1
|
Vlad RM, Dobritoiu R, Pacurar D. From Genes to Treatment: Literature Review and Perspectives on Acid Sphingomyelinase Deficiency in Children. Diagnostics (Basel) 2025; 15:804. [PMID: 40218154 PMCID: PMC11988438 DOI: 10.3390/diagnostics15070804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/17/2025] [Accepted: 03/17/2025] [Indexed: 04/14/2025] Open
Abstract
Background: Acid sphingomyelinase deficiency (ASMD), most commonly known as Niemann-Pick disease (NPD), is a rare progressive genetic disorder regarding lipid storage. Subtypes A and B are inherited in an autosomal recessive fashion and consist of a genetic defect which affects the sphingomyelin phosphodiesterase 1 gene, leading to residual or lack of enzymatic activity of acid sphingomyelinase (ASM). Materials and Methods: This paper provides a brief history and overview to date of the disease and a comprehensive review of the current literature on ASMD in children, conducted on published papers from the past 10 years. Results: We identified 19 original publications (16 individual case reports and three series of cases-30 patients). The male/female ratio was 1.4. The youngest patient at disease onset was a female newborn with NPD-A. The youngest patient was diagnosed at 4 months. The longest timeframe between onset symptoms and diagnostic moment was 5 years 3 months. A total of nine patients exhibited red cherry macular spots. A total of 13 children exhibited associated lung disease, and four NPD-A patients with pulmonary disease died due to respiratory complications. A total of 11 children exhibited associated growth impairment. Genetic assays were performed in 25 cases (15 homozygous; 9 heterozygous). A total of four children (13.3%) received enzyme replacement therapy (ERT). Therapy outcomes included decreased liver and spleen volumes, improved platelet and leukocytes counts, and body mass index and stature improvement. Conclusions: Sometimes, a small child with a big belly hides a huge dilemma; inherited metabolic disorders are here to challenge clinicians and set the record straight, and genetics is the way of the future in terms of diagnosis and novel treatments. NPD must be considered children with persistent and progressive hepatosplenomegaly and growth failure. Diagnosis requires good clinical skills and access to genetic assays. Since 2022, the FDA has given a green light to a revolutionary enzymatic replacement therapy with human recombinant ASM called Olipudase-alfa. Clinical trial outcomes support its reliability and efficacy in the pediatric population.
Collapse
Affiliation(s)
- Raluca Maria Vlad
- Department of Paediatrics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.M.V.); (D.P.)
- “Grigore Alexandrescu” Emergency Children’s Hospital, Bld. Iancu de Hunedoara 30-32 Bucharest, 011743 Bucharest, Romania
| | - Ruxandra Dobritoiu
- Department of Paediatrics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.M.V.); (D.P.)
- “Grigore Alexandrescu” Emergency Children’s Hospital, Bld. Iancu de Hunedoara 30-32 Bucharest, 011743 Bucharest, Romania
| | - Daniela Pacurar
- Department of Paediatrics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.M.V.); (D.P.)
- “Grigore Alexandrescu” Emergency Children’s Hospital, Bld. Iancu de Hunedoara 30-32 Bucharest, 011743 Bucharest, Romania
| |
Collapse
|
2
|
Villarrubia J, Morales M, Ceberio L, Vitoria I, Bellusci M, Quiñones I, Peña-Quintana L, Ruiz de Valbuena M, O'Callaghan M. Ecological study to estimate the prevalence of patients with acid sphingomyelinase deficiency in Spain. PREVASMD study. Rev Clin Esp 2025; 225:70-77. [PMID: 39613101 DOI: 10.1016/j.rceng.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/01/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND AND OBJECTIVE Prevalence studies of acid sphingomyelinase deficiency (ASMD) are scarce and different in Spain. The objective of the present study was to determine the estimated prevalence of patients diagnosed with ASMD (types A/B and B) in Spain. MATERIAL AND METHODS PREVASMD was a descriptive, multicenter, and ecological study involving 21 physicians from different specialties (mainly Internal Medicine, Paediatrics and Hematology), of different autonomous communities, with experience in ASMD management. RESULTS Between March and April 2022, specialists were attending a total of 34 patients with ASMD diagnosis, 10 paediatric patients under 18 years of age (29.4%) and 24 adult patients (70.6%). The estimated prevalence of patients (paediatric and adult) diagnosed with ASMD was 0.7 per 1,000,000 inhabitants (95% confidence interval, 95% CI: 0.5-1.0), 1.2 per 1,000,000 (95% CI: 0.6-2.3) in the paediatric population and 0.6 per 1,000,000 inhabitants (95% CI: 0.4-0.9) in the adult population. The most frequent symptoms that led to suspicion of ASMD were: splenomegaly (reported by 100.0% of specialists), hepatomegaly (66.7%), interstitial lung disease (57.1%), and thrombocytopenia (57.1%). According to the specialists, laboratory and routine tests, and assistance in Primary Care were the most relevant healthcare resources in the management of ASMD. CONCLUSIONS This first study carried out in Spain shows an estimated prevalence of patients of 0.7 per 1,000,000 inhabitants: 1.2 per 1,000,000 inhabitants in the paediatric population and 0.6 per 1,000,000 inhabitants in the adult population.
Collapse
Affiliation(s)
- J Villarrubia
- Servicio de Hematología y Hemoterapia, Hospital Universitario Ramon y Cajal, Madrid, Spain.
| | - M Morales
- Servicio de Medicina Interna, Hospital Universitario 12 de Octubre, CSUR de errores Congénitos del Metabolismo, Instituto de Investigación Hospital 12 de Octubre (i+ 12), Madrid, Spain
| | - L Ceberio
- Servicio de Medicina Interna, Hospital Universitario de Cruces, CSUR de Errores Congénitos del Metabolismo, Baracaldo, Vizcaya, Spain
| | - I Vitoria
- Unidad de Nutrición y Metabolopatías, Hospital La Fe, Valencia, Spain
| | - M Bellusci
- Unidad Pediátrica de Enfermedades Raras, Enfermedades Mitocondriales y Metabólicas Hereditarias, Hospital 12 de Octubre, Madrid, Spain
| | - I Quiñones
- Servicio de Gastroenterología, Hospital Universitario de Gran Canaria Dr. Negrin (HUGCDN), Las Palmas de Gran Canaria, Spain
| | - L Peña-Quintana
- Unidad de Gastroenterología, Hepatología y Nutrición Pediátrica, Complejo Hospitalario Universitario Insular-Materno Infantil, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - M Ruiz de Valbuena
- Sección de Neumología Pediátrica, Hospital Universitario La Paz, Madrid, Spain
| | - M O'Callaghan
- Unidad de Enfermedades Metabólicas, Departamento de Neurología, Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| |
Collapse
|
3
|
Deodato F, Boenzi S, Greco B, Graziosi A, Dionisi-Vici C. Case Report: Two years of compassionate use with Olipudase-alfa in a child with neurovisceral acid sphingomyelinase deficiency. Front Pediatr 2025; 12:1518344. [PMID: 39834487 PMCID: PMC11743494 DOI: 10.3389/fped.2024.1518344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 12/11/2024] [Indexed: 01/22/2025] Open
Abstract
Acid sphingomyelinase deficiency (ASMD) is a rare, progressive lysosomal storage disorder resulting from a deficiency in acid sphingomyelinase, leading to sphingomyelin accumulation and multi-organ damage. ASMD presents a broad phenotypic spectrum with a continuum of severity, making it challenging to predict the phenotype in very young children and differentiate between acute and chronic neurovisceral disease. No disease-specific treatments existed for ASMD. Recently, Olipudase-alfa, an intravenous enzyme replacement therapy, has been approved for non-neurological manifestations based on clinical trial results showing significant improvements. This report details the compassionate use of Olipudase-alfa in a 8-month-old boy. At baseline, he exhibited hepatosplenomegaly, elevated transaminases, and normal developmental milestones, consistent with a chronic neurovisceral phenotype. The treatment commenced at 8 months of age, escalating from 0.03 mg/kg to 3 mg/kg bi-weekly. Throughout the two-year period, the child tolerated the therapy well, with no severe adverse events reported. Notable clinical outcomes included a significant reduction in spleen and liver size, normalization of liver function tests, and stabilization of the lipid profile. The biomarker Lyso-sphingomyelin significantly reduced but never normalized, while oxysterols completely normalized. In the following months, the patient exhibited neurocognitive regression, allowing to define an acute neurovisceral phenotype. Although not impacting on the neurological manifestations, treatment with Olipudase-alfa strikingly improved the child's visceral symptoms, contrasting with the typical progressive decline seen in untreated patients. This report highlights the importance of early intervention, even in patients with neurovisceral phenotypes, as it can enhance quality of life for both patients and their families. Our findings advocate for reconsidering treatment eligibility criteria based solely on clinical phenotype definitions, highlighting the need for a tailored approach in ASMD management.
Collapse
Affiliation(s)
- Federica Deodato
- Division of Metabolic Diseases and Hepatology, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | | | | | | | | |
Collapse
|
4
|
Hull AJ, Atilano ML, Hallqvist J, Heywood W, Kinghorn KJ. Ceramide lowering rescues respiratory defects in a Drosophila model of acid sphingomyelinase deficiency. Hum Mol Genet 2024; 33:2111-2122. [PMID: 39402882 PMCID: PMC11630749 DOI: 10.1093/hmg/ddae143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/09/2024] [Accepted: 09/25/2024] [Indexed: 12/12/2024] Open
Abstract
Types A and B Niemann-Pick disease (NPD) are inherited multisystem lysosomal storage disorders due to mutations in the SMPD1 gene. Respiratory dysfunction is a key hallmark of NPD, yet the mechanism for this is underexplored. SMPD1 encodes acid sphingomyelinase (ASM), which hydrolyses sphingomyelin to ceramide and phosphocholine. Here, we present a Drosophila model of ASM loss-of-function, lacking the fly orthologue of SMPD1, dASM, modelling several aspects of the respiratory pathology of NPD. dASM is expressed in the late-embryonic fly respiratory network, the trachea, and is secreted into the tracheal lumen. Loss of dASM results in embryonic lethality, and the tracheal lumen fails to fill normally with gas prior to eclosion. We demonstrate that the endocytic clearance of luminal constituents prior to gas-filling is defective in dASM mutants, and is coincident with autophagic, but not lysosomal defects, in late stage embryonic trachea. Finally, we show that although bulk sphingolipids are unchanged, dietary loss of lipids in combination with genetic and pharmacological block of ceramide synthesis rescues the airway gas-filling defects. We highlight myriocin as a potential therapeutic drug for the treatment of the developmental respiratory defects associated with ASM deficiency, and present a new NPD model amenable to genetic and pharmacological screens.
Collapse
Affiliation(s)
- Alexander J Hull
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, United Kingdom
| | - Magda L Atilano
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, United Kingdom
| | - Jenny Hallqvist
- Great Ormond Street Institute of Child Health, University College London, 30 Guildford Street, London, WC1N 1EN, United Kingdom
| | - Wendy Heywood
- Great Ormond Street Institute of Child Health, University College London, 30 Guildford Street, London, WC1N 1EN, United Kingdom
| | - Kerri J Kinghorn
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, United Kingdom
| |
Collapse
|
5
|
Gragnaniello V, Cazzorla C, Gueraldi D, Loro C, Porcù E, Salviati L, Burlina AP, Burlina AB. Newborn Screening for Acid Sphingomyelinase Deficiency: Prevalence and Genotypic Findings in Italy. Int J Neonatal Screen 2024; 10:79. [PMID: 39728399 DOI: 10.3390/ijns10040079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 11/26/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024] Open
Abstract
Acid sphingomyelinase deficiency (ASMD) is a rare lysosomal storage disorder with a broad clinical spectrum. Early diagnosis and initiation of treatment are crucial for improving outcomes, yet the disease often goes undiagnosed due to its rarity and phenotypic heterogeneity. This study aims to evaluate the feasibility and disease incidence of newborn screening (NBS) for ASMD in Italy. Dried blood spot samples from 275,011 newborns were collected between 2015 and 2024 at the Regional Center for Expanded NBS in Padua. Acid sphingomyelinase activity was assayed using tandem mass spectrometry. Deidentified samples with reduced enzyme activity underwent second-tier testing with LysoSM quantification and SMPD1 gene analysis. Two samples were identified with reduced sphingomyelinase activity and elevated LysoSM levels. Both carried two SMPD1 variants, suggesting a diagnosis of ASMD. Molecular findings included novel and previously reported variants, some of uncertain significance. The overall incidence was 1 in 137,506 newborns and the PPV was 100%. This study demonstrates the feasibility of NBS for ASMD in Italy and provides evidence of a higher disease incidence than clinically reported, suggesting ASMD is an underdiagnosed condition. Optimized screening algorithms and second-tier biomarker testing can enhance the accuracy of NBS for ASMD. The long-term follow-up of identified cases is necessary for genotype-phenotype correlation and improving patient management.
Collapse
Affiliation(s)
- Vincenza Gragnaniello
- Division of Inherited Metabolic Diseases, Department of Women's and Children's Health, University Hospital of Padua, 35128 Padua, Italy
- Division of Inherited Metabolic Diseases, Department of Women's and Children's Health, University of Padua, 35128 Padua, Italy
| | - Chiara Cazzorla
- Division of Inherited Metabolic Diseases, Department of Women's and Children's Health, University Hospital of Padua, 35128 Padua, Italy
| | - Daniela Gueraldi
- Division of Inherited Metabolic Diseases, Department of Women's and Children's Health, University Hospital of Padua, 35128 Padua, Italy
| | - Christian Loro
- Division of Inherited Metabolic Diseases, Department of Women's and Children's Health, University Hospital of Padua, 35128 Padua, Italy
| | - Elena Porcù
- Division of Inherited Metabolic Diseases, Department of Women's and Children's Health, University Hospital of Padua, 35128 Padua, Italy
| | - Leonardo Salviati
- Clinical Genetics Unit, Department of Women's and Children's Health, University of Padua, 35128 Padua, Italy
| | | | - Alberto B Burlina
- Division of Inherited Metabolic Diseases, Department of Women's and Children's Health, University Hospital of Padua, 35128 Padua, Italy
- Division of Inherited Metabolic Diseases, Department of Women's and Children's Health, University of Padua, 35128 Padua, Italy
| |
Collapse
|
6
|
Hickey RE, Baker J. Newborn screening for acid sphingomyelinase deficiency in Illinois: A single center's experience. J Inherit Metab Dis 2024; 47:1363-1370. [PMID: 38992987 PMCID: PMC11586602 DOI: 10.1002/jimd.12780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/13/2024]
Abstract
Acid sphingomyelinase deficiency (ASMD) is a rare lysosomal storage disorder (LSD) caused by reduced activity of the acid sphingomyelinase (ASM) enzyme, which leads to progressive storage of sphingomyelin and related lipids in the body. ASMD is caused by biallelic variants in the SMPD1 gene, which encodes for the ASM enzyme. Current estimates of disease incidence range from 0.4 to 0.6 in 100 000 livebirths, although this is likely an underestimation of the true frequency of the disorder. While there is no cure for ASMD, comprehensive care guidelines and enzyme replacement therapy are available, making an early diagnosis crucial. Newborn screening (NBS) for ASMD is possible through measurement of ASM activity in dried blood spots and offers the opportunity for early diagnosis. In 2015, Illinois (IL) became the first to initiate statewide implementation of NBS for ASMD. This study describes the outcomes of screen-positive patients referred to Ann & Robert H. Lurie Children's Hospital (Lurie). Ten infants were referred for diagnostic evaluation at Lurie, and all 10 infants were classified as confirmed ASMD or at risk for ASMD through a combination of molecular and biochemical testing. Disease incidence was calculated using data from this statewide implementation program and was ~0.79 in 100 000 livebirths. This study demonstrates successful implementation of NBS for ASMD in IL, with high screen specificity and a notable absence of false positive screens.
Collapse
Affiliation(s)
- Rachel E. Hickey
- Ann & Robert H. Lurie Children's Hospital of ChicagoChicagoIllinoisUSA
| | - Joshua Baker
- Ann & Robert H. Lurie Children's Hospital of ChicagoChicagoIllinoisUSA
- Northwestern University Feinberg School of MedicineChicagoIllinoisUSA
| |
Collapse
|
7
|
Scrima S, Lambrughi M, Tiberti M, Fadda E, Papaleo E. ASM variants in the spotlight: A structure-based atlas for unraveling pathogenic mechanisms in lysosomal acid sphingomyelinase. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167260. [PMID: 38782304 DOI: 10.1016/j.bbadis.2024.167260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/30/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024]
Abstract
Lysosomal acid sphingomyelinase (ASM), a critical enzyme in lipid metabolism encoded by the SMPD1 gene, plays a crucial role in sphingomyelin hydrolysis in lysosomes. ASM deficiency leads to acid sphingomyelinase deficiency, a rare genetic disorder with diverse clinical manifestations, and the protein can be found mutated in other diseases. We employed a structure-based framework to comprehensively understand the functional implications of ASM variants, integrating pathogenicity predictions with molecular insights derived from a molecular dynamics simulation in a lysosomal membrane environment. Our analysis, encompassing over 400 variants, establishes a structural atlas of missense variants of lysosomal ASM, associating mechanistic indicators with pathogenic potential. Our study highlights variants that influence structural stability or exert local and long-range effects at functional sites. To validate our predictions, we compared them to available experimental data on residual catalytic activity in 135 ASM variants. Notably, our findings also suggest applications of the resulting data for identifying cases suited for enzyme replacement therapy. This comprehensive approach enhances the understanding of ASM variants and provides valuable insights for potential therapeutic interventions.
Collapse
Affiliation(s)
- Simone Scrima
- Cancer Structural Biology, Center for Autophagy, Recycling and Disease, Danish Cancer Institute, 2100 Copenhagen, Denmark; Cancer Systems Biology, Section for Bioinformatics, Department of Health and Technology, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Matteo Lambrughi
- Cancer Structural Biology, Center for Autophagy, Recycling and Disease, Danish Cancer Institute, 2100 Copenhagen, Denmark
| | - Matteo Tiberti
- Cancer Structural Biology, Center for Autophagy, Recycling and Disease, Danish Cancer Institute, 2100 Copenhagen, Denmark
| | - Elisa Fadda
- Department of Chemistry and Hamilton Institute, Maynooth University, Maynooth, co. Kildare, Ireland
| | - Elena Papaleo
- Cancer Structural Biology, Center for Autophagy, Recycling and Disease, Danish Cancer Institute, 2100 Copenhagen, Denmark; Cancer Systems Biology, Section for Bioinformatics, Department of Health and Technology, Technical University of Denmark, 2800 Lyngby, Denmark.
| |
Collapse
|
8
|
Ke F, Zhang R, Chen R, Guo X, Song C, Gao X, Zeng F, Liu Q. The role of Rhizoma Paridis saponins on anti-cancer: The potential mechanism and molecular targets. Heliyon 2024; 10:e37323. [PMID: 39296108 PMCID: PMC11407946 DOI: 10.1016/j.heliyon.2024.e37323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/07/2024] [Accepted: 09/01/2024] [Indexed: 09/21/2024] Open
Abstract
Cancer is a disease characterized by uncontrolled cell proliferation, leading to excessive growth and invasion that can spread to other parts of the body. Traditional Chinese medicine has made new advancements in the treatment of cancer, providing new perspectives and directions for cancer treatment. Rhizoma Paridis is a widely used Chinese herbal medicine with documented anti-cancer effects dating back to ancient times. Modern research has shown that Rhizoma Paridis saponins (RPS) have various pharmacological activities. RPS can inhibit cancer in multiple ways, such as suppressing tumor growth, inducing cell cycle arrest, promoting cell apoptosis, enhancing cell autophagy, inducing ferroptosis, reducing inflammation, inhibiting angiogenesis, as well as inhibiting metastasis and invasion, and these findings demonstrate the potent anti-cancer activity of RPS. Polyphyllin I, polyphyllin II, polyphyllin VI, and polyphyllin VII have been widely reported as the main active ingredients with anti-cancer properties. Polyphyllin D, polyphyllin E, and polyphyllin G have also been confirmed to possess strong anti-cancer activity in recent years. Therefore, this review dives deep into the molecular mechanisms underlying the anti-cancer effects of RPS to serve as a valuable reference for future scientific research and their potential applications in cancer treatment.
Collapse
Affiliation(s)
- Famin Ke
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Ranqi Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Rui Chen
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Xiurong Guo
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Can Song
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Xiaowei Gao
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Fancai Zeng
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, China
| | - Qiuyu Liu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| |
Collapse
|
9
|
Mauhin W, Guffon N, Vanier MT, Froissart R, Cano A, Douillard C, Lavigne C, Héron B, Belmatoug N, Uzunhan Y, Lacombe D, Levade T, Duvivier A, Pulikottil-Jacob R, Laredo F, Pichard S, Lidove O. Acid sphingomyelinase deficiency in France: a retrospective survival study. Orphanet J Rare Dis 2024; 19:289. [PMID: 39103853 PMCID: PMC11301966 DOI: 10.1186/s13023-024-03234-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/27/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Acid sphingomyelinase deficiency (ASMD) or Niemann-Pick disease types A, A/B, and B is a progressive, life-limiting, autosomal recessive disorder caused by sphingomyelin phosphodiesterase 1 (SMPD1) gene mutations. There is a need to increase the understanding of morbidity and mortality across children to adults diagnosed with ASMD. METHODS This observational retrospective survey analysed medical records of patients with ASMD with retrievable data from 27 hospitals in France, diagnosed/followed up between 1st January 1990 and 31st December 2020. Eligible records were abstracted to collect demographic, medical/developmental history, and mortality data. Survival outcomes were estimated from birth until death using Kaplan-Meier survival analyses; standardised mortality ratio (SMR) was also explored. RESULTS A total of 118 medical records of patients with ASMD (type B [n = 94], type A [n = 15], and type A/B [n = 9]) were assessed. The majority of patients were males (63.6%); the median [range] age at diagnosis was 8.0 [1.0-18.0] months (type A), 1.0 [0-3] year (type A/B), and 5.5 [0-73] years (type B). Overall, 30 patients were deceased at the study completion date; the median [range] age at death for patients with ASMD type A (n = 14) was 1 [0-3.6] year, type A/B (n = 6) was 8.5 [3.0-30.9] years, and type B (n = 10) was 57.6 [3.4-74.1] years. The median [95% confidence interval (CI)] survival age from birth in patients with ASMD type A and type A/B was 2.0 [1.8-2.7] years and 11.4 [5.5-18.5] years, respectively. Survival analysis in ASMD type B was explored using SMR [95% CI] analysis (3.5 [1.6-5.9]), which showed that age-specific deaths in the ASMD type B population were 3.5 times more frequent than those in the general French population. The causes of death were mostly severe progressive neurodegeneration (type A: 16.7%), cancer (type B: 16.7%), or unspecified (across groups: 33.3%). CONCLUSIONS This study illustrated a substantial burden of illness with high mortality rates in patients with ASMD, including adults with ASMD type B, in France.
Collapse
Affiliation(s)
- Wladimir Mauhin
- Internal Medicine, Reference Center for Lysosomal Diseases (CRML), GH Diaconesses Croix Saint-Simon, Paris, France
| | - Nathalie Guffon
- Reference Center for Inherited Metabolic Diseases, Hospices Civils de Lyon, Bron, France
| | - Marie T Vanier
- Laboratory Gillet-Mérieux, Centre de Biologie Et de Pathologie Est, INSERM U820, Hospices Civils de Lyon, Bron, France
| | - Roseline Froissart
- Biochemical and Molecular Biology Department, Centre de Biologie Et de Pathologie Est, Hospices Civils de Lyon, Bron, France
| | - Aline Cano
- Paediatric Neurology, Reference Center for Inherited Metabolic Diseases, CHU La Timone Enfants, Marseille, France
| | - Claire Douillard
- Endocrinology, Diabetology, Metabolism Department, Reference Centre for Inherited Metabolic Diseases, Lille University Hospital, Lille, France
| | - Christian Lavigne
- Internal Medicine and Clinical Immunology, Competence Centre for Inherited Metabolic Diseases, Angers University Hospital, Angers, France
| | - Bénédicte Héron
- Pediatric Neurology, Reference Center for Lysosomal Diseases, Armand Trousseau-La Roche Guyon Hospital, Assistance Publique-Hôpitaux de Paris, Fédération Hospitalo-Universitaire, Sorbonne-Université, I2-D2, Paris, France
| | - Nadia Belmatoug
- Reference Center for Lysosomal Diseases, Beaujon Hospital, Assistance Publique Hôpitaux de Paris Nord, Université Paris Cité, Paris, France
| | - Yurdagül Uzunhan
- Reference Center for Rare Pulmonary Diseases, Avicenne Hospital, Université Sorbonne Paris Nord, INSERM U1272, Assistance Publique-Hôpitaux de Paris, PneumologyBobigny, France
| | - Didier Lacombe
- Medical Genetics Unit, University Hospital of Bordeaux, INSERM U1211, Bordeaux, France
| | - Thierry Levade
- Cancer Research Center of Toulouse (CRCT) and Clinical Biochemistry Laboratory, Reference Center for Inherited Metabolic Diseases, INSERM UMR1037 Paul Sabatier University Federative Institute of Biology, CHU Toulouse, Toulouse, France
| | | | | | | | - Samia Pichard
- Reference Center for Inherited Metabolic Diseases, Hôpital Necker Enfants Malades, Paris, 75015, France
| | - Olivier Lidove
- Internal Medicine, Reference Center for Lysosomal Diseases (CRML), GH Diaconesses Croix Saint-Simon, Paris, France.
| |
Collapse
|
10
|
Mächtel R, Dobert J, Hehr U, Weiss A, Kettwig M, Laugwitz L, Groeschel S, Schmidt M, Arnold P, Regensburger M, Zunke F. Late-onset Krabbe disease presenting as spastic paraplegia - implications of GCase and CTSB/D. Ann Clin Transl Neurol 2024; 11:1715-1731. [PMID: 38837642 PMCID: PMC11251474 DOI: 10.1002/acn3.52078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 06/07/2024] Open
Abstract
OBJECTIVE Krabbe disease (KD) is a multisystem neurodegenerative disorder with severe disability and premature death, mostly with an infancy/childhood onset. In rare cases of late-onset phenotypes, symptoms are often milder and difficult to diagnose. We here present a translational approach combining diagnostic and biochemical analyses of a male patient with a progressive gait disorder starting at the age of 44 years, with a final diagnosis of late-onset KD (LOKD). METHODS Additionally to cerebral MRI, protein structural analyses of the β-galactocerebrosidase protein (GALC) were performed. Moreover, expression, lysosomal localization, and activities of β-glucocerebrosidase (GCase), cathepsin B (CTSB), and cathepsin D (CTSD) were analyzed in leukocytes, fibroblasts, and lysosomes of fibroblasts. RESULTS Exome sequencing revealed biallelic likely pathogenic variants: GALC exons 11-17: 33 kb deletion; exon 4: missense variant (c.334A>G, p.Thr112Ala). We detected a reduced GALC activity in leukocytes and fibroblasts. While histological KD phenotypes were absent in fibroblasts, they showed a significantly decreased activities of GCase, CTSB, and CTSD in lysosomal fractions, while expression levels were unaffected. INTERPRETATION The presented LOKD case underlines the age-dependent appearance of a mildly pathogenic GALC variant and its interplay with other lysosomal proteins. As GALC malfunction results in reduced ceramide levels, we assume this to be causative for the here described decrease in CTSB and CTSD activity, potentially leading to diminished GCase activity. Hence, we emphasize the importance of a functional interplay between the lysosomal enzymes GALC, CTSB, CTSD, and GCase, as well as between their substrates, and propose their conjoined contribution in KD pathology.
Collapse
Affiliation(s)
- Rebecca Mächtel
- Department of Molecular NeurologyUniversity Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
| | - Jan‐Philipp Dobert
- Department of Molecular NeurologyUniversity Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
| | - Ute Hehr
- Center for Human GeneticsRegensburgGermany
| | - Alexander Weiss
- Department of Molecular NeurologyUniversity Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
| | - Matthias Kettwig
- Department of Pediatrics and Pediatric NeurologyUniversity Medical Center Göttingen, Georg August University GöttingenGöttingenGermany
| | - Lucia Laugwitz
- Department of Pediatric NeurologyUniversity Children's Hospital TübingenTübingenGermany
| | - Samuel Groeschel
- Department of Pediatric NeurologyUniversity Children's Hospital TübingenTübingenGermany
| | | | - Philipp Arnold
- Institute of Functional and Clinical AnatomyFAUErlangenGermany
| | - Martin Regensburger
- Department of Molecular NeurologyUniversity Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
- Department of Stem Cell BiologyFAUErlangenGermany
- Deutsches Zentrum Immuntherapie (DZI)University Hospital ErlangenErlangenGermany
| | - Friederike Zunke
- Department of Molecular NeurologyUniversity Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
| |
Collapse
|
11
|
Sako S, Oishi K, Ida H, Imagawa E. Allele frequency of pathogenic variants causing acid sphingomyelinase deficiency and Gaucher disease in the general Japanese population. Hum Genome Var 2024; 11:24. [PMID: 38866761 PMCID: PMC11169237 DOI: 10.1038/s41439-024-00282-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024] Open
Abstract
Acid sphingomyelinase deficiency (ASMD) and Gaucher disease (GD) are lysosomal storage disorders associated with hepatosplenomegaly and thrombocytopenia. The incidences of ASMD and GD are known to be particularly high in the Ashkenazi Jewish population. Conversely, the number of reported patients with these diseases has been limited in Asian countries, including Japan. Here, we reviewed the allele frequencies of pathogenic variants causing ASMD and GD in the Japanese population and populations with various ancestry backgrounds using the Japanese Multi-Omics Reference Panel 54KJPN and the Genome Aggregation Database v4.0.0. The estimated carrier frequencies of ASMD- and GD-related variants were 1/180 and 1/154 in Japanese individuals, equivalent to disease occurrence frequencies of 1/128,191 and 1/94,791 individuals, respectively. These frequencies are much higher than previously expected. Our data also suggest that there are more patients with a milder form of ASMD and nonspecific clinical findings who have not yet been diagnosed.
Collapse
Affiliation(s)
- Shuhei Sako
- Department of Pediatrics, The Jikei University School of Medicine, Tokyo, Japan
| | - Kimihiko Oishi
- Department of Pediatrics, The Jikei University School of Medicine, Tokyo, Japan
| | - Hiroyuki Ida
- Department of Pediatrics, The Jikei University School of Medicine, Tokyo, Japan
| | - Eri Imagawa
- Department of Pediatrics, The Jikei University School of Medicine, Tokyo, Japan.
| |
Collapse
|
12
|
Hosseini K, Fallahi J, Razban V, Sirat RZ, Varasteh M, Tarhriz V. Overview of clinical, molecular, and therapeutic features of Niemann-Pick disease (types A, B, and C): Focus on therapeutic approaches. Cell Biochem Funct 2024; 42:e4028. [PMID: 38715125 DOI: 10.1002/cbf.4028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/16/2024] [Accepted: 04/25/2024] [Indexed: 06/30/2024]
Abstract
Niemann-Pick disease (NPD) is another type of metabolic disorder that is classified as lysosomal storage diseases (LSDs). The main cause of the disease is mutation in the SMPD1 (type A and B) or NPC1 or NPC2 (type C) genes, which lead to the accumulation of lipid substrates in the lysosomes of the liver, brain, spleen, lung, and bone marrow cells. This is followed by multiple cell damage, dysfunction of lysosomes, and finally dysfunction of body organs. So far, about 346, 575, and 30 mutations have been reported in SMPD1, NPC1, and NPC2 genes, respectively. Depending on the type of mutation and the clinical symptoms of the disease, the treatment will be different. The general aim of the current study is to review the clinical and molecular characteristics of patients with NPD and study various treatment methods for this disease with a focus on gene therapy approaches.
Collapse
Affiliation(s)
- Kamran Hosseini
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jafar Fallahi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahid Razban
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | - Vahideh Tarhriz
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| |
Collapse
|
13
|
Tirelli C, Rondinone O, Italia M, Mira S, Belmonte LA, De Grassi M, Guido G, Maggioni S, Mondoni M, Miozzo MR, Centanni S. The Genetic Basis, Lung Involvement, and Therapeutic Options in Niemann-Pick Disease: A Comprehensive Review. Biomolecules 2024; 14:211. [PMID: 38397448 PMCID: PMC10886890 DOI: 10.3390/biom14020211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Niemann-Pick Disease (NPD) is a rare autosomal recessive disease belonging to lysosomal storage disorders. Three types of NPD have been described: NPD type A, B, and C. NPD type A and B are caused by mutations in the gene SMPD1 coding for sphingomyelin phosphodiesterase 1, with a consequent lack of acid sphingomyelinase activity. These diseases have been thus classified as acid sphingomyelinase deficiencies (ASMDs). NPD type C is a neurologic disorder due to mutations in the genes NPC1 or NPC2, causing a defect of cholesterol trafficking and esterification. Although all three types of NPD can manifest with pulmonary involvement, lung disease occurs more frequently in NPD type B, typically with interstitial lung disease, recurrent pulmonary infections, and respiratory failure. In this sense, bronchoscopy with broncho-alveolar lavage or biopsy together with high-resolution computed tomography are fundamental diagnostic tools. Although several efforts have been made to find an effective therapy for NPD, to date, only limited therapeutic options are available. Enzyme replacement therapy with Olipudase α is the first and only approved disease-modifying therapy for patients with ASMD. A lung transplant and hematopoietic stem cell transplantation are also described for ASMD in the literature. The only approved disease-modifying therapy in NPD type C is miglustat, a substrate-reduction treatment. The aim of this review was to delineate a state of the art on the genetic basis and lung involvement in NPD, focusing on clinical manifestations, radiologic and histopathologic characteristics of the disease, and available therapeutic options, with a gaze on future therapeutic strategies.
Collapse
Affiliation(s)
- Claudio Tirelli
- Respiratory Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy; (M.I.); (S.M.); (L.A.B.); (M.D.G.); (G.G.); (S.M.); (M.M.); (S.C.)
| | - Ornella Rondinone
- Medical Genetics Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy; (O.R.); (M.R.M.)
| | - Marta Italia
- Respiratory Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy; (M.I.); (S.M.); (L.A.B.); (M.D.G.); (G.G.); (S.M.); (M.M.); (S.C.)
| | - Sabrina Mira
- Respiratory Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy; (M.I.); (S.M.); (L.A.B.); (M.D.G.); (G.G.); (S.M.); (M.M.); (S.C.)
| | - Luca Alessandro Belmonte
- Respiratory Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy; (M.I.); (S.M.); (L.A.B.); (M.D.G.); (G.G.); (S.M.); (M.M.); (S.C.)
| | - Mauro De Grassi
- Respiratory Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy; (M.I.); (S.M.); (L.A.B.); (M.D.G.); (G.G.); (S.M.); (M.M.); (S.C.)
| | - Gabriele Guido
- Respiratory Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy; (M.I.); (S.M.); (L.A.B.); (M.D.G.); (G.G.); (S.M.); (M.M.); (S.C.)
| | - Sara Maggioni
- Respiratory Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy; (M.I.); (S.M.); (L.A.B.); (M.D.G.); (G.G.); (S.M.); (M.M.); (S.C.)
| | - Michele Mondoni
- Respiratory Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy; (M.I.); (S.M.); (L.A.B.); (M.D.G.); (G.G.); (S.M.); (M.M.); (S.C.)
| | - Monica Rosa Miozzo
- Medical Genetics Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy; (O.R.); (M.R.M.)
| | - Stefano Centanni
- Respiratory Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy; (M.I.); (S.M.); (L.A.B.); (M.D.G.); (G.G.); (S.M.); (M.M.); (S.C.)
| |
Collapse
|
14
|
Gomez-Mariano G, Perez-Luz S, Ramos-Del Saz S, Matamala N, Hernandez-SanMiguel E, Fernandez-Prieto M, Gil-Martin S, Justo I, Marcacuzco A, Martinez-Delgado B. Acid Sphingomyelinase Deficiency Type B Patient-Derived Liver Organoids Reveals Altered Lysosomal Gene Expression and Lipid Homeostasis. Int J Mol Sci 2023; 24:12645. [PMID: 37628828 PMCID: PMC10454326 DOI: 10.3390/ijms241612645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Acid sphingomyelinase deficiency (ASMD) or Niemann-Pick disease type A (NPA), type B (NPB) and type A/B (NPA/B), is a rare lysosomal storage disease characterized by progressive accumulation of sphingomyelin (SM) in the liver, lungs, bone marrow and, in severe cases, neurons. A disease model was established by generating liver organoids from a NPB patient carrying the p.Arg610del variant in the SMPD1 gene. Liver organoids were characterized by transcriptomic and lipidomic analysis. We observed altered lipid homeostasis in the patient-derived organoids showing the predictable increase in sphingomyelin (SM), together with cholesterol esters (CE) and triacylglycerides (TAG), and a reduction in phosphatidylcholine (PC) and cardiolipins (CL). Analysis of lysosomal gene expression pointed to 24 downregulated genes, including SMPD1, and 26 upregulated genes that reflect the lysosomal stress typical of the disease. Altered genes revealed reduced expression of enzymes that could be involved in the accumulation in the hepatocytes of sphyngoglycolipids and glycoproteins, as well as upregulated genes coding for different glycosidases and cathepsins. Lipidic and transcriptome changes support the use of hepatic organoids as ideal models for ASMD investigation.
Collapse
Affiliation(s)
- Gema Gomez-Mariano
- Molecular Genetics and Genetic Diagnostic Units, Institute of Rare Diseases Research (IIER), Spanish National Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (S.P.-L.); (S.R.-D.S.); (N.M.); (E.H.-S.); (M.F.-P.); (S.G.-M.); (B.M.-D.)
| | - Sara Perez-Luz
- Molecular Genetics and Genetic Diagnostic Units, Institute of Rare Diseases Research (IIER), Spanish National Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (S.P.-L.); (S.R.-D.S.); (N.M.); (E.H.-S.); (M.F.-P.); (S.G.-M.); (B.M.-D.)
| | - Sheila Ramos-Del Saz
- Molecular Genetics and Genetic Diagnostic Units, Institute of Rare Diseases Research (IIER), Spanish National Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (S.P.-L.); (S.R.-D.S.); (N.M.); (E.H.-S.); (M.F.-P.); (S.G.-M.); (B.M.-D.)
| | - Nerea Matamala
- Molecular Genetics and Genetic Diagnostic Units, Institute of Rare Diseases Research (IIER), Spanish National Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (S.P.-L.); (S.R.-D.S.); (N.M.); (E.H.-S.); (M.F.-P.); (S.G.-M.); (B.M.-D.)
| | - Esther Hernandez-SanMiguel
- Molecular Genetics and Genetic Diagnostic Units, Institute of Rare Diseases Research (IIER), Spanish National Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (S.P.-L.); (S.R.-D.S.); (N.M.); (E.H.-S.); (M.F.-P.); (S.G.-M.); (B.M.-D.)
| | - Marta Fernandez-Prieto
- Molecular Genetics and Genetic Diagnostic Units, Institute of Rare Diseases Research (IIER), Spanish National Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (S.P.-L.); (S.R.-D.S.); (N.M.); (E.H.-S.); (M.F.-P.); (S.G.-M.); (B.M.-D.)
| | - Sara Gil-Martin
- Molecular Genetics and Genetic Diagnostic Units, Institute of Rare Diseases Research (IIER), Spanish National Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (S.P.-L.); (S.R.-D.S.); (N.M.); (E.H.-S.); (M.F.-P.); (S.G.-M.); (B.M.-D.)
- CIBER de Enfermedades Raras, CIBERER U758, 28029 Madrid, Spain
| | - Iago Justo
- General and Digestive Surgery Department, Hospital 12 de Octubre, 28041 Madrid, Spain; (I.J.); (A.M.)
| | - Alberto Marcacuzco
- General and Digestive Surgery Department, Hospital 12 de Octubre, 28041 Madrid, Spain; (I.J.); (A.M.)
| | - Beatriz Martinez-Delgado
- Molecular Genetics and Genetic Diagnostic Units, Institute of Rare Diseases Research (IIER), Spanish National Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (S.P.-L.); (S.R.-D.S.); (N.M.); (E.H.-S.); (M.F.-P.); (S.G.-M.); (B.M.-D.)
- CIBER de Enfermedades Raras, CIBERER U758, 28029 Madrid, Spain
| |
Collapse
|
15
|
Arslan N, Coker M, Gokcay GF, Kiykim E, Onenli Mungan HN, Ezgu F. Expert opinion on patient journey, diagnosis and clinical monitoring in acid sphingomyelinase deficiency in Turkey: a pediatric metabolic disease specialist's perspective. Front Pediatr 2023; 11:1113422. [PMID: 37435168 PMCID: PMC10330960 DOI: 10.3389/fped.2023.1113422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 06/06/2023] [Indexed: 07/13/2023] Open
Abstract
This review by a panel of pediatric metabolic disease specialists aimed to provide a practical and implementable guidance document to assist clinicians in best clinical practice in terms of recognition, diagnosis and management of patients with acid sphingomyelinase deficiency (ASMD). The participating experts consider the clinical suspicion of ASMD by the physician to be of utmost importance in the prevention of diagnostic delay and strongly suggest the use of a diagnostic algorithm including/starting with dried blood spots assay in the timely diagnosis of ASMD in patients presenting with hepatosplenomegaly and a need for increased awareness among physicians in this regard to consider ASMD in the differential diagnosis. In anticipation of the introduction of enzyme replacement therapy, raising awareness of the disease among physicians to prevent diagnostic delay and further investigation addressing natural history of ASMD across the disease spectrum, potential presenting characteristics with a high index of suspicion, as well as biomarkers and genotype-phenotype correlations suggestive of poor prognosis seem important in terms of implementation of best practice patterns.
Collapse
Affiliation(s)
- Nur Arslan
- Division of Pediatric Metabolism, Department of Pediatrics, Dokuz Eylul University Faculty of Medicine, Izmir, Türkiye
| | - Mahmut Coker
- Division of Pediatric Metabolism, Department of Pediatrics, Ege University Faculty of Medicine, Izmir, Türkiye
| | - Gulden Fatma Gokcay
- Division of Pediatric Metabolism, Department of Pediatrics, Istanbul University Istanbul Faculty of Medicine, Istanbul, Türkiye
| | - Ertugrul Kiykim
- Division of Pediatric Metabolism, Department of Pediatrics, Istanbul University Cerrahpasa Faculty of Medicine, Istanbul, Türkiye
| | | | - Fatih Ezgu
- Division of Pediatric Metabolism and Pediatric Genetics, Department of Pediatrics, Gazi University Faculty of Medicine, Ankara, Türkiye
| |
Collapse
|
16
|
Molnar MJ, Szlepak T, Csürke I, Loth S, Káposzta R, Erdős M, Dezsőfi A. Case report: The spectrum of SMPD1 pathogenic variants in Hungary. Front Genet 2023; 14:1158108. [PMID: 37347058 PMCID: PMC10280011 DOI: 10.3389/fgene.2023.1158108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/24/2023] [Indexed: 06/23/2023] Open
Abstract
Acid sphingomyelinase deficiency (ASMD) is an autosomal recessive disease caused by biallelic pathogenic variants in the sphingomyelin phosphodiesterase-1 (SMPD1) gene. Acid sphingomyelinase deficiency is characterized by a spectrum of disease and is broadly divided into three types (ASMD type A, ASMD type A/B, and ASMD type B). More than 220 disease-associated SMPD1 variants have been reported, and genotype/phenotype correlations are limited. Here we report the first description of all six diagnosed acid sphingomyelinase deficiency cases in Hungary. Nine SMPD1 variants are present in this cohort, including 3 SMPD1 variants (G247D, M384R, and F572L), which have only been described in Hungarian patients. All described variants are deemed to be pathogenic. Eight of the variants are missense, and one is a frameshift variant. The treatment of an ASMD type A/B patient in this cohort using hematopoietic stem cell transplantation is also detailed. This study may help to support diagnosis, patient genetic counseling, and management of acid sphingomyelinase deficiency.
Collapse
Affiliation(s)
- Maria Judit Molnar
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, Hungary
- ELKH-SE Multiomics Neurodegeneration Research Group, Eötvös Loránd Research Network, Budapest, Hungary
| | - Tamas Szlepak
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, Hungary
- ELKH-SE Multiomics Neurodegeneration Research Group, Eötvös Loránd Research Network, Budapest, Hungary
| | - Ildikó Csürke
- Department of Pediatrics, Josa Andras County Hospital, Nyiregyhaza, Hungary
| | - Szendile Loth
- Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Rita Káposzta
- Department of Pediatrics, University of Debrecen, Debrecen, Hungary
| | - Melinda Erdős
- PID Clinical Unit and Laboratory, Department of Dermatology, Venereology, and Dermatooncology, Semmelweis University, Budapest, Hungary
| | - Antal Dezsőfi
- Department of Pediatrics, Semmelweis University, Budapest, Hungary
| |
Collapse
|
17
|
Pulikottil-Jacob R, Ganz ML, Fournier M, Petruski-Ivleva N. Healthcare Service Use Patterns Among Patients with Acid Sphingomyelinase Deficiency Type B: A Retrospective US Claims Analysis. Adv Ther 2023; 40:2234-2248. [PMID: 36897522 PMCID: PMC10129952 DOI: 10.1007/s12325-023-02453-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/06/2023] [Indexed: 03/11/2023]
Abstract
INTRODUCTION Acid sphingomyelinase deficiency (ASMD) is a rare lysosomal storage disease. Patients with ASMD type B experience multiple morbidities, potentially leading to early mortality. Before the 2022 approval of olipudase alfa for non-neuronopathic ASMD manifestations, only symptom management was offered. Data on healthcare services used by patients with ASMD type B are limited. This analysis used medical claims data to evaluate real-world healthcare service use by patients with ASMD type B in the United States of America (USA). METHODS The IQVIA Open Claims patient-level database (2010-2019) was cross-examined. Two patient cohorts were identified: the primary analysis cohort, which included patients with at least two claims associated with ASMD type B (ICD-10 code E75.241) and more total claims with ASMD type B than any other ASMD types, and the sensitivity analysis cohort, which included patients with a high probability of having ASMD type B identified using a validated machine-learning algorithm. Claims for ASMD-associated healthcare services were recorded, including outpatient visits, emergency department (ED) visits, and inpatient hospitalizations. RESULTS The primary analysis cohort included 47 patients; a further 59 patients made up the sensitivity analysis cohort. Patient characteristics and healthcare service use were similar in both cohorts and were consistent with established characteristics of ASMD type B. Overall, 70% of the primary analysis cohort from this study were aged < 18 years, and the liver, spleen, and lungs were the most frequently affected organs. Cognitive, developmental, and/or emotional problems and respiratory/lung disorders caused most outpatient visits; respiratory/lung disorders accounted for most ED visits and hospitalizations. CONCLUSION This retrospective analysis of medical claims data identified patients with ASMD type B who had characteristics typical of this condition. A machine-learning algorithm detected further cases with a high probability of having ASMD type B. High use of ASMD-related healthcare services and medications was observed in both cohorts.
Collapse
Affiliation(s)
- Ruth Pulikottil-Jacob
- Health Economics and Value Assessment Business Partner-Rare Diseases, Sanofi, Thames Valley Park, Reading, UK.
| | | | | | | |
Collapse
|
18
|
Geberhiwot T, Wasserstein M, Wanninayake S, Bolton SC, Dardis A, Lehman A, Lidove O, Dawson C, Giugliani R, Imrie J, Hopkin J, Green J, de Vicente Corbeira D, Madathil S, Mengel E, Ezgü F, Pettazzoni M, Sjouke B, Hollak C, Vanier MT, McGovern M, Schuchman E. Consensus clinical management guidelines for acid sphingomyelinase deficiency (Niemann-Pick disease types A, B and A/B). Orphanet J Rare Dis 2023; 18:85. [PMID: 37069638 PMCID: PMC10108815 DOI: 10.1186/s13023-023-02686-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/02/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND Acid Sphingomyelinase Deficiency (ASMD) is a rare autosomal recessive disorder caused by mutations in the SMPD1 gene. This rarity contributes to misdiagnosis, delayed diagnosis and barriers to good care. There are no published national or international consensus guidelines for the diagnosis and management of patients with ASMD. For these reasons, we have developed clinical guidelines that defines standard of care for ASMD patients. METHODS The information contained in these guidelines was obtained through a systematic literature review and the experiences of the authors in their care of patients with ASMD. We adopted the Appraisal of Guidelines for Research and Evaluation (AGREE II) system as method of choice for the guideline development process. RESULTS The clinical spectrum of ASMD, although a continuum, varies substantially with subtypes ranging from a fatal infantile neurovisceral disorder to an adult-onset chronic visceral disease. We produced 39 conclusive statements and scored them according to level of evidence, strengths of recommendations and expert opinions. In addition, these guidelines have identified knowledge gaps that must be filled by future research. CONCLUSION These guidelines can inform care providers, care funders, patients and their carers about best clinical practice and leads to a step change in the quality of care for patients with ASMD with or without enzyme replacement therapy (ERT).
Collapse
Affiliation(s)
- Tarekegn Geberhiwot
- University Hospital Birmingham NHS Foundation Trust, Birmingham, UK.
- Institute of Metabolism and System Research, University of Birmingham, Birmingham, UK.
| | - Melissa Wasserstein
- Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | | - Andrea Dardis
- Regional Coordinator Centre for Rare Disease, AMC Hospital of Udine, Udine, Italy
| | - Anna Lehman
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z2, Canada
| | - Olivier Lidove
- Department of Internal Medicine, Hôpital de La Croix Saint Simon, Paris, France
| | - Charlotte Dawson
- University Hospital Birmingham NHS Foundation Trust, Birmingham, UK
| | - Roberto Giugliani
- BioDiscovery and DR BRASIL Research Group, HCPA, Department of Genetics and PPGBM, UFRGS, INAGEMP, DASA, and Casa Dos Raros, Porto Alegre, Brazil
| | - Jackie Imrie
- International Niemann-Pick Disease Registry, Newcastle, UK
| | - Justin Hopkin
- National Niemann-Pick Disease Foundation, Fort Atkinson, WI, USA
| | - James Green
- International Niemann-Pick Disease Registry, Newcastle, UK
| | | | - Shyam Madathil
- Department of Respiratory Medicine, University Hospital Birmingham NHS Foundation Trust, Queen Elizabeth Hospital, Birmingham, UK
| | - Eugen Mengel
- Institute of Clinical Science in LSD, SphinCS, Hochheim, Germany
| | - Fatih Ezgü
- Division of Pediatric Metabolism and Division of Pediatric Genetics, Department of Pediatrics, Gazi University Faculty of Medicine, 06560, Ankara, Turkey
| | - Magali Pettazzoni
- Biochemistry and Molecular Biology and Reference Center for Inherited Metabolic Disorders, Hospices Civils de Lyon, 59 Boulevard Pinel, 69677, Bron Cedex, France
| | - Barbara Sjouke
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, F5-169, P.O. Box 22660, 1100 DD, Amsterdam, The Netherlands
| | - Carla Hollak
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, F5-169, P.O. Box 22660, 1100 DD, Amsterdam, The Netherlands
| | | | | | - Edward Schuchman
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Room 14-20A, New York, NY, 10029, USA
| |
Collapse
|
19
|
Oliva P, Schwarz M, Mechtler TP, Sansen S, Keutzer J, Prusa AR, Streubel B, Kasper DC. Importance to include differential diagnostics for acid sphingomyelinase deficiency (ASMD) in patients suspected to have to Gaucher disease. Mol Genet Metab 2023; 139:107563. [PMID: 37086570 DOI: 10.1016/j.ymgme.2023.107563] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/12/2023] [Accepted: 03/26/2023] [Indexed: 04/24/2023]
Abstract
The clinical manifestation of sphingolipidosis leads often to misclassification between acid sphingomyelinase deficiency (ASMD) and Gaucher disease. In this multicenter, prospective study, we investigated a cohort of 31,838 individuals suspected to have Gaucher disease, due to clinical presentation, from 61 countries between 2017 and 2022. For all samples, both Acid-β-glucocerebrosidase and acid sphingomyelinase enzyme activities were measured in dried blood spot specimens by tandem mass spectrometry followed by genetic confirmatory testing in potential positive cases. In total, 5933 symptomatic cases showed decreased enzyme activities and were submitted for genetic confirmatory testing. 1411/5933 (24%) cases were finally identified with Gaucher disease and 550/5933 (9%) with ASMD. Most of the confirmed ASMD cases were newborns and children below 2 years of age (63%). This study reveals that one in four cases suspected for Gaucher disease is diagnosed with ASMD. An early appropriate diagnostic work-up is essential because of the availability of a recently approved enzyme replacement therapy for ASMD. In conclusion, a diagnostic strategy using differential biochemical testing including genetic confirmatory testing in clinically suspected cases for sphingolipidosis is highly recommended.
Collapse
Affiliation(s)
- Petra Oliva
- ARCHIMED Life Science GmbH (ARCHIMEDlife), Vienna, Austria.
| | - Markus Schwarz
- ARCHIMED Life Science GmbH (ARCHIMEDlife), Vienna, Austria.
| | | | | | - Joan Keutzer
- Sanofi Genzyme, Amsterdam, Netherlands; Independent consultant, Littleton MA 01460, USA
| | - Andrea-Romana Prusa
- Deptartment of Children and Adolescent Medicine, Medical University of Vienna, Vienna, Austria.
| | - Berthold Streubel
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria.
| | - David C Kasper
- ARCHIMED Life Science GmbH (ARCHIMEDlife), Vienna, Austria.
| |
Collapse
|
20
|
Wang R, Qin Z, Huang L, Luo H, Peng H, Zhou X, Zhao Z, Liu M, Yang P, Shi T. SMPD1 expression profile and mutation landscape help decipher genotype-phenotype association and precision diagnosis for acid sphingomyelinase deficiency. Hereditas 2023; 160:11. [PMID: 36907956 PMCID: PMC10009935 DOI: 10.1186/s41065-023-00272-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/28/2023] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND Acid sphingomyelinase deficiency (ASMD) disorder, also known as Niemann-Pick disease (NPD) is a rare genetic disease caused by mutations in SMPD1 gene, which encodes sphingomyelin phosphodiesterase (ASM). Except for liver and spleen enlargement and lung disease, two subtypes (Type A and B) of NDP have different onset times, survival times, ASM activities, and neurological abnormalities. To comprehensively explore NPD's genotype-phenotype association and pathophysiological characteristics, we collected 144 NPD cases with strict quality control through literature mining. RESULTS The difference in ASM activity can differentiate NPD type A from other subtypes, with the ratio of ASM activity to the reference values being lower in type A (threshold 0.045 (4.45%)). Severe variations, such as deletion and insertion, can cause complete loss of ASM function, leading to type A, whereas relatively mild missense mutations generally result in type B. Among reported mutations, the p.Arg3AlafsX76 mutation is highly prevalent in the Chinese population, and the p.R608del mutation is common in Mediterranean countries. The expression profiles of SMPD1 from GTEx and single-cell RNA sequencing data of multiple fetal tissues showed that high expressions of SMPD1 can be observed in the liver, spleen, and brain tissues of adults and hepatoblasts, hematopoietic stem cells, STC2_TLX1-positive cells, mesothelial cells of the spleen, vascular endothelial cells of the cerebellum and the cerebrum of fetuses, indicating that SMPD1 dysfunction is highly likely to have a significant effect on the function of those cell types during development and the clinicians need pay attention to these organs or tissues as well during diagnosis. In addition, we also predicted 21 new pathogenic mutations in the SMPD1 gene that potentially cause the NPD, signifying that more rare cases will be detected with those mutations in SMPD1. Finally, we also analysed the function of the NPD type A cells following the extracellular milieu. CONCLUSIONS Our study is the first to elucidate the effects of SMPD1 mutation on cell types and at the tissue level, which provides new insights into the genotype-phenotype association and can help in the precise diagnosis of NPD.
Collapse
Affiliation(s)
- Ruisong Wang
- College of Life and Environmental Sciences, Hunan University of Arts and Science, 3150 Dongting Ave., Changde, 415000, Hunan Province, People's Republic of China
- Affiliated Hospital of Hunan University of Arts and Science (the Maternal and Child Health Hospital), Medical college, 3150 Dongting Ave., Changde, Hunan Province, People's Republic of China, 415000
| | - Ziyi Qin
- College of Life and Environmental Sciences, Hunan University of Arts and Science, 3150 Dongting Ave., Changde, 415000, Hunan Province, People's Republic of China
| | - Long Huang
- College of Life and Environmental Sciences, Hunan University of Arts and Science, 3150 Dongting Ave., Changde, 415000, Hunan Province, People's Republic of China
| | - Huiling Luo
- College of Life and Environmental Sciences, Hunan University of Arts and Science, 3150 Dongting Ave., Changde, 415000, Hunan Province, People's Republic of China
| | - Han Peng
- College of Life and Environmental Sciences, Hunan University of Arts and Science, 3150 Dongting Ave., Changde, 415000, Hunan Province, People's Republic of China
| | - Xinyu Zhou
- College of Life and Environmental Sciences, Hunan University of Arts and Science, 3150 Dongting Ave., Changde, 415000, Hunan Province, People's Republic of China
| | - Zhixiang Zhao
- College of Life and Environmental Sciences, Hunan University of Arts and Science, 3150 Dongting Ave., Changde, 415000, Hunan Province, People's Republic of China
| | - Mingyao Liu
- College of Life and Environmental Sciences, Hunan University of Arts and Science, 3150 Dongting Ave., Changde, 415000, Hunan Province, People's Republic of China
- Changde Research Centre for Artificial Intelligence and Biomedicine, 3150 Dongting Ave., Changde, 415000, Hunan Province, People's Republic of China
| | - Pinhong Yang
- College of Life and Environmental Sciences, Hunan University of Arts and Science, 3150 Dongting Ave., Changde, 415000, Hunan Province, People's Republic of China.
- Changde Research Centre for Artificial Intelligence and Biomedicine, 3150 Dongting Ave., Changde, 415000, Hunan Province, People's Republic of China.
| | - Tieliu Shi
- College of Life and Environmental Sciences, Hunan University of Arts and Science, 3150 Dongting Ave., Changde, 415000, Hunan Province, People's Republic of China.
- Changde Research Centre for Artificial Intelligence and Biomedicine, 3150 Dongting Ave., Changde, 415000, Hunan Province, People's Republic of China.
| |
Collapse
|
21
|
Pfrieger FW. The Niemann-Pick type diseases – A synopsis of inborn errors in sphingolipid and cholesterol metabolism. Prog Lipid Res 2023; 90:101225. [PMID: 37003582 DOI: 10.1016/j.plipres.2023.101225] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Disturbances of lipid homeostasis in cells provoke human diseases. The elucidation of the underlying mechanisms and the development of efficient therapies represent formidable challenges for biomedical research. Exemplary cases are two rare, autosomal recessive, and ultimately fatal lysosomal diseases historically named "Niemann-Pick" honoring the physicians, whose pioneering observations led to their discovery. Acid sphingomyelinase deficiency (ASMD) and Niemann-Pick type C disease (NPCD) are caused by specific variants of the sphingomyelin phosphodiesterase 1 (SMPD1) and NPC intracellular cholesterol transporter 1 (NPC1) or NPC intracellular cholesterol transporter 2 (NPC2) genes that perturb homeostasis of two key membrane components, sphingomyelin and cholesterol, respectively. Patients with severe forms of these diseases present visceral and neurologic symptoms and succumb to premature death. This synopsis traces the tortuous discovery of the Niemann-Pick diseases, highlights important advances with respect to genetic culprits and cellular mechanisms, and exposes efforts to improve diagnosis and to explore new therapeutic approaches.
Collapse
|
22
|
Dursun FE, Özen F. SMPD1 gene variants in patients with β-Thalassemia major. Mol Biol Rep 2023; 50:3355-3363. [PMID: 36725747 PMCID: PMC10042979 DOI: 10.1007/s11033-023-08275-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/11/2023] [Indexed: 02/03/2023]
Abstract
BACKGROUND β-thalassemia major and Niemann-Pick diseases have similar clinical and laboratory findings. We aimed to investigate the effects of sphingomyelin phosphodiesterase 1 (SMPD1) gene variants on the clinical and laboratory findings in patients with β-thalassemia major. METHODS AND RESULTS This study included 45 patients who were followed up for β-thalassemia major in our clinic. Plasma chitotriosidase, leukocyte acid sphingomyelinase, liver enzymes, ferritin, hemogram, biochemical parameters, SMPD1 gene variant analysis, cardiac T2* MRI, and liver R2 MRI were assessed in all patients. The SMPD1 gene c.132_143del, p.A46_L49del (c.108GCTGGC[4] (p.38AL[4])) (rs3838786) variant was detected in 9 of 45 (20.0%) patients. Plasma chitotriosidase, ferritin, acetyl aminotransferase, and alanine aminotransferase levels were significantly higher in patients with the gene variant than in those without (p < 0.05). Leukocyte acid sphingomyelinase levels were significantly lower in patients with the gene variant than in those without (p < 0.05). CONCLUSION These results imply that the clinical and laboratory findings and some features of disease progression in patients with β-thalassemia major are similar to those of Niemann-Pick disease. They also suggest that SMPD1 gene c.132_143del, p.A46_L49del (c.108GCTGGC[4] (p.38AL[4])) (rs3838786) variant may underlie these clinical findings in patients with β-thalassemia major.
Collapse
Affiliation(s)
- Fadime Ersoy Dursun
- Department of Hematology, Prof. Dr. Süleyman Yalçın City Hospital, Eğitim mah, Dr. Erkin Cd. No:161/1, 34722, Kadıköy, İstanbul, Turkey.
| | - Filiz Özen
- Department of Medical Genetics, Prof. Dr. Süleyman Yalçın City Hospital, Kadıköy, İstanbul, Turkey
| |
Collapse
|
23
|
Shahabi E, Kordi-Tamandani DM, Najafi M, Khajeh A. Novel mutation in SMPD1 gene found by whole-exome sequencing in Niemann-Pick disease patient. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Lan MY, Kang TW, Lan SC, Huang WT. Spontaneous splenic rupture as the first clinical manifestation of Niemann-Pick disease type B: A case report and review of the literature. J Clin Lipidol 2022; 16:434-437. [DOI: 10.1016/j.jacl.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/31/2022] [Accepted: 06/08/2022] [Indexed: 11/29/2022]
|
25
|
Acid Sphingomyelinase Deficiency: A Clinical and Immunological Perspective. Int J Mol Sci 2021; 22:ijms222312870. [PMID: 34884674 PMCID: PMC8657623 DOI: 10.3390/ijms222312870] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/16/2021] [Accepted: 11/25/2021] [Indexed: 02/06/2023] Open
Abstract
Acid sphingomyelinase deficiency (ASMD) is a lysosomal storage disease caused by deficient activity of acid sphingomyelinase (ASM) enzyme, leading to the accumulation of varying degrees of sphingomyelin. Lipid storage leads to foam cell infiltration in tissues, and clinical features including hepatosplenomegaly, pulmonary insufficiency and in some cases central nervous system involvement. ASM enzyme replacement therapy is currently in clinical trial being the first treatment addressing the underlying pathology of the disease. Therefore, presently, it is critical to better comprehend ASMD to improve its diagnose and monitoring. Lung disease, including recurrent pulmonary infections, are common in ASMD patients. Along with lung disease, several immune system alterations have been described both in patients and in ASMD animal models, thus highlighting the role of ASM enzyme in the immune system. In this review, we summarized the pivotal roles of ASM in several immune system cells namely on macrophages, Natural Killer (NK) cells, NKT cells, B cells and T cells. In addition, an overview of diagnose, monitoring and treatment of ASMD is provided highlighting the new enzyme replacement therapy available.
Collapse
|
26
|
Deshpande D, Gupta SK, Sarma AS, Ranganath P, Jain S JMN, Sheth J, Mistri M, Gupta N, Kabra M, Phadke SR, Girisha KM, Dua Puri R, Aggarwal S, Datar C, Mandal K, Tilak P, Muranjan M, Bijarnia-Mahay S, Rama Devi A R, Tayade NB, Ranjan A, Dalal AB. Functional characterization of novel variants in SMPD1 in Indian patients with acid sphingomyelinase deficiency. Hum Mutat 2021; 42:1336-1350. [PMID: 34273913 DOI: 10.1002/humu.24263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/29/2021] [Accepted: 07/15/2021] [Indexed: 02/03/2023]
Abstract
Pathogenic variations in SMPD1 lead to acid sphingomyelinase deficiency (ASMD), that is, Niemann-Pick disease (NPD) type A and B (NPA, NPB), which is a recessive lysosomal storage disease. The knowledge of variant spectrum in Indian patients is crucial for early and accurate NPD diagnosis and genetic counseling of families. In this study, we recruited 40 unrelated pediatric patients manifesting symptoms of ASMD and subnormal ASM enzyme activity. Variations in SMPD1 were studied using Sanger sequencing for all exons, followed by interpretation of variants based on American College of Medical Genetics and Genomics & Association for Molecular Pathology (ACMG/AMP) criteria. We identified 18 previously unreported variants and 21 known variants, including missense, nonsense, deletions, duplications, and splice site variations with disease-causing potential. Eight missense variants were functionally characterized using in silico molecular dynamic simulation and in vitro transient transfection in HEK293T cells, followed by ASM enzyme assay, immunoblot, and immunofluorescence studies. All the variants showed reduced ASM activity in transfected cells confirming their disease-causing potential. The study provides data for efficient prenatal diagnosis and genetic counseling of families with NPD type A and B.
Collapse
Affiliation(s)
- Dipti Deshpande
- Diagnostics Division, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India.,Graduate Studies, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shailesh Kumar Gupta
- Laboratory of Computational and Functional Genomics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India
| | - Asodu Sandeep Sarma
- Diagnostics Division, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India
| | - Prajnya Ranganath
- Diagnostics Division, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India.,Department of Medical Genetics, Nizam's Institute of Medical Sciences, Hyderabad, Telangana, India
| | - Jamal Md Nurul Jain S
- Diagnostics Division, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India
| | - Jayesh Sheth
- Institute of Human Genetics, FRIGE House, Ahmedabad, Gujarat, India
| | - Mehul Mistri
- Institute of Human Genetics, FRIGE House, Ahmedabad, Gujarat, India
| | - Neerja Gupta
- Division of Genetics, Department of Pediatrics, AIIMS, New Delhi, India
| | - Madhulika Kabra
- Division of Genetics, Department of Pediatrics, AIIMS, New Delhi, India
| | - Shubha R Phadke
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Katta M Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Ratna Dua Puri
- Institute of Medical Genetics & Genomics, Sir Ganga Ram hospital, New Delhi, India
| | - Shagun Aggarwal
- Diagnostics Division, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India.,Department of Medical Genetics, Nizam's Institute of Medical Sciences, Hyderabad, Telangana, India
| | - Chaitanya Datar
- Bharati Hospital and Research Center, Pune, Maharashtra, India
| | - Kausik Mandal
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Preetha Tilak
- Division of Human Genetics, St. John's National Academy of Health, Science, Bangalore, Karnataka, India
| | - Mamta Muranjan
- Genetic Clinic, Department of Pediatrics, Seth GS Medical College & KEM Hospital, Mumbai, India
| | | | | | - Naresh B Tayade
- Life Care Hospital, Amravati, India.,Dr. Panjabarao Deshmukh Medical College Amravati, India
| | - Akash Ranjan
- Laboratory of Computational and Functional Genomics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India
| | - Ashwin B Dalal
- Diagnostics Division, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India.,Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
27
|
McGovern MM, Wasserstein MP, Bembi B, Giugliani R, Mengel KE, Vanier MT, Zhang Q, Peterschmitt MJ. Prospective study of the natural history of chronic acid sphingomyelinase deficiency in children and adults: eleven years of observation. Orphanet J Rare Dis 2021; 16:212. [PMID: 33971920 PMCID: PMC8111900 DOI: 10.1186/s13023-021-01842-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/23/2021] [Indexed: 02/07/2023] Open
Abstract
Background Acid sphingomyelinase deficiency (ASMD) (also known as Niemann-Pick disease types A and B) is a rare and debilitating lysosomal storage disorder. This prospective, multi-center, multinational longitudinal study aimed to characterize the clinical features of chronic forms of ASMD and disease burden over time in children and adults. Results Fifty-nine patients (31 males/28 females) ranging in age from 7 to 64 years with chronic ASMD types A/B and B and at least two disease symptoms participated from 5 countries. Disease characteristics were assessed at baseline, after 1 year, and at the final visit (ranging from 4.5 to 11 years). Thirty patients (51%) were < 18 years at baseline (median age 12 years), and 29 were adults (median age 32 years). Overall, 32/59 patients completed the final visit, 9 died, 9 discontinued, and 9 were lost to follow up. Common clinical characteristics that tended to worsen gradually with time were splenomegaly, hepatomegaly, interstitial lung disease, lung diffusion capacity (DLCO), and dyslipidemia. Spleen volumes ranged from 4 to 29 multiples of normal at baseline, and splenomegaly was moderate or severe in 86%, 83%, and 90% of individuals at baseline, year 1, and final visits, respectively. The proportion of all individuals with interstitial lung disease was 66% (39/59) at baseline and 78% (25/32) at the final visit, while median % predicted DLCO decreased by > 10% from baseline to the final visit. Nine patients died (15%), eight of causes related to ASMD (most commonly pneumonia); of these eight patients, five (63%) had symptom onset at or before age 2. Overall, six of the nine deaths occurred before age 50 with three occurring before age 20. Individuals with either severe splenomegaly or prior splenectomy were ten times more likely to have died during the follow-up period than those with smaller or intact spleens (odds ratio 10.29, 95% CI 1.7, 62.7). Most children had growth deficits that persisted into adulthood. Conclusions This study provides important information about the natural history of chronic ASMD and provides a longitudinal view of the spectrum of disease manifestations and major morbidities in children and adults and supports the selection of clinically meaningful endpoints in therapeutic trials.
Collapse
Affiliation(s)
- Margaret M McGovern
- Hsc T-4 Ste 169, Stony Brook University School of Medicine, Stony Brook, NY, 11794, USA.
| | - Melissa P Wasserstein
- Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Bruno Bembi
- Academic Medical Centre Hospital of Udine, Udine, Italy
| | - Roberto Giugliani
- Med Genet Serv and DR BRASIL Research Group, HCPA, Department of Genetics, UFRGS, and INAGEMP, Porto Alegre, Brazil
| | - K Eugen Mengel
- Institute of Clinical Science in LSD, SphinCS, Hochheim, Germany
| | | | - Qi Zhang
- Sanofi Genzyme, Cambridge, MA, USA
| | | |
Collapse
|
28
|
Ancien F, Pucci F, Rooman M. In Silico Analysis of the Molecular-Level Impact of SMPD1 Variants on Niemann-Pick Disease Severity. Int J Mol Sci 2021; 22:4516. [PMID: 33925997 PMCID: PMC8123603 DOI: 10.3390/ijms22094516] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/10/2021] [Accepted: 04/20/2021] [Indexed: 12/12/2022] Open
Abstract
Sphingomyelin phosphodiesterase (SMPD1) is a key enzyme in the sphingolipid metabolism. Genetic SMPD1 variants have been related to the Niemann-Pick lysosomal storage disorder, which has different degrees of phenotypic severity ranging from severe symptomatology involving the central nervous system (type A) to milder ones (type B). They have also been linked to neurodegenerative disorders such as Parkinson and Alzheimer. In this paper, we leveraged structural, evolutionary and stability information on SMPD1 to predict and analyze the impact of variants at the molecular level. We developed the SMPD1-ZooM algorithm, which is able to predict with good accuracy whether variants cause Niemann-Pick disease and its phenotypic severity; the predictor is freely available for download. We performed a large-scale analysis of all possible SMPD1 variants, which led us to identify protein regions that are either robust or fragile with respect to amino acid variations, and show the importance of aromatic-involving interactions in SMPD1 function and stability. Our study also revealed a good correlation between SMPD1-ZooM scores and in vitro loss of SMPD1 activity. The understanding of the molecular effects of SMPD1 variants is of crucial importance to improve genetic screening of SMPD1-related disorders and to develop personalized treatments that restore SMPD1 functionality.
Collapse
Affiliation(s)
- François Ancien
- 3BIO—Computational Biology and Bioinformatics, Université Libre de Bruxelles, Avenue F. Roosevelt 50, 1050 Brussels, Belgium; (F.A.); (F.P.)
- (IB)—Interuniversity Institute of Bioinformatics in Brussels, Boulevard du Triomphe, 1050 Brussels, Belgium
| | - Fabrizio Pucci
- 3BIO—Computational Biology and Bioinformatics, Université Libre de Bruxelles, Avenue F. Roosevelt 50, 1050 Brussels, Belgium; (F.A.); (F.P.)
- (IB)—Interuniversity Institute of Bioinformatics in Brussels, Boulevard du Triomphe, 1050 Brussels, Belgium
| | - Marianne Rooman
- 3BIO—Computational Biology and Bioinformatics, Université Libre de Bruxelles, Avenue F. Roosevelt 50, 1050 Brussels, Belgium; (F.A.); (F.P.)
- (IB)—Interuniversity Institute of Bioinformatics in Brussels, Boulevard du Triomphe, 1050 Brussels, Belgium
| |
Collapse
|
29
|
Hu J, Maegawa GHB, Zhan X, Gao X, Wang Y, Xu F, Qiu W, Han L, Gu X, Zhang H. Clinical, biochemical, and genotype-phenotype correlations of 118 patients with Niemann-Pick disease Types A/B. Hum Mutat 2021; 42:614-625. [PMID: 33675270 DOI: 10.1002/humu.24192] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/24/2021] [Accepted: 03/02/2021] [Indexed: 11/08/2022]
Abstract
Niemann-Pick disease Types A and B (NPA/B) are autosomal recessive disorders caused by variants in the sphingomyelin phosphodiesterase-1 (SMPD1) gene. This study aimed to describe and characterize a cohort of 118 patients diagnosed with NPA/B based on clinical, biochemical, and molecular findings, and to identify sound correlations between laboratory findings and clinical presentations. Decreased peripheral leukocyte acid sphingomyelinase activity levels and increased plasma 7-ketocholesterol levels were significantly correlated with disease onset and severity of the clinical course. We identified 92 different sequence SMPD1 variants, including 41 novel variants, in 118 NPA/B patients (19 NPA, 24 intermediate type, 75 NPB). The most prevalent mutation was p.Arg602His, which accounted for 9.3% of the alleles. Patients homozygous for p.Arg602His or p.Asn522Ser showed a late-onset form of the NPB phenotype. The homozygous SMPD1 variant p.Tyr500His correlated with the early-onset NPB clinical form. Additionally, homozygous variants p.His284SerfsX18, p.Phe465Ser, and p.Ser486Arg were associated with the neuronopathic NPA clinical form. The homozygous variant p.Arg3AlafsX74 was associated with the intermediate clinical form. Our study contributes to the understanding of the natural history of NPA/B and assists in the development of efficacious treatments for patients afflicted with this devastating lysosomal storage disorder.
Collapse
Affiliation(s)
- Jiayue Hu
- Pediatric Endocrinology and Genetic, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gustavo H B Maegawa
- Departments of Pediatrics Genetics and Metabolism, Neuroscience, Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, USA
| | - Xia Zhan
- Pediatric Endocrinology and Genetic, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaolan Gao
- Pediatric Endocrinology and Genetic, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Wang
- Pediatric Endocrinology and Genetic, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Xu
- Pediatric Endocrinology and Genetic, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjuan Qiu
- Pediatric Endocrinology and Genetic, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lianshu Han
- Pediatric Endocrinology and Genetic, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuefan Gu
- Pediatric Endocrinology and Genetic, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huiwen Zhang
- Pediatric Endocrinology and Genetic, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
30
|
Cirak S, Daimagüler HS, Moawia A, Koy A, Yis U. On the differential diagnosis of neuropathy in neurogenetic disorders. MED GENET-BERLIN 2020. [DOI: 10.1515/medgen-2020-2040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Neuropathy might be the presenting or accompanying sign in many neurogenetic and metabolic disorders apart from the classical-peripheral neuropathies or motor-neuron diseases. This causes a diagnostic challenge which is of particular relevance since a number of the underlying diseases could be treated. Thus, we attempt to give a clinical overview on the most common genetic diseases with clinically manifesting neuropathy.
Collapse
Affiliation(s)
- Sebahattin Cirak
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne , University of Cologne , Cologne , Germany
- Center for Rare Diseases, Faculty of Medicine and University Hospital Cologne , University of Cologne , Cologne , Germany
| | - Hülya-Sevcan Daimagüler
- Division of Pediatrics Neurology, Department of Pediatrics, Faculty of Medicine , Dokuz Eylul University , Izmir , Turkey
| | - Abubakar Moawia
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne , University of Cologne , Cologne , Germany
| | - Anne Koy
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne , University of Cologne , Cologne , Germany
- Center for Rare Diseases, Faculty of Medicine and University Hospital Cologne , University of Cologne , Cologne , Germany
| | - Uluc Yis
- Division of Pediatrics Neurology, Department of Pediatrics, Faculty of Medicine , Dokuz Eylul University , Izmir , Turkey
| |
Collapse
|
31
|
Villeneuve T, Guibert N, Collot S, Fajadet P, Colombat M, Courtade-Saïdi M, Levade T, Didier A, Prévot G. Confocal LASER endomicroscopy in Niemann-Pick disease type B. Eur Respir J 2020; 57:13993003.02306-2020. [PMID: 32943409 DOI: 10.1183/13993003.02306-2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/24/2020] [Indexed: 11/05/2022]
Affiliation(s)
- Thomas Villeneuve
- Service de Pneumologie, Hôpital Larrey, Université Paul Sabatier, CHU Toulouse, Toulouse, France
| | - Nicolas Guibert
- Service de Pneumologie, Hôpital Larrey, Université Paul Sabatier, CHU Toulouse, Toulouse, France
| | - Samia Collot
- Service de Radiologie, Hôpital Rangueil, Université Paul Sabatier, CHU Toulouse, Toulouse, France
| | - Pierre Fajadet
- Service de Radiologie, Clinique de l'Union, Toulouse, France
| | - Magali Colombat
- Département d'Anatomie et Cytologie Pathologiques, Institut Universitaire du Cancer, CHU Toulouse, Toulouse, France
| | - Monique Courtade-Saïdi
- Département d'Anatomie et Cytologie Pathologiques, Institut Universitaire du Cancer, CHU Toulouse, Toulouse, France
| | - Thierry Levade
- Laboratoire de Biochimie métabolique, Institut Fédératif de Biologie, Université Paul Sabatier, CHU Toulouse, Toulouse, France
| | - Alain Didier
- Service de Pneumologie, Hôpital Larrey, Université Paul Sabatier, CHU Toulouse, Toulouse, France
| | - Grégoire Prévot
- Service de Pneumologie, Hôpital Larrey, Université Paul Sabatier, CHU Toulouse, Toulouse, France
| |
Collapse
|
32
|
Ota S, Noguchi A, Kondo D, Nakajima Y, Ito T, Arai H, Takahashi T. An Early-Onset Neuronopathic Form of Acid Sphingomyelinase Deficiency: A SMPD1 p.C133Y Mutation in the Saposin Domain of Acid Sphingomyelinase. TOHOKU J EXP MED 2020; 250:5-11. [PMID: 31941852 DOI: 10.1620/tjem.250.5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Acid sphingomyelinase (ASM) is a lysosomal hydrolase that degrades sphingomyelin into ceramide and phosphocholine. Recent crystallographic studies revealed the functional role of the N-terminal ASM saposin domain. ASM deficiency due to mutations in the ASM-encoding sphingomyelin phosphodiesterase 1 (SMPD1) gene causes an autosomal recessive sphingolipid-storage disorder, known as Niemann-Pick disease Type A (NPA) or Type B (NPB). NPA is an early-onset neuronopathic disorder, while NPB is a late-onset non-neuronopathic disorder. A homozygous one-base substitution (c.398G>A) of the SMPD1 gene was identified in an infant with NPA, diagnosed with complete loss of ASM activity in the patient's fibroblasts. This mutation is predicted to substitute tyrosine for cysteine at amino acid residue 133, abbreviated as p.C133Y. The patient showed developmental delay, hepatosplenomegaly and rapid neurological deterioration leading to death at the age of 3 years. To characterize p.C133Y, which may disrupt one of the three disulfide bonds of the N-terminal ASM saposin domain, we performed immunoblotting analysis to explore the expression of a mutant ASM protein in the patient's fibroblasts, showing that the protein was detected as a 70-kDa protein, similar to the wild-type ASM protein. Furthermore, transient expression of p.C133Y ASM protein in COS-7 cells indicated complete loss of ASM enzyme activity, despite that the p.C133Y ASM protein was properly localized to the lysosomes. These results suggest that the proper three-dimensional structure of saposin domain may be essential for ASM catalytic activity. Thus, p.C133Y is associated with complete loss of ASM activity even with stable protein expression and proper subcellular localization.
Collapse
Affiliation(s)
- Shozo Ota
- Department of Neonatology, Akita Red Cross Hospital
| | - Atsuko Noguchi
- Department of Pediatrics, Akita University Graduate School of Medicine
| | - Daiki Kondo
- Department of Pediatrics, Akita University Graduate School of Medicine
| | | | - Tetsuya Ito
- Department of Pediatrics, Fujita Medical University
| | | | - Tsutomu Takahashi
- Department of Pediatrics, Akita University Graduate School of Medicine
| |
Collapse
|
33
|
Opoka L, Wyrostkiewicz D, Radwan-Rohrenschef P, Roży A, Tylki-Szymańska A, Tomkowski W, Szturmowicz M. Combined Emphysema and Interstitial Lung Disease as a Rare Presentation of Pulmonary Involvement in a Patient with Chronic Visceral Acid Sphingomyelinase Deficiency (Niemann-Pick Disease Type B). AMERICAN JOURNAL OF CASE REPORTS 2020; 21:e923394. [PMID: 32759889 PMCID: PMC7431013 DOI: 10.12659/ajcr.923394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 06/20/2020] [Accepted: 05/27/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Niemann-Pick disease is a rare genetic disorder caused by mutations in sphingomyelin phosphodiesterase 1 gene. It results in acid sphingomyelinase deficiency (ASMD) and sphingomyelin intracellular accumulation. Lung disease is diagnosed mostly in chronic visceral ASMD. Ground-glass opacities and smooth interlobular septal thickening are described most frequently. They are localized predominantly in the lower parts of both lungs. CASE REPORT The authors describe a rare type of lung involvement, composed of emphysema and interstitial lung disease (ILD), in a nonsmoking adult male with chronic visceral ASMD. Areas of ground-glass opacities and lung fibrosis presenting as reticulation and bronchiectasis have been described in high-resolution computed tomography of the lungs. The radiological findings were localized predominantly in the middle and lower parts of both lungs. Large air spaces of marginal emphysema, localized in the upper lobes, were also demonstrated. Foamy macrophages, staining blue with May-Grünwald-Giemsa, were found in bronchoalveolar lavage, confirming lung involvement in the course of ASMD. The course of disease was stable, with no hypoxemia at rest. Nevertheless, because of markedly decreased lung transfer for carbon monoxide and significant desaturation on exertion, further controls have been planned, with qualification for long-term oxygen therapy in case of deterioration. CONCLUSIONS We present a unique type of lung involvement, combined emphysema and ILD, in a nonsmoking adult patient with chronic visceral ASMD. On such occasion chronic obstructive pulmonary disease coexisting with ILD as well as chronic pulmonary fibrosis and emphysema syndrome should be excluded.
Collapse
Affiliation(s)
- Lucyna Opoka
- Department of Radiology, National Tuberculosis and Lung Diseases Research Institute, Warsaw, Poland
| | - Dorota Wyrostkiewicz
- 1 Department of Lung Diseases, National Tuberculosis and Lung Diseases Research Institute, Warsaw, Poland
| | - Piotr Radwan-Rohrenschef
- 1 Department of Lung Diseases, National Tuberculosis and Lung Diseases Research Institute, Warsaw, Poland
| | - Adriana Roży
- Department of Genetics and Clinical Immunology, National Tuberculosis and Lung Diseases Research Institute, Warsaw, Poland
| | - Anna Tylki-Szymańska
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children’s Memorial Health Institute, Warsaw, Poland
| | - Witold Tomkowski
- 1 Department of Lung Diseases, National Tuberculosis and Lung Diseases Research Institute, Warsaw, Poland
| | - Monika Szturmowicz
- 1 Department of Lung Diseases, National Tuberculosis and Lung Diseases Research Institute, Warsaw, Poland
| |
Collapse
|
34
|
Niemann-Pick disease A or B in four pediatric patients and SMPD1 mutation carrier frequency in the Mexican population. Ann Hepatol 2020; 18:613-619. [PMID: 31122880 DOI: 10.1016/j.aohep.2018.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 12/14/2018] [Accepted: 11/23/2018] [Indexed: 02/04/2023]
Abstract
INTRODUCTION AND OBJECTIVES Niemann-Pick disease type A (NPD-A) and B (NPD-B) are lysosomal storage diseases with a birth prevalence of 0.4-0.6/100,000. They are caused by a deficiency in acid sphingomyelinase, an enzyme encoded by SMPD1. We analyzed the phenotype and genotype of four unrelated Mexican patients, one with NPD-A and three with NPD-B. PATIENTS AND METHODS Four female patients between 1 and 7 years of age were diagnosed with NPD-A or NPD-B by hepatosplenomegaly, among other clinical characteristics, and by determining the level of acid sphingomyelinase enzymatic activity and sequencing of the SMPD1 gene. Additionally, a 775bp amplicon of SMPD1 (from 11:6393835_6394609, including exons 5 and 6) was analyzed by capillary sequencing in a control group of 50 unrelated healthy Mexican Mestizos. RESULTS An infrequent variant (c.1343A>G p.Tyr448Cys) was observed in two patients. One is the first NPD-A homozygous patient reported with this variant and the other a compound heterozygous NPD-B patient with the c.1829_1831delGCC p.Arg610del variant. Another compound heterozygous patient had the c.1547A>G p.His516Arg variant (not previously described in affected individuals) along with the c.1805G>A p.Arg602His variant. A new c.1263+8C>T pathogenic variant was encountered in a homozygous state in a NPD-B patient. Among the healthy control individuals there was a heterozygous carrier for the c.1550A>T (rs142787001) pathogenic variant, but none with the known pathogenic variants in the 11:6393835_6394609 region of SMPD1. CONCLUSIONS The present study provides further NPD-A or B phenotype-genotype correlations. We detected a heterozygous carrier with a pathogenic variant in 1/50 healthy Mexican mestizos.
Collapse
|
35
|
Homozygous pArg610del Mutation Unusually Associated With Severe Delay of Growth in 2 Acid Sphingomyelinase Deficiency-affected Sibs. J Pediatr Hematol Oncol 2020; 42:e499-e502. [PMID: 30870388 DOI: 10.1097/mph.0000000000001447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Typically, patients with Acid Sphingomyelinase Deficiency (ASMD) because of p.Arg610del mutation, have mild phenotype with normal linear growth. OBSERVATION We reported the case of 2 Tunisian brothers who have been referred for splenomegaly, polyadenopathies, pubertal, and growth delay. Molecular testing of SMPD1 gene revealed the presence of a homozygous p.Arg610del mutation. Lysosphingomyelin and its isoform-509 were both increased confirming ASMD for both cases. Growth hormone deficiency was highly suspected but growth hormone response after stimulating tests was acceptable for both patients. CONCLUSIONS There is no correlation between phenotype-genotype in case of p.Arg610del mutation that could be associated to a severe delay of growth.
Collapse
|
36
|
Eskes ECB, Sjouke B, Vaz FM, Goorden SMI, van Kuilenburg ABP, Aerts JMFG, Hollak CEM. Biochemical and imaging parameters in acid sphingomyelinase deficiency: Potential utility as biomarkers. Mol Genet Metab 2020; 130:16-26. [PMID: 32088119 DOI: 10.1016/j.ymgme.2020.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/19/2022]
Abstract
Acid Sphingomyelinase Deficiency (ASMD), or Niemann-Pick type A/B disease, is a rare lipid storage disorder leading to accumulation of sphingomyelin and its precursors primarily in macrophages. The disease has a broad phenotypic spectrum ranging from a fatal infantile form with severe neurological involvement (the infantile neurovisceral type) to a primarily visceral form with different degrees of pulmonary, liver, spleen and skeletal involvement (the chronic visceral type). With the upcoming possibility of treatment with enzyme replacement therapy, the need for biomarkers that predict or reflect disease progression has increased. Biomarkers should be validated for their use as surrogate markers of clinically relevant endpoints. In this review, clinically important endpoints as well as biochemical and imaging markers of ASMD are discussed and potential new biomarkers are identified. We suggest as the most promising biomarkers that may function as surrogate endpoints in the future: diffusion capacity measured by spirometry, spleen volume, platelet count, low-density lipoprotein cholesterol, liver fibrosis measured with a fibroscan, lysosphingomyelin and walked distance in six minutes. Currently, no biomarkers have been validated. Several plasma markers of lipid-laden cells, fibrosis or inflammation are of high potential as biomarkers and deserve further study. Based upon current guidelines for biomarkers, recommendations for the validation process are provided.
Collapse
Affiliation(s)
- Eline C B Eskes
- Amsterdam UMC, University of Amsterdam, Department of Endocrinology and Metabolism, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Barbara Sjouke
- Amsterdam UMC, University of Amsterdam, Department of Endocrinology and Metabolism, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Frédéric M Vaz
- Amsterdam UMC, University of Amsterdam, Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Gastroenterology & Metabolism, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Susan M I Goorden
- Amsterdam UMC, University of Amsterdam, Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Gastroenterology & Metabolism, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - André B P van Kuilenburg
- Amsterdam UMC, University of Amsterdam, Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Gastroenterology & Metabolism, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Johannes M F G Aerts
- Leiden Institute of Chemistry, University of Leiden, Department of Medical Biochemistry, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Carla E M Hollak
- Amsterdam UMC, University of Amsterdam, Department of Endocrinology and Metabolism, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
37
|
Takaichi Y, Chambers JK, Kok MK, Uchiyama H, Haritani M, Hasegawa D, Nakayama H, Uchida K. Feline Niemann-Pick Disease With a Novel Mutation of SMPD1 Gene. Vet Pathol 2020; 57:559-564. [PMID: 32347185 DOI: 10.1177/0300985820921810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A 4-month-old female mixed-breed cat showed gait disturbance and eventual dysstasia with intention tremor and died at 14 months of age. Postmortem histological analysis revealed degeneration of neuronal cells, alveolar epithelial cells, hepatocytes, and renal tubular epithelial cells. Infiltration of macrophages was observed in the nervous system and visceral organs. The cytoplasm of neuronal cells was filled with Luxol fast blue (LFB)-negative and periodic acid-Schiff (PAS)-negative granules, and the cytoplasm of macrophages was LFB-positive and PAS-negative. Ultrastructurally, concentric deposits were observed in the brain and visceral organs. Genetic and biochemical analysis revealed a nonsense mutation (c.1017G>A) in the SMPD1 gene, a decrease of SMPD1 mRNA expression, and reduced acid sphingomyelinase immunoreactivity. Therefore, this cat was diagnosed as having Niemann-Pick disease with a mutation in the SMPD1 gene, a syndrome analogous to human Niemann-Pick disease type A.
Collapse
|
38
|
Al-Eitan L, Alqa'qa' K, Amayreh W, Aljamal H, Khasawneh R, Al-Zoubi B, Okour I, Haddad A, Haddad Y, Haddad H. Novel mutations in the SMPD1 gene in Jordanian children with Acid sphingomyelinase deficiency (Niemann-Pick types A and B). Gene 2020; 747:144683. [PMID: 32311413 DOI: 10.1016/j.gene.2020.144683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/06/2020] [Accepted: 04/15/2020] [Indexed: 01/13/2023]
Abstract
Acid sphingomyelinase (ASM) deficiency (ASMD) is a spectrum that includes Niemann-Pick disease (NPD) types A (NPD A) and B (NPD B). ASMD is characterized by intracellular accumulation of unesterified cholesterol and gangliosides within the endosomal-lysosomal system. It is caused by different mutations in SMPD1 gene that result in reduction or complete absence of acid sphingomyelinase activity in the cells. Herein, four unrelated consanguineous families with two NPD A and three NPD B patients were assessed for their genotypes via sequencing of the SMPD1 gene and their acid sphingomyelinase enzymatic activity. Among the eight identified mutations, three were novel and reported for the first time in Jordanian families (c.120_131delGCTGGCGCTGGC or c.132_143delGCTGGCGCTGGC, c.1758T > G, and c.1344T > A). All the patients displayed ASM activity lower than 1.3 µmol/l/h (P < 0.001). Genotyping and enzymatic assessment might play a significant role in disease identification in people at risk to facilitate genetic counseling in the future.
Collapse
Affiliation(s)
- Laith Al-Eitan
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan; Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | - Kifah Alqa'qa'
- Department of Pediatrics, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Wajdi Amayreh
- Department of Pediatrics, Metabolic Genetics Clinic, Queen Rania Al-Abdullah Children's Hospital, King Hussein Medical Centre, Amman 11855, Jordan
| | - Hanan Aljamal
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Rame Khasawneh
- Department of Pathology, Division of Molecular Genetic Pathology, King Hussein Medical Center, Amman 11733, Jordan
| | - Batool Al-Zoubi
- Princess Haya Biotechnology Center, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Israa Okour
- Princess Haya Biotechnology Center, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Amany Haddad
- Princess Haya Biotechnology Center, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Yazan Haddad
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno 61300, Czech Republic; Central European Institute of Technology, Brno University of Technology, Brno 61200, Czech Republic
| | - Hazem Haddad
- Princess Haya Biotechnology Center, Jordan University of Science and Technology, Irbid 22110, Jordan
| |
Collapse
|
39
|
Zahedi Abghari F, Bayat F, Razipour M, Karimipoor M, Taghavi-Basmenj M, Zeinali S, Davoudi-Dehaghani E. Characterization of Niemann-Pick diseases genes mutation spectrum in Iran and identification of a novel mutation in SMPD1 gene. Med J Islam Repub Iran 2020; 33:126. [PMID: 32280632 PMCID: PMC7137857 DOI: 10.34171/mjiri.33.126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Indexed: 02/05/2023] Open
Abstract
Background: Niemann-Pick diseases are rare inherited lipid storage disorders caused by mutations in the SMPD1, NPC1, and NPC2 genes. The aim of this study was to assess the mutation spectrum of a cohort of Iranian Niemann-Pick patients.
Methods: A consanguineous couple with a child suspected of having Niemann-Pick disease type A (died at age 2) was screened for gene mutations in the SMPD1 gene. Sanger sequencing was performed for all exons and exon-intron boundary regions. A literature review on SMPD1, NPC1, and NPC2 genes mutations in Iran was conducted using published original papers on this subject.
Results: A novel frameshift c.762delG (p.Leu256fs*) at a heterozygous state was identified in the parents. According to the review study, identified mutations in 39 Iranian patients were concentrated in exon 2 of the SMPD1 gene and exons 8 and 9 of the NPC1 gene.
Conclusion: Niemann-Pick diseases genes mutation analysis (SMPD1, NPC1, and NPC2) in Iran shows the genetic heterogeneity of these diseases in this country. More studies with larger sample sizes should be conducted to further examine genetic changes associated with Niemann-Pick diseases in Iran.
Collapse
Affiliation(s)
- Fateme Zahedi Abghari
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Bayat
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Masoumeh Razipour
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Morteza Karimipoor
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Maryam Taghavi-Basmenj
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Sirous Zeinali
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Elham Davoudi-Dehaghani
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
40
|
Cheema HA, Rasool IG, Anjum MN, Zahoor MY. Mutational spectrum of SMPD1 gene in Pakistani Niemann-Pick disease patients. Pak J Med Sci 2020; 36:479-484. [PMID: 32292456 PMCID: PMC7150380 DOI: 10.12669/pjms.36.3.467] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Objective: Genetic variation analysis of rare autosomal recessive Niemann-Pick disease (NPD) Pakistani patients. Methods: We sequenced the SMPD1 gene including its all coding and flanking regions in seven unrelated sporadic patients suffering from Niemann-Pick disease through targeted exome sequencing. Genetic variants mapping and their protein predictions were evaluated using different bioinformatics tools and clinical phenotypes were correlated. The study was conducted from January 2018 to March 2019 at The Children’s Hospital Lahore. Results: We have mapped five different mutations in SMPD1 gene of enrolled patients with a novel homozygous missense variant (c.1718G>C) (p.Trp573Ser) in one patient. A missense mutation (c.1267C>T) (p.His423Tyr) has been identified in three unrelated patients. A nonsense mutation (c.1327C>T) (p.Arg443Term) and one missense mutation (c.1493G>A) (p.Arg498His) mapped in one patient each. A compound heterozygous mutation has been mapped in one patient (c.740G>A) (p.Gly247Asp); (c.1493G>A) (p.Arg498His). Pathogenic effect of novel variant has been predicted through in-silico analysis and has not been reported in general overall population in the globe. Conclusion: This is the first report of genetic demographic assessment of Niemann-Pick disease in Pakistan. The mapped mutations would be helpful to build a disease variants algorithm of Pakistani population. This will be used for determining disease clinical magnitude along with provision of genetic screening services in affected families.
Collapse
Affiliation(s)
- Huma Arshad Cheema
- Dr. Huma Arshad Cheema, MBBS, MCPS, DPGN. Department of Pediatric Gastroenterology and Hepatology, The Children's Hospital & The Institute for Child Health, Lahore, Pakistan
| | - Iqra Ghulam Rasool
- Iqra Ghulam Rasool, M.Phil. Institute of Biochemistry & Biotechnology, University of Veterinary & Animal Sciences, Lahore, Pakistan
| | - Muhammad Nadeem Anjum
- Dr. Muhammad Nadeem Anjum, MBBS, FCPS. Department of Pediatric Gastroenterology and Hepatology, The Children's Hospital & The Institute for Child Health, Lahore, Pakistan
| | - Muhammad Yasir Zahoor
- Dr. Muhammad Yasir Zahoor, PhD. Institute of Biochemistry & Biotechnology, University of Veterinary & Animal Sciences, Lahore, Pakistan
| |
Collapse
|
41
|
Bhoyrul B, Wright D, Heptinstall L, Barski R, Berry I, Clark S. A novel association between angiokeratoma corporis diffusum and acid sphingomyelinase deficiency. Pediatr Dermatol 2019; 36:906-908. [PMID: 31576605 DOI: 10.1111/pde.13889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Angiokeratoma corporis diffusum refers to symmetrical clusters of minute red papules in a "bathing trunk" distribution and is considered the cutaneous hallmark of Fabry disease. Acid sphingomyelinase deficiency is an autosomal recessive sphingolipidosis, which presents with massive hepatosplenomegaly, pulmonary infiltrates, and skeletal abnormalities. We present the unusual case of a 12-year-old girl with acid sphingomyelinase deficiency who developed characteristic lesions of angiokeratoma corporis diffusum.
Collapse
Affiliation(s)
- Bevin Bhoyrul
- Department of Dermatology, Chapel Allerton Hospital, Leeds, UK
| | - David Wright
- Department of Dermatology, Chapel Allerton Hospital, Leeds, UK
| | - Lesley Heptinstall
- Genomics Diagnostic Laboratory, Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester, UK
| | - Robert Barski
- Department of Biochemical Genetics, St James's University Hospital, Leeds, UK
| | - Ian Berry
- Leeds Genetics Laboratory, St James's University Hospital, Leeds, UK
| | - Sheila Clark
- Department of Dermatology, Chapel Allerton Hospital, Leeds, UK
| |
Collapse
|
42
|
Callahan S, Pal K, Gomez D, Stoler M, Mehrad B. Two Siblings With Interstitial Lung Disease. Chest 2019; 153:e75-e79. [PMID: 29626972 DOI: 10.1016/j.chest.2017.12.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/24/2017] [Accepted: 12/23/2017] [Indexed: 10/17/2022] Open
Abstract
A 52-year-old white woman and her 61-year-old white brother separately presented with gradually worsening dyspnea on exertion and cough, and evidence of interstitial lung disease on chest imaging.
Collapse
Affiliation(s)
- Sean Callahan
- Division of Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, VA
| | - Kavita Pal
- Division of Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, VA
| | - Diana Gomez
- Division of Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, VA
| | - Mark Stoler
- Department of Pathology, University of Virginia, Charlottesville, VA
| | - Borna Mehrad
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, Gainesville, FL.
| |
Collapse
|
43
|
Pulmonary Type B Niemann-Pick Disease Successfully Treated with Lung Transplantation. Case Rep Transplant 2019; 2019:9431751. [PMID: 31316859 PMCID: PMC6601489 DOI: 10.1155/2019/9431751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/09/2019] [Indexed: 11/17/2022] Open
Abstract
Background Niemann-Pick Disease (NPD) type B is a rare autosomal recessive disease characterised by hepatosplenomegaly and pulmonary disease, highlighted by preserved volumes and diminished diffusion capacity of the lung for carbon monoxide (DLCO) on pulmonary function tests (PFTs). There is no current accepted treatment for the disease. We present a case of a successful bilateral lung transplant in a patient with a DLCO of 14%, and significant pulmonary changes attributable to NPD type B on computed tomography (CT) chest, and both microscopic and macroscopic assessment of the lung explant. To the author's knowledge this is only the third case of lung transplantation in a patient with NPD type B and is one of two current living patients post lung transplantation for NPD type B. Case Report A 64-year-old male patient underwent bilateral lung transplantation for NPD type B. Preoperative PFTs demonstrated preserved volumes with significantly decreased DLCO, with imaging showing a diffuse reticular interstitial pattern, typical of chronic fibrotic lung disease. The patient suffered from primary graft dysfunction type 3 in the postoperative period as well as rejection managed with methylprednisolone and intravenous immunoglobulin. The patient improved steadily and was discharged 80 days post-transplantation. Conclusions This case is only the third reported case of lung transplantation in a patient with NPD type B and the second case of a patient with NPD type B currently living post-transplantation, being at postoperative day (POD) 267 at the time of manuscript drafting. It demonstrates that lung transplantation, although hazardous, is a viable strategy for treatment in patients with NPD type B who have significant pulmonary involvement.
Collapse
|
44
|
Ysselstein D, Shulman JM, Krainc D. Emerging links between pediatric lysosomal storage diseases and adult parkinsonism. Mov Disord 2019; 34:614-624. [PMID: 30726573 PMCID: PMC6520126 DOI: 10.1002/mds.27631] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/08/2019] [Accepted: 01/15/2019] [Indexed: 01/01/2023] Open
Abstract
Lysosomal storage disorders comprise a clinically heterogeneous group of autosomal-recessive or X-linked genetic syndromes caused by disruption of lysosomal biogenesis or function resulting in accumulation of nondegraded substrates. Although lysosomal storage disorders are diagnosed predominantly in children, many show variable expressivity with clinical presentations possible later in life. Given the important role of lysosomes in neuronal homeostasis, neurological manifestations, including movement disorders, can accompany many lysosomal storage disorders. Over the last decade, evidence from genetics, clinical epidemiology, cell biology, and biochemistry have converged to implicate links between lysosomal storage disorders and adult-onset movement disorders. The strongest evidence comes from mutations in Glucocerebrosidase, which cause Gaucher's disease and are among the most common and potent risk factors for PD. However, recently, many additional lysosomal storage disorder genes have been similarly implicated, including SMPD1, ATP13A2, GALC, and others. Examination of these links can offer insight into pathogenesis of PD and guide development of new therapeutic strategies. We systematically review the emerging genetic links between lysosomal storage disorders and PD. © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Daniel Ysselstein
- Department of Neurology, Ken and Ruth Davee Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Joshua M. Shulman
- Departments of Neurology, Neuroscience, and Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Jan and Dan Duncan Neurologic Research Institute, Texas Children’s Hospital, Houston, TX
| | - Dimitri Krainc
- Department of Neurology, Ken and Ruth Davee Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
45
|
Alcalay RN, Mallett V, Vanderperre B, Tavassoly O, Dauvilliers Y, Wu RY, Ruskey JA, Leblond CS, Ambalavanan A, Laurent SB, Spiegelman D, Dionne-Laporte A, Liong C, Levy OA, Fahn S, Waters C, Kuo SH, Chung WK, Ford B, Marder KS, Kang UJ, Hassin-Baer S, Greenbaum L, Trempe JF, Wolf P, Oliva P, Zhang XK, Clark LN, Langlois M, Dion PA, Fon EA, Dupre N, Rouleau GA, Gan-Or Z. SMPD1 mutations, activity, and α-synuclein accumulation in Parkinson's disease. Mov Disord 2019; 34:526-535. [PMID: 30788890 PMCID: PMC6469643 DOI: 10.1002/mds.27642] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 11/21/2018] [Accepted: 01/10/2019] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND SMPD1 (acid-sphingomyelinase) variants have been associated with Parkinson's disease in recent studies. The objective of this study was to further investigate the role of SMPD1 mutations in PD. METHODS SMPD1 was sequenced in 3 cohorts (Israel Ashkenazi Jewish cohort, Montreal/Montpellier, and New York), including 1592 PD patients and 975 controls. Additional data were available for 10,709 Ashkenazi Jewish controls. Acid-sphingomyelinase activity was measured by a mass spectrometry-based assay in the New York cohort. α-Synuclein levels were measured in vitro following CRISPR/Cas9-mediated knockout and siRNA knockdown of SMPD1 in HeLa and BE(2)-M17 cells. Lysosomal localization of acid-sphingomyelinase with different mutations was studied, and in silico analysis of their effect on acid-sphingomyelinase structure was performed. RESULTS SMPD1 mutations were associated with PD in the Ashkenazi Jewish cohort, as 1.4% of PD patients carried the p.L302P or p.fsP330 mutation, compared with 0.37% in 10,709 Ashkenazi Jewish controls (OR, 3.7; 95%CI, 1.6-8.2; P = 0.0025). In the Montreal/Montpellier cohort, the p.A487V variant was nominally associated with PD (1.5% versus 0.14%; P = 0.0065, not significant after correction for multiple comparisons). Among PD patients, reduced acid-sphingomyelinase activity was associated with a 3.5- to 5.8-year earlier onset of PD in the lowest quartile versus the highest quartile of acid-sphingomyelinase activity (P = 0.01-0.001). We further demonstrated that SMPD1 knockout and knockdown resulted in increased α-synuclein levels in HeLa and BE(2)-M17 dopaminergic cells and that the p.L302P and p.fsP330 mutations impair the traffic of acid-sphingomyelinase to the lysosome. CONCLUSIONS Our results support an association between SMPD1 variants, acid-sphingomyelinase activity, and PD. Furthermore, they suggest that reduced acid-sphingomyelinase activity may lead to α-synuclein accumulation. © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Roy N. Alcalay
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Victoria Mallett
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Benoît Vanderperre
- McGill Parkinson Program and Neurodegenerative Diseases Group, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Omid Tavassoly
- McGill Parkinson Program and Neurodegenerative Diseases Group, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Yves Dauvilliers
- Sleep Unit, National Reference Network for Narcolepsy, Department of Neurology Hôpital-Gui-de Chauliac, CHU Montpellier, INSERM U1061, France
| | - Richard Y.J. Wu
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada
- Imperial College School of Medicine, Imperial College London, London, United Kingdom
| | - Jennifer A. Ruskey
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Claire S. Leblond
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Amirthagowri Ambalavanan
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Sandra B. Laurent
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Dan Spiegelman
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Alexandre Dionne-Laporte
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Christopher Liong
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Oren A. Levy
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Stanley Fahn
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Cheryl Waters
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Sheng-Han Kuo
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Wendy K. Chung
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Blair Ford
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Karen S. Marder
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Un Jung Kang
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Sharon Hassin-Baer
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Neurology, Sheba Medical Center, Tel Hashomer, Israel
- Movement Disorders Institute, Sheba Medical Center, Tel Hashomerf, Israel
| | - Lior Greenbaum
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel Hashomer, Israel
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel
| | - Jean-Francois Trempe
- Department of Pharmacology & Therapeutics, McGill University, Montréal, Québec, Canada
| | - Pavlina Wolf
- Translational Science, Sanofi, Framingham, MA, USA
| | - Petra Oliva
- Translational Science, Sanofi, Framingham, MA, USA
| | | | - Lorraine N. Clark
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
- Laboratory of Personalized Genomic Medicine, Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Melanie Langlois
- Axe neurosciences du CHU de Québec - Université Laval, Québec, QC, Canada
- Faculty of Medicine, Department of Medicine, Laval University, Québec, QC, Canada
| | - Patrick A. Dion
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Edward A. Fon
- McGill Parkinson Program and Neurodegenerative Diseases Group, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Nicolas Dupre
- Axe neurosciences du CHU de Québec - Université Laval, Québec, QC, Canada
- Faculty of Medicine, Department of Medicine, Laval University, Québec, QC, Canada
| | - Guy A. Rouleau
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Ziv Gan-Or
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| |
Collapse
|
46
|
Lipiński P, Kuchar L, Zakharova EY, Baydakova GV, Ługowska A, Tylki-Szymańska A. Chronic visceral acid sphingomyelinase deficiency (Niemann-Pick disease type B) in 16 Polish patients: long-term follow-up. Orphanet J Rare Dis 2019; 14:55. [PMID: 30795770 PMCID: PMC6387484 DOI: 10.1186/s13023-019-1029-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 02/10/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Acid sphingomyelinase deficiency (ASMD), due to mutations in the sphingomyelin phosphodiesterase 1 (SMPD1) gene, is divided into infantile neurovisceral ASMD (Niemann-Pick type A), chronic neurovisceral ASMD (intermediate form, Niemann-Pick type A/B) and chronic visceral ASMD (Niemann-Pick type B). We conducted a long-term observational, single-center study including 16 patients with chronic visceral ASMD. RESULTS 12 patients were diagnosed in childhood and 4 others in adulthood, the oldest at the age of 50. The mean time of follow-up was approximately 10 years (range: 6 months - 36 years). Splenomegaly was noted in all patients at diagnosis. Hepatomegaly was observed in 88% of patients. Moderately elevated (several-fold above the upper limit of normal values) serum transaminases were noted in 38% of patients. Cherry-red spots were found in five Gypsy children from one family and also in one adult Polish patient, a heterozygote for p.delR610 mutation. Dyslipidemia was noted in 50% of patients. Interstitial lung disease was diagnosed in 44% of patients. Plasmatic lysosphingomyelin (SPC) was elevated in all the patients except one with p.V36A homozygosity and a very mild phenotype also presenting with elevated plasmatic SPC-509 but normal chitotriosidase activity. The most common variant of SMPD1 gene was p.G166R. We found a previously unreported variant in exon 2 (c.491G > T, p.G164 V) in one patient. CONCLUSIONS Chronic visceral ASMD could constitute a slowly progressing disease with a relatively good outcome. The combined measurement of lysosphingomyelin (SPC) and lysospingomyelin-509 (SPC-509) is an essential method for the assessment of ASMD course.
Collapse
Affiliation(s)
- Patryk Lipiński
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children's Memorial Health Institute, Warsaw, Poland
| | - Ladislav Kuchar
- Institute of Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Ekaterina Y Zakharova
- Department of Inherited Metabolic Diseases, Research Center for Medical Genetics, Moscow, Russian Federation
| | - Galina V Baydakova
- Department of Inherited Metabolic Diseases, Research Center for Medical Genetics, Moscow, Russian Federation
| | - Agnieszka Ługowska
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Anna Tylki-Szymańska
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children's Memorial Health Institute, Warsaw, Poland.
| |
Collapse
|
47
|
Nasereddin A, Ereqat S. Deep sequencing of SMPD1 gene revealed a heterozygous frameshift mutation (p.Ser192Alafs) in a Palestinian infant with Niemann-Pick disease type A: a case report. J Med Case Rep 2018; 12:272. [PMID: 30223864 PMCID: PMC6142321 DOI: 10.1186/s13256-018-1805-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 08/16/2018] [Indexed: 12/19/2022] Open
Abstract
Background Niemann–Pick disease is caused by reduced level of the lysosomal enzyme acid sphingomyelinase. Children can survive between 2 and 12 years based on the disease type. Two main types are well known: type A and B. Niemann–Pick disease type A is characterized by severe central nervous system deterioration and hepatosplenomegaly while type B is a progressive hypersplenism accompanied with gradual deterioration of pulmonary function. Case presentation We describe an 11-month-old Palestinian baby boy with hepatosplenomegaly, hypotonia, delayed motor development, laryngomalacia, bilateral cherry-red spots, and failure to thrive. Metabolic screening, blood count, differential tests, immunology screen, infectious disease screen, urine, biochemical tests as well as molecular diagnosis were performed. The molecular diagnosis was done by amplifying the whole sphingomyelin phosphodiesterase 1 (SMPD1) gene, followed by deep sequencing. The obtained sequences were aligned, de novo assembled and compared to human reference gene (GenBank GeneID: NG_011780.1, Ensembl version ENSG00000166311 and protein identified as UniProtKB – P17405). Two known mutations were identified in our patient: the pathogenic frameshift mutation NM_000543.4(SMPD1):c.573delT (p.Ser192Alafs) and the benign polymorphism NM_000543.4(SMPD1):c.107T>C (p.Val36Ala). The enzyme study showed a very low level of enzymatic activity of acidic sphingomyelinase (0.1 nmol/ml per hour). Correlations between clinical findings, laboratory data, and sequence analysis are presented. Conclusions In conclusion, this is the first report about a heterozygote frameshift p.Ser192AlafsX65 in a Palestinian patient with Niemann–Pick disease type A, emphasizing the importance of deep sequencing in genetic diagnosis of this rare inherited disease.
Collapse
Affiliation(s)
- Abedelmajeed Nasereddin
- Al-Quds Nutrition and Health Research Institute, Faculty of Medicine-Al-Quds University, P.O. Box 20760, Abu-Dis-Esat Jerusalem, Palestine. .,Genomics Applications Lab, The Core Research Facility, Faculty of Medicine, The Hebrew University, Jerusalem, Israel.
| | - Suheir Ereqat
- Biochemistry and Molecular Biology Department, Faculty of Medicine-Al-Quds University, Abu Dis-East Jerusalem, Palestine
| |
Collapse
|
48
|
Bourgeois P, Esteve C, Chaix C, Béroud C, Lévy N, Fabre A, Badens C. Tricho-Hepato-Enteric Syndrome mutation update: Mutations spectrum of TTC37 and SKIV2L, clinical analysis and future prospects. Hum Mutat 2018. [PMID: 29527791 DOI: 10.1002/humu.23418] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tricho-Hepato-Enteric syndrome (THES) is a very rare autosomal recessive syndromic enteropathy caused by mutations of either TTC37 or SKIV2L genes. Very little is known of these two gene products in mammals nor of the pathophysiology of the disease. Since the identification of the genes, we have set up the molecular diagnostic of THES in routine, gathering a large cohort with clinical and molecular data. Here, we report the phenotype and genotype analysis of this cohort together with an extensive literature review of THES cases worldwide, that is, 96 individuals harboring mutations in one gene or the other. We set up locus-specific databases for both genes and reviewed the type of mutation as well as their localization in the proteins. No hot spot is evidenced for any type of mutation. The phenotypic analysis was first made on the whole cohort but is limited due to heterogeneity in clinical descriptions. We then examined the lab diagnostic cohort in detail for clinical manifestations. For the first time, we are able to suggest that patients lacking SKIV2L seem more severely affected than those lacking TTC37, in terms of liver damage and prenatal growth impairment.
Collapse
Affiliation(s)
- Patrice Bourgeois
- Molecular genetics Laboratory, Medical genetics and Cell biology Department, La Timone children's hospital, Assistance-Publique des Hôpitaux de Marseille (APHM), Marseille, France.,GMGF, Aix Marseille Univ, Marseille, France
| | | | - Charlène Chaix
- Molecular genetics Laboratory, Medical genetics and Cell biology Department, La Timone children's hospital, Assistance-Publique des Hôpitaux de Marseille (APHM), Marseille, France
| | - Christophe Béroud
- Molecular genetics Laboratory, Medical genetics and Cell biology Department, La Timone children's hospital, Assistance-Publique des Hôpitaux de Marseille (APHM), Marseille, France.,GMGF, Aix Marseille Univ, Marseille, France
| | - Nicolas Lévy
- Molecular genetics Laboratory, Medical genetics and Cell biology Department, La Timone children's hospital, Assistance-Publique des Hôpitaux de Marseille (APHM), Marseille, France.,GMGF, Aix Marseille Univ, Marseille, France
| | | | - Alexandre Fabre
- GMGF, Aix Marseille Univ, Marseille, France.,Multidisciplinary Pediatric Service - La Timone Children's Hospital, Assistance-Publique des Hôpitaux de Marseille (APHM), Marseille, France
| | - Catherine Badens
- Molecular genetics Laboratory, Medical genetics and Cell biology Department, La Timone children's hospital, Assistance-Publique des Hôpitaux de Marseille (APHM), Marseille, France.,GMGF, Aix Marseille Univ, Marseille, France
| |
Collapse
|
49
|
Quarello P, Spada M, Porta F, Vassallo E, Timeus F, Fagioli F. Hematopoietic stem cell transplantation in Niemann-Pick disease type B monitored by chitotriosidase activity. Pediatr Blood Cancer 2018; 65. [PMID: 29090525 DOI: 10.1002/pbc.26811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 06/20/2017] [Accepted: 07/21/2017] [Indexed: 11/07/2022]
Abstract
Here, we report a patient with Niemann-Pick disease type B, with early severe onset of disease and pulmonary involvement, treated with hematopoietic stem cell transplant (HSCT) from a bone marrow matched unrelated donor. We confirm that HSCT is feasible and potentially beneficial for patients with severe phenotype. Noteworthy, we discussed the potential usefulness of the activity of peripheral chitotriosidase for the longitudinal evaluation of HSCT success and effectiveness.
Collapse
Affiliation(s)
- Paola Quarello
- Paediatric Onco-Haematology, Stem Cell Transplantation and Cellular Therapy Division, Regina Margherita Children's Hospital, Torino, Italy
| | - Marco Spada
- Department of Pediatrics, University of Torino, Torino, Italy
| | - Francesco Porta
- Department of Pediatrics, University of Torino, Torino, Italy
| | - Elena Vassallo
- Paediatric Onco-Haematology, Stem Cell Transplantation and Cellular Therapy Division, Regina Margherita Children's Hospital, Torino, Italy
| | - Fabio Timeus
- Paediatric Onco-Haematology, Stem Cell Transplantation and Cellular Therapy Division, Regina Margherita Children's Hospital, Torino, Italy
| | - Franca Fagioli
- Paediatric Onco-Haematology, Stem Cell Transplantation and Cellular Therapy Division, Regina Margherita Children's Hospital, Torino, Italy
| |
Collapse
|
50
|
Torres S, Balboa E, Zanlungo S, Enrich C, Garcia-Ruiz C, Fernandez-Checa JC. Lysosomal and Mitochondrial Liaisons in Niemann-Pick Disease. Front Physiol 2017; 8:982. [PMID: 29249985 PMCID: PMC5714892 DOI: 10.3389/fphys.2017.00982] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 11/16/2017] [Indexed: 12/28/2022] Open
Abstract
Lysosomal storage disorders (LSD) are characterized by the accumulation of diverse lipid species in lysosomes. Niemann-Pick type A/B (NPA/B) and type C diseases Niemann-Pick type C (NPC) are progressive LSD caused by loss of function of distinct lysosomal-residing proteins, acid sphingomyelinase and NPC1, respectively. While the primary cause of these diseases differs, both share common biochemical features, including the accumulation of sphingolipids and cholesterol, predominantly in endolysosomes. Besides these alterations in lysosomal homeostasis and function due to accumulation of specific lipid species, the lysosomal functional defects can have far-reaching consequences, disrupting intracellular trafficking of sterols, lipids and calcium through membrane contact sites (MCS) of apposed compartments. Although MCS between endoplasmic reticulum and mitochondria have been well studied and characterized in different contexts, emerging evidence indicates that lysosomes also exhibit close proximity with mitochondria, which translates in their mutual functional regulation. Indeed, as best illustrated in NPC disease, alterations in the lysosomal-mitochondrial liaisons underlie the secondary accumulation of specific lipids, such as cholesterol in mitochondria, resulting in mitochondrial dysfunction and defective antioxidant defense, which contribute to disease progression. Thus, a better understanding of the lysosomal and mitochondrial interactions and trafficking may identify novel targets for the treatment of Niemann-Pick disease.
Collapse
Affiliation(s)
- Sandra Torres
- Department of Cell Death and Proliferation, Intituto de Investigaciones Biomédicas de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona, Spain.,Liver Unit and Hospital Clinc I Provincial, Centro de Investigación Biomédica en Red (CIBEREHD), Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Elisa Balboa
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Silvana Zanlungo
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carlos Enrich
- Departamento de Biomedicina, Unidad de Biología Celular, Centro de Investigación Biomédica CELLEX, Facultad de Medicina y Ciencias de la Salud, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Universidad de Barcelona, Barcelona, Spain
| | - Carmen Garcia-Ruiz
- Department of Cell Death and Proliferation, Intituto de Investigaciones Biomédicas de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona, Spain.,Liver Unit and Hospital Clinc I Provincial, Centro de Investigación Biomédica en Red (CIBEREHD), Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain.,Southern California Research Center for ALDP and Cirrhosis, Los Angeles, CA, United States
| | - Jose C Fernandez-Checa
- Department of Cell Death and Proliferation, Intituto de Investigaciones Biomédicas de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona, Spain.,Liver Unit and Hospital Clinc I Provincial, Centro de Investigación Biomédica en Red (CIBEREHD), Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain.,Southern California Research Center for ALDP and Cirrhosis, Los Angeles, CA, United States
| |
Collapse
|