1
|
Verouti S, Aeschlimann G, Wang Q, Del Olmo DA, Peyter AC, Menétrey S, Winter DV, Odermatt A, Pearce D, Hummler E, Vanderriele PE. Salt-sensitive hypertension in GR mutant rats is associated with altered plasma polyunsaturated fatty acid levels and aortic vascular reactivity. Pflugers Arch 2025; 477:37-53. [PMID: 39256246 PMCID: PMC11711871 DOI: 10.1007/s00424-024-03014-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/12/2024]
Abstract
In humans, glucocorticoid resistance is attributed to mutations in the glucocorticoid receptor (GR). Most of these mutations result in decreased ligand binding, transactivation, and/or translocation, albeit with normal protein abundances. However, there is no clear genotype‒phenotype relationship between the severity or age at disease presentation and the degree of functional loss of the receptor. Previously, we documented that a GR+/- rat line developed clinical features of glucocorticoid resistance, namely, hypercortisolemia, adrenal hyperplasia, and salt-sensitive hypertension. In this study, we analyzed the GR+/em4 rat model heterozygously mutant for the deletion of exon 3, which encompasses the second zinc finger, including the domains of DNA binding, dimerization, and nuclear localization signals. On a standard diet, mutant rats exhibited a trend toward increased corticosterone levels and a normal systolic blood pressure and heart rate but presented with adrenal hyperplasia. They exhibited increased adrenal soluble epoxide hydroxylase (sEH), favoring an increase in less active polyunsaturated fatty acids. Indeed, a significant increase in nonactive omega-3 and omega-6 polyunsaturated fatty acids, such as 5(6)-DiHETrE or 9(10)-DiHOME, was observed with advanced age (10 versus 5 weeks old) and following a switch to a high-salt diet accompanied by salt-sensitive hypertension. In thoracic aortas, a reduced soluble epoxide hydrolase (sEH) protein abundance resulted in altered vascular reactivity upon a standard diet, which was blunted upon a high-salt diet. In conclusion, mutations in the GR affecting the ligand-binding domain as well as the dimerization domain resulted in deregulated GR signaling, favoring salt-sensitive hypertension in the absence of obvious mineralocorticoid excess.
Collapse
Affiliation(s)
- S Verouti
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
- National Center of Competence in Research, Kidney.CH, Lausanne, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - G Aeschlimann
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Q Wang
- Division of Nephrology and Hypertension, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - D Ancin Del Olmo
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - A C Peyter
- Neonatal Research Laboratory, Clinic of Neonatology, Department Woman-Mother-Child, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - S Menétrey
- Neonatal Research Laboratory, Clinic of Neonatology, Department Woman-Mother-Child, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - D V Winter
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - A Odermatt
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - D Pearce
- Department of Medicine and Cellular & Molecular Pharmacology, University of California, San Francisco, USA
| | - E Hummler
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
- National Center of Competence in Research, Kidney.CH, Lausanne, Switzerland
| | - P E Vanderriele
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland.
- National Center of Competence in Research, Kidney.CH, Lausanne, Switzerland.
| |
Collapse
|
2
|
Choi J, Ceribelli M, Phelan JD, Häupl B, Huang DW, Wright GW, Hsiao T, Morris V, Ciccarese F, Wang B, Corcoran S, Scheich S, Yu X, Xu W, Yang Y, Zhao H, Zhou J, Zhang G, Muppidi J, Inghirami GG, Oellerich T, Wilson WH, Thomas CJ, Staudt LM. Molecular targets of glucocorticoids that elucidate their therapeutic efficacy in aggressive lymphomas. Cancer Cell 2024; 42:833-849.e12. [PMID: 38701792 PMCID: PMC11168741 DOI: 10.1016/j.ccell.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/29/2024] [Accepted: 04/09/2024] [Indexed: 05/05/2024]
Abstract
Glucocorticoids have been used for decades to treat lymphomas without an established mechanism of action. Using functional genomic, proteomic, and chemical screens, we discover that glucocorticoids inhibit oncogenic signaling by the B cell receptor (BCR), a recurrent feature of aggressive B cell malignancies, including diffuse large B cell lymphoma and Burkitt lymphoma. Glucocorticoids induce the glucocorticoid receptor (GR) to directly transactivate genes encoding negative regulators of BCR stability (LAPTM5; KLHL14) and the PI3 kinase pathway (INPP5D; DDIT4). GR directly represses transcription of CSK, a kinase that limits the activity of BCR-proximal Src-family kinases. CSK inhibition attenuates the constitutive BCR signaling of lymphomas by hyperactivating Src-family kinases, triggering their ubiquitination and degradation. With the knowledge that glucocorticoids disable oncogenic BCR signaling, they can now be deployed rationally to treat BCR-dependent aggressive lymphomas and used to construct mechanistically sound combination regimens with inhibitors of BTK, PI3 kinase, BCL2, and CSK.
Collapse
MESH Headings
- Humans
- Glucocorticoids/pharmacology
- Receptors, Antigen, B-Cell/metabolism
- Animals
- Signal Transduction/drug effects
- Receptors, Glucocorticoid/metabolism
- Mice
- Cell Line, Tumor
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Burkitt Lymphoma/drug therapy
- Burkitt Lymphoma/genetics
- Burkitt Lymphoma/metabolism
- Burkitt Lymphoma/pathology
- Molecular Targeted Therapy/methods
- Phosphatidylinositol 3-Kinases/metabolism
- src-Family Kinases/metabolism
- Gene Expression Regulation, Neoplastic/drug effects
Collapse
Affiliation(s)
- Jaewoo Choi
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michele Ceribelli
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - James D Phelan
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Björn Häupl
- Department of Medicine II, Hematology/Oncology, Goethe University, Frankfurt, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany
| | - Da Wei Huang
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - George W Wright
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tony Hsiao
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Vivian Morris
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Francesco Ciccarese
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, via Gattamelata 64, 35128 Padova, Italy
| | - Boya Wang
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sean Corcoran
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sebastian Scheich
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Department of Medicine II, Hematology/Oncology, Goethe University, Frankfurt, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany; University Cancer Center (UCT) Frankfurt, University Hospital, Goethe University, 60590 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Xin Yu
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Weihong Xu
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yandan Yang
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hong Zhao
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Joyce Zhou
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Grace Zhang
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jagan Muppidi
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Giorgio G Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Thomas Oellerich
- Department of Medicine II, Hematology/Oncology, Goethe University, Frankfurt, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany
| | - Wyndham H Wilson
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Craig J Thomas
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Louis M Staudt
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
3
|
Laulhé M, Kuhn E, Bouligand J, Amazit L, Perrot J, Lebigot E, Kamenickỷ P, Lombès M, Fagart J, Viengchareun S, Martinerie L. A novel mutation in the NR3C1 gene associated with reversible glucocorticoid resistance. Eur J Endocrinol 2024; 190:284-295. [PMID: 38584335 DOI: 10.1093/ejendo/lvae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/02/2024] [Accepted: 03/04/2024] [Indexed: 04/09/2024]
Abstract
OBJECTIVE Glucocorticoid resistance is a rare endocrine disease caused by variants of the NR3C1 gene encoding the glucocorticoid receptor (GR). We identified a novel heterozygous variant (GRR569Q) in a patient with uncommon reversible glucocorticoid resistance syndrome. METHODS We performed ex vivo functional characterization of the variant in patient fibroblasts and in vitro through transient transfection in undifferentiated HEK 293T cells to assess transcriptional activity, affinity, and nuclear translocation. We studied the impact of the variant on the tertiary structure of the ligand-binding domain through 3D modeling. RESULTS The patient presented initially with an adrenal adenoma with mild autonomous cortisol secretion and undetectable adrenocorticotropin hormone (ACTH) levels. Six months after surgery, biological investigations showed elevated cortisol and ACTH (urinary free cortisol 114 µg/24 h, ACTH 10.9 pmol/L) without clinical symptoms, evoking glucocorticoid resistance syndrome. Functional characterization of the GRR569Q showed decreased expression of target genes (in response to 100 nM cortisol: SGK1 control +97% vs patient +20%, P < .0001) and impaired nuclear translocation in patient fibroblasts compared to control. Similar observations were made in transiently transfected cells, but higher cortisol concentrations overcame glucocorticoid resistance. GRR569Q showed lower ligand affinity (Kd GRWT: 1.73 nM vs GRR569Q: 4.61 nM). Tertiary structure modeling suggested a loss of hydrogen bonds between H3 and the H1-H3 loop. CONCLUSION This is the first description of a reversible glucocorticoid resistance syndrome with effective negative feedback on corticotroph cells regarding increased plasma cortisol concentrations due to the development of mild autonomous cortisol secretion.
Collapse
Affiliation(s)
- Margaux Laulhé
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, 94276 Le Kremlin-Bicêtre, France
| | - Emmanuelle Kuhn
- Unité Hypophyse, Hôpital Pitié-Salpêtrière, AP-HP, Paris 75013, France
| | - Jérôme Bouligand
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, 94276 Le Kremlin-Bicêtre, France
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie, Hôpital Bicêtre APHP Paris Saclay, Le Kremlin Bicêtre 94270, France
| | - Larbi Amazit
- UMS 44/Institut Biomédical du Val de Bièvre, Université Paris-Saclay, Le Kremlin Bicêtre 94276, France
| | - Julie Perrot
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, 94276 Le Kremlin-Bicêtre, France
| | - Elise Lebigot
- Service de Biochimie, Hôpital Bicêtre APHP Paris Saclay, Le Kremlin Bicêtre 94270, France
| | - Peter Kamenickỷ
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, 94276 Le Kremlin-Bicêtre, France
- Service d'Endocrinologie et des Maladies de la Reproduction, Hôpital Bicêtre APHP Paris Saclay, Le Kremlin-Bicêtre 94270, France
| | - Marc Lombès
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, 94276 Le Kremlin-Bicêtre, France
| | - Jérôme Fagart
- Laboratoire de Biologie Structurale de la Cellule, BIOC, Ecole Polytechnique, CNRS, Institut Polytechnique de Paris, 91128 Palaiseau cedex, France
| | - Say Viengchareun
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, 94276 Le Kremlin-Bicêtre, France
| | - Laetitia Martinerie
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, 94276 Le Kremlin-Bicêtre, France
- Endocrinologie Pédiatrique, Centre de Référence Maladies Endocriniennes Rares de la Croissance et du Développement, Hôpital Universitaire Robert-Debré APHP Nord, Paris 75019, France
- Faculté de Santé, Université Paris Cité, UFR de Médecine, Paris 75006, France
| |
Collapse
|
4
|
Huang H, Wang W. Molecular mechanisms of glucocorticoid resistance. Eur J Clin Invest 2023; 53:e13901. [PMID: 36346177 DOI: 10.1111/eci.13901] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND As a powerful anti-inflammatory, immunosuppressive, and antiproliferative drug, glucocorticoid (GC) plays an important role in the treatment of various diseases. However, some patients may experience glucocorticoid resistance (GCR) in clinical, and its molecular mechanism have not been determined. METHODS The authors performed a review of the literature on GCR focusing on mutations in the NR3C1 gene and impaired glucocorticoid receptor (GR) signalling, using METSTR (2000 through May 2022) to identify original articles and reviews on this topic. The search terms included 'glucocorticoid resistance/insensitive', 'steroid resistance/insensitive', 'NR3C1', and 'glucocorticoid receptor'. RESULTS Primary GCR is mainly caused by NR3C1 gene mutation, and 31 NR3C1 gene mutations have been reported so far. Secondary GCR is caused by impaired GC signalling pathways, including decreased expression of GR, impaired nuclear translocation of GR, and impaired binding of GR to GC and GR to target genes. However, the current research is more on the expression level of GR, and there are relatively few studies on other mechanisms. In addition, methods for improving GC sensitivity are rarely reported. CONCLUSION The molecular mechanisms of GCR are complex and may differ in different diseases or different patients. In future studies, when exploring the mechanism of GCR, methods to improve GC sensitivity should also be investigated.
Collapse
Affiliation(s)
- Huanming Huang
- The Fourth Hospital of Hebei Medical University, Hebei Medical University, Shijiazhuang, China
| | - Wenqing Wang
- The Fourth Hospital of Hebei Medical University, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
5
|
Park SJ, Shin JI. Diagnosis and Treatment of Monogenic Hypertension in Children. Yonsei Med J 2023; 64:77-86. [PMID: 36719014 PMCID: PMC9892546 DOI: 10.3349/ymj.2022.0316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/08/2022] [Accepted: 12/26/2022] [Indexed: 01/17/2023] Open
Abstract
Although the majority of individuals with hypertension (HTN) have primary and polygenic HTN, monogenic HTN is a secondary type that is widely thought to play a key role in pediatric HTN, which has the characteristics of early onset, refractory HTN with a positive family history, and electrolyte disorders. Monogenic HTN results from single genetic mutations that contribute to the dysregulation of blood pressure (BP) in the kidneys and adrenal glands. It is pathophysiologically associated with increased sodium reabsorption in the distal tubule, intravascular volume expansion, and HTN, as well as low renin and varying aldosterone levels. Simultaneously increased or decreased potassium levels also provide clues for the diagnosis of monogenic HTN. Discovering the genetic factors that cause an increase in BP has been shown to be related to the choice of and responses to antihypertensive medications. Therefore, early and precise diagnosis with genetic sequencing and effective treatment with accurate antihypertensive agents are critical in the management of monogenic HTN. In addition, understanding the genetic architecture of BP, causative molecular pathways perturbing BP regulation, and pharmacogenomics can help with the selection of precision and personalized medicine, as well as improve morbidity and mortality in adulthood.
Collapse
Affiliation(s)
- Se Jin Park
- Department of Pediatrics, Daejeon Eulji Medical Center, Eulji University School of Medicine, Daejeon, Korea
| | - Jae Il Shin
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
6
|
Role of glucocorticoid receptor mutations in hypertension and adrenal gland hyperplasia. Pflugers Arch 2022; 474:829-840. [PMID: 35732960 PMCID: PMC9217122 DOI: 10.1007/s00424-022-02715-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/06/2022] [Accepted: 06/02/2022] [Indexed: 11/03/2022]
Abstract
Hypertension is one of the leading causes of premature death in humans and exhibits a complex aetiology including environmental and genetic factors. Mutations within the glucocorticoid receptor (GR) can cause glucocorticoid resistance, which is characterized by several clinical features like hypercortisolism, hypokalaemia, adrenal hyperplasia and hypertension. Altered glucocorticoid receptor signalling further affects sodium and potassium homeostasis as well as blood pressure regulation and cell proliferation and differentiation that influence organ development and function. In salt-sensitive hypertension, excessive renal salt transport and sympathetic nervous system stimulation may occur simultaneously, and, thus, both the mineralocorticoid receptor (MR) and the GR-signalling may be implicated or even act interdependently. This review focuses on identified GR mutations in human primary generalized glucocorticoid resistance (PGGR) patients and their related clinical phenotype with specific emphasis on adrenal gland hyperplasia and hypertension. We compare these findings to mouse and rat mutants harbouring genetically engineered mutations to further dissect the cause and/or the consequence of clinical features which are common or different.
Collapse
|
7
|
Tamai M, Kasai S, Akahane K, Thu TN, Kagami K, Komatsu C, Abe M, Watanabe A, Goi K, Miyake K, Inaba T, Takita J, Goto H, Minegishi M, Iwamoto S, Sugita K, Inukai T. Glucocorticoid receptor gene mutations confer glucocorticoid resistance in B-cell precursor acute lymphoblastic leukemia. J Steroid Biochem Mol Biol 2022; 218:106068. [PMID: 35124168 DOI: 10.1016/j.jsbmb.2022.106068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/05/2022] [Accepted: 02/01/2022] [Indexed: 10/19/2022]
Abstract
Glucocorticoid (GC) is a key drug in the treatment of B-cell precursor acute lymphoblastic leukemia (BCP-ALL), and the initial GC response is an important prognostic factor. GC receptors play an essential role in GC sensitivity, and somatic mutations of the GC receptor gene, NR3C1, are reportedly identified in some BCP-ALL cases, particularly at relapse. Moreover, associations of somatic mutations of the CREB-binding protein (CREBBP) and Wolf-Hirschhorn syndrome candidate 1 (WHSC1) genes with the GC-resistance of ALL have been suggested. However, the significance of these mutations in the GC sensitivity of BCP-ALL remains to be clarified in the intrinsic genes. In the present study, we sequenced NR3C1, WHSC1, and CREBBP genes in 99 BCP-ALL and 22 T-ALL cell lines (32 and 67 cell lines were known to be established at diagnosis and at relapse, respectively), and detected their mutations in 19 (2 cell lines at diagnosis and 15 cell lines at relapse), 26 (6 and 15), and 38 (11 and 15) cell lines, respectively. Of note, 14 BCP-ALL cell lines with the NR3C1 mutations were significantly more resistant to GC than those without mutations. In contrast, WHSC1 and CREBBP mutations were not associated with GC resistance. However, among the NR3C1 unmutated BCP-ALL cell lines, WHSC1 mutations tended to be associated with GC resistance and lower NR3C1 gene expression. Finally, we successfully established GC-resistant sublines of the GC-sensitive BCP-ALL cell line (697) by disrupting ligand binding and DNA binding domains of the NR3C1 gene using the CRISPR/Cas9 system. These observations demonstrated that somatic mutations of the NR3C1 gene, and possibly the WHSC1 gene, confer GC resistance in BCP-ALL.
Collapse
Affiliation(s)
- Minori Tamai
- Department of Pediatrics, School of Medicine, University of Yamanashi, Yamanashi, Japan.
| | - Shin Kasai
- Department of Pediatrics, School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Koshi Akahane
- Department of Pediatrics, School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Thao Nguyen Thu
- Department of Pediatrics, School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Keiko Kagami
- Department of Pediatrics, School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Chiaki Komatsu
- Department of Pediatrics, School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Masako Abe
- Department of Pediatrics, School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Atsushi Watanabe
- Department of Pediatrics, School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Kumiko Goi
- Department of Pediatrics, School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Kunio Miyake
- Department of Health Sciences, School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Toshiya Inaba
- Department of Molecular Oncology, Research Institute of Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Junko Takita
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroaki Goto
- Hematology/Oncology and Regenerative Medicine, Kanagawa Children's Medical Center, Kanagawa, Japan
| | | | - Shotaro Iwamoto
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Japan
| | - Kanji Sugita
- Department of Pediatrics, School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Takeshi Inukai
- Department of Pediatrics, School of Medicine, University of Yamanashi, Yamanashi, Japan
| |
Collapse
|
8
|
Guntur VP, Manka LA, Moore CM, Wynn E, Vladar EK, Alam R, Pham TH, Fingerlin TE, Martin RJ. Refractory neutrophilic asthma and ciliary genes. J Allergy Clin Immunol 2022; 149:1970-1980. [PMID: 35034774 DOI: 10.1016/j.jaci.2021.12.761] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/12/2021] [Accepted: 12/08/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Refractory asthma (RA) remains poorly controlled, resulting in high health care utilization despite guideline-based therapies. Patients with RA manifest higher neutrophilia as a result of increased airway inflammation and subclinical infection, the underlying mechanisms of which remain unclear. OBJECTIVE We sought to characterize and clinically correlate gene expression differences between refractory and nonrefractory (NR) asthma to uncover molecular mechanisms driving group distinctions. METHODS Microarray gene expression of paired airway epithelial brush and endobronchial biopsy samples was compared between 60 RA and 30 NR subjects. Subjects were hierarchically clustered to identify subgroups of RA, and biochemical and clinical traits (airway inflammatory molecules, respiratory pathogens, chest imaging) were compared between groups. Weighted gene correlation network analysis was used to identify coexpressed gene modules. Module expression scores were compared between groups using linear regression, controlling for age, sex, and body mass index. RESULTS Differential gene expression analysis showed upregulation of proneutrophilic and downregulation of ciliary function genes/pathways in RA compared to NR. A subgroup of RA with downregulated ciliary gene expression had increased levels of subclinical infections, airway neutrophilia, and eosinophilia as well as higher chest imaging mucus burden compared to other RA, the dominant differences between RA and NR. Weighted gene correlation network analysis identified gene modules related to ciliary function, which were downregulated in RA and were associated with lower pulmonary function and higher airway wall thickness/inflammation, markers of poorer asthma control. CONCLUSIONS Identification of a novel ciliary-deficient subgroup of RA suggests that diminished mucociliary clearance may underlie repeated asthma exacerbations despite adequate treatment, necessitating further exploration of function, mechanism, and therapeutics.
Collapse
Affiliation(s)
- Vamsi P Guntur
- Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, Denver, Colo; The NJH Cohen Family Asthma Institute, National Jewish Health, Denver, Colo.
| | - Laurie A Manka
- Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, Denver, Colo; The NJH Cohen Family Asthma Institute, National Jewish Health, Denver, Colo
| | - Camille M Moore
- Center for Genes, Environment and Health, National Jewish Health, Denver, Colo
| | - Elizabeth Wynn
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colo
| | - Eszter K Vladar
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, and the Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colo
| | - Rafeul Alam
- The NJH Cohen Family Asthma Institute, National Jewish Health, Denver, Colo; Division of Allergy and Immunology, National Jewish Health, Denver, Colo
| | - Tuyet-Hang Pham
- Translational Science & Experimental Medicine, Research & Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg
| | - Tasha E Fingerlin
- Center for Genes, Environment and Health, National Jewish Health, Denver, Colo; Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colo
| | - Richard J Martin
- Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, Denver, Colo; The NJH Cohen Family Asthma Institute, National Jewish Health, Denver, Colo
| |
Collapse
|
9
|
Salt-Sensitive Hypertension in GR +/- Rats Is Accompanied with Dysregulation in Adrenal Soluble Epoxide Hydrolase and Polyunsaturated Fatty Acid Pathways. Int J Mol Sci 2021; 22:ijms222413218. [PMID: 34948014 PMCID: PMC8708190 DOI: 10.3390/ijms222413218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 01/23/2023] Open
Abstract
Mutations within the glucocorticoid receptor (GR) gene locus lead to glucocorticoid resistance which is characterized by several clinical symptoms such as adrenal gland hyperplasia and salt-sensitive hypertension, although the underlying mechanisms are still unknown. We studied GR haploinsufficient (GR+/−) Sprague Dawley rats which, on a standard diet, showed significantly increased plasma aldosterone and corticosterone levels and an adrenocortex hyperplasia accompanied by a normal systolic blood pressure. Following a high salt diet, these rats developed salt-sensitive hypertension and maintained elevated enzyme-soluble epoxide hydrolase (sEH) in adrenal glands, while sEH was significantly decreased in wild-type rats. Furthermore, GR+/− rats showed dysregulation of the equilibrated linoleic and arachidonic acid pathways, with a significant increase of less active metabolites such as 8,9-DiHETrE. In Sprague Dawley rats, GR haploinsufficiency induced steroid disturbances, which provoked hypertension only in combination with high salt intake, which was accompanied by disturbances in sEH and fatty acid metabolism. Our results suggest that sEH inhibition could be a potential target to treat hypertension in patients with GR haploinsufficiency.
Collapse
|
10
|
Nicolaides NC, Charmandari E. Primary Generalized Glucocorticoid Resistance and Hypersensitivity Syndromes: A 2021 Update. Int J Mol Sci 2021; 22:ijms221910839. [PMID: 34639183 PMCID: PMC8509180 DOI: 10.3390/ijms221910839] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 12/15/2022] Open
Abstract
Glucocorticoids are the final products of the neuroendocrine hypothalamic-pituitary-adrenal axis, and play an important role in the stress response to re-establish homeostasis when it is threatened, or perceived as threatened. These steroid hormones have pleiotropic actions through binding to their cognate receptor, the human glucocorticoid receptor, which functions as a ligand-bound transcription factor inducing or repressing the expression of a large number of target genes. To achieve homeostasis, glucocorticoid signaling should have an optimal effect on all tissues. Indeed, any inappropriate glucocorticoid effect in terms of quantity or quality has been associated with pathologic conditions, which are characterized by short-term or long-lasting detrimental effects. Two such conditions, the primary generalized glucocorticoid resistance and hypersensitivity syndromes, are discussed in this review article. Undoubtedly, the tremendous progress of structural, molecular, and cellular biology, in association with the continued progress of biotechnology, has led to a better and more in-depth understanding of these rare endocrinologic conditions, as well as more effective therapeutic management.
Collapse
Affiliation(s)
- Nicolas C. Nicolaides
- First Department of Pediatrics, Division of Endocrinology, Metabolism and Diabetes, “Aghia Sophia” Children’s Hospital, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece;
- Center of Clinical, Experimental Surgery and Translational Research, Division of Endocrinology and Metabolism, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- University Research Institute of Maternal and Child Health and Precision Medicine, University of Athens, 11527 Athens, Greece
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
- Correspondence:
| | - Evangelia Charmandari
- First Department of Pediatrics, Division of Endocrinology, Metabolism and Diabetes, “Aghia Sophia” Children’s Hospital, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece;
- Center of Clinical, Experimental Surgery and Translational Research, Division of Endocrinology and Metabolism, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
11
|
Investigating the Mechanism of Scutellariae barbata Herba in the Treatment of Colorectal Cancer by Network Pharmacology and Molecular Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:3905367. [PMID: 34381520 PMCID: PMC8352706 DOI: 10.1155/2021/3905367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/11/2021] [Accepted: 07/22/2021] [Indexed: 12/24/2022]
Abstract
Background Colorectal cancer (CRC) is one of the most common gastrointestinal tumors, which accounts for approximately 10% of all diagnosed cancers and cancer deaths worldwide per year. Scutellariae barbatae Herba (SBH) is one of the most frequently used traditional Chinese medicine (TCM) in the treatment of CRC. Although many experiments have been carried out to explain the mechanisms of SBH, the mechanisms of SBH have not been illuminated fully. Thus, we constructed a network pharmacology and molecular docking to investigate the mechanisms of SBH. Methods We adopted active constituent prescreening, target predicting, protein-protein interaction (PPI) analysis, Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, differentially expressed gene analysis, and molecular docking to establish a system pharmacology database of SBH against CRC. Results A total of 64 active constituents of SBH were obtained and 377 targets were predicted, and the result indicated that quercetin, luteolin, wogonin, and apigenin were the main active constituents of SBH. Glucocorticoid receptor (NR3C1), pPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoform (PIK3CA), cellular tumor antigen p53 (TP53), transcription factor AP-1 (JUN), mitogen-activated protein kinase 1 (MAPK1), Myc protooncogene protein (MYC), cyclin-dependent kinase 1 (CDK1), and broad substrate specificity ATP-binding cassette transporter ABCG2 (ABCG2) were the major targets of SBH in the treatment of CRC. GO analysis illustrated that the core biological process regulated by SBH was the regulation of the cell cycle. Thirty pathways were presented and 8 pathways related to CRC were involved. Molecular docking presented the binding details of 3 key targets with 6 active constituents. Conclusions The mechanisms of SBH against CRC depend on the synergistic effect of multiple active constituents, multiple targets, and multiple pathways.
Collapse
|
12
|
Martins CS, de Castro M. Generalized and tissue specific glucocorticoid resistance. Mol Cell Endocrinol 2021; 530:111277. [PMID: 33864884 DOI: 10.1016/j.mce.2021.111277] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/20/2022]
Abstract
Glucocorticoids (GCs) are steroid hormones that influence several physiologic functions and are among the most frequently prescribed drugs worldwide. Resistance to GCs has been observed in the context of the familial generalized GC resistance (Chrousos' syndrome) or tissue specific GC resistance in chronic inflammatory states. In this review, we have summarized the major factors that influence individual glucocorticoid sensitivity/resistance. The fine-tuning of GC action is determined in a tissue-specific fashion that includes the combination of different GC receptor promoters, translation initiation sites, splice isoforms, interacting proteins, post-translational modifications, and alternative mechanisms of signal transduction.
Collapse
Affiliation(s)
- Clarissa Silva Martins
- Department of Internal Medicine - Ribeirao Preto Medical School - University of Sao Paulo, Ribeirao Preto, SP, Brazil; School of Medicine, Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Margaret de Castro
- Department of Internal Medicine - Ribeirao Preto Medical School - University of Sao Paulo, Ribeirao Preto, SP, Brazil.
| |
Collapse
|
13
|
Beck KR, Odermatt A. Antifungal therapy with azoles and the syndrome of acquired mineralocorticoid excess. Mol Cell Endocrinol 2021; 524:111168. [PMID: 33484741 DOI: 10.1016/j.mce.2021.111168] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/31/2020] [Accepted: 01/06/2021] [Indexed: 10/22/2022]
Abstract
The syndromes of mineralocorticoid excess describe a heterogeneous group of clinical manifestations leading to endocrine hypertension, typically either through direct activation of mineralocorticoid receptors or indirectly by impaired pre-receptor enzymatic regulation or through disturbed renal sodium homeostasis. The phenotypes of these disorders can be caused by inherited gene variants and somatic mutations or may be acquired upon exposures to exogenous substances. Regarding the latter, the symptoms of an acquired mineralocorticoid excess have been reported during treatment with azole antifungal drugs. The current review describes the occurrence of mineralocorticoid excess particularly during the therapy with posaconazole and itraconazole, addresses the underlying mechanisms as well as inter- and intra-individual differences, and proposes a therapeutic drug monitoring strategy for these two azole antifungals. Moreover, other therapeutically used azole antifungals and ongoing efforts to avoid adverse mineralocorticoid effects of azole compounds are shortly discussed.
Collapse
Affiliation(s)
- Katharina R Beck
- Swiss Centre for Applied Human Toxicology and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Alex Odermatt
- Swiss Centre for Applied Human Toxicology and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
14
|
A Novel Pathogenic Variant in the N-Terminal Domain of the Glucocorticoid Receptor, Causing Glucocorticoid Resistance. Mol Diagn Ther 2020; 24:473-485. [DOI: 10.1007/s40291-020-00480-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
15
|
Wang Y, Chen YJ, Xiang C, Jiang GW, Xu YD, Yin LM, Zhou DD, Liu YY, Yang YQ. Discovery of potential asthma targets based on the clinical efficacy of Traditional Chinese Medicine formulas. JOURNAL OF ETHNOPHARMACOLOGY 2020; 252:112635. [PMID: 32004629 DOI: 10.1016/j.jep.2020.112635] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Standard therapy for asthma, a highly heterogeneous disease, is primarily based on bronchodilators and immunosuppressive drugs, which confer short-term symptomatic relief but not a cure. It is difficult to discover novel bronchodilators, although potential new targets are emerging. Traditional Chinese Medicine (TCM) formulas have been used to treat asthma for more than 2000 years, forming the basis for representative asthma treatments. AIM OF THE STUDY Based on the efficacy of TCM formulas, anti-asthmatic herbal compounds bind proteins are potential targets for asthma therapy. This analysis will provide new drug targets and discovery strategies for asthma therapy. MATERIALS AND METHODS A list of candidate herbs for asthma was selected from the classical formulas (CFs) of TCM for the treatment of wheezing or dyspnea recorded in Treatise on Cold Damage and Miscellaneous Diseases (TCDMD) and from modern herbal formulas identified in the SAPHRON TCM Database using the keywords "wheezing" or "dyspnea". Compounds in the selected herbs and compounds that directly bind target proteins were acquired by searching the Herbal Ingredients' Targets Database (HITD), TCM Data Bank (TCMDB) and TCM Integrated Database (TCMID). Therapeutic targets of conventional medicine (CM) for asthma were collected by searching Therapeutic Target Database (TTD), DrugBank and PubMed as supplements. Finally, the enriched gene ontology (GO) terms of the targets were obtained using the Database for Annotation Visualization and Integrated Discovery (DAVID) and protein-protein interactions (PPI) networks were constructed using Search Tool for the Retrieval of Interacting Genes/Proteins (STRING). The effects of two selected TCM compounds, kaempferol and ginkgolide A, on cellular resistance in human airway smooth muscle cells (ASMCs) and pulmonary resistance in a mouse model were investigated. RESULTS The list of 32 candidate herbs for asthma was selected from 10 CFs for the treatment of wheezing or dyspnea recorded in TCDMD and 1037 modern herbal formulas obtained from the SAPHRON TCM Database. A total of 130 compounds from the 32 selected herbs and 68 herbal compounds directly bind target proteins were acquired from HITD and TCMDB. Eighty-eight therapeutic targets of CM for asthma were collected by searching TTD and PubMed as supplements. DAVID and STRING analyses showed targets of TCM formulas are primarily related to cytochrome P450 (CYP) family, transient receptor potential (TRP) channels, matrix metalloproteinases (MMPs) and ribosomal protein. Both TCM formulas and CM act on the same types of targets or signaling pathways, such as G protein-coupled receptors (GPCRs), steroid hormone receptors (SHRs), and JAK-STAT signaling pathway. The proteins directly targeted by herbal compounds, TRPM8, TRPA1, TRPV3, CYP1B1, CYP2B6, CYP1A2, CYP3A4, CYP1A1, PPARA, PPARD, NR1I2, MMP1, MMP2, ESR1, ESR2, RPLP0, RPLP1 and RPLP2, are potential targets for asthma therapy. In vitro results showed kaempferol (1 × 10-2 mM) and ginkgolide A (1 × 10-5 mM) significantly increased the cell index (P < 0.05 vs. histamine, n = 3) and therefore relaxed human ASMCs. In vivo results showed kaempferol (145 μg/kg) and ginkgolide A (205 μg/kg) significantly reduced pulmonary resistance (P < 0.05 vs. methacholine, n = 6). CONCLUSION Potential target discovery for asthma treatment based on the clinical effectiveness of TCM is a feasible strategy.
Collapse
Affiliation(s)
- Yu Wang
- International Union Laboratory on Acupuncture Based Target Discovery, International Joint Laboratory on Acupuncture Neuro-immunology, Shanghai Research Institute of Acupuncture and Meridian, Yue Yang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yan-Jiao Chen
- International Union Laboratory on Acupuncture Based Target Discovery, International Joint Laboratory on Acupuncture Neuro-immunology, Shanghai Research Institute of Acupuncture and Meridian, Yue Yang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Cheng Xiang
- International Union Laboratory on Acupuncture Based Target Discovery, International Joint Laboratory on Acupuncture Neuro-immunology, Shanghai Research Institute of Acupuncture and Meridian, Yue Yang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Guang-Wei Jiang
- International Union Laboratory on Acupuncture Based Target Discovery, International Joint Laboratory on Acupuncture Neuro-immunology, Shanghai Research Institute of Acupuncture and Meridian, Yue Yang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yu-Dong Xu
- International Union Laboratory on Acupuncture Based Target Discovery, International Joint Laboratory on Acupuncture Neuro-immunology, Shanghai Research Institute of Acupuncture and Meridian, Yue Yang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lei-Miao Yin
- International Union Laboratory on Acupuncture Based Target Discovery, International Joint Laboratory on Acupuncture Neuro-immunology, Shanghai Research Institute of Acupuncture and Meridian, Yue Yang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Dong-Dong Zhou
- International Union Laboratory on Acupuncture Based Target Discovery, International Joint Laboratory on Acupuncture Neuro-immunology, Shanghai Research Institute of Acupuncture and Meridian, Yue Yang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yan-Yan Liu
- International Union Laboratory on Acupuncture Based Target Discovery, International Joint Laboratory on Acupuncture Neuro-immunology, Shanghai Research Institute of Acupuncture and Meridian, Yue Yang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yong-Qing Yang
- International Union Laboratory on Acupuncture Based Target Discovery, International Joint Laboratory on Acupuncture Neuro-immunology, Shanghai Research Institute of Acupuncture and Meridian, Yue Yang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
16
|
McGeachie MJ, Sordillo JE, Dahlin A, Wang AL, Lutz SM, Tantisira KG, Panganiban R, Lu Q, Sajuthi S, Urbanek C, Kelly R, Saef B, Eng C, Oh SS, Kho AT, Croteau-Chonka DC, Weiss ST, Raby BA, Mak ACY, Rodriguez-Santana JR, Burchard EG, Seibold MA, Wu AC. Expression of SMARCD1 interacts with age in association with asthma control on inhaled corticosteroid therapy. Respir Res 2020; 21:31. [PMID: 31992292 PMCID: PMC6988322 DOI: 10.1186/s12931-020-1295-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/14/2020] [Indexed: 01/13/2023] Open
Abstract
Background Global gene expression levels are known to be highly dependent upon gross demographic features including age, yet identification of age-related genomic indicators has yet to be comprehensively undertaken in a disease and treatment-specific context. Methods We used gene expression data from CD4+ lymphocytes in the Asthma BioRepository for Integrative Genomic Exploration (Asthma BRIDGE), an open-access collection of subjects participating in genetic studies of asthma with available gene expression data. Replication population participants were Puerto Rico islanders recruited as part of the ongoing Genes environments & Admixture in Latino Americans (GALA II), who provided nasal brushings for transcript sequencing. The main outcome measure was chronic asthma control as derived by questionnaires. Genomic associations were performed using regression of chronic asthma control score on gene expression with age in years as a covariate, including a multiplicative interaction term for gene expression times age. Results The SMARCD1 gene (SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily D member 1) interacted with age to influence chronic asthma control on inhaled corticosteroids, with a doubling of expression leading to an increase of 1.3 units of chronic asthma control per year (95% CI [0.86, 1.74], p = 6 × 10− 9), suggesting worsening asthma control with increasing age. This result replicated in GALA II (p = 3.8 × 10− 8). Cellular assays confirmed the role of SMARCD1 in glucocorticoid response in airway epithelial cells. Conclusion Focusing on age-dependent factors may help identify novel indicators of asthma medication response. Age appears to modulate the effect of SMARCD1 on asthma control with inhaled corticosteroids.
Collapse
Affiliation(s)
- Michael J McGeachie
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Joanne E Sordillo
- PRecisiOn Medicine Translational Research (PROMoTeR) Center, Department of Population Medicine, Harvard Pilgrim Health Care Institute and Harvard Medical School, 401 Park Drive, Suite 401, Boston, MA, 02215-5301, USA
| | - Amber Dahlin
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Alberta L Wang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Sharon M Lutz
- PRecisiOn Medicine Translational Research (PROMoTeR) Center, Department of Population Medicine, Harvard Pilgrim Health Care Institute and Harvard Medical School, 401 Park Drive, Suite 401, Boston, MA, 02215-5301, USA
| | - Kelan G Tantisira
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Ronald Panganiban
- Program in Molecular and Integrative Physiological Sciences, Departments of Environmental Health and Genetics & Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Quan Lu
- Program in Molecular and Integrative Physiological Sciences, Departments of Environmental Health and Genetics & Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Satria Sajuthi
- Center for Genes, Environment and Health, Department of Pediatrics, National Jewish Health, Denver, CO, USA
| | - Cydney Urbanek
- Center for Genes, Environment and Health, Department of Pediatrics, National Jewish Health, Denver, CO, USA
| | - Rachel Kelly
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Benjamin Saef
- Center for Genes, Environment and Health, Department of Pediatrics, National Jewish Health, Denver, CO, USA
| | - Celeste Eng
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Sam S Oh
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Alvin T Kho
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, USA
| | - Damien C Croteau-Chonka
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Scott T Weiss
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Benjamin A Raby
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Division of Pulmonary and Respiratory Diseases, Boston Children's Hospital, Boston, MA, USA
| | - Angel C Y Mak
- Center for Genes, Environment and Health, Department of Pediatrics, National Jewish Health, Denver, CO, USA
| | | | - Esteban G Burchard
- Center for Genes, Environment and Health, Department of Pediatrics, National Jewish Health, Denver, CO, USA
| | - Max A Seibold
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Ann Chen Wu
- PRecisiOn Medicine Translational Research (PROMoTeR) Center, Department of Population Medicine, Harvard Pilgrim Health Care Institute and Harvard Medical School, 401 Park Drive, Suite 401, Boston, MA, 02215-5301, USA.
| |
Collapse
|
17
|
Vitellius G, Delemer B, Caron P, Chabre O, Bouligand J, Pussard E, Trabado S, Lombes M. Impaired 11β-Hydroxysteroid Dehydrogenase Type 2 in Glucocorticoid-Resistant Patients. J Clin Endocrinol Metab 2019; 104:5205-5216. [PMID: 31225872 DOI: 10.1210/jc.2019-00800] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 06/17/2019] [Indexed: 02/13/2023]
Abstract
CONTEXT Six patients carrying heterozygous loss-of-function mutations of glucocorticoid (GC) receptor (GR) presented with hypercortisolism, associated with low kalemia, low plasma renin, and aldosterone levels, with or without hypertension, suggesting a pseudohypermineralocorticism whose mechanisms remain unclear. We hypothesize that an impaired activity of the 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2; encoded by the HSD11B2 gene), catalyzing cortisol (F) inactivation, may account for an inappropriate activation of a renal mineralocorticoid signaling pathway in these GC-resistant patients. OBJECTIVE We aim at studying the GR-mediated regulation of HSD11B2. DESIGN The HSD11B2 promoter was subcloned and luciferase reporter assays evaluated GR-dependent HSD11B2 regulation, and 11β-HSD2 expression/activity was studied in human breast cancer MCF7 cells, endogenously expressing this enzyme. RESULTS Transfection assays revealed that GR transactivated the long (2.1-kbp) HSD11B2 promoter construct, whereas a defective 501H GR mutant was unable to stimulate luciferase activity. GR-mediated transactivation of the HSD11B2 gene was inhibited by the GR antagonist RU486. A threefold increase in HSD11B2 mRNA levels was observed after dexamethasone (DXM) treatment of MCF7 cells, inhibited by RU486 or by actinomycin, supporting a GR-dependent transcription. Chromatin immunoprecipitation further demonstrated a DXM-dependent GR recruitment onto the HSD11B2 promoter. 11β-HSD2 activity, evaluated by the cortisone/F ratio, quantified by liquid chromatography/tandem mass spectrometry, was 10-fold higher in the supernatant of DXM-treated cells than controls, consistent with a GR-dependent stimulation of 11β-HSD2 catalytic activity. CONCLUSION Collectively, we demonstrate that 11β-HSD2 expression and activity are transcriptionally regulated by GR. In the context of GR haploinsufficiency, these findings provide evidence that defective GR signaling may account for apparent mineralocorticoid excess in GC-resistant patients.
Collapse
Affiliation(s)
- Géraldine Vitellius
- Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche_S U1185, Faculty of Medicine at Université Paris-Sud, University Paris-Sud, Université Paris-Saclay, Le Kremlin Bicêtre, France
| | - Brigitte Delemer
- Service d'Endocrinologie-Diabète-Nutrition, Hôpital Robert Debré, Centre Hospitalier Universitaire de Reims, Reims, France
| | - Philippe Caron
- Service d'Endocrinologie, Pôle Cardio-Vasculaire et Métabolique, Centre Hospitalier Universitaire de Larrey, Toulouse, France
| | - Olivier Chabre
- Endocrinologie, Pavillon des Écrins, Centre Hospitalier Universitaire de Grenoble, La Tronche, Grenoble, France
| | - Jérôme Bouligand
- Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche_S U1185, Faculty of Medicine at Université Paris-Sud, University Paris-Sud, Université Paris-Saclay, Le Kremlin Bicêtre, France
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie, Hôpitaux Universitaires Paris-Sud, Assistance Publique-Hôpitaux de Paris, Centre Hospitalier Universitaire de Bicêtre, France
| | - Eric Pussard
- Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche_S U1185, Faculty of Medicine at Université Paris-Sud, University Paris-Sud, Université Paris-Saclay, Le Kremlin Bicêtre, France
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie, Hôpitaux Universitaires Paris-Sud, Assistance Publique-Hôpitaux de Paris, Centre Hospitalier Universitaire de Bicêtre, France
| | - Séverine Trabado
- Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche_S U1185, Faculty of Medicine at Université Paris-Sud, University Paris-Sud, Université Paris-Saclay, Le Kremlin Bicêtre, France
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie, Hôpitaux Universitaires Paris-Sud, Assistance Publique-Hôpitaux de Paris, Centre Hospitalier Universitaire de Bicêtre, France
| | - Marc Lombes
- Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche_S U1185, Faculty of Medicine at Université Paris-Sud, University Paris-Sud, Université Paris-Saclay, Le Kremlin Bicêtre, France
| |
Collapse
|
18
|
Lin L, Wu X, Hou Y, Zheng F, Xu R. A Novel Mutation in the Glucocorticoid Receptor Gene Causing Resistant Hypertension: A Case Report. Am J Hypertens 2019; 32:1126-1128. [PMID: 31414133 DOI: 10.1093/ajh/hpz137] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/18/2019] [Accepted: 08/09/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- Lin Lin
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
- Weifang Medical University, Weifang, Shandong, China
| | - Xia Wu
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Yamin Hou
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Fei Zheng
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Rui Xu
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| |
Collapse
|
19
|
Polonikov A, Rymarova L, Klyosova E, Volkova A, Azarova I, Bushueva O, Bykanova M, Bocharova I, Zhabin S, Churnosov M, Laskov V, Solodilova M. Matrix metalloproteinases as target genes for gene regulatory networks driving molecular and cellular pathways related to a multistep pathogenesis of cerebrovascular disease. J Cell Biochem 2019; 120:16467-16482. [PMID: 31056794 DOI: 10.1002/jcb.28815] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/30/2019] [Accepted: 04/08/2019] [Indexed: 02/04/2023]
Abstract
The present study investigated a joint contribution of matrix metalloproteinases (MMPs) genes to ischemic stroke (IS) development and analyzed interactions between MMP genes and genome-wide associated loci for IS. A total of 1288 unrelated Russians (600 IS patients and 688 healthy individuals) from Central Russia were recruited for the study. Genotyping of seven single nucleotide polymorphisms (SNPs) of MMP genes (rs1799750, rs243865, rs3025058, rs11225395, rs17576, rs486055, and rs2276109) and eight genome-wide associated loci for IS were done using Taq-Man-based assays and MALDI-TOF mass spectrometry iPLEX platform, respectively. Allele - 799T at rs11225395 of the MMP8 gene was significantly associated with a decreased risk of IS after adjustment for sex and age (OR = 0.82; 95%CI, 0.70-0.96; P = 0.016). The model-based multifactor dimensionality reduction method has revealed 21 two-order, 124 three-order, and 474 four-order gene-gene (G×G) interactions models meaningfully (Pperm < 0.05) associated with the IS risk. The bioinformatic analysis enabled establishing the studied MMP gene polymorphisms possess a clear regulatory potential and may be targeted by gene regulatory networks driving molecular and cellular pathways related to the pathogenesis of IS. In conclusion, the present study was the first to identify an association between polymorphism rs11225395 of the MMP8 gene and IS risk. The study findings also indicate that MMPs deserve special attention as a potential class of genes influencing the multistep mechanisms of cerebrovascular disease including atherosclerosis in cerebral arteries, acute cerebral artery occlusion as well as the ischemic injury of the brain and its recovery.
Collapse
Affiliation(s)
- Alexey Polonikov
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, Kursk, Russian Federation
- Laboratory of Statistical Genetics and Bioinformatics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk, Russian Federation
| | - Larisa Rymarova
- Laboratory of Statistical Genetics and Bioinformatics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk, Russian Federation
| | - Elena Klyosova
- Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk, Russian Federation
| | - Anastasia Volkova
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, Kursk, Russian Federation
| | - Iuliia Azarova
- Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk, Russian Federation
- Department of Biological Chemistry, Kursk State Medical University, Kursk, Russian Federation
| | - Olga Bushueva
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, Kursk, Russian Federation
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk, Russian Federation
| | - Marina Bykanova
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, Kursk, Russian Federation
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk, Russian Federation
| | - Iuliia Bocharova
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, Kursk, Russian Federation
| | - Sergey Zhabin
- Department of Surgical Diseases, Kursk State Medical University, Kursk, Russian Federation
| | - Mikhail Churnosov
- Department of Medical Biological Disciplines, Belgorod State University, Belgorod, Russian Federation
| | - Vitaliy Laskov
- Department of Neurology and Neurosurgery, Kursk State Medical University, Kursk, Russian Federation
| | - Maria Solodilova
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, Kursk, Russian Federation
| |
Collapse
|
20
|
Lv J, Ma Q, Dasgupta C, Xu Z, Zhang L. Antenatal Hypoxia and Programming of Glucocorticoid Receptor Expression in the Adult Rat Heart. Front Physiol 2019; 10:323. [PMID: 31001129 PMCID: PMC6454194 DOI: 10.3389/fphys.2019.00323] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/11/2019] [Indexed: 12/26/2022] Open
Abstract
Glucocorticoid receptor (GR) signaling is critical for development and function of the heart. Our previous study demonstrated that gestational hypoxia induced epigenetic repression of the GR gene in the developing heart. The present study aims to determine that the alterations of promoter methylation level and epigenetic repression of the GR gene in the developing heart in response to maternal hypoxia is sustained in adult offspring and potential gender differences in the programming of GR gene. Pregnant rats were treated with 10.5% O2 from gestational day 15 (E15) to 21 (E21). Hearts were isolated from 5-month-old male and female offspring with the developing stage being equivalent to 18-year-old human. GR mRNA and protein abundance was determined with real time qRT-PCR and Western blot. GR gene promoter methylation and binding of transcription factors were measured with methylated DNA immunoprecipitation (MeDIP) and Chromatin immunoprecipitation (ChIP). The results showed that antenatal hypoxia significantly decreased the expression of GR mRNA and protein in the hearts of adult male offspring, but not in females, which is ascribed to the differential changes of alternative exon1 mRNA variants of GR gene in male and female hearts in response to prenatal hypoxia. In addition, the downregulation of GR expression in the male heart was correlated with increased methylation levels of CpG dinucleotides in promoters of exon 14, 15, 16, 17, and 110, which resulted in a decrease in the binding of their transcription factors. Thus, the study reveals that antenatal hypoxia results in a reprogramming and long-term change in GR gene expression in the heart by hypermethylation of GR promoter in a sex-differential pattern, which provides a novel mechanism regarding the increased vulnerability of heart later in life with exposure of prenatal hypoxia.
Collapse
Affiliation(s)
- Juanxiu Lv
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qingyi Ma
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Chiranjib Dasgupta
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Zhice Xu
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Lubo Zhang
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States
| |
Collapse
|
21
|
Shah NM, Lai PF, Imami N, Johnson MR. Progesterone-Related Immune Modulation of Pregnancy and Labor. Front Endocrinol (Lausanne) 2019; 10:198. [PMID: 30984115 PMCID: PMC6449726 DOI: 10.3389/fendo.2019.00198] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/11/2019] [Indexed: 12/17/2022] Open
Abstract
Pregnancy involves a complex interplay between maternal neuroendocrine and immunological systems in order to establish and sustain a growing fetus. It is thought that the uterus at pregnancy transitions from quiescent to laboring state in response to interactions between maternal and fetal systems at least partly via altered neuroendocrine signaling. Progesterone (P4) is a vital hormone in maternal reproductive tissues and immune cells during pregnancy. As such, P4 is widely used in clinical interventions to improve the chance of embryo implantation, as well as reduce the risk of miscarriage and premature labor. Here we review research to date that focus on the pathways through which P4 mediates its actions on both the maternal reproductive and immune system. We will dissect the role of P4 as a modulator of inflammation, both systemic and intrinsic to the uterus, during human pregnancy and labor.
Collapse
Affiliation(s)
- Nishel M. Shah
- Department of Surgery and Cancer, Chelsea and Westminster Hospital, Imperial College London, London, United Kingdom
| | - Pei F. Lai
- Department of Surgery and Cancer, Chelsea and Westminster Hospital, Imperial College London, London, United Kingdom
| | - Nesrina Imami
- Department of Medicine, Chelsea and Westminster Hospital, Imperial College London, London, United Kingdom
| | - Mark R. Johnson
- Department of Surgery and Cancer, Chelsea and Westminster Hospital, Imperial College London, London, United Kingdom
| |
Collapse
|
22
|
Foussier L, Vitellius G, Bouligand J, Amazit L, Bouvattier C, Young J, Trabado S, Lombès M. Functional Characterization of Glucocorticoid Receptor Variants Is Required to Avoid Misinterpretation of NGS Data. J Endocr Soc 2019; 3:865-881. [PMID: 31008420 PMCID: PMC6467410 DOI: 10.1210/js.2019-00028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 02/28/2019] [Indexed: 01/23/2023] Open
Abstract
Recent advances in genetic analysis technologies such as next-generation sequencing (NGS) have considerably increased the incidental discovery of genetic abnormalities. Six heterozygous missense mutations of the human glucocorticoid receptor (GR; encoded by the NR3C1 gene) have been identified in the context of genetic screening of endocrine pathologies. GR, a nuclear receptor, hormone-induced transcription factor, is involved in many physiological processes. Nevertheless, the pathogenic significance of incidentally discovered mutations remains obscure. The aim of this work was to characterize these variants by evaluating their functional impact on GR signaling. Six original GR variants, located in exon 2, led to amino acid substitutions of the N-terminal domain of GR (F65V, M86V, A229T, A304E, N374S, and R386Q), excluding mainly the activation function tau core 1 domain, the potential site of functional interaction with transcriptional coregulators. Transient cotransfection in HEK293T cells of mutated GR-expressing vectors and a luciferase reporter established dose-response curves for dexamethasone. This excluded any major transactivation abnormality of the mutated GRs (ligand concentration leading to 50% maximal transactivation capacity ≈ 0.2 nM), with maximal transactivation capacity identical to that of the wild-type (WT) GR and without modification of the potentiation of transcriptional coactivator steroid receptor coactivator 2 except in N374S. Moreover, protein expression of mutated GRs and their cytonuclear translocation studied by immunocytochemistry were almost unchanged compared with WT GR. These results underline the silent nature of these missense GR variants and call for cautious interpretation of the discovery of genetic incidentalomas by NGS in the absence of detailed characterization in order to appropriately assess their functional impact on a particular signaling pathway.
Collapse
Affiliation(s)
- Loïc Foussier
- INSERM UMR_S U1185, Fac Med Paris Sud, Université Paris-Saclay, Le Kremlin Bicêtre, France
| | - Géraldine Vitellius
- INSERM UMR_S U1185, Fac Med Paris Sud, Université Paris-Saclay, Le Kremlin Bicêtre, France
| | - Jérôme Bouligand
- INSERM UMR_S U1185, Fac Med Paris Sud, Université Paris-Saclay, Le Kremlin Bicêtre, France.,Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie, Hôpitaux Universitaires Paris Sud, AH-HP, CHU Bicêtre, France
| | - Larbi Amazit
- INSERM UMR_S U1185, Fac Med Paris Sud, Université Paris-Saclay, Le Kremlin Bicêtre, France.,Unité Mixte de Service 32 (UMS-32), Institut Biomédical de Bicêtre, Le Kremlin-Bicêtre, France
| | - Claire Bouvattier
- Service d'Endocrinologie Pédiatrique, Assistance publique des hôpitaux de Paris, Hôpitaux Universitaires Paris Sud, AH-HP, CHU Bicêtre, France
| | - Jacques Young
- INSERM UMR_S U1185, Fac Med Paris Sud, Université Paris-Saclay, Le Kremlin Bicêtre, France.,Service d'Endocrinologie et des Maladies de la Reproduction, Hôpitaux Universitaires Paris Sud, AH-HP, CHU Bicêtre, Le Kremlin Bicêtre, France
| | - Séverine Trabado
- INSERM UMR_S U1185, Fac Med Paris Sud, Université Paris-Saclay, Le Kremlin Bicêtre, France.,Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie, Hôpitaux Universitaires Paris Sud, AH-HP, CHU Bicêtre, France
| | - Marc Lombès
- INSERM UMR_S U1185, Fac Med Paris Sud, Université Paris-Saclay, Le Kremlin Bicêtre, France.,Service d'Endocrinologie et des Maladies de la Reproduction, Hôpitaux Universitaires Paris Sud, AH-HP, CHU Bicêtre, Le Kremlin Bicêtre, France
| |
Collapse
|
23
|
Abstract
Primary generalized glucocorticoid resistance or Chrousos syndrome is a rare disorder, which affects all tissues expressing the human glucocorticoid receptor. It is characterized by generalized, partial tissue insensitivity to glucocorticoids caused by genetic defects in the NR3C1 gene. We and others have applied standard methods of molecular and structural biology to investigate the molecular mechanisms and conformational alterations through which the mutant glucocorticoid receptors lead to the broad spectrum of clinical manifestations of Chrousos syndrome. The ever-increasing application of novel technologies, including the next-generation sequencing, will enhance our knowledge in factors that influence the glucocorticoid signal transduction in a positive or negative fashion.
Collapse
Affiliation(s)
- Nicolas C Nicolaides
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, "Aghia Sophia" Children's Hospital, Athens, Greece.
- Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
| | - Evangelia Charmandari
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, "Aghia Sophia" Children's Hospital, Athens, Greece
- Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|
24
|
Al Argan R, Saskin A, Yang JW, D'Agostino MD, Rivera J. Glucocorticoid resistance syndrome caused by a novel NR3C1 point mutation. Endocr J 2018; 65:1139-1146. [PMID: 30158362 DOI: 10.1507/endocrj.ej18-0135] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Glucocorticoid resistance syndrome (GRS) is a rare genetic disorder caused by inactivating mutations of the NR3C1 gene which encodes the glucocorticoid receptor. The phenotypic spectrum is broad but typically include symptoms of adrenal insufficiency, mineralocorticoid excess and hyperandrogenism. We report a new case associated with a novel NR3C1 mutation. A 55-year-old woman with lifelong history of low body weight, hyperandrogenism and anxiety was seen at the endocrine clinic after left adrenalectomy and salpingoophorectomy for lesions suspicious of ovarian cancer and adrenal metastasis. The tumors turned out to be a 3.5 cm benign ovarian serous adenofibroma and a 3.5 cm multinodular adrenal mass. She complained of worsened fatigue and inability to recover weight lost with surgery. Pre-operative serum and urinary cortisol were elevated, but she had no stigma of Cushing's syndrome. Plasma ACTH was elevated and a 1-mcg cosyntropin stimulation test was normal. Her fatigue persisted over ensuing years and ACTH-dependent hypercortisolemia remained stable. Low dose oral dexamethasone failed to suppress endogenous cortisol. A pituitary MRI was normal but revealed incidental brain aneurysms. Bone densitometry showed profound osteoporosis. On the bases of this contradictory clinical picture, glucocorticoid resistance syndrome (GRS) was suspected. Using next generation sequencing technology, a novel heterozygous pathogenic variant in the NR3C1 gene was detected. We speculate that vascular malformations and profound osteoporosis, findings associated to cortisol excess, reflect in our patient a variable tissue sensitivity to glucocorticoids. In conclusion, in patients with clinically unexpected ACTH-dependent hypercortisolemia, primary glucocorticoid resistance (GRS) should be considered.
Collapse
Affiliation(s)
- Reem Al Argan
- Division of Endocrinology and Metabolism, Department of Medicine, McGill University Health Center, McGill University, Montreal, Quebec, Canada
| | - Avi Saskin
- Department of Human Genetics, McGill University Health Center, McGill University, Montreal, Quebec, Canada
| | - Ji Wei Yang
- Division of Endocrinology and Metabolism, Department of Medicine, McGill University Health Center, McGill University, Montreal, Quebec, Canada
| | - Maria Daniela D'Agostino
- Department of Human Genetics, McGill University Health Center, McGill University, Montreal, Quebec, Canada
| | - Juan Rivera
- Division of Endocrinology and Metabolism, Department of Medicine, McGill University Health Center, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
25
|
El-Fayoumi R, Hagras M, Abozenadaha A, Bawazir W, Shinawi T. Association Between NR3C1 Gene Polymorphisms and Toxicity Induced by Glucocorticoids Therapy in Saudi Children with Acute Lymphoblastic Leukemia. Asian Pac J Cancer Prev 2018; 19:1415-1423. [PMID: 29802709 PMCID: PMC6031821 DOI: 10.22034/apjcp.2018.19.5.1415] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background: Glucocorticoids (GCs) are key hormones used for the treatment of acute lymphoblastic leukemia (ALL) in children, but their cytotoxic effects are not well defined. The aim of this study was to evaluate the association between polymorphisms in NR3C1 encoding for protein involved in the GCs metabolism and its role in the development of ALL and the toxicity outcome, in terms of liver toxicity, glucose abnormality and infections, in ALL Saudi children. Methods: The following polymorphisms BCII rs41423247, ER22/23 EK rs6189 and rs6190 and N363S rs6195 in NR3C1 were analyzed in 70 children with ALL treated according to the ALL 2000 study protocol in comparison to 60 control subjects. Treatment toxicities and their association with genotypes were evaluated according to Common Toxicity Criteria (NCI-CTC). Results: This study demonstrated that the NR3C1 did not contribute to the development of childhood ALL. Homozygous ER22/23EK polymorphism was not found in both ALL patients and in control group whereas the heterozygous polymorphism was only observed in the control group (6.66%). The toxicology data in this study showed a significant difference between ALL patients carrying N363S polymorphism and wild type (40% and 6.51% respectively, P= 0.009) and a high-risk factor in the toxicity of glucose abnormality (OR=10.167; 1.302-79.339).BCII shows increased risk factors towards the liver toxicity (OR=2.667; 0.526-7.330) as well as the glucose abnormality (OR=7.5; 1.039-54.116). Conclusion: This study suggested that the polymorphisms in NR3C1 were not associated with the development of ALL in children. N363S polymorphism was sensitive to glucocorticoids and it may contribute to the glucose abnormality for these patients.
Collapse
Affiliation(s)
- Refaat El-Fayoumi
- Medical laboratory Technology Department, Faculty of Applied medical Science, King Abdulaziz University, Jeddah , Saudi Arabi.
| | | | | | | | | |
Collapse
|
26
|
Vitellius G, Trabado S, Bouligand J, Delemer B, Lombès M. Pathophysiology of Glucocorticoid Signaling. ANNALES D'ENDOCRINOLOGIE 2018; 79:98-106. [PMID: 29685454 DOI: 10.1016/j.ando.2018.03.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Glucocorticoids (GC), such as cortisol or dexamethasone, control various physiological functions, notably those involved in development, metabolism, inflammatory processes and stress, and exert most of their effects upon binding to the glucocorticoid receptor (GR, encoded by NR3C1 gene). GC signaling follows several consecutive steps leading to target gene transactivation, including ligand binding, nuclear translocation of ligand-activated GR complexes, DNA binding, coactivator interaction and recruitment of functional transcriptional machinery. Any step may be impaired and may account for altered GC signaling. Partial or generalized glucocorticoid resistance syndrome may result in a reduced level of functional GR, a decreased hormone affinity and binding, a defect in nuclear GR translocation, a decrease or lack of DNA binding and/or post-transcriptional GR modifications. To date, 26 loss-of-function NR3C1 mutations have been reported in the context of hypertension, hirsutism, adrenal hyperplasia or metabolic disorders. These clinical signs are generally associated with biological features including hypercortisolism without negative regulatory feedback loop on the hypothalamic-pituitary-adrenal axis. Patients had often low plasma aldosterone and renin levels despite hypertension. Only one GR gain-of-function mutation has been described associating Cushing's syndrome phenotype with normal urinary-free cortisol. Some GR polymorphisms (ER22/23EK, GR-9β) have been linked to glucocorticoid resistance and a healthier metabolic profile whereas some others seemed to be associated with GC hypersensitivity (N363S, BclI), increasing cardiovascular risk (diabetes type 2, visceral obesity). This review focuses on the earlier findings on the pathophysiology of GR signaling and presents criteria facilitating identification of novel NR3C1 mutations in selected patients.
Collapse
Affiliation(s)
- Géraldine Vitellius
- Inserm Umr_S U1185, faculté de médecine Paris-Sud, université Paris-Sud, université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France; Service d'endocrinologie diabète nutrition, CHU de Reims, hôpital Robert-Debré, 51100, France
| | - Séverine Trabado
- Inserm Umr_S U1185, faculté de médecine Paris-Sud, université Paris-Sud, université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France; Service de génétique moléculaire, pharmacogénétique et hormonologie, CHU de Bicêtre, hôpitaux universitaires Paris-Sud, AH-HP, 94275, France
| | - Jérôme Bouligand
- Inserm Umr_S U1185, faculté de médecine Paris-Sud, université Paris-Sud, université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France; Service de génétique moléculaire, pharmacogénétique et hormonologie, CHU de Bicêtre, hôpitaux universitaires Paris-Sud, AH-HP, 94275, France
| | - Brigitte Delemer
- Service d'endocrinologie diabète nutrition, CHU de Reims, hôpital Robert-Debré, 51100, France
| | - Marc Lombès
- Inserm Umr_S U1185, faculté de médecine Paris-Sud, université Paris-Sud, université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France; Service d'endocrinologie et des maladies de la reproduction, hôpitaux universitaires Paris-Sud, CHU Bicêtre, AH-HP, 94275 Le Kremlin Bicêtre, France.
| |
Collapse
|
27
|
Vitellius G, Trabado S, Hoeffel C, Bouligand J, Bennet A, Castinetti F, Decoudier B, Guiochon-Mantel A, Lombes M, Delemer B. Significant prevalence of NR3C1 mutations in incidentally discovered bilateral adrenal hyperplasia: results of the French MUTA-GR Study. Eur J Endocrinol 2018; 178:411-423. [PMID: 29444898 DOI: 10.1530/eje-17-1071] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 02/14/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND Recently discovered mutations of NR3C1 gene, encoding for the GR, in patients with glucocorticoid resistance and bilateral adrenal incidentalomas prompted us to investigate whether GR mutations might be associated with adrenal hyperplasia. OBJECTIVE The multicenter French Clinical Research Program (Muta-GR) was set up to determine the prevalence of GR mutations and polymorphisms in patients harboring bilateral adrenal incidentalomas associated with hypertension and/or biological hypercortisolism without clinical Cushing's signs. RESULTS One hundred patients were included in whom NR3C1 sequencing revealed five original heterozygous GR mutations that impaired GR signaling in vitro. Mutated patients presented with mild glucocorticoid resistance defined as elevated urinary free cortisol (1.7 ± 0.7 vs 0.9 ± 0.8 upper limit of normal range, P = 0.006), incomplete 1 mg dexamethasone suppression test without suppressed 8-AM adrenocorticotrophin levels (30.9 ± 31.2 vs 16.2 ± 17.5 pg/mL) compared to the non-mutated patients. Potassium and aldosterone levels were lower in mutated patients (3.6 ± 0.2 vs 4.1 ± 0.5 mmol/L, P = 0.01, and 17.3 ± 9.9 vs 98.6 ± 115.4 pg/mL, P = 0.0011, respectively) without elevated renin levels, consistent with pseudohypermineralocorticism. Ex vivo characterization of mutated patients' fibroblasts demonstrated GR haploinsufficiency as revealed by below-normal glucocorticoid induction of FKBP5 gene expression. There was no association between GR polymorphisms and adrenal hyperplasia in this cohort, except an over-representation of BclI polymorphism. CONCLUSION The 5% prevalence of heterozygous NR3C1 mutations discovered in our series is higher than initially thought and encourages GR mutation screening in patients with adrenal incidentalomas to unambiguously differentiate from Cushing's states and to optimize personalized follow-up.
Collapse
Affiliation(s)
- Géraldine Vitellius
- INSERM UMR_S U1185, Fac Med Paris Sud, Université Paris Sud, Université Paris-Saclay, Le Kremlin Bicêtre, France
- Service d'Endocrinologie-Diabète-Nutrition, Hôpital Robert Debré, CHU Reims, Reims, France
| | - Séverine Trabado
- INSERM UMR_S U1185, Fac Med Paris Sud, Université Paris Sud, Université Paris-Saclay, Le Kremlin Bicêtre, France
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie, Hôpitaux Universitaires Paris Sud, AH-HP, CHU Bicêtre, Le Kremlin Bicêtre, France
| | - Christine Hoeffel
- Service de Radiologie, Hôpital Robert Debré, CRESTIC, CHU Reims-URCA, Reims, France
| | - Jérôme Bouligand
- INSERM UMR_S U1185, Fac Med Paris Sud, Université Paris Sud, Université Paris-Saclay, Le Kremlin Bicêtre, France
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie, Hôpitaux Universitaires Paris Sud, AH-HP, CHU Bicêtre, Le Kremlin Bicêtre, France
| | - Antoine Bennet
- Service d'Endocrinologie, Maladies Métaboliques et Nutrition, CHU Toulouse, Toulouse, France
| | | | - Bénédicte Decoudier
- Service d'Endocrinologie-Diabète-Nutrition, Hôpital Robert Debré, CHU Reims, Reims, France
| | - Anne Guiochon-Mantel
- INSERM UMR_S U1185, Fac Med Paris Sud, Université Paris Sud, Université Paris-Saclay, Le Kremlin Bicêtre, France
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie, Hôpitaux Universitaires Paris Sud, AH-HP, CHU Bicêtre, Le Kremlin Bicêtre, France
| | - Marc Lombes
- INSERM UMR_S U1185, Fac Med Paris Sud, Université Paris Sud, Université Paris-Saclay, Le Kremlin Bicêtre, France
- Service d'Endocrinologie et des Maladies de la Reproduction, Hôpitaux Universitaires Paris Sud, AH-HP, CHU Bicêtre, Le Kremlin Bicêtre, France
| | - Brigitte Delemer
- Service d'Endocrinologie-Diabète-Nutrition, Hôpital Robert Debré, CHU Reims, Reims, France
| |
Collapse
|
28
|
The Low-Renin Hypertension Phenotype: Genetics and the Role of the Mineralocorticoid Receptor. Int J Mol Sci 2018; 19:ijms19020546. [PMID: 29439489 PMCID: PMC5855768 DOI: 10.3390/ijms19020546] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 01/31/2018] [Accepted: 02/08/2018] [Indexed: 12/22/2022] Open
Abstract
A substantial proportion of patients with hypertension have a low or suppressed renin. This phenotype of low-renin hypertension (LRH) may be the manifestation of inherited genetic syndromes, acquired somatic mutations, or environmental exposures. Activation of the mineralocorticoid receptor is a common final mechanism for the development of LRH. Classically, the individual causes of LRH have been considered to be rare diseases; however, recent advances suggest that there are milder and "non-classical" variants of many LRH-inducing conditions. In this regard, our understanding of the underlying genetics and mechanisms accounting for LRH, and therefore, potentially the pathogenesis of a large subset of essential hypertension, is evolving. This review will discuss the potential causes of LRH, with a focus on implicated genetic mechanisms, the expanding recognition of non-classical variants of conditions that induce LRH, and the role of the mineralocorticoid receptor in determining this phenotype.
Collapse
|
29
|
Al-Daghri NM, Batzel JJ, Burgmann H, Carbone F, Charmandari E, Chrousos GP, Distelmaier K, Cvirn G, Dullaart RPF, Dumitrascu DL, Esteve-Pastor MA, Gervasini G, Goliasch G, Goswami N, Gruppen EG, Hernández-Mijares A, Kalantaridou SN, Krause R, Latini R, Makrigiannakis A, Marín F, Masson S, Montecucco F, Ndrepepa G, Nicolaides NC, Novelli D, Orasan OH, Qorbani M, Ratzinger F, Roessler A, Sabico S, Sciatti E, Stefanaki C, Stoner L, Tabatabaei-Malazy O, Tatar E, Toz H, Uslu A, Victor VM, Vizzardi E. Research update for articles published in EJCI in 2015. Eur J Clin Invest 2017; 47:775-788. [PMID: 28960328 DOI: 10.1111/eci.12819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 08/17/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Nasser M Al-Daghri
- Biomarkers Research Program, Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- Prince Mutaib Chair for Biomarkers of Osteoporosis, Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Jerry J Batzel
- Gravitational Physiology and Medicine Research Unit, Institute of Physiology, Medical University of Graz, Graz, Austria
| | - Heinz Burgmann
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Federico Carbone
- First Clinical of Internal Medicine Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Evangelia Charmandari
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, "Aghia Sophia" Children's Hospital, Athens, Greece
- Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - George P Chrousos
- Choremeion Research Laboratory, 1st Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Klaus Distelmaier
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Gerhard Cvirn
- Physiology, Medical University of Graz, Graz, Austria
- Institute of Physiological Chemistry, Medical University of Graz, Graz, Austria
| | - Robin P F Dullaart
- Department of Endocrinology, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Dan L Dumitrascu
- 2nd Medical Department, University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - María A Esteve-Pastor
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- Department of Cardiology, Hospital Clínico Universitario Virgen de la Arrixaca, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), CIBER-CV, Murcia, Spain
| | - Guillermo Gervasini
- Department of Medical and Surgical Therapeutics, Medical School, University of Extremadura, Badajoz, Spain
| | - Georg Goliasch
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Nandu Goswami
- Gravitational Physiology and Medicine Research Unit, Institute of Physiology, Medical University of Graz, Graz, Austria
| | - Eke G Gruppen
- Department of Endocrinology, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Antonio Hernández-Mijares
- Service of Endocrinology, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
- Department of Medicine, University of Valencia, Valencia, Spain
| | - Sophia N Kalantaridou
- 2nd Department of Obstetrics and Gynecology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Robert Krause
- Section of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- CBmed GmbH - Center for Biomarker Research in Medicine, Graz, Austria
| | - Roberto Latini
- Department of Cardiovascular Research, IRCCS - Istituto Mario Negri, Milano, Italy
| | - Antonis Makrigiannakis
- Department of Obstetrics and Gynecology, Medical School, University of Crete, Heraklion, Greece
| | - Francisco Marín
- Department of Cardiology, Hospital Clínico Universitario Virgen de la Arrixaca, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), CIBER-CV, Murcia, Spain
| | - Serge Masson
- Department of Cardiovascular Research, IRCCS - Istituto Mario Negri, Milano, Italy
| | - Fabrizio Montecucco
- First Clinical of Internal Medicine Department of Internal Medicine, University of Genoa, Genoa, Italy
- Ospedale Policlinico San Martino, Genova, Italy
- Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | | | - Nicolas C Nicolaides
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, "Aghia Sophia" Children's Hospital, Athens, Greece
- Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Deborah Novelli
- Department of Cardiovascular Research, IRCCS - Istituto Mario Negri, Milano, Italy
| | - Olga H Orasan
- 4th Medical Department, University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mostafa Qorbani
- Department of Community Medicine, School of Medicine, Alborz University of Medical sciences, Karaj, Iran
- Non-Communicable Disease Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran university of Medical sciences, Tehran, Iran
| | - Franz Ratzinger
- Division of Medical and Chemical Laboratory Diagnostics, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Andreas Roessler
- Gravitational Physiology and Medicine Research Unit, Institute of Physiology, Medical University of Graz, Graz, Austria
| | - Shaun Sabico
- Biomarkers Research Program, Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- Prince Mutaib Chair for Biomarkers of Osteoporosis, Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Edoardo Sciatti
- Section of Cardiovascular Diseases, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University and Spedali Civili of Brescia, Brescia, Italy
| | - Charikleia Stefanaki
- Choremeion Research Laboratory, 1st Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Lee Stoner
- School of Sport and Exercise, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ozra Tabatabaei-Malazy
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran university of Medical sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical sciences, Tehran, Iran
| | - Erhan Tatar
- Department of Nephrology, Izmir Bozyaka Education and Research Hospital, Izmir, Turkey
| | - Huseyin Toz
- Department of Nephrology, Ege University School of Medicine, Izmir, Turkey
| | - Adam Uslu
- Department of General Surgery and Transplantation, Izmir Bozyaka Education and Research Hospital, Izmir, Turkey
| | - Victor M Victor
- Service of Endocrinology, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
- Department of Physiology, University of Valencia, Valencia, Spain
| | - Enrico Vizzardi
- Section of Cardiovascular Diseases, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University and Spedali Civili of Brescia, Brescia, Italy
| |
Collapse
|
30
|
Dendoncker K, Libert C. Glucocorticoid resistance as a major drive in sepsis pathology. Cytokine Growth Factor Rev 2017; 35:85-96. [DOI: 10.1016/j.cytogfr.2017.04.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/07/2017] [Accepted: 04/19/2017] [Indexed: 01/07/2023]
|
31
|
Rodriguez JM, Monsalves-Alvarez M, Henriquez S, Llanos MN, Troncoso R. Glucocorticoid resistance in chronic diseases. Steroids 2016; 115:182-192. [PMID: 27643454 DOI: 10.1016/j.steroids.2016.09.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 09/09/2016] [Accepted: 09/12/2016] [Indexed: 12/25/2022]
Abstract
Glucocorticoids are involved in several responses triggered by a variety of environmental and physiological stimuli. These hormones have a wide-range of regulatory effects in organisms. Synthetic glucocorticoids are extensively used to suppress allergic, inflammatory, and immune disorders. Although glucocorticoids are highly effective for therapeutic purposes, some patients chronically treated with glucocorticoids can develop reduced glucocorticoid sensitivity or even resistance, increasing patient vulnerability to exaggerated inflammatory responses. Glucocorticoid resistance can occur in several chronic diseases, including asthma, major depression, and cardiovascular conditions. In this review, we discuss the complexity of the glucocorticoid receptor and the potential role of glucocorticoid resistance in the development of chronic diseases.
Collapse
Affiliation(s)
- Juan M Rodriguez
- Institute of Nutrition and Food Technology, University of Chile, Santiago 7830490, Chile
| | - Matías Monsalves-Alvarez
- Institute of Nutrition and Food Technology, University of Chile, Santiago 7830490, Chile; Departamento de Ciencias Biologicas, Facultad de Ciencias Biologicas, Universidad Andres Bello, Santiago, Chile
| | - Sandra Henriquez
- Institute of Nutrition and Food Technology, University of Chile, Santiago 7830490, Chile
| | - Miguel N Llanos
- Institute of Nutrition and Food Technology, University of Chile, Santiago 7830490, Chile
| | - Rodrigo Troncoso
- Institute of Nutrition and Food Technology, University of Chile, Santiago 7830490, Chile; Advanced Center for Chronic Disease, Faculty of Chemistry and Pharmacy, University of Chile, Santiago 8380492, Chile.
| |
Collapse
|
32
|
|