’s Hospital, Marseille
| | - Ana Ory
- Department of Child and Adolescent Psychiatry, Robert Debré Hospital, APHP, Paris
| | - Richard Delorme
- Department of Child and Adolescent Psychiatry, Robert Debré Hospital, APHP, Paris
| | - Charles Coutton
- Laboratoire de Génétique Chromosomique, Service de Génétique, Génomique et Procréation, Centre Hospitalier Universitaire Grenoble-Alpes, Université Grenoble-Alpes, Grenoble, France
| | - Françoise Devillard
- Laboratoire de Génétique Chromosomique, Service de Génétique, Génomique et Procréation, Centre Hospitalier Universitaire Grenoble-Alpes, Université Grenoble-Alpes, Grenoble, France
| | - Mathieu Milh
- Aix Marseille University, Department of pediatric neurology, La Timone Children’s Hospital, Marseille
| | - Anna Maruani
- Department of Child and Adolescent Psychiatry, Robert Debré Hospital, APHP, Paris
| |
Collapse
|
11
|
Khan R, Chaturvedi P, Sahu P, Ludhiadch A, Singh P, Singh G, Munshi A. Role of Potassium Ion Channels in Epilepsy: Focus on Current Therapeutic Strategies. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:67-87. [PMID: 36578258 DOI: 10.2174/1871527322666221227112621] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Epilepsy is one of the prevalent neurological disorders characterized by disrupted synchronization between inhibitory and excitatory neurons. Disturbed membrane potential due to abnormal regulation of neurotransmitters and ion transport across the neural cell membrane significantly contributes to the pathophysiology of epilepsy. Potassium ion channels (KCN) regulate the resting membrane potential and are involved in neuronal excitability. Genetic alterations in the potassium ion channels (KCN) have been reported to result in the enhancement of the release of neurotransmitters, the excitability of neurons, and abnormal rapid firing rate, which lead to epileptic phenotypes, making these ion channels a potential therapeutic target for epilepsy. The aim of this study is to explore the variations reported in different classes of potassium ion channels (KCN) in epilepsy patients, their functional evaluation, and therapeutic strategies to treat epilepsy targeting KCN. METHODOLOGY A review of all the relevant literature was carried out to compile this article. RESULTS A large number of variations have been reported in different genes encoding various classes of KCN. These genetic alterations in KCN have been shown to be responsible for disrupted firing properties of neurons. Antiepileptic drugs (AEDs) are the main therapeutic strategy to treat epilepsy. Some patients do not respond favorably to the AEDs treatment, resulting in pharmacoresistant epilepsy. CONCLUSION Further to address the challenges faced in treating epilepsy, recent approaches like optogenetics, chemogenetics, and genome editing, such as clustered regularly interspaced short palindromic repeats (CRISPR), are emerging as target-specific therapeutic strategies.
Collapse
Affiliation(s)
- Rahul Khan
- Department of Human Genetics and Molecular Medicine Central University of Punjab, Bathinda 151401, India
| | - Pragya Chaturvedi
- Department of Human Genetics and Molecular Medicine Central University of Punjab, Bathinda 151401, India
| | - Prachi Sahu
- Department of Human Genetics and Molecular Medicine Central University of Punjab, Bathinda 151401, India
| | - Abhilash Ludhiadch
- Department of Human Genetics and Molecular Medicine Central University of Punjab, Bathinda 151401, India
| | - Paramdeep Singh
- Department of Radiology, All India Institute of Medical Sciences, Bathinda, Punjab, 151001 India
| | - Gagandeep Singh
- Department of Neurology, Dayanand Medical College and Hospital, Ludhiana, Punjab, India
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicine Central University of Punjab, Bathinda 151401, India
| |
Collapse
|
12
|
Millevert C, Weckhuysen S. ILAE Genetic Literacy Series: Self-limited familial epilepsy syndromes with onset in neonatal age and infancy. Epileptic Disord 2023; 25:445-453. [PMID: 36939707 DOI: 10.1002/epd2.20026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/13/2022] [Accepted: 12/22/2022] [Indexed: 03/21/2023]
Abstract
The self-limited (familial) epilepsies with onset in neonates or infants, formerly called benign familial neonatal and/or infantile epilepsies, are autosomal dominant disorders characterized by neonatal- or infantile-onset focal motor seizures and the absence of neurodevelopmental complications. Seizures tend to remit during infancy or early childhood and are therefore called "self-limited". A positive family history for epilepsy usually suggests the genetic etiology, but incomplete penetrance and de novo inheritance occur. Here, we review the phenotypic spectrum and the genetic architecture of self-limited (familial) epilepsies with onset in neonates or infants. Using an illustrative case study, we describe important clues in recognition of these syndromes, diagnostic steps including genetic testing, management, and genetic counseling.
Collapse
Affiliation(s)
- Charissa Millevert
- Applied & Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Neurology, University Hospital, Antwerp, Belgium
| | - Sarah Weckhuysen
- Applied & Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Neurology, University Hospital, Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Translational Neurosciences, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
13
|
Ye J, Tang S, Miao P, Gong Z, Shu Q, Feng J, Li Y. Clinical analysis and functional characterization of KCNQ2-related developmental and epileptic encephalopathy. Front Mol Neurosci 2023; 16:1205265. [PMID: 37497102 PMCID: PMC10366601 DOI: 10.3389/fnmol.2023.1205265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/19/2023] [Indexed: 07/28/2023] Open
Abstract
Background Developmental and epileptic encephalopathy (DEE) is a condition characterized by severe seizures and a range of developmental impairments. Pathogenic variants in KCNQ2, encoding for potassium channel subunit, cause KCNQ2-related DEE. This study aimed to examine the relationships between genotype and phenotype in KCNQ2-related DEE. Methods In total, 12 patients were enrolled in this study for genetic testing, clinical analysis, and developmental evaluation. Pathogenic variants of KCNQ2 were characterized through a whole-cell electrophysiological recording expressed in Chinese hamster ovary (CHO) cells. The expression levels of the KCNQ2 subunit and its localization at the plasma membrane were determined using Western blot analysis. Results Seizures were detected in all patients. All DEE patients showed evidence of developmental delay. In total, 11 de novo KCNQ2 variants were identified, including 10 missense variants from DEE patients and one truncating variant from a patient with self-limited neonatal epilepsy (SeLNE). All variants were found to be loss of function through analysis of M-currents using patch-clamp recordings. The functional impact of variants on M-current in heteromericKCNQ2/3 channels may be associated with the severity of developmental disorders in DEE. The variants with dominant-negative effects in heteromeric channels may be responsible for the profound developmental phenotype. Conclusion The mechanism underlying KCNQ2-related DEE involves a reduction of the M-current through dominant-negative effects, and the severity of developmental disorders in DEE may be predicted by the impact of variants on the M-current of heteromericKCNQ2/3 channels.
Collapse
Affiliation(s)
- Jia Ye
- National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Siyang Tang
- Pediatric Department, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Pu Miao
- Pediatric Department, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhefeng Gong
- School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiang Shu
- Pediatric Department, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianhua Feng
- School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuezhou Li
- National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
14
|
Portale A, Comella M, Salomone G, Di Nora A, Marino L, Leonardi R, Praticò AD, Falsaperla R. The Spectrum of KCNQ2- and KCNQ3-Related Epilepsy. JOURNAL OF PEDIATRIC NEUROLOGY 2023; 21:203-211. [DOI: 10.1055/s-0041-1727099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Abstract
KCNQ genes encode for a family of six transmembrane domains, single pore-loop, and K+ channel α-subunits that have a wide range of physiological correlates. In the brain, KCNQ2 and KCNQ3 heteromultimers are thought to underlie the M-current which is essential in raising the threshold for firing an action potential; mutations in these genes may cause several types of infantile epilepsies. KCNQ2-related disorders represent a continuum of overlapping neonatal epileptic phenotypes that range from KCNQ2 benign familial neonatal epilepsy (BFNE), a seizure disorder that occur in children who typically have a normal psychomotor development and are inherited as an autosomal dominant trait, to KCNQ2 early-onset epileptic encephalopathy (EOEE) as the result of a de novo pathogenic variant. KCNQ3-related disorders are rarer and include BFNE, benign familial infantile epilepsy and KCNQ3-related epileptic encephalopathy with intellectual disability with or without seizures and/or cortical visual impairment. For both KCNQ2- and KCNQ3-related disorders, it is possible to use several drugs for different classes of mutations (i.e., gain of function vs. loss of function), and usually their effects vary in relation to the clinical presentation and the phenotype of the patient. However, KCNQ2-EOEE patients have a worse response to treatment than KCNQ2-BFNE patients and usually become drug resistant with multiple daily seizures.
Collapse
Affiliation(s)
- Anna Portale
- Unit of Pediatrics, Avola Hospital, Siracusa, Italy
| | - Mattia Comella
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Giulia Salomone
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Alessandra Di Nora
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Lidia Marino
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Roberta Leonardi
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| | - Andrea D. Praticò
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| | - Raffaele Falsaperla
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
- Unit of Neonatal Intensive Care and Neonatology, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| |
Collapse
|
15
|
Milh M. Before the first seizure: The developmental imprint of infant epilepsy on neurodevelopment. Rev Neurol (Paris) 2023; 179:330-336. [PMID: 36907712 DOI: 10.1016/j.neurol.2023.01.725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 03/12/2023]
Abstract
In light of the heterogeneity of epilepsy, both from a clinical and from an etiological perspective, it is difficult to establish a link between epilepsy and development that can be generalized to all infantile epilepsies. In general however, early-onset epilepsy has a poor developmental prognosis that is significantly linked to several parameters: age at first seizure, drug resistance, treatment, and etiology. This paper discusses the relationship between visible epilepsy parameters (those that allow the diagnosis of epilepsy) and neurodevelopment in infants, with special focus on Dravet syndrome and KCNQ2-related epilepsy, two common developmental and epileptic encephalopathies; and focal epilepsy caused by focal cortical dysplasia, which often begins during infancy. There are a number of reasons why it is difficult to dissect the relationship between seizures and their causes, and we suggest a conceptual model in which epilepsy is a neurodevelopmental disorder whose severity is determined by how the disease imprints itself on the developmental process rather than by the symptoms or etiology. The precocity of this developmental imprint may explain why treating seizures once they occur can have a very slight beneficial effect on development.
Collapse
Affiliation(s)
- M Milh
- Service de neurologie pédiatrique, Timone children hospital, Aix-Marseille université, AP-HM, 264, rue Saint Pierre, 13005 Marseille, France.
| |
Collapse
|
16
|
Potassium channelopathies associated with epilepsy-related syndromes and directions for therapeutic intervention. Biochem Pharmacol 2023; 208:115413. [PMID: 36646291 DOI: 10.1016/j.bcp.2023.115413] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
A number of mutations to members of several CNS potassium (K) channel families have been identified which result in rare forms of neonatal onset epilepsy, or syndromes of which one prominent characteristic is a form of epilepsy. Benign Familial Neonatal Convulsions or Seizures (BFNC or BFNS), also referred to as Self-Limited Familial Neonatal Epilepsy (SeLNE), results from mutations in 2 members of the KV7 family (KCNQ) of K channels; while generally self-resolving by about 15 weeks of age, these mutations significantly increase the probability of generalized seizure disorders in the adult, in some cases they result in more severe developmental syndromes. Epilepsy of Infancy with Migrating Focal Seizures (EIMSF), or Migrating Partial Seizures of Infancy (MMPSI), is a rare severe form of epilepsy linked primarily to gain of function mutations in a member of the sodium-dependent K channel family, KCNT1 or SLACK. Finally, KCNMA1 channelopathies, including Liang-Wang syndrome (LIWAS), are rare combinations of neurological symptoms including seizure, movement abnormalities, delayed development and intellectual disabilities, with Liang-Wang syndrome an extremely serious polymalformative syndrome with a number of neurological sequelae including epilepsy. These are caused by mutations in the pore-forming subunit of the large-conductance calcium-activated K channel (BK channel) KCNMA1. The identification of these rare but significant channelopathies has resulted in a resurgence of interest in their treatment by direct pharmacological or genetic modulation. We will briefly review the genetics, biophysics and pharmacology of these K channels, their linkage with the 3 syndromes described above, and efforts to more effectively target these syndromes.
Collapse
|
17
|
Brun L, Viemari J, Villard L. Mouse models of Kcnq2 dysfunction. Epilepsia 2022; 63:2813-2826. [PMID: 36047730 PMCID: PMC9828481 DOI: 10.1111/epi.17405] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 01/12/2023]
Abstract
Variants in the Kv7.2 channel subunit encoded by the KCNQ2 gene cause epileptic disorders ranging from a benign form with self-limited epileptic seizures and normal development to severe forms with intractable epileptic seizures and encephalopathy. The biological mechanisms involved in these neurological diseases are still unclear. The disease remains intractable in patients affected by the severe form. Over the past 20 years, KCNQ2 models have been developed to elucidate pathological mechanisms and to identify new therapeutic targets. The diversity of Kcnq2 mouse models has proven invaluable to access neuronal networks and evaluate the associated cognitive deficits. This review summarizes the available models and their contribution to our current understanding of KCNQ2 epileptic disorders.
Collapse
Affiliation(s)
- Lucile Brun
- Aix Marseille Univ, Inserm, MMGMarseilleFrance
| | | | - Laurent Villard
- Aix Marseille Univ, Inserm, MMGMarseilleFrance
- Service de Génétique Médicale, AP‐HM, Hôpital de La TimoneMarseilleFrance
| |
Collapse
|
18
|
Tian F, Cao B, Xu H, Zhan L, Nan F, Li N, Taglialatela M, Gao Z. Epilepsy phenotype and response to KCNQ openers in mice harboring the Kcnq2 R207W voltage-sensor mutation. Neurobiol Dis 2022; 174:105860. [PMID: 36113748 DOI: 10.1016/j.nbd.2022.105860] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/07/2022] [Accepted: 09/12/2022] [Indexed: 10/31/2022] Open
Abstract
KCNQ2-encoded Kv7.2 subunits play a critical role in balancing neuronal excitability. Mutations in KCNQ2 are responsible for highly-heterogenous epileptic and neurodevelopmental phenotypes ranging from self-limited familial neonatal epilepsy (SeLFNE) to severe developmental and epileptic encephalopathy (DEE). Pathogenic KCNQ2 variants cluster at the voltage sensor domain (VSD), the pore domain, and the C-terminal tail. Although several knock-in mice harboring Kcnq2 pore variants have been developed, no mouse line carrying Kcnq2 voltage-sensor mutations has been described. KCNQ2-R207W is an epilepsy-causing mutation located in the VSD, mainly affecting voltage-dependent channel gating. To study the physiological consequence of Kcnq2 VSD dysfunction, we generated a Kcnq2-R207W mouse line and analyzed the pathological and pharmacological phenotypes of mutant mice. As a result, both homozygous (Kcnq2RW/RW) and heterozygous (Kcnq2RW/+) mice were viable. While Kcnq2RW/RW mice displayed a short lifespan, growth retardation, and spontaneous seizures, Kcnq2RW/+ mice survived and developed normally, although only a fraction (9/64; 14%) of them showed behavioral- and ECoG-confirmed spontaneous seizures. Kcnq2RW/+ mice displayed increased susceptibility to evoked seizures, which was dramatically ameliorated by treatment with the novel KCNQ opener pynegabine (HN37). Our results show that the Kcnq2-R207W mouse line, the first harboring a Kcnq2 voltage-sensor mutation, exhibits a unique epileptic phenotype with both spontaneous seizures and increased susceptibility to evoked seizures. In Kcnq2-R207W mice, the potent KCNQ opener HN37, currently in clinical phase I, shows strong anticonvulsant activity, suggesting it may represent a valuable option for the severe phenotypes of KCNQ2-related epilepsy.
Collapse
Affiliation(s)
- Fuyun Tian
- Zhongshan Institute of Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, Zhongshan, Guangdong, China; Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Birong Cao
- Zhongshan Institute of Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, Zhongshan, Guangdong, China; Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Haiyan Xu
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Li Zhan
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Fajun Nan
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ning Li
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China; HKUST Shenzhen Research Institute, 518057 Shenzhen, China
| | - Maurizio Taglialatela
- Department of Neuroscience, University of Naples "Federico II", 80131 Naples, Italy.
| | - Zhaobing Gao
- Zhongshan Institute of Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, Zhongshan, Guangdong, China; Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
19
|
Liu LX, Gu RR, Jin Y, Chen XQ, Li XW, Zheng YM, Gao ZB, Guo YW. Diversity-oriented synthesis of marine polybrominated diphenyl ethers as potential KCNQ potassium channel activators. Bioorg Chem 2022; 126:105909. [DOI: 10.1016/j.bioorg.2022.105909] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/03/2022] [Accepted: 05/22/2022] [Indexed: 01/10/2023]
|
20
|
Lesca G, Baumgartner T, Monin P, De Dominicis A, Kunz WS, Specchio N. Genetic causes of rare and common epilepsies: What should the epileptologist know? Eur J Med Genet 2022; 65:104570. [PMID: 35850153 DOI: 10.1016/j.ejmg.2022.104570] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 07/04/2022] [Accepted: 07/10/2022] [Indexed: 11/03/2022]
Abstract
In past decades, the identification of genes involved in epileptic disorders has grown exponentially. The pace of gene identification in epileptic disorders began to accelerate in the late 2000s, driven by new technologies such as molecular cytogenetics and next-generation sequencing (NGS). These technologies have also been applied to genetic diagnostics, with different configurations, such as gene panels, whole-exome sequencing and whole-genome sequencing. The clinician must be aware that any technology has its limitations and complementary techniques must still be used to establish a diagnosis for specific diseases. In addition, increasing the amount of genetic information available in a larger patient sample also increases the need for rigorous interpretation steps, when taking into account the clinical, electroclinical, and when available, functional data. Local, multidisciplinary discussions have proven valuable in difficult diagnostic situations, especially in cases where precision medicine is being considered. They also serve to improve genetic counseling in complex situations. In this article, we will briefly review the genetic basis of rare and common epilepsies, the current strategies used for molecular diagnosis, including their limitations, and some pitfalls for data interpretation, in the context of etiological diagnosis and genetic counseling.
Collapse
Affiliation(s)
- Gaetan Lesca
- Department of Medical Genetics and Department of Paedaitric Clinical Epileptology, Member of the ERN EpiCARE, University Hospitals of Lyon (HCL), Lyon, France; University Claude Bernard Lyon 1, Lyon, France.
| | - Tobias Baumgartner
- Department of Epileptology, University Hospital Bonn, Member of the ERN EpiCARE, Bonn, Germany
| | - Pauline Monin
- Department of Medical Genetics and Department of Paedaitric Clinical Epileptology, Member of the ERN EpiCARE, University Hospitals of Lyon (HCL), Lyon, France; University Claude Bernard Lyon 1, Lyon, France
| | - Angela De Dominicis
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Wolfram S Kunz
- Department of Epileptology, University Hospital Bonn, Member of the ERN EpiCARE, Bonn, Germany
| | - Nicola Specchio
- Rare and Complex Epilepsy Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network EpiCARE, Rome, Italy
| |
Collapse
|
21
|
Mosca I, Rivolta I, Labalme A, Ambrosino P, Castellotti B, Gellera C, Granata T, Freri E, Binda A, Lesca G, DiFrancesco JC, Soldovieri MV, Taglialatela M. Functional Characterization of Two Variants at the Intron 6—Exon 7 Boundary of the KCNQ2 Potassium Channel Gene Causing Distinct Epileptic Phenotypes. Front Pharmacol 2022; 13:872645. [PMID: 35770094 PMCID: PMC9234691 DOI: 10.3389/fphar.2022.872645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Pathogenic variants in KCNQ2 encoding for Kv7.2 potassium channel subunits have been found in patients affected by widely diverging epileptic phenotypes, ranging from Self-Limiting Familial Neonatal Epilepsy (SLFNE) to severe Developmental and Epileptic Encephalopathy (DEE). Thus, understanding the pathogenic molecular mechanisms of KCNQ2 variants and their correlation with clinical phenotypes has a relevant impact on the clinical management of these patients. In the present study, the genetic, biochemical, and functional effects prompted by two variants, each found in a non-familial SLNE or a DEE patient but both affecting nucleotides at the KCNQ2 intron 6-exon 7 boundary, have been investigated to test whether and how they affected the splicing process and to clarify whether such mechanism might play a pathogenetic role in these patients. Analysis of KCNQ2 mRNA splicing in patient-derived lymphoblasts revealed that the SLNE-causing intronic variant (c.928-1G > C) impeded the use of the natural splice site, but lead to a 10-aa Kv7.2 in frame deletion (Kv7.2 p.G310Δ10); by contrast, the DEE-causing exonic variant (c.928G > A) only had subtle effects on the splicing process at this site, thus leading to the synthesis of a full-length subunit carrying the G310S missense variant (Kv7.2 p.G310S). Patch-clamp recordings in transiently-transfected CHO cells and primary neurons revealed that both variants fully impeded Kv7.2 channel function, and exerted strong dominant-negative effects when co-expressed with Kv7.2 and/or Kv7.3 subunits. Notably, Kv7.2 p.G310S, but not Kv7.2 p.G310Δ10, currents were recovered upon overexpression of the PIP2-synthesizing enzyme PIP5K, and/or CaM; moreover, currents from heteromeric Kv7.2/Kv7.3 channels incorporating either Kv7.2 mutant subunits were differentially regulated by changes in PIP2 availability, with Kv7.2/Kv7.2 G310S/Kv7.3 currents showing a greater sensitivity to PIP2 depletion when compared to those from Kv7.2/Kv7.2 G310Δ10/Kv7.3 channels. Altogether, these results suggest that the two variants investigated differentially affected the splicing process at the intron 6-exon 7 boundary, and led to the synthesis of Kv7.2 subunits showing a differential sensitivity to PIP2 and CaM regulation; more studies are needed to clarify how such different functional properties contribute to the widely-divergent clinical phenotypes.
Collapse
Affiliation(s)
- Ilaria Mosca
- Department of Medicine and Health Science “V. Tiberio”, University of Molise, Campobasso, Italy
| | - Ilaria Rivolta
- School of Medicine and Surgery, University of Milano-Bicocca, Monza-Center for Neuroscience (NeuroMI), Milan, Italy
| | - Audrey Labalme
- Department of Medical Genetics, Hospices Civils de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Paolo Ambrosino
- Department of Science and Technology (DST), University of Sannio, Benevento, Italy
| | - Barbara Castellotti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Cinzia Gellera
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Tiziana Granata
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Elena Freri
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Anna Binda
- School of Medicine and Surgery, University of Milano-Bicocca, Monza-Center for Neuroscience (NeuroMI), Milan, Italy
| | - Gaetan Lesca
- Department of Medical Genetics, Hospices Civils de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Jacopo C. DiFrancesco
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Department of Neurology, ASST “San Gerardo” Hospital, University of Milano-Bicocca, Monza, Italy
| | - Maria Virginia Soldovieri
- Department of Medicine and Health Science “V. Tiberio”, University of Molise, Campobasso, Italy
- *Correspondence: Maria Virginia Soldovieri, ; Maurizio Taglialatela,
| | - Maurizio Taglialatela
- Department of Neuroscience, University of Naples “Federico II”, Naples, Italy
- *Correspondence: Maria Virginia Soldovieri, ; Maurizio Taglialatela,
| |
Collapse
|
22
|
Arredondo K, Myers C, Hansen-Kiss E, Mathew MT, Jayaraman V, Siemon A, Bartholomew D, Herman GE, Mori M. Phenotypic Spectrum in a Family Sharing a Heterozygous KCNQ3 Variant. J Child Neurol 2022; 37:517-523. [PMID: 35384780 DOI: 10.1177/08830738221089741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND PURPOSE Mutations in KCNQ3 have classically been associated with benign familial neonatal and infantile seizures and more recently identified in patients with neurodevelopmental disorders and abnormal electroencephalogram (EEG) findings. We present 4 affected patients from a family with a pathogenic mutation in KCNQ3 with a unique constellation of clinical findings. METHODS A family of 3 affected siblings and mother sharing a KCNQ3 pathogenic variant are described, including clinical history, genetic results, and EEG and magnetic resonance imaging (MRI) findings. RESULTS This family shows a variety of clinical manifestations, including neonatal seizures, developmental delays, autism spectrum disorder, and anxiety. One child developed absence epilepsy, 2 children have infrequent convulsive seizures that have persisted into childhood, and their parent developed adult-onset epilepsy. An underlying c.1091G>A (R364H) variant in KCNQ3 was found in all affected individuals. CONCLUSIONS The phenotypic variability of KCNQ3 channelopathies continues to expand as more individuals and families are described, and the variant identified in this family adds to the understanding of the manifestations of KCNQ3-related disorders.
Collapse
Affiliation(s)
- Kristen Arredondo
- Department of Pediatrics, 12306The Ohio State University, Columbus, OH, USA
- Division of Pediatric Neurology, 2650Nationwide Children's Hospital, Columbus, OH, USA
| | - Cortlandt Myers
- Division of Genetic & Genomic Medicine, 2650Nationwide Children's Hospital, Columbus, OH, USA
| | - Emily Hansen-Kiss
- Department of Diagnostic & Biomedical Sciences, 12340University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX, USA
| | - Mariam T Mathew
- Department of Pediatrics, 12306The Ohio State University, Columbus, OH, USA
- Institute for Genomic Medicine, 2650Nationwide Children's Hospital, Columbus, OH, USA
| | - Vijayakumar Jayaraman
- Institute for Genomic Medicine, 2650Nationwide Children's Hospital, Columbus, OH, USA
| | - Amy Siemon
- Division of Genetic & Genomic Medicine, 2650Nationwide Children's Hospital, Columbus, OH, USA
| | - Dennis Bartholomew
- Department of Pediatrics, 12306The Ohio State University, Columbus, OH, USA
- Division of Genetic & Genomic Medicine, 2650Nationwide Children's Hospital, Columbus, OH, USA
| | - Gail E Herman
- Department of Pediatrics, 12306The Ohio State University, Columbus, OH, USA
- Division of Genetic & Genomic Medicine, 2650Nationwide Children's Hospital, Columbus, OH, USA
| | - Mari Mori
- Department of Pediatrics, 12306The Ohio State University, Columbus, OH, USA
- Division of Genetic & Genomic Medicine, 2650Nationwide Children's Hospital, Columbus, OH, USA
| |
Collapse
|
23
|
Martin-Batista E, Manville RW, Rivero-Pérez B, Bartolomé-Martín D, Alvarez de la Rosa D, Abbott GW, Giraldez T. Activation of SGK1.1 Upregulates the M-current in the Presence of Epilepsy Mutations. Front Mol Neurosci 2021; 14:798261. [PMID: 34899186 PMCID: PMC8662703 DOI: 10.3389/fnmol.2021.798261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
In the central nervous system, the M-current plays a critical role in regulating subthreshold electrical excitability of neurons, determining their firing properties and responsiveness to synaptic input. The M-channel is mainly formed by subunits Kv7.2 and Kv7.3 that co-assemble to form a heterotetrametric channel. Mutations in Kv7.2 and Kv7.3 are associated with hyperexcitability phenotypes including benign familial neonatal epilepsy (BFNE) and neonatal epileptic encephalopathy (NEE). SGK1.1, the neuronal isoform of the serum and glucocorticoids-regulated kinase 1 (SGK1), increases M-current density in neurons, leading to reduced excitability and protection against seizures. Herein, using two-electrode voltage clamp on Xenopus laevis oocytes, we demonstrate that SGK1.1 selectively activates heteromeric Kv7 subunit combinations underlying the M-current. Importantly, activated SGK1.1 increases M-channel activity in the presence of two different epilepsy mutations found in Kv7.2, R207W and A306T. In addition, proximity ligation assays in the N2a cell line allowed us to address the effect of these mutations on Kv7-SGK1.1-Nedd4 molecular associations, a proposed pathway underlying augmentation of M-channel activity by SGK1.1.
Collapse
Affiliation(s)
- Elva Martin-Batista
- Departamento de Ciencias Medicas Basicas and Instituto de Tecnologias Biomedicas, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Rían W Manville
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Belinda Rivero-Pérez
- Departamento de Ciencias Medicas Basicas and Instituto de Tecnologias Biomedicas, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - David Bartolomé-Martín
- Departamento de Ciencias Medicas Basicas and Instituto de Tecnologias Biomedicas, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Diego Alvarez de la Rosa
- Departamento de Ciencias Medicas Basicas and Instituto de Tecnologias Biomedicas, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Geoffrey W Abbott
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Teresa Giraldez
- Departamento de Ciencias Medicas Basicas and Instituto de Tecnologias Biomedicas, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| |
Collapse
|
24
|
Magalhães PHM, Moraes HT, Athie MCP, Secolin R, Lopes-Cendes I. New avenues in molecular genetics for the diagnosis and application of therapeutics to the epilepsies. Epilepsy Behav 2021; 121:106428. [PMID: 31400936 DOI: 10.1016/j.yebeh.2019.07.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 06/14/2019] [Accepted: 07/06/2019] [Indexed: 11/22/2022]
Abstract
Genetic epidemiology studies have shown that most epilepsies involve some genetic cause. In addition, twin studies have helped strengthen the hypothesis that in most patients with epilepsy, a complex inheritance is involved. More recently, with the development of high-density single-nucleotide polymorphism (SNP) microarrays and next-generation sequencing (NGS) technologies, the discovery of genes related to the epilepsies has accelerated tremendously. Especially, the use of whole exome sequencing (WES) has had a considerable impact on the identification of rare genetic variants with large effect sizes, including inherited or de novo mutations in severe forms of childhood epilepsies. The identification of pathogenic variants in patients with these childhood epilepsies provides many benefits for patients and families, such as the confirmation of the genetic nature of the diseases. This process will allow for better genetic counseling, more accurate therapy decisions, and a significant positive emotional impact. However, to study the genetic component of the more common forms of epilepsy, the use of high-density SNP arrays in genome-wide association studies (GWAS) seems to be the strategy of choice. As such, researchers can identify loci containing genetic variants associated with the common forms of epilepsy. The knowledge generated over the past two decades about the effects of the mutations that cause the monogenic epilepsy is tremendous; however, the scientific community is just starting to apply this information in order to generate better target treatments.
Collapse
Affiliation(s)
- Pedro H M Magalhães
- Departments of Medical Genetics and Genomic Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil; Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, SP, Brazil
| | - Helena T Moraes
- Departments of Medical Genetics and Genomic Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil; Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, SP, Brazil
| | - Maria C P Athie
- Departments of Medical Genetics and Genomic Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil; Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, SP, Brazil
| | - Rodrigo Secolin
- Departments of Medical Genetics and Genomic Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil; Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, SP, Brazil
| | - Iscia Lopes-Cendes
- Departments of Medical Genetics and Genomic Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil; Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, SP, Brazil.
| |
Collapse
|
25
|
Urrutia J, Aguado A, Gomis-Perez C, Muguruza-Montero A, Ballesteros OR, Zhang J, Nuñez E, Malo C, Chung HJ, Leonardo A, Bergara A, Villarroel A. An epilepsy-causing mutation leads to co-translational misfolding of the Kv7.2 channel. BMC Biol 2021; 19:109. [PMID: 34020651 PMCID: PMC8138981 DOI: 10.1186/s12915-021-01040-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 04/29/2021] [Indexed: 12/21/2022] Open
Abstract
Background The amino acid sequence of proteins generally carries all the necessary information for acquisition of native conformations, but the vectorial nature of translation can additionally determine the folding outcome. Such consideration is particularly relevant in human diseases associated to inherited mutations leading to structural instability, aggregation, and degradation. Mutations in the KCNQ2 gene associated with human epilepsy have been suggested to cause misfolding of the encoded Kv7.2 channel. Although the effect on folding of mutations in some domains has been studied, little is known of the way pathogenic variants located in the calcium responsive domain (CRD) affect folding. Here, we explore how a Kv7.2 mutation (W344R) located in helix A of the CRD and associated with hereditary epilepsy interferes with channel function. Results We report that the epilepsy W344R mutation within the IQ motif of CRD decreases channel function, but contrary to other mutations at this site, it does not impair the interaction with Calmodulin (CaM) in vitro, as monitored by multiple in vitro binding assays. We find negligible impact of the mutation on the structure of the complex by molecular dynamic computations. In silico studies revealed two orientations of the side chain, which are differentially populated by WT and W344R variants. Binding to CaM is impaired when the mutated protein is produced in cellulo but not in vitro, suggesting that this mutation impedes proper folding during translation within the cell by forcing the nascent chain to follow a folding route that leads to a non-native configuration, and thereby generating non-functional ion channels that fail to traffic to proper neuronal compartments. Conclusions Our data suggest that the key pathogenic mechanism of Kv7.2 W344R mutation involves the failure to adopt a configuration that can be recognized by CaM in vivo but not in vitro. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01040-1.
Collapse
Affiliation(s)
- Janire Urrutia
- Instituto Biofisika, CSIC-UPV/EHU, 48940, Leioa, Spain.,Present address: Department of Physiology, Faculty of Medicine and Nursery, UPV/EHU, 48940, Leioa, Spain
| | | | - Carolina Gomis-Perez
- Instituto Biofisika, CSIC-UPV/EHU, 48940, Leioa, Spain.,Present address: Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | | | | | - Jiaren Zhang
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Eider Nuñez
- Instituto Biofisika, CSIC-UPV/EHU, 48940, Leioa, Spain
| | | | - Hee Jung Chung
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Aritz Leonardo
- Departamento de Física Aplicada II, Universidad del País Vasco, UPV/EHU, 48940, Leioa, Spain.,Donostia International Physics Center, 20018, Donostia, Spain
| | - Aitor Bergara
- Centro de Física de Materiales CFM, CSIC-UPV/EHU, 20018, Donostia, Spain.,Donostia International Physics Center, 20018, Donostia, Spain.,Departmento de Materia Condensada, Universidad del País Vasco, UPV/EHU, 48940, Leioa, Spain
| | | |
Collapse
|
26
|
Boets S, Johannesen KM, Destree A, Manti F, Ramantani G, Lesca G, Vercueil L, Koenig MK, Striano P, Møller RS, Cooper E, Weckhuysen S. Adult phenotype of KCNQ2 encephalopathy. J Med Genet 2021; 59:528-535. [PMID: 33811133 DOI: 10.1136/jmedgenet-2020-107449] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 03/02/2021] [Accepted: 03/10/2021] [Indexed: 11/03/2022]
Abstract
BACKGROUND Pathogenic KCNQ2 variants are a frequent cause of developmental and epileptic encephalopathy. METHODS We recruited 13 adults (between 18 years and 45 years of age) with KCNQ2 encephalopathy and reviewed their clinical, EEG, neuroimaging and treatment history. RESULTS While most patients had daily seizures at seizure onset, seizure frequency declined or remitted during childhood and adulthood. The most common seizure type was tonic seizures (early) infancy, and tonic-clonic and focal impaired awareness seizures later in life. Ten individuals (77%) were seizure-free at last follow-up. In 38% of the individuals, earlier periods of seizure freedom lasting a minimum of 2 years followed by seizure recurrence had occurred. Of the 10 seizure-free patients, 4 were receiving a single antiseizure medication (ASM, carbamazepine, lamotrigine or levetiracetam), and 2 had stopped taking ASM. Intellectual disability (ID) ranged from mild to profound, with the majority (54%) of individuals in the severe category. At last contact, six individuals (46%) remained unable to walk independently, six (46%) had limb spasticity and four (31%) tetraparesis/tetraplegia. Six (46%) remained non-verbal, 10 (77%) had autistic features/autism, 4 (31%) exhibited aggressive behaviour and 4 (31%) destructive behaviour with self-injury. Four patients had visual problems, thought to be related to prematurity in one. Sleep problems were seen in six (46%) individuals. CONCLUSION Seizure frequency declines over the years and most patients are seizure-free in adulthood. Longer seizure-free periods followed by seizure recurrence are common during childhood and adolescence. Most adult patients have severe ID. Motor, language and behavioural problems are an issue of continuous concern.
Collapse
Affiliation(s)
- Stephanie Boets
- Neurology Department, University Hospital Antwerp, Antwerp, Belgium
| | - Katrine M Johannesen
- Department of Epilepsy Genetics and Personalized Treatment, The Danish Epilepsy Centre Filadelfia, Dianalund, Denmark.,Institute for Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Anne Destree
- Department of Human Genetics, Institute of Pathology and Genetics, Gosselies, Belgium
| | - Filippo Manti
- Department of Human Neuroscience, University of Rome La Sapienza, Roma, Lazio, Italy
| | - Georgia Ramantani
- Department of Neuropediatrics, University Children's Hospital, Zurich, Switzerland
| | - Gaetan Lesca
- Department of Genetics, University Hospitals of Lyon, Lyon, France.,Neuroscience Research Center, Claude Bernard Lyon I University, Lyon, France
| | - Laurent Vercueil
- Grenoble Institute of Neurosciences (GIN), University Grenoble Alpes, La Tronche, France
| | - Mary Kay Koenig
- Department of Pediatrics, University of Texas McGovern Medical School, Houston, Texas, USA
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, "G Gaslini" Institute, Genova, Italy.,Pediatric Neurology and Muscular Diseases Unit, IRCCS' G Gaslini" Institute, Genova, Italy
| | - Rikke Steensbjerre Møller
- Department of Epilepsy Genetics and Personalized Treatment, The Danish Epilepsy Centre Filadelfia, Dianalund, Denmark.,Institute for Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Edward Cooper
- Department of Neurology, Baylor College of Medicine, Houston, Texas, USA
| | - Sarah Weckhuysen
- Neurology Department, University Hospital Antwerp, Antwerp, Belgium .,Applied & Translational Neurogenomics Group, VIB-Center for Molecular Neurology, VIB, Antwerp, Belgium.,Translational Neuroscience Group, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
27
|
Maghera J, Li J, Lamothe SM, Braun M, Appendino JP, Au PYB, Kurata HT. Familial neonatal seizures caused by the Kv7.3 selectivity filter mutation T313I. Epilepsia Open 2020; 5:562-573. [PMID: 33336127 PMCID: PMC7733659 DOI: 10.1002/epi4.12438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 08/14/2020] [Accepted: 09/09/2020] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE A spectrum of seizure disorders is linked to mutations in Kv7.2 and Kv7.3 channels. Linking functional effects of identified mutations to their clinical presentation requires ongoing characterization of newly identified variants. In this study, we identified and functionally characterized a previously unreported mutation in the selectivity filter of Kv7.3. METHODS Next-generation sequencing was used to identify the Kv7.3[T313I] mutation in a family affected by neonatal seizures. Electrophysiological approaches were used to characterize the functional effects of this mutation on ion channels expressed in Xenopus laevis oocytes. RESULTS Substitution of residue 313 from threonine to isoleucine (Kv7.3[T313I]) likely disrupts a critical intersubunit hydrogen bond. Characterization of the mutation in homomeric Kv7.3 channels demonstrated a total loss of channel function. Assembly in heteromeric channels (with Kv7.2) leads to modest suppression of total current when expressed in Xenopus laevis oocytes. Using a Kv7 activator with distinct effects on homomeric Kv7.2 vs heteromeric Kv7.2/Kv7.3 channels, we demonstrated that assembly of Kv7.2 and Kv7.3[T313I] generates functional channels. SIGNIFICANCE Biophysical and clinical effects of the T313I mutation are consistent with Kv7.3 mutations previously identified in cases of pharmacoresponsive self-limiting neonatal epilepsy. These findings expand our description of functionally characterized Kv7 channel variants and report new methods to distinguish molecular mechanisms of channel mutations.
Collapse
Affiliation(s)
- Jasmine Maghera
- Department of PharmacologyAlberta Diabetes InstituteUniversity of AlbertaEdmontonABCanada
| | - Jingru Li
- Department of PharmacologyAlberta Diabetes InstituteUniversity of AlbertaEdmontonABCanada
| | - Shawn M. Lamothe
- Department of PharmacologyAlberta Diabetes InstituteUniversity of AlbertaEdmontonABCanada
| | - Marvin Braun
- Division of Child NeurologyDepartment of PediatricsWeill Cornell MedicineNew YorkNYUSA
| | - Juan P. Appendino
- Section of NeurologyDepartment of PediatricsCumming School of MedicineUniversity of Calgary, and Alberta Children’s HospitalCalgaryABCanada
| | - P. Y. Billie Au
- Department of Medical GeneticsCumming School of MedicineAlberta Children’s Hospital Research InstituteUniversity of CalgaryCalgaryABCanada
| | - Harley T. Kurata
- Department of PharmacologyAlberta Diabetes InstituteUniversity of AlbertaEdmontonABCanada
| |
Collapse
|
28
|
Gabapentin treatment in a patient with KCNQ2 developmental epileptic encephalopathy. Pharmacol Res 2020; 160:105200. [DOI: 10.1016/j.phrs.2020.105200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 11/23/2022]
|
29
|
Miceli F, Carotenuto L, Barrese V, Soldovieri MV, Heinzen EL, Mandel AM, Lippa N, Bier L, Goldstein DB, Cooper EC, Cilio MR, Taglialatela M, Sands TT. A Novel Kv7.3 Variant in the Voltage-Sensing S 4 Segment in a Family With Benign Neonatal Epilepsy: Functional Characterization and in vitro Rescue by β-Hydroxybutyrate. Front Physiol 2020; 11:1040. [PMID: 33013448 PMCID: PMC7498716 DOI: 10.3389/fphys.2020.01040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/29/2020] [Indexed: 01/09/2023] Open
Abstract
Pathogenic variants in KCNQ2 and KCNQ3, paralogous genes encoding Kv7.2 and Kv7.3 voltage-gated K+ channel subunits, are responsible for early-onset developmental/epileptic disorders characterized by heterogeneous clinical phenotypes ranging from benign familial neonatal epilepsy (BFNE) to early-onset developmental and epileptic encephalopathy (DEE). KCNQ2 variants account for the majority of pedigrees with BFNE and KCNQ3 variants are responsible for a much smaller subgroup, but the reasons for this imbalance remain unclear. Analysis of additional pedigrees is needed to further clarify the nature of this genetic heterogeneity and to improve prediction of pathogenicity for novel variants. We identified a BFNE family with two siblings and a parent affected. Exome sequencing on samples from both parents and siblings revealed a novel KCNQ3 variant (c.719T>G; p.M240R), segregating in the three affected individuals. The M240 residue is conserved among human Kv7.2-5 and lies between the two arginines (R5 and R6) closest to the intracellular side of the voltage-sensing S4 transmembrane segment. Whole cell patch-clamp recordings in Chinese hamster ovary (CHO) cells revealed that homomeric Kv7.3 M240R channels were not functional, whereas heteromeric channels incorporating Kv7.3 M240R mutant subunits with Kv7.2 and Kv7.3 displayed a depolarizing shift of about 10 mV in activation gating. Molecular modeling results suggested that the M240R substitution preferentially stabilized the resting state and possibly destabilized the activated state of the Kv7.3 subunits, a result consistent with functional data. Exposure to β-hydroxybutyrate (BHB), a ketone body generated during the ketogenic diet (KD), reversed channel dysfunction induced by the M240R variant. In conclusion, we describe the first missense loss-of-function (LoF) pathogenic variant within the S4 segment of Kv7.3 identified in patients with BFNE. Studied under conditions mimicking heterozygosity, the M240R variant mainly affects the voltage sensitivity, in contrast to previously analyzed BFNE Kv7.3 variants that reduce current density. Our pharmacological results provide a rationale for the use of KD in patients carrying LoF variants in Kv7.2 or Kv7.3 subunits.
Collapse
Affiliation(s)
- Francesco Miceli
- Department of Neuroscience, University of Naples “Federico II”, Naples, Italy
| | - Lidia Carotenuto
- Department of Neuroscience, University of Naples “Federico II”, Naples, Italy
| | - Vincenzo Barrese
- Department of Neuroscience, University of Naples “Federico II”, Naples, Italy
| | | | - Erin L. Heinzen
- Eshelman School of Pharmacy, Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | - Arthur M. Mandel
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States
| | - Natalie Lippa
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | - Louise Bier
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | - David B. Goldstein
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | - Edward C. Cooper
- Departments of Neurology, Neuroscience, and Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Maria Roberta Cilio
- Department of Pediatrics and Institute of Experimental and Clinical Research, Cliniques universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium
| | | | - Tristan T. Sands
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, United States
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
30
|
Nappi P, Miceli F, Soldovieri MV, Ambrosino P, Barrese V, Taglialatela M. Epileptic channelopathies caused by neuronal Kv7 (KCNQ) channel dysfunction. Pflugers Arch 2020; 472:881-898. [PMID: 32506321 DOI: 10.1007/s00424-020-02404-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/12/2020] [Accepted: 05/18/2020] [Indexed: 11/28/2022]
Abstract
Seizures are the most common neurological manifestation in the newborn period, with an estimated incidence of 1.8-3.5 per 1000 live births. Prolonged or intractable seizures have a detrimental effect on cognition and brain function in experimental animals and are associated with adverse long-term neurodevelopmental sequelae and an increased risk of post-neonatal epilepsy in humans. The developing brain is particularly susceptible to the potentially severe effects of epilepsy, and epilepsy, especially when refractory to medications, often results in a developmental and epileptic encephalopathy (DEE) with developmental arrest or regression. DEEs can be primarily attributed to genetic causes. Given the critical role of potassium (K+) currents with distinct subcellular localization, biophysical properties, modulation, and pharmacological profile in regulating intrinsic electrical properties of neurons and their responsiveness to synaptic inputs, it is not too surprising that genetic research in the past two decades has identified several K+ channel genes as responsible for a large fraction of DEE. In the present article, we review the genetically determined epileptic channelopathies affecting three members of the Kv7 family, namely Kv7.2 (KCNQ2), Kv7.3 (KCNQ3), and Kv7.5 (KCNQ5); we review the phenotypic spectrum of Kv7-related epileptic channelopathies, the different genetic and pathogenetic mechanisms, and the emerging genotype-phenotype correlations which may prove crucial for prognostic predictions, disease management, parental counseling, and individually tailored therapeutic attempts.
Collapse
Affiliation(s)
- Piera Nappi
- Section of Pharmacology, Department of Neuroscience, University of Naples, "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Francesco Miceli
- Section of Pharmacology, Department of Neuroscience, University of Naples, "Federico II", Via Pansini 5, 80131, Naples, Italy
| | | | - Paolo Ambrosino
- Department of Science and Technology (DST), University of Sannio, Benevento, Italy
| | - Vincenzo Barrese
- Section of Pharmacology, Department of Neuroscience, University of Naples, "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Maurizio Taglialatela
- Section of Pharmacology, Department of Neuroscience, University of Naples, "Federico II", Via Pansini 5, 80131, Naples, Italy.
| |
Collapse
|
31
|
Vigil FA, Bozdemir E, Bugay V, Chun SH, Hobbs M, Sanchez I, Hastings SD, Veraza RJ, Holstein DM, Sprague SM, M Carver C, Cavazos JE, Brenner R, Lechleiter JD, Shapiro MS. Prevention of brain damage after traumatic brain injury by pharmacological enhancement of KCNQ (Kv7, "M-type") K + currents in neurons. J Cereb Blood Flow Metab 2020; 40:1256-1273. [PMID: 31272312 PMCID: PMC7238379 DOI: 10.1177/0271678x19857818] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nearly three million people in the USA suffer traumatic brain injury (TBI) yearly; however, there are no pre- or post-TBI treatment options available. KCNQ2-5 voltage-gated K+ channels underlie the neuronal "M current", which plays a dominant role in the regulation of neuronal excitability. Our strategy towards prevention of TBI-induced brain damage is predicated on the suggested hyper-excitability of neurons induced by TBIs, and the decrease in neuronal excitation upon pharmacological augmentation of M/KCNQ K+ currents. Seizures are very common after a TBI, making further seizures and development of epilepsy disease more likely. Our hypothesis is that TBI-induced hyperexcitability and ischemia/hypoxia lead to metabolic stress, cell death and a maladaptive inflammatory response that causes further downstream morbidity. Using the mouse controlled closed-cortical impact blunt TBI model, we found that systemic administration of the prototype M-channel "opener", retigabine (RTG), 30 min after TBI, reduces the post-TBI cascade of events, including spontaneous seizures, enhanced susceptibility to chemo-convulsants, metabolic stress, inflammatory responses, blood-brain barrier breakdown, and cell death. This work suggests that acutely reducing neuronal excitability and energy demand via M-current enhancement may be a novel model of therapeutic intervention against post-TBI brain damage and dysfunction.
Collapse
Affiliation(s)
- Fabio A Vigil
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Eda Bozdemir
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Vladislav Bugay
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Sang H Chun
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA
| | - MaryAnn Hobbs
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Isamar Sanchez
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Shayne D Hastings
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Rafael J Veraza
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Deborah M Holstein
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Shane M Sprague
- Department of Neurosurgery, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Chase M Carver
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Jose E Cavazos
- Department of Neurology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Robert Brenner
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - James D Lechleiter
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Mark S Shapiro
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, USA
| |
Collapse
|
32
|
Bar C, Barcia G, Jennesson M, Le Guyader G, Schneider A, Mignot C, Lesca G, Breuillard D, Montomoli M, Keren B, Doummar D, Billette de Villemeur T, Afenjar A, Marey I, Gerard M, Isnard H, Poisson A, Dupont S, Berquin P, Meyer P, Genevieve D, De Saint Martin A, El Chehadeh S, Chelly J, Guët A, Scalais E, Dorison N, Myers CT, Mefford HC, Howell KB, Marini C, Freeman JL, Nica A, Terrone G, Sekhara T, Lebre AS, Odent S, Sadleir LG, Munnich A, Guerrini R, Scheffer IE, Kabashi E, Nabbout R. Expanding the genetic and phenotypic relevance of KCNB1 variants in developmental and epileptic encephalopathies: 27 new patients and overview of the literature. Hum Mutat 2020; 41:69-80. [PMID: 31513310 DOI: 10.1002/humu.23915] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/28/2019] [Accepted: 09/09/2019] [Indexed: 12/28/2022]
Abstract
Developmental and epileptic encephalopathies (DEE) refer to a heterogeneous group of devastating neurodevelopmental disorders. Variants in KCNB1 have been recently reported in patients with early-onset DEE. KCNB1 encodes the α subunit of the delayed rectifier voltage-dependent potassium channel Kv 2.1. We review the 37 previously reported patients carrying 29 distinct KCNB1 variants and significantly expand the mutational spectrum describing 18 novel variants from 27 unreported patients. Most variants occur de novo and mainly consist of missense variants located on the voltage sensor and the pore domain of Kv 2.1. We also report the first inherited variant (p.Arg583*). KCNB1-related encephalopathies encompass a wide spectrum of neurodevelopmental disorders with predominant language difficulties and behavioral impairment. Eighty-five percent of patients developed epilepsies with variable syndromes and prognosis. Truncating variants in the C-terminal domain are associated with a less-severe epileptic phenotype. Overall, this report provides an up-to-date review of the mutational and clinical spectrum of KCNB1, strengthening its place as a causal gene in DEEs and emphasizing the need for further functional studies to unravel the underlying mechanisms.
Collapse
Affiliation(s)
- Claire Bar
- Department of Pediatric Neurology, Reference Centre for Rare Epilepsies, Hôpital Necker-Enfants Malades, Paris, France
- Imagine institute, laboratory of Translational Research for Neurological Disorders, INSERM UMR 1163, Imagine Institute, Paris, France
- Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - Giulia Barcia
- Imagine institute, laboratory of Translational Research for Neurological Disorders, INSERM UMR 1163, Imagine Institute, Paris, France
- Université Paris Descartes-Sorbonne Paris Cité, Paris, France
- Department of genetics, Necker Enfants Malades hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | | | - Gwenaël Le Guyader
- Department of genetics, University hospital Poitiers, Poitiers Cedex, France
- EA3808-NEUVACOD Unité Neurovasculaire et Troubles Cognitifs, Pôle Biologie Santé, Université de Poitiers, Poitiers, France
| | - Amy Schneider
- Department of Medicine, Epilepsy Research Centre, Austin Health, The University of Melbourne, Heidelberg, Victoria, Australia
| | - Cyril Mignot
- Institut du Cerveau et de la Moelle épinière, INSERM, U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Paris, France
- Département de Génétique et de Cytogénétique, Centre de Reference Déficience Intellectuelle de Causes Rares, APHP, Hôpital Pitié-Salpêtrière, GRC UPMC (Déficience Intellectuelle et Autisme), Paris, France
| | - Gaetan Lesca
- Department of genetics, Hospices Civils de Lyon, Lyon, France
- Neurosciences centre of Lyon, INSERM U1028, UMR CNRS 5292, Université Claude Bernard Lyon 1, Bron Cedex, France
| | - Delphine Breuillard
- Department of Pediatric Neurology, Reference Centre for Rare Epilepsies, Hôpital Necker-Enfants Malades, Paris, France
| | - Martino Montomoli
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Department of Neuroscience, A Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Boris Keren
- Département de Génétique et de Cytogénétique, Centre de Reference Déficience Intellectuelle de Causes Rares, APHP, Hôpital Pitié-Salpêtrière, GRC UPMC (Déficience Intellectuelle et Autisme), Paris, France
| | - Diane Doummar
- Department of Pediatric Neurology, Hôpital Armand Trousseau, AP-HP, Paris, France
| | | | - Alexandra Afenjar
- Département de Génétique et Embryologie Médicale, Pathologies Congénitales du Cervelet-LeucoDystrophies, Centre de Référence déficiences intellectuelles de causes rares, AP-HP, Hôpital Armand Trousseau, GRC n°19, Sorbonne Université, Paris, France
| | - Isabelle Marey
- Département de Génétique et de Cytogénétique, Centre de Reference Déficience Intellectuelle de Causes Rares, APHP, Hôpital Pitié-Salpêtrière, GRC UPMC (Déficience Intellectuelle et Autisme), Paris, France
| | - Marion Gerard
- Department of genetics, CHU Côte de Nacre, Caen, France
| | | | - Alice Poisson
- Reference Center for Diagnosis and Management of Genetic Psychiatric Disorders, Centre Hospitalier le Vinatier and EDR-Psy Team, Centre National de la Recherche Scientifique & Lyon 1 Claude Bernard University, Villeurbanne, France
| | - Sophie Dupont
- Institut du Cerveau et de la Moelle épinière, INSERM, U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Paris, France
- Epileptology and Rehabilitation department, GH Pitie-Salpêtrière-Charles Foix, AP-HP, Paris, France
| | - Patrick Berquin
- Department of pediatric neurology Amiens-Picardie university hospital, Université de Picardie Jules Verne, Amiens, France
| | - Pierre Meyer
- Department of pediatric neurology, Montpellier university hospital, Montpellier, France
- PhyMedExp, U1046 INSERM, UMR9214 CNRS, Montpellier, France
| | - David Genevieve
- Service de génétique clinique et du Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Centre de référence maladies rares anomalies du développement, CHU Montpellier, Montpellier, France
| | - Anne De Saint Martin
- Department of Pediatric Neurology, Strasbourg University Hospital, Strasbourg, France
| | - Salima El Chehadeh
- Department of genetics, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Jamel Chelly
- Department of genetics, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Agnès Guët
- Department of Pediatric, Louis-Mourier Hospital, Colombes, France
| | - Emmanuel Scalais
- Department of Pediatric Neurology, Centre Hospitalier de Luxembourg, Luxembourg City, Luxembourg City, Luxembourg
| | - Nathalie Dorison
- Department of pediatric Neurosurgery, Rothschild Foundation Hospital, Paris, France
| | - Candace T Myers
- Department of Pediatrics, University of Washington, Seattle, Washington
| | - Heather C Mefford
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, Washington
| | - Katherine B Howell
- Departments of Neurology and Paediatrics, Royal Children's Hospital, University of Melbourne, Melbourne, Victoria, Australia
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Carla Marini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Department of Neuroscience, A Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Jeremy L Freeman
- Departments of Neurology and Paediatrics, Royal Children's Hospital, University of Melbourne, Melbourne, Victoria, Australia
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Anca Nica
- Department of Neurology, Center for Clinical Research (CIC 1414), Rennes University Hospital, Rennes, France
| | - Gaetano Terrone
- Department of Translational Medical Sciences, Section of Pediatrics-Child Neurology Unit, Federico II University, Naples, Italy
| | - Tayeb Sekhara
- Department of Pediatric Neurology, C.H.I.R.E.C, Brussels, Belgium
| | - Anne-Sophie Lebre
- Department of genetics, Maison Blanche hospital, University hospital, Reims, Reims, France
| | - Sylvie Odent
- Reference Centre for Rare Developmental Abnormalities, CLAD-Ouest, CHU Rennes, Rennes, France
- Institute of genetics and development, CNRS UMR 6290, Rennes university, Rennes, France
| | - Lynette G Sadleir
- Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand
| | - Arnold Munnich
- Université Paris Descartes-Sorbonne Paris Cité, Paris, France
- Department of genetics, Necker Enfants Malades hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Renzo Guerrini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Department of Neuroscience, A Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Ingrid E Scheffer
- Department of Medicine, Epilepsy Research Centre, Austin Health, The University of Melbourne, Heidelberg, Victoria, Australia
- Departments of Neurology and Paediatrics, Royal Children's Hospital, University of Melbourne, Melbourne, Victoria, Australia
- The Florey Institute of Neurosciences and Mental Health, Heidelberg, Victoria, Australia
| | - Edor Kabashi
- Imagine institute, laboratory of Translational Research for Neurological Disorders, INSERM UMR 1163, Imagine Institute, Paris, France
- Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - Rima Nabbout
- Department of Pediatric Neurology, Reference Centre for Rare Epilepsies, Hôpital Necker-Enfants Malades, Paris, France
- Imagine institute, laboratory of Translational Research for Neurological Disorders, INSERM UMR 1163, Imagine Institute, Paris, France
- Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| |
Collapse
|
33
|
Ma X, Yang F, Hua Z. Genetic diagnosis of neonatal-onset seizures. Genes Dis 2019; 6:441-447. [PMID: 31832524 PMCID: PMC6888710 DOI: 10.1016/j.gendis.2019.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 02/02/2019] [Indexed: 12/28/2022] Open
Abstract
Many seizures in neonates are due to early-onset epilepsy, which is often difficult to diagnose, especially to explore the causes. Recently, the development of next-generation sequencing (NGS) has led to the discovery of a large number of genes involved in epilepsy. This may improve prompt detection of early-onset epilepsy in neonates. This study aimed at analyzing the genotype-phenotype correlations in neonates with seizures in a bid to improve the understanding of genetic diagnosis of early-onset epilepsy. Clinical features and prognosis of 15 children who underwent genetic testing having had unexplained seizures from February 2016 to May 2018 in Children's Hospital of Chongqing Medical University were analyzed retrospectively. The salient findings were: poor response to stimulus and abnormal electroencephalogram (EEG) in the initial period were observed in the group with concomitant genetic abnormalities. Despite the recent progress in genetic technology, molecular diagnosis for neonatal-onset epilepsy can be challenging due to genetic and phenotypic heterogeneities. However, some genotypes are associated with specific clinical manifestations and EEG patterns. Therefore, in-depth understanding of genotype-phenotype correlations would be useful to clinicians managing neonates with early-onset seizures.
Collapse
Affiliation(s)
- Xueling Ma
- The Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China
- National Demonstration Base of Standardized Training Base for Resident Physicians, Chongqing, 400014, China
| | - Fengzhu Yang
- The Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China
- National Demonstration Base of Standardized Training Base for Resident Physicians, Chongqing, 400014, China
| | - Ziyu Hua
- The Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, 400014, China
- Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, 400014, China
| |
Collapse
|
34
|
Lauritano A, Moutton S, Longobardi E, Tran Mau‐Them F, Laudati G, Nappi P, Soldovieri MV, Ambrosino P, Cataldi M, Jouan T, Lehalle D, Maurey H, Philippe C, Miceli F, Vitobello A, Taglialatela M. A novel homozygous KCNQ3 loss-of-function variant causes non-syndromic intellectual disability and neonatal-onset pharmacodependent epilepsy. Epilepsia Open 2019; 4:464-475. [PMID: 31440727 PMCID: PMC6698674 DOI: 10.1002/epi4.12353] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/04/2019] [Accepted: 07/28/2019] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE Heterozygous variants in KCNQ2 or, more rarely, KCNQ3 genes are responsible for early-onset developmental/epileptic disorders characterized by heterogeneous clinical presentation and course, genetic transmission, and prognosis. While familial forms mostly include benign epilepsies with seizures starting in the neonatal or early-infantile period, de novo variants in KCNQ2 or KCNQ3 have been described in sporadic cases of early-onset encephalopathy (EOEE) with pharmacoresistant seizures, various age-related pathological EEG patterns, and moderate/severe developmental impairment. All pathogenic variants in KCNQ2 or KCNQ3 occur in heterozygosity. The aim of this work was to report the clinical, molecular, and functional properties of a new KCNQ3 variant found in homozygous configuration in a 9-year-old girl with pharmacodependent neonatal-onset epilepsy and non-syndromic intellectual disability. METHODS Exome sequencing was used for genetic investigation. KCNQ3 transcript and subunit expression in fibroblasts was analyzed with quantitative real-time PCR and Western blotting or immunofluorescence, respectively. Whole-cell patch-clamp electrophysiology was used for functional characterization of mutant subunits. RESULTS A novel single-base duplication in exon 12 of KCNQ3 (NM_004519.3:c.1599dup) was found in homozygous configuration in the proband born to consanguineous healthy parents; this frameshift variant introduced a premature termination codon (PTC), thus deleting a large part of the C-terminal region. Mutant KCNQ3 transcript and protein abundance was markedly reduced in primary fibroblasts from the proband, consistent with nonsense-mediated mRNA decay. The variant fully abolished the ability of KCNQ3 subunits to assemble into functional homomeric or heteromeric channels with KCNQ2 subunits. SIGNIFICANCE The present results indicate that a homozygous KCNQ3 loss-of-function variant is responsible for a severe phenotype characterized by neonatal-onset pharmacodependent seizures, with developmental delay and intellectual disability. They also reveal difference in genetic and pathogenetic mechanisms between KCNQ2- and KCNQ3-related epilepsies, a crucial observation for patients affected with EOEE and/or developmental disabilities.
Collapse
Affiliation(s)
- Anna Lauritano
- Division of Pharmacology, Department of NeuroscienceUniversity of Naples “Federico II”NaplesItaly
| | - Sebastien Moutton
- Reference Center for Developmental Anomalies, Department of Medical GeneticsDijon University HospitalDijonFrance
- INSERM U1231, LNC UMR1231 GADBurgundy UniversityDijonFrance
| | - Elena Longobardi
- Division of Pharmacology, Department of NeuroscienceUniversity of Naples “Federico II”NaplesItaly
| | - Frédéric Tran Mau‐Them
- INSERM U1231, LNC UMR1231 GADBurgundy UniversityDijonFrance
- Laboratoire de Génétique, Innovation en Diagnostic Génomique des Maladies Rares UF6254, Plateau Technique de BiologieCHU DijonDijonFrance
| | - Giusy Laudati
- Division of Pharmacology, Department of NeuroscienceUniversity of Naples “Federico II”NaplesItaly
| | - Piera Nappi
- Division of Pharmacology, Department of NeuroscienceUniversity of Naples “Federico II”NaplesItaly
| | | | - Paolo Ambrosino
- Division of Pharmacology, Department of Science and TechnologyUniversity of SannioBeneventoItaly
| | - Mauro Cataldi
- Division of Pharmacology, Department of NeuroscienceUniversity of Naples “Federico II”NaplesItaly
| | - Thibaud Jouan
- INSERM U1231, LNC UMR1231 GADBurgundy UniversityDijonFrance
- Laboratoire de Génétique, Innovation en Diagnostic Génomique des Maladies Rares UF6254, Plateau Technique de BiologieCHU DijonDijonFrance
| | - Daphné Lehalle
- Reference Center for Developmental Anomalies, Department of Medical GeneticsDijon University HospitalDijonFrance
- INSERM U1231, LNC UMR1231 GADBurgundy UniversityDijonFrance
| | - Hélène Maurey
- Service de Neurologie PédiatriqueAPHP, Hôpital Universitaire BicêtreLe Kremlin‐BicêtreFrance
| | - Christophe Philippe
- INSERM U1231, LNC UMR1231 GADBurgundy UniversityDijonFrance
- Laboratoire de Génétique, Innovation en Diagnostic Génomique des Maladies Rares UF6254, Plateau Technique de BiologieCHU DijonDijonFrance
| | - Francesco Miceli
- Division of Pharmacology, Department of NeuroscienceUniversity of Naples “Federico II”NaplesItaly
| | - Antonio Vitobello
- INSERM U1231, LNC UMR1231 GADBurgundy UniversityDijonFrance
- Laboratoire de Génétique, Innovation en Diagnostic Génomique des Maladies Rares UF6254, Plateau Technique de BiologieCHU DijonDijonFrance
| | - Maurizio Taglialatela
- Division of Pharmacology, Department of NeuroscienceUniversity of Naples “Federico II”NaplesItaly
| |
Collapse
|
35
|
Goto A, Ishii A, Shibata M, Ihara Y, Cooper EC, Hirose S. Characteristics of KCNQ2 variants causing either benign neonatal epilepsy or developmental and epileptic encephalopathy. Epilepsia 2019; 60:1870-1880. [PMID: 31418850 PMCID: PMC11812603 DOI: 10.1111/epi.16314] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 07/23/2019] [Accepted: 07/23/2019] [Indexed: 12/01/2022]
Abstract
OBJECTIVE Pathogenic variants of KCNQ2, which encode a potassium channel subunit, cause either benign (familial) neonatal epilepsy-B(F)NE)-or KCNQ2 encephalopathy (KCNQ2 DEE). We examined the characteristics of KCNQ2 variants. METHODS KCNQ2 pathogenic variants were collected from in-house data and two large disease databases with their clinical phenotypes. Nonpathogenic KCNQ2 variants were collected from the Genome Aggregation Database (gnomAD). Pathogenicity of all variants was reevaluated with clinical information to exclude irrelevant variants. The cumulative distribution plots of B(F)NE, KCNQ2 DEE, and gnomAD KCNQ2 variants were compared. Several algorithms predicting genetic variant pathogenicity were evaluated. RESULTS A total of 259 individuals or pedigrees with 216 different pathogenic KCNQ2 variants and 2967 individuals with 247 different nonpathogenic variants were deemed eligible for the study. Compared to the distribution of nonpathogenic variants, B(F)NE and KCNQ2 DEE missense variants occurred in five and three specific KCNQ2 regions, respectively. Comparison between B(F)NE and KCNQ2 DEE sets showed that B(F)NE missense variants frequently localized to the intracellular domain between S2 and S3, whereas those of KCNQ2 DEE were more frequent in S6, and its adjacent pore domain, as well as in the intracellular domain between S6 and helix A. The scores of Protein Variation Effect Analyzer (PROVEAN) and Percent Accepted Mutation (PAM) 30 prediction algorithms were associated with phenotypes of the variant loci. SIGNIFICANCE Missense variants in the intracellular domain between S2 and S3 are likely to cause B(F)NE, whereas those in S6 and its adjacent regions are more likely to cause KCNQ2 DEE. With such regional specificities of variants, PAM30 is a helpful tool to examine the possibility that a novel KCNQ2 variant is a B(F)NE or KCNQ2 DEE variant in genetic analysis.
Collapse
Affiliation(s)
- Ayako Goto
- Department of Pediatrics, School of Medicine, Fukuoka University, Fukuoka Japan
| | - Atsushi Ishii
- Department of Pediatrics, School of Medicine, Fukuoka University, Fukuoka Japan
| | - Mami Shibata
- Central Research Institute for the Molecular Pathomechanisms of Epilepsy, Fukuoka University, Fukuoka, Japan
| | - Yukiko Ihara
- Department of Pediatrics, School of Medicine, Fukuoka University, Fukuoka Japan
| | - Edward C. Cooper
- Department of Neurology, Baylor College of Medicine, Houston, Texas, U.S
| | - Shinichi Hirose
- Department of Pediatrics, School of Medicine, Fukuoka University, Fukuoka Japan
- Central Research Institute for the Molecular Pathomechanisms of Epilepsy, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
36
|
Epileptic Encephalopathy In A Patient With A Novel Variant In The Kv7.2 S2 Transmembrane Segment: Clinical, Genetic, and Functional Features. Int J Mol Sci 2019; 20:ijms20143382. [PMID: 31295832 PMCID: PMC6678645 DOI: 10.3390/ijms20143382] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 11/18/2022] Open
Abstract
Kv7.2 subunits encoded by the KCNQ2 gene provide a major contribution to the M-current (IKM), a voltage-gated K+ current crucially involved in the regulation of neuronal excitability. Heterozygous missense variants in Kv7.2 are responsible for epileptic diseases characterized by highly heterogeneous genetic transmission and clinical severity, ranging from autosomal-dominant Benign Familial Neonatal Seizures (BFNS) to sporadic cases of severe epileptic and developmental encephalopathy (DEE). Here, we describe a patient with neonatal onset DEE, carrying a previously undescribed heterozygous KCNQ2 c.418G > C, p.Glu140Gln (E140Q) variant. Patch-clamp recordings in CHO cells expressing the E140Q mutation reveal dramatic loss of function (LoF) effects. Multistate structural modelling suggested that the E140Q substitution impeded an intrasubunit electrostatic interaction occurring between the E140 side chain in S2 and the arginine at position 210 in S4 (R210); this interaction is critically involved in stabilizing the activated configuration of the voltage-sensing domain (VSD) of Kv7.2. Functional results from coupled charge reversal or disulfide trapping experiments supported such a hypothesis. Finally, retigabine restored mutation-induced functional changes, reinforcing the rationale for the clinical use of Kv7 activators as personalized therapy for DEE-affected patients carrying Kv7.2 LoF mutations.
Collapse
|
37
|
Nashabat M, Al Qahtani XS, Almakdob S, Altwaijri W, Ba-Armah DM, Hundallah K, Al Hashem A, Al Tala S, Maddirevula S, Alkuraya FS, Tabarki B, Alfadhel M. The landscape of early infantile epileptic encephalopathy in a consanguineous population. Seizure 2019; 69:154-172. [PMID: 31054490 DOI: 10.1016/j.seizure.2019.04.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 04/21/2019] [Accepted: 04/24/2019] [Indexed: 11/18/2022] Open
Abstract
PURPOSE Epileptic encephalopathies (EE), are a group of age-related disorders characterized by intractable seizures and electroencephalogram (EEG) abnormalities that may result in cognitive and motor delay. Early infantile epileptic encephalopathies (EIEE) manifest in the first year of life. EIEE are highly heterogeneous genetically but a genetic etiology is only identified in half of the cases, typically in the form of de novo dominant mutations. METHOD This is a descriptive retrospective study of a consecutive series of patients diagnosed with EIEE from the participating hospitals. A chart review was performed for all patients. The diagnosis of epileptic encephalopathy was confirmed by molecular investigations in commercial labs. In silico study was done for all novel mutations. A systematic search was done for all the types of EIEE and their correlated genes in the literature using the Online Mendelian Inheritance In Man and PubMed databases. RESULTS In this case series, we report 72 molecularly characterized EIEE from a highly consanguineous population, and review their clinical course. We identified 50 variants, 26 of which are novel, causing 26 different types of EIEE. Unlike outbred populations, autosomal recessive EIEE accounted for half the cases. The phenotypes ranged from self-limiting and drug-responsive to severe refractory seizures or even death. CONCLUSIONS We reported the largest EIEE case series in the region with confirmed molecular testing and detailed clinical phenotyping. The number autosomal recessive predominance could be explained by the society's high consanguinity. We reviewed all the EIEE registered causative genes in the literature and proposed a functional classification.
Collapse
Affiliation(s)
- Marwan Nashabat
- King Abdullah International Medical Research Centre, King Saud bin Abdulaziz University for Health Sciences, Division of Genetics, Department of Pediatrics, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia
| | - Xena S Al Qahtani
- Division of Pediatric Neurology, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Salwa Almakdob
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Waleed Altwaijri
- Division of Pediatric Neurology, Department of Pediatrics, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia
| | - Duaa M Ba-Armah
- Division of Pediatric Neurology, Department of Pediatrics, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia
| | - Khalid Hundallah
- Division of Pediatric Neurology, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Amal Al Hashem
- Division of Genetics, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia; Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Saeed Al Tala
- Division of Genetics, Department of Pediatrics, Armed Forces Hospital, Khamis Mushayt, Saudi Arabia
| | - Sateesh Maddirevula
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia; Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia; Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Brahim Tabarki
- Division of Pediatric Neurology, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Majid Alfadhel
- King Abdullah International Medical Research Centre, King Saud bin Abdulaziz University for Health Sciences, Division of Genetics, Department of Pediatrics, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia.
| |
Collapse
|
38
|
Piro E, Nardello R, Gennaro E, Fontana A, Taglialatela M, Mangano GD, Corsello G, Mangano S. A novel mutation in KCNQ3-related benign familial neonatal epilepsy: electroclinical features and neurodevelopmental outcome. Epileptic Disord 2019; 21:87-91. [PMID: 30782577 DOI: 10.1684/epd.2019.1030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 11/06/2018] [Indexed: 11/17/2022]
Abstract
Benign familial neonatal epilepsy (BFNE) is caused, in about 5% of families, by mutations in the KCNQ3 gene encoding voltage-gated potassium channel subunits. Usually, newborns with BFNE show a normal neurological outcome, but recently, refractory seizures and/or developmental disability have been reported suggesting phenotype variability associated with KCNQ3-related BFNE. Here, we describe a proband from a BFNE family carrying a novel variant in the KCNQ3 gene. Regarding the paucity of data in the literature, we describe the presented case with a view to further establishing: (1) a genotype/phenotype correlation in order to define a BFNE phenotype associated with favourable outcome; (2) an electroclinical pattern associated with BFNE based on video-EEG recording; (3) appropriate first-line AEDs; and (4) the duration of AED treatment. The presented case from Day 3 exhibited a cluster of ictal events, identified as epileptic seizures on Day 10 based on continuous video-EEG polygraphy. The seizures were characterized by asymmetric tonic posturing, associated with a generalized decrease in EEG amplitude, and followed by bilateral asynchronous clonic movements associated with bicentral sharp-wave discharges. The seizures were refractory to intravenous pyridoxine, whereas levetiracetam resulted in rapid total seizure control which has remained to date. This study demonstrates that the novel heterozygous KCNQ3 (c. 914A>T; p.Asp305Val) variant, affecting residues in the pore region, is associated with a specific electroclinical pattern and favourable neurodevelopmental outcome. [Published with video sequence on www.epilepticdisorders.com].
Collapse
Affiliation(s)
- Ettore Piro
- Department of Sciences for Health Promotion and Mother and Child Care "G. D'Alessandro," University of Palermo, Palermo
| | - Rosaria Nardello
- Department of Sciences for Health Promotion and Mother and Child Care "G. D'Alessandro," University of Palermo, Palermo
| | - Elena Gennaro
- Laboratory of Human Genetics, Galliera Hospital, Genoa
| | - Antonina Fontana
- Department of Sciences for Health Promotion and Mother and Child Care "G. D'Alessandro," University of Palermo, Palermo
| | - Maurizio Taglialatela
- Unit of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Giuseppe Donato Mangano
- Department of Sciences for Health Promotion and Mother and Child Care "G. D'Alessandro," University of Palermo, Palermo
| | - Giovanni Corsello
- Department of Sciences for Health Promotion and Mother and Child Care "G. D'Alessandro," University of Palermo, Palermo
| | - Salvatore Mangano
- Department of Sciences for Health Promotion and Mother and Child Care "G. D'Alessandro," University of Palermo, Palermo
| |
Collapse
|
39
|
Urrutia J, Aguado A, Muguruza-Montero A, Núñez E, Malo C, Casis O, Villarroel A. The Crossroad of Ion Channels and Calmodulin in Disease. Int J Mol Sci 2019; 20:ijms20020400. [PMID: 30669290 PMCID: PMC6359610 DOI: 10.3390/ijms20020400] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/11/2019] [Accepted: 01/16/2019] [Indexed: 01/21/2023] Open
Abstract
Calmodulin (CaM) is the principal Ca2+ sensor in eukaryotic cells, orchestrating the activity of hundreds of proteins. Disease causing mutations at any of the three genes that encode identical CaM proteins lead to major cardiac dysfunction, revealing the importance in the regulation of excitability. In turn, some mutations at the CaM binding site of ion channels cause similar diseases. Here we provide a summary of the two sides of the partnership between CaM and ion channels, describing the diversity of consequences of mutations at the complementary CaM binding domains.
Collapse
Affiliation(s)
- Janire Urrutia
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country, 48940 Leioa, Spain.
| | - Alejandra Aguado
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country, 48940 Leioa, Spain.
| | | | - Eider Núñez
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country, 48940 Leioa, Spain.
| | - Covadonga Malo
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country, 48940 Leioa, Spain.
| | - Oscar Casis
- Departamento de Fisiología, Facultad de Farmacia, Universidad del País Vasco (UPV/EHU), 01006 Vitoria-Gasteiz, Spain.
| | - Alvaro Villarroel
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country, 48940 Leioa, Spain.
| |
Collapse
|
40
|
From molecules to medicines: the dawn of targeted therapies for genetic epilepsies. Nat Rev Neurol 2018; 14:735-745. [DOI: 10.1038/s41582-018-0099-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
41
|
Potassium dynamics and seizures: Why is potassium ictogenic? Epilepsy Res 2018; 143:50-59. [DOI: 10.1016/j.eplepsyres.2018.04.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/26/2018] [Accepted: 04/07/2018] [Indexed: 01/01/2023]
|
42
|
Plasma membrane insertion of KCa2.3 (SK3) is dependent upon the SNARE proteins, syntaxin-4 and SNAP23. PLoS One 2018; 13:e0196717. [PMID: 29768434 PMCID: PMC5955555 DOI: 10.1371/journal.pone.0196717] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 04/18/2018] [Indexed: 02/03/2023] Open
Abstract
We previously demonstrated endocytosis of KCa2.3 is caveolin-1-, dynamin II- and Rab5-dependent. KCa2.3 then enters Rab35/EPI64C- and RME-1-containing recycling endosomes and is returned to the plasma membrane (PM). Herein, we report on the mechanism by which KCa2.3 is inserted into the PM during recycling and following exit from the Golgi. We demonstrate KCa2.3 colocalizes with SNAP-23 and Syntaxin-4 in the PM of HEK and endothelial cells by confocal immunofluorescence microscopy. We further show KCa2.3 can be co-immunoprecipitated with SNAP-23 and Syntaxin-4. Overexpression of either Syntaxin-4 or SNAP-23 increased PM expression of KCa2.3, whereas shRNA-mediated knockdown of these SNARE proteins significantly decreased PM KCa2.3 expression, as assessed by cell surface biotinylation. Whole-cell patch clamp studies confirmed knockdown of SNAP-23 significantly decreased the apamin sensitive, KCa2.3 current. Using standard biotinylation/stripping methods, we demonstrate shRNA mediated knockdown of SNAP-23 inhibits recycling of KCa2.3 following endocytosis, whereas scrambled shRNA had no effect. Finally, using biotin ligase acceptor peptide (BLAP)-tagged KCa2.3, coupled with ER-resident biotin ligase (BirA), channels could be biotinylated in the ER after which we evaluated their rate of insertion into the PM following Golgi exit. We demonstrate knockdown of SNAP-23 significantly slows the rate of Golgi to PM delivery of KCa2.3. The inhibition of both recycling and PM delivery of newly synthesized KCa2.3 channels likely accounts for the decreased PM expression observed following knockdown of these SNARE proteins. In total, our results suggest insertion of KCa2.3 into the PM depends upon the SNARE proteins, Syntaxin-4 and SNAP-23.
Collapse
|
43
|
Pisani F, Percesepe A, Spagnoli C. Genetic diagnosis in neonatal-onset epilepsies: Back to the future. Eur J Paediatr Neurol 2018; 22:354-357. [PMID: 29501409 DOI: 10.1016/j.ejpn.2018.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 01/28/2018] [Accepted: 02/12/2018] [Indexed: 11/16/2022]
Abstract
Seizures are more frequent in newborns than in any other period of life. In most cases they are due to acute dysfunction of the central nervous system; however some can be true epileptic disorders with an early onset. Although rare, diagnosis of neonatal-onset epilepsies is rising as genetic testing increases. The spectrum of clinical severity associated with specific genes can vary widely with difficulties in providing genotype-phenotype correlations. Therefore, clinicians should strive in order to clearly delineate the clinical features associated with pathogenic genetic variants with the aim to guide the increasing use of genetic testing and improve clinical management.
Collapse
|
44
|
Lesca G. Aspetti genetici delle epilessie. Neurologia 2018. [DOI: 10.1016/s1634-7072(18)41286-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
45
|
Ambrosino P, Freri E, Castellotti B, Soldovieri MV, Mosca I, Manocchio L, Gellera C, Canafoglia L, Franceschetti S, Salis B, Iraci N, Miceli F, Ragona F, Granata T, DiFrancesco JC, Taglialatela M. Kv7.3 Compound Heterozygous Variants in Early Onset Encephalopathy Reveal Additive Contribution of C-Terminal Residues to PIP2-Dependent K+ Channel Gating. Mol Neurobiol 2018; 55:7009-7024. [DOI: 10.1007/s12035-018-0883-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 01/08/2018] [Indexed: 11/28/2022]
|
46
|
Devaux J, Dhifallah S, De Maria M, Stuart-Lopez G, Becq H, Milh M, Molinari F, Aniksztejn L. A possible link betweenKCNQ2- andSTXBP1-related encephalopathies: STXBP1 reduces the inhibitory impact of syntaxin-1A on M current. Epilepsia 2017; 58:2073-2084. [DOI: 10.1111/epi.13927] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2017] [Indexed: 01/05/2023]
Affiliation(s)
- Jérôme Devaux
- CNRS, CRN2M-UMR7286; Aix-Marseille University; Marseille France
| | - Sandra Dhifallah
- INSERM UMR_S901; Mediterranean Neurobiology Institute (INMED); Aix-Marseille University; Marseille France
- Institute of Molecular and Cellular Pharmacology (IPMC); CNRS; Nice Sophia-Antipolis University; Valbonne France
| | - Michela De Maria
- INSERM UMR_S901; Mediterranean Neurobiology Institute (INMED); Aix-Marseille University; Marseille France
- Department of Medicine and Health Sciences; University of Molise; Campobasso Italy
| | - Geoffrey Stuart-Lopez
- INSERM UMR_S901; Mediterranean Neurobiology Institute (INMED); Aix-Marseille University; Marseille France
- UMR5203 Institute of Functional Genomic (IGF); CNRS; Montpellier France
| | - Hélène Becq
- INSERM UMR_S901; Mediterranean Neurobiology Institute (INMED); Aix-Marseille University; Marseille France
| | - Mathieu Milh
- Timone Children Hospital, Pediatric Neurology department; APHM; Marseille France
- GMGF, INSERM UMR_S910; Aix-Marseille University; Marseille France
| | - Florence Molinari
- INSERM UMR_S901; Mediterranean Neurobiology Institute (INMED); Aix-Marseille University; Marseille France
| | - Laurent Aniksztejn
- INSERM UMR_S901; Mediterranean Neurobiology Institute (INMED); Aix-Marseille University; Marseille France
| |
Collapse
|
47
|
Event-Associated Oxygen Consumption Rate Increases ca. Five-Fold When Interictal Activity Transforms into Seizure-Like Events In Vitro. Int J Mol Sci 2017; 18:ijms18091925. [PMID: 28880249 PMCID: PMC5618574 DOI: 10.3390/ijms18091925] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 08/30/2017] [Accepted: 09/01/2017] [Indexed: 01/03/2023] Open
Abstract
Neuronal injury due to seizures may result from a mismatch of energy demand and adenosine triphosphate (ATP) synthesis. However, ATP demand and oxygen consumption rates have not been accurately determined, yet, for different patterns of epileptic activity, such as interictal and ictal events. We studied interictal-like and seizure-like epileptiform activity induced by the GABAA antagonist bicuculline alone, and with co-application of the M-current blocker XE-991, in rat hippocampal slices. Metabolic changes were investigated based on recording partial oxygen pressure, extracellular potassium concentration, and intracellular flavine adenine dinucleotide (FAD) redox potential. Recorded data were used to calculate oxygen consumption and relative ATP consumption rates, cellular ATP depletion, and changes in FAD/FADH2 ratio by applying a reactive-diffusion and a two compartment metabolic model. Oxygen-consumption rates were ca. five times higher during seizure activity than interictal activity. Additionally, ATP consumption was higher during seizure activity (~94% above control) than interictal activity (~15% above control). Modeling of FAD transients based on partial pressure of oxygen recordings confirmed increased energy demand during both seizure and interictal activity and predicted actual FAD autofluorescence recordings, thereby validating the model. Quantifying metabolic alterations during epileptiform activity has translational relevance as it may help to understand the contribution of energy supply and demand mismatches to seizure-induced injury.
Collapse
|
48
|
Ion Channel Genes and Epilepsy: Functional Alteration, Pathogenic Potential, and Mechanism of Epilepsy. Neurosci Bull 2017; 33:455-477. [PMID: 28488083 DOI: 10.1007/s12264-017-0134-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 02/20/2017] [Indexed: 01/29/2023] Open
Abstract
Ion channels are crucial in the generation and modulation of excitability in the nervous system and have been implicated in human epilepsy. Forty-one epilepsy-associated ion channel genes and their mutations are systematically reviewed. In this paper, we analyzed the genotypes, functional alterations (funotypes), and phenotypes of these mutations. Eleven genes featured loss-of-function mutations and six had gain-of-function mutations. Nine genes displayed diversified funotypes, among which a distinct funotype-phenotype correlation was found in SCN1A. These data suggest that the funotype is an essential consideration in evaluating the pathogenicity of mutations and a distinct funotype or funotype-phenotype correlation helps to define the pathogenic potential of a gene.
Collapse
|
49
|
Gomis-Perez C, Soldovieri MV, Malo C, Ambrosino P, Taglialatela M, Areso P, Villarroel A. Differential Regulation of PI(4,5)P 2 Sensitivity of Kv7.2 and Kv7.3 Channels by Calmodulin. Front Mol Neurosci 2017; 10:117. [PMID: 28507506 PMCID: PMC5410570 DOI: 10.3389/fnmol.2017.00117] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/10/2017] [Indexed: 11/19/2022] Open
Abstract
HIGHLIGHTS- Calmodulin-dependent Kv7.2 current density without the need of binding calcium. - Kv7.2 current density increase is accompanied with resistance to PI(4,5)P2 depletion. - Kv7.3 current density is insensitive to calmodulin elevation. - Kv7.3 is more sensitive to PI(4,5)P2 depletion in the presence of calmodulin. - Apo-calmodulin influences PI(4,5)P2 dependence in a subunit specific manner.
The identification and understanding of critical factors regulating M-current functional density, whose main components are Kv7.2 and Kv7.3 subunits, has profound pathophysiological impact given the important role of the M-current in neuronal excitability control. We report the increase in current density of Kv7.2 channels by calmodulin (CaM) and by a mutant CaM unable to bind Ca2+ (CaM1234) revealing that this potentiation is calcium independent. Furthermore, after co-expressing a CaM binding protein (CaM sponge) to reduce CaM cellular availability, Kv7.2 current density was reduced. Current inhibition after transient depletion of the essential Kv7 co-factor phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) by activating Danio rerio voltage sensitive phosphatase (DrVSP) was blunted by co-expressing CaM1234 or the CaM sponge. In addition, CaM-dependent potentiation was occluded by tonic elevation of PI(4,5)P2 levels by PI(4)P5-kinase (PIP5K) expression. In contrast to the effect on homomeric Kv7.2 channels, CaM1234 failed to potentiate heteromeric Kv7.2/3 or homomeric Kv7.3 channels. Sensitivity to PI(4,5)P2 depletion of Kv7.2/3 channels was increased after expression of CaM1234 or the CaM sponge, while that of homomeric Kv7.3 was unaltered. Altogether, the data reveal that apo-CaM influences PI(4,5)P2 dependence of Kv7.2, Kv7.2/3, and of Kv7.3 channels in a subunit specific manner.
Collapse
Affiliation(s)
- Carolina Gomis-Perez
- Biofisika Institutua, Consejo Superior de Investigaciones Científicas, CSIC, UPV/EHULeioa, Spain
| | - Maria V Soldovieri
- Department of Medicine and Health Science, University of MoliseCampobasso, Italy
| | - Covadonga Malo
- Biofisika Institutua, Consejo Superior de Investigaciones Científicas, CSIC, UPV/EHULeioa, Spain
| | - Paolo Ambrosino
- Department of Medicine and Health Science, University of MoliseCampobasso, Italy
| | - Maurizio Taglialatela
- Department of Medicine and Health Science, University of MoliseCampobasso, Italy.,Department of Neuroscience, University of Naples "Federico II,"Naples, Italy
| | - Pilar Areso
- Department Farmacología, UPV/EHU, Universidad del País VascoLeioa, Spain
| | - Alvaro Villarroel
- Biofisika Institutua, Consejo Superior de Investigaciones Científicas, CSIC, UPV/EHULeioa, Spain
| |
Collapse
|
50
|
Al Yazidi G, Shevell MI, Srour M. Two Novel KCNQ2 Mutations in 2 Families With Benign Familial Neonatal Convulsions. Child Neurol Open 2017; 4:2329048X17691396. [PMID: 28503627 PMCID: PMC5417349 DOI: 10.1177/2329048x17691396] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 11/10/2016] [Accepted: 11/22/2016] [Indexed: 11/16/2022] Open
Abstract
Benign familial neonatal convulsion is a rare autosomal dominant inherited epilepsy syndrome characterized by unprovoked seizures in the first few days of life, normal psychomotor development, and a positive intergenerational family history of neonatal seizures. Over 90% of the affected individuals have inherited causal mutations in KCNQ2, which encodes for the potassium voltage-gated channel subfamily Q, member 2. Mutations in KCNQ2 are also associated with a severe neonatal encephalopathy phenotype associated with poor seizure control and neurodevelopmental deficits. The authors report the clinical presentations, response to medication, and intrafamilial phenotypic variability in 2 families with benign familial neonatal convulsions, carrying previously unreported heterozygous missense mutations, c.1066C>G (p.Leu356Val) and c.1721G<A (p.Gly574Asp), in KCNQ2. The cases reported herein suggest that inherited missense mutations in KCNQ2 can be associated with an intermediate phenotype and illustrate the challenges associated with prognosis and counselling for individuals with inherited missense mutations in KCNQ2.
Collapse
Affiliation(s)
- Ghalia Al Yazidi
- Division of Pediatric Neurology, Montreal Children's Hospital, McGill University Health Centre (MUHC), Montréal, Quebec City, Canada.,Departments of Pediatrics, Neurology and Neurosurgery, McGill University, Montreal, Quebec City, Canada
| | - Michael I Shevell
- Division of Pediatric Neurology, Montreal Children's Hospital, McGill University Health Centre (MUHC), Montréal, Quebec City, Canada.,Departments of Pediatrics, Neurology and Neurosurgery, McGill University, Montreal, Quebec City, Canada
| | - Myriam Srour
- Division of Pediatric Neurology, Montreal Children's Hospital, McGill University Health Centre (MUHC), Montréal, Quebec City, Canada.,Departments of Pediatrics, Neurology and Neurosurgery, McGill University, Montreal, Quebec City, Canada
| |
Collapse
|