1
|
Dellepiane F, Moltoni G, Ronci S, Guarnera A, Rossi-Espagnet MC, Digilio MC, Martinelli D, Campi F, Longo D. Two Different Brain Injury Patterns Associated with Compound Heterozygosis of the PIGO Gene in a Term Newborn: A Case Report. Biomedicines 2024; 12:2779. [PMID: 39767685 PMCID: PMC11673543 DOI: 10.3390/biomedicines12122779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
The glycosylphosphatidylinositol (GPI) is a glycol-lipid that anchors several proteins to the cell surface. The GPI-anchor pathway is crucial for the correct function of proteins involved in cell function, and it is fundamental in early neurogenesis and neural development. The PIG gene family is a group of genes involved in this pathway with six genes identified so far, and defects in these genes are associated with a rare inborn metabolic disorder manifesting with a spectrum of clinical phenotypes in newborns and children. Among them, the PIGO gene encodes for phosphatidylinositol glycan anchor biosynthesis class O protein (PIGO), an enzyme participating in this cascade, and the loss of its function often leads to a severe clinical picture characterized by global developmental delay, seizures, Hirschsprung disease, and other congenital malformations. To date, 19 patients with confirmed PIGO deficiency have been described in the literature with a host of clinical and radiological manifestations. We report a case of a male term newborn with two compound heterozygous variants of the PIGO genes, presenting with encephalopathy, drug-resistant epilepsy, and gastrointestinal abnormalities. Brain MRI first showed diffusion restriction in the ponto-medullary tegmentum, ventral mesencephalon, superior cerebellar peduncles, cerebral peduncles, and globi pallidi. This pattern of lesion distribution has been described as part of the neuroradiological spectrum of PIG genes-related disorders. However, after one month of life, he also showed a previously undescribed MRI pattern characterized by extensive cortical and subcortical involvement of the brain hemispheres. The presence of two different mutations in both the PIGO genes may have been responsible for the particularly severe clinical picture and worse outcome, leading to the death of the newborn in the sixth month of life despite therapeutic attempts. This case expands the neuroradiological spectrum and may bring new insights on glycosylation-related disorders brain manifestations.
Collapse
Affiliation(s)
- Francesco Dellepiane
- Diagnostic and Interventional Neuroradiology Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (G.M.); (A.G.); (M.C.R.-E.); (D.L.)
- Neuroradiology Unit, NESMOS S. Andrea Hospital, University Sapienza, 00189 Rome, Italy
| | - Giulia Moltoni
- Diagnostic and Interventional Neuroradiology Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (G.M.); (A.G.); (M.C.R.-E.); (D.L.)
- Neuroradiology Unit, NESMOS S. Andrea Hospital, University Sapienza, 00189 Rome, Italy
| | - Sara Ronci
- Neonatal Intensive Care Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (S.R.); (F.C.)
| | - Alessia Guarnera
- Diagnostic and Interventional Neuroradiology Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (G.M.); (A.G.); (M.C.R.-E.); (D.L.)
- Neuroradiology Unit, NESMOS S. Andrea Hospital, University Sapienza, 00189 Rome, Italy
| | - Maria Camilla Rossi-Espagnet
- Diagnostic and Interventional Neuroradiology Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (G.M.); (A.G.); (M.C.R.-E.); (D.L.)
| | | | - Diego Martinelli
- Metabolic Diseases Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
| | - Francesca Campi
- Neonatal Intensive Care Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (S.R.); (F.C.)
| | - Daniela Longo
- Diagnostic and Interventional Neuroradiology Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (G.M.); (A.G.); (M.C.R.-E.); (D.L.)
| |
Collapse
|
2
|
Pan Y, Ren B, Chen L, Li Q. A case report of PGAP2-related hyperphosphatasia with impaired intellectual development syndrome in a Chinese family and literature review. Front Pediatr 2024; 12:1419976. [PMID: 39687712 PMCID: PMC11646758 DOI: 10.3389/fped.2024.1419976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 11/14/2024] [Indexed: 12/18/2024] Open
Abstract
Recently, mutations have been identified in six genes (PIGA, PIGY, PIGO, PGAP2, PIGW and PGAP3) encoding proteins in the Glycosyl phosphatidylinositol(GPI)-anchor-synthesis pathway in individuals with hyperphosphatasia with impaired intellectual development syndrome(HPMRS). Reports involving the rare pathogenic gene, post-GPI attachment to proteins 2 (PGAP2) are quite limited. In this study, we reported two patients with PGAP2 variants related neurodevelopmental disorders from Asian population. The proband, onset of epileptic spasms at 5 months, concurrently with global developmental dalay, facial malformation and elevated alkaline phosphatase. His younger sister, onset of epileptic spasms at 2 months, having similar clinical features as the proband. Their phenotypes are consistent with PGAP2 related diseases. The two missense variants [c.686C>T (p.Ala229Val) and c.677C>T (p.Thr226Ile)] in PGAP2 gene found in this family were segregation with the disease, while c.677C>T (p.Thr226Ile) was a novel variant. All the two patients showed a positive response to ACTH treatment and high-dose pyridoxine. In summary, this study contributes to expanding the pathogenic variant spectrum of PGAP2 related HPMRS, and provides new insights into the treatment.
Collapse
Affiliation(s)
- Yijun Pan
- Department of Pediatric Neurology, Guiyang Maternal and Child Health Care Hospital, Guiyang, China
| | - Bin Ren
- Department of Genetic Counseling, Shanghai Nyuen Biotechnology Co., Ltd., Shanghai, China
| | - Lijuan Chen
- Department of Genetic Counseling, Shanghai Nyuen Biotechnology Co., Ltd., Shanghai, China
| | - Qiang Li
- Department of Pediatric Neurology, Guiyang Maternal and Child Health Care Hospital, Guiyang, China
| |
Collapse
|
3
|
Thompson MD, Knaus A. Rare Genetic Developmental Disabilities: Mabry Syndrome (MIM 239300) Index Cases and Glycophosphatidylinositol (GPI) Disorders. Genes (Basel) 2024; 15:619. [PMID: 38790248 PMCID: PMC11121671 DOI: 10.3390/genes15050619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 05/26/2024] Open
Abstract
The case report by Mabry et al. (1970) of a family with four children with elevated tissue non-specific alkaline phosphatase, seizures and profound developmental disability, became the basis for phenotyping children with the features that became known as Mabry syndrome. Aside from improvements in the services available to patients and families, however, the diagnosis and treatment of this, and many other developmental disabilities, did not change significantly until the advent of massively parallel sequencing. As more patients with features of the Mabry syndrome were identified, exome and genome sequencing were used to identify the glycophosphatidylinositol (GPI) biosynthesis disorders (GPIBDs) as a group of congenital disorders of glycosylation (CDG). Biallelic variants of the phosphatidylinositol glycan (PIG) biosynthesis, type V (PIGV) gene identified in Mabry syndrome became evidence of the first in a phenotypic series that is numbered HPMRS1-6 in the order of discovery. HPMRS1 [MIM: 239300] is the phenotype resulting from inheritance of biallelic PIGV variants. Similarly, HPMRS2 (MIM 614749), HPMRS5 (MIM 616025) and HPMRS6 (MIM 616809) result from disruption of the PIGO, PIGW and PIGY genes expressed in the endoplasmic reticulum. By contrast, HPMRS3 (MIM 614207) and HPMRS4 (MIM 615716) result from disruption of post attachment to proteins PGAP2 (HPMRS3) and PGAP3 (HPMRS4). The GPI biosynthesis disorders (GPIBDs) are currently numbered GPIBD1-21. Working with Dr. Mabry, in 2020, we were able to use improved laboratory diagnostics to complete the molecular diagnosis of patients he had originally described in 1970. We identified biallelic variants of the PGAP2 gene in the first reported HPMRS patients. We discuss the longevity of the Mabry syndrome index patients in the context of the utility of pyridoxine treatment of seizures and evidence for putative glycolipid storage in patients with HPMRS3. From the perspective of the laboratory innovations made that enabled the identification of the HPMRS phenotype in Dr. Mabry's patients, the need for treatment innovations that will benefit patients and families affected by developmental disabilities is clear.
Collapse
Affiliation(s)
- Miles D. Thompson
- Krembil Brain Institute, Toronto Western Hospital, 399 Bathurst Street, Toronto, ON M5T 2S8, Canada
| | - Alexej Knaus
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany;
| |
Collapse
|
4
|
Aguech A, Sfaihi L, Alila-Fersi O, Kolsi R, Tlili A, Kammoun T, Fendri A, Fakhfakh F. A novel homozygous PIGO mutation associated with severe infantile epileptic encephalopathy, profound developmental delay and psychomotor retardation: structural and 3D modelling investigations and genotype-phenotype correlation. Metab Brain Dis 2023; 38:2665-2678. [PMID: 37656370 DOI: 10.1007/s11011-023-01276-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/07/2023] [Indexed: 09/02/2023]
Abstract
The PIGO gene encodes the GPI-ethanolamine phosphate transferase 3, which is crucial for the final synthetic step of the glycosylphosphatidylinositol-anchor serving to attach various proteins to their cell surface. These proteins are intrinsic for normal neuronal and embryonic development. In the current research work, a clinical investigation was conducted on a patient from a consanguineous family suffering from epileptic encephalopathy, characterized by severe seizures, developmental delay, hypotonia, ataxia and hyperphosphatasia. Molecular analysis was performed using Whole Exome Sequencing (WES). The molecular investigation revealed a novel homozygous variant c.1132C > T in the PIGO gene, in which a highly conserved Leucine was changed to a Phenylalanine (p.L378F). To investigate the impact of the non-synonymous mutation, a 3D structural model of the PIGO protein was generated using the AlphaFold protein structure database as a resource for template-based tertiary structure modeling. A structural analysis by applying some bioinformatic tools on both variants 378L and 378F models predicted the pathogenicity of the non-synonymous mutation and its potential functional and structural effects on PIGO protein. We also discussed the phenotypic and genotypic variability associated with the PIGO deficiency. To our best knowledge, this is the first report of a patient diagnosed with infantile epileptic encephalopathy showing a high elevation of serum alkaline phosphatase level. Our findings, therefore, widen the genotype and phenotype spectrum of GPI-anchor deficiencies and broaden the cohort of patients with PIGO associated epileptic encephalopathy with an elevated serum alkaline phosphatase level.
Collapse
Affiliation(s)
- Ameni Aguech
- Molecular Genetics and Functional Laboratory, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia.
| | - Lamia Sfaihi
- Pediatrics Department, Hedi Chaker University Hospital, 3029, Sfax, Tunisia
- Faculty of Medecine of Sfax, University of Sfax, Avenue Magida Boulila, 3029, Sfax, Tunisia
| | - Olfa Alila-Fersi
- Molecular Genetics and Functional Laboratory, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | - Roeya Kolsi
- Pediatrics Department, Hedi Chaker University Hospital, 3029, Sfax, Tunisia
- Faculty of Medecine of Sfax, University of Sfax, Avenue Magida Boulila, 3029, Sfax, Tunisia
| | - Abdelaziz Tlili
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Thouraya Kammoun
- Pediatrics Department, Hedi Chaker University Hospital, 3029, Sfax, Tunisia
- Faculty of Medecine of Sfax, University of Sfax, Avenue Magida Boulila, 3029, Sfax, Tunisia
| | - Ahmed Fendri
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, Engineering National School of Sfax (ENIS), University of Sfax, Sfax, Tunisia
| | - Faiza Fakhfakh
- Molecular Genetics and Functional Laboratory, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia.
| |
Collapse
|
5
|
Starosta RT, Kerashvili N, Pruitt C, Schultz MJ, Boyer SW, Morava E, Lasio MLD, Grange DK. PIGO-CDG: A case study with a new genotype, expansion of the phenotype, literature review, and nosological considerations. JIMD Rep 2023; 64:424-433. [PMID: 37927489 PMCID: PMC10623102 DOI: 10.1002/jmd2.12396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/23/2023] [Accepted: 09/06/2023] [Indexed: 11/07/2023] Open
Abstract
The phosphatidylinositol glycan anchor biosynthesis class O protein (PIGO) enzyme is an important step in the biosynthesis of glycosylphosphatidylinositol (GPI), which is essential for the membrane anchoring of several proteins. Bi-allelic pathogenic variants in PIGO lead to a congenital disorder of glycosylation (CDG) characterized by global developmental delay, an increase in serum alkaline phosphatase levels, congenital anomalies including anorectal, genitourinary, and limb malformations in most patients; this phenotype has been alternately called "Mabry syndrome" or "hyperphosphatasia with impaired intellectual development syndrome 2." We report a 22-month-old female with PIGO deficiency caused by novel PIGO variants. In addition to the Mabry syndrome phenotype, our patient's clinical picture was complicated by intermittent hypoglycemia with signs of functional hyperinsulinism, severe secretory diarrhea, and osteopenia with a pathological fracture, thus, potentially expanding the known phenotype of this disorder, although more studies are necessary to confirm these associations. We also provide an updated review of the literature, and propose unifying the nomenclature of PIGO deficiency as "PIGO-CDG," which reflects its pathophysiology and position in the broad scope of metabolic disorders and congenital disorders of glycosylation.
Collapse
Affiliation(s)
- Rodrigo Tzovenos Starosta
- Division of Genetics and Genomic Medicine, Department of PediatricsWashington University in St. LouisClaytonMissouriUSA
| | - Nino Kerashvili
- Division of Pediatric Neurology, Department of NeurologyWashington University in St. LouisClaytonMissouriUSA
| | - Cassandra Pruitt
- Division of Academic Pediatrics, Department of PediatricsWashington University in St. LouisClaytonMissouriUSA
| | - Matthew J. Schultz
- Department of Laboratory Medicine and PathologyMayo ClinicRochesterMinnesotaUSA
| | | | - Eva Morava
- Department of Clinical GenomicsMayo ClinicRochesterMinnesotaUSA
| | - Maria Laura Duque Lasio
- Division of Genetics and Genomic Medicine, Department of PediatricsWashington University in St. LouisClaytonMissouriUSA
- Division of Laboratory and Genomic Medicine, Department of Pathology and ImmunologyWashington University in St. LouisClaytonMissouriUSA
| | - Dorothy K. Grange
- Division of Genetics and Genomic Medicine, Department of PediatricsWashington University in St. LouisClaytonMissouriUSA
| |
Collapse
|
6
|
Conte F, Sam JE, Lefeber DJ, Passier R. Metabolic Cardiomyopathies and Cardiac Defects in Inherited Disorders of Carbohydrate Metabolism: A Systematic Review. Int J Mol Sci 2023; 24:ijms24108632. [PMID: 37239976 DOI: 10.3390/ijms24108632] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/25/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
Heart failure (HF) is a progressive chronic disease that remains a primary cause of death worldwide, affecting over 64 million patients. HF can be caused by cardiomyopathies and congenital cardiac defects with monogenic etiology. The number of genes and monogenic disorders linked to development of cardiac defects is constantly growing and includes inherited metabolic disorders (IMDs). Several IMDs affecting various metabolic pathways have been reported presenting cardiomyopathies and cardiac defects. Considering the pivotal role of sugar metabolism in cardiac tissue, including energy production, nucleic acid synthesis and glycosylation, it is not surprising that an increasing number of IMDs linked to carbohydrate metabolism are described with cardiac manifestations. In this systematic review, we offer a comprehensive overview of IMDs linked to carbohydrate metabolism presenting that present with cardiomyopathies, arrhythmogenic disorders and/or structural cardiac defects. We identified 58 IMDs presenting with cardiac complications: 3 defects of sugar/sugar-linked transporters (GLUT3, GLUT10, THTR1); 2 disorders of the pentose phosphate pathway (G6PDH, TALDO); 9 diseases of glycogen metabolism (GAA, GBE1, GDE, GYG1, GYS1, LAMP2, RBCK1, PRKAG2, G6PT1); 29 congenital disorders of glycosylation (ALG3, ALG6, ALG9, ALG12, ATP6V1A, ATP6V1E1, B3GALTL, B3GAT3, COG1, COG7, DOLK, DPM3, FKRP, FKTN, GMPPB, MPDU1, NPL, PGM1, PIGA, PIGL, PIGN, PIGO, PIGT, PIGV, PMM2, POMT1, POMT2, SRD5A3, XYLT2); 15 carbohydrate-linked lysosomal storage diseases (CTSA, GBA1, GLA, GLB1, HEXB, IDUA, IDS, SGSH, NAGLU, HGSNAT, GNS, GALNS, ARSB, GUSB, ARSK). With this systematic review we aim to raise awareness about the cardiac presentations in carbohydrate-linked IMDs and draw attention to carbohydrate-linked pathogenic mechanisms that may underlie cardiac complications.
Collapse
Affiliation(s)
- Federica Conte
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Department of Applied Stem Cell Technologies, TechMed Centre, University of Twente, 7522 NH Enschede, The Netherlands
| | - Juda-El Sam
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Dirk J Lefeber
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Robert Passier
- Department of Applied Stem Cell Technologies, TechMed Centre, University of Twente, 7522 NH Enschede, The Netherlands
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
7
|
Loong L, Tardivo A, Knaus A, Hashim M, Pagnamenta AT, Alt K, Böhrer-Rabel H, Caro-Llopis A, Cole T, Distelmaier F, Edery P, Ferreira CR, Jezela-Stanek A, Kerr B, Kluger G, Krawitz PM, Kuhn M, Lemke JR, Lesca G, Lynch SA, Martinez F, Maxton C, Mierzewska H, Monfort S, Nicolai J, Orellana C, Pal DK, Płoski R, Quarrell OW, Rosello M, Rydzanicz M, Sabir A, Śmigiel R, Stegmann APA, Stewart H, Stumpel C, Szczepanik E, Tzschach A, Wolfe L, Taylor JC, Murakami Y, Kinoshita T, Bayat A, Kini U. Biallelic variants in PIGN cause Fryns syndrome, multiple congenital anomalies-hypotonia-seizures syndrome, and neurologic phenotypes: A genotype-phenotype correlation study. Genet Med 2023; 25:37-48. [PMID: 36322149 PMCID: PMC11790076 DOI: 10.1016/j.gim.2022.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 11/13/2022] Open
Abstract
PURPOSE Biallelic PIGN variants have been described in Fryns syndrome, multiple congenital anomalies-hypotonia-seizure syndrome (MCAHS), and neurologic phenotypes. The full spectrum of clinical manifestations in relation to the genotypes is yet to be reported. METHODS Genotype and phenotype data were collated and analyzed for 61 biallelic PIGN cases: 21 new and 40 previously published cases. Functional analysis was performed for 2 recurrent variants (c.2679C>G p.Ser893Arg and c.932T>G p.Leu311Trp). RESULTS Biallelic-truncating variants were detected in 16 patients-10 with Fryns syndrome, 1 with MCAHS1, 2 with Fryns syndrome/MCAHS1, and 3 with neurologic phenotype. There was an increased risk of prenatal or neonatal death within this group (6 deaths were in utero or within 2 months of life; 6 pregnancies were terminated). Incidence of polyhydramnios, congenital anomalies (eg, diaphragmatic hernia), and dysmorphism was significantly increased. Biallelic missense or mixed genotype were reported in the remaining 45 cases-32 showed a neurologic phenotype and 12 had MCAHS1. No cases of diaphragmatic hernia or abdominal wall defects were seen in this group except patient 1 in which we found the missense variant p.Ser893Arg to result in functionally null alleles, suggesting the possibility of an undescribed functionally important region in the final exon. For all genotypes, there was complete penetrance for developmental delay and near-complete penetrance for seizures and hypotonia in patients surviving the neonatal period. CONCLUSION We have expanded the described spectrum of phenotypes and natural history associated with biallelic PIGN variants. Our study shows that biallelic-truncating variants usually result in the more severe Fryns syndrome phenotype, but neurologic problems, such as developmental delay, seizures, and hypotonia, present across all genotypes. Functional analysis should be considered when the genotypes do not correlate with the predicted phenotype because there may be other functionally important regions in PIGN that are yet to be discovered.
Collapse
Affiliation(s)
- Lucy Loong
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Agostina Tardivo
- National Center of Medical Genetics, National Administration of Health Laboratories and Institutes, National Ministry of Health, Buenos Aires, Argentina
| | - Alexej Knaus
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-University Bonn, Bonn, Germany
| | - Mona Hashim
- NIHR Oxford Biomedical Research Centre, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Alistair T Pagnamenta
- NIHR Oxford Biomedical Research Centre, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Kerstin Alt
- Genetikum, Center for Human Genetics, Neu-Ulm, Germany
| | | | - Alfonso Caro-Llopis
- Unidad de Genética, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Trevor Cole
- West Midlands Clinical Genetics Unit, Birmingham Women's and Children's NHS FT and Birmingham Health Partners, Birmingham, United Kingdom
| | - Felix Distelmaier
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | - Patrick Edery
- Department of Medical Genetics, Lyon University Hospital, Lyon, France
| | - Carlos R Ferreira
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Aleksandra Jezela-Stanek
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - Bronwyn Kerr
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester, United Kingdom
| | | | - Peter M Krawitz
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-University Bonn, Bonn, Germany
| | - Marius Kuhn
- Genetikum, Center for Human Genetics, Neu-Ulm, Germany
| | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Gaetan Lesca
- Department of Medical Genetics, Lyon University Hospital, Lyon, France
| | - Sally Ann Lynch
- Department of Clinical Genetics, Children's Health Ireland (CHI) at Crumlin, Dublin, Ireland
| | - Francisco Martinez
- Unidad de Genética, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | | | - Hanna Mierzewska
- Clinic of Pediatric Neurology, Institute of Mother and Child, Warsaw, Poland
| | - Sandra Monfort
- Unidad de Genética, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Joost Nicolai
- Department of Neurology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Carmen Orellana
- Unidad de Genética, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Deb K Pal
- Department of Basic & Clinical Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Rafał Płoski
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Oliver W Quarrell
- Department of Clinical Genetics, Sheffield Children's NHS Foundation Trust, Sheffield, United Kingdom
| | - Monica Rosello
- Unidad de Genética, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | | | - Ataf Sabir
- West Midlands Clinical Genetics Unit, Birmingham Women's and Children's NHS FT and Birmingham Health Partners, Birmingham, United Kingdom
| | - Robert Śmigiel
- Division Pediatric Propedeutics and Rare Disorders, Department of Pediatrics, Wroclaw Medical University, Wrocław, Poland
| | - Alexander P A Stegmann
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Helen Stewart
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Constance Stumpel
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Elżbieta Szczepanik
- Clinic of Pediatric Neurology, Institute of Mother and Child, Warsaw, Poland
| | - Andreas Tzschach
- Institute of Human Genetics, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lynne Wolfe
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Jenny C Taylor
- NIHR Oxford Biomedical Research Centre, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Yoshiko Murakami
- Yabumoto Department of Intractable Disease Research, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan; World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Taroh Kinoshita
- Yabumoto Department of Intractable Disease Research, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan; World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Allan Bayat
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Center, Dianalund, Denmark; Institute for Regional Health Services, University of Southern Denmark, Odense, Denmark
| | - Usha Kini
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom.
| |
Collapse
|
8
|
Messina M, Manea E, Cullup T, Tuschl K, Batzios S. Hyperphosphatasia with mental retardation syndrome 3: Cerebrospinal fluid abnormalities and correction with pyridoxine and Folinic acid. JIMD Rep 2023; 64:42-52. [PMID: 36636587 PMCID: PMC9830023 DOI: 10.1002/jmd2.12347] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/16/2022] [Accepted: 10/25/2022] [Indexed: 11/24/2022] Open
Abstract
Glycosylphosphatidylinositol anchored proteins (GPI-APs) represent a class of molecules attached to the external leaflet of the plasma membrane by the GPI anchor where they play important roles in numerous cellular processes including neurogenesis, cell adhesion, immune response and signalling. Within the group of GPI anchor defects, six present with the clinical phenotype of Hyperphosphatasia with Mental Retardation Syndrome (HPMRS, Mabry Syndrome) characterized by moderate to severe intellectual disability, dysmorphic features, hypotonia, seizures and persistent hyperphosphatasia. We report the case of a 5-year-old female with global developmental delay associated with precocious puberty and persistently raised plasma alkaline phosphatase. Targeted next generation sequencing analysis of the HPMRS genes identified novel compound heterozygous variants in the PGAP2 gene (c.103del p.(Leu35Serfs*90)and c.134A > Gp.(His45Arg)) consistent with the diagnosis of HPMRS type 3. Cerebrospinal fluid (CSF) neurotransmitter analysis showed low levels of pyridoxal phosphate and 5-methyltetrahydrofolate and raised homovanillic acid. Supplementation with pyridoxine and folinic acid led to normalization of biochemical abnormalities. The patient continues to make developmental progress with significant improvement in speech and fine motor skills. Our reported case expands the clinical spectrum of HPMRS3 in which multisystem involvement is being increasingly recognized. Furthermore, it shows that miss-targeting GPI-APs and the effect on normal cellular function could provide a physiopathologic explanation for the CSF biochemical abnormalities with management implications for a group of disorders that currently has no treatment that can lead possibly to improved clinical outcomes.
Collapse
Affiliation(s)
- Martina Messina
- Metabolic Medicine DepartmentGreat Ormond Street Hospital for ChildrenLondonUK
| | - Emanuela Manea
- Metabolic Medicine DepartmentGreat Ormond Street Hospital for ChildrenLondonUK
| | - Thomas Cullup
- North Thames Genomic Laboratory HubGreat Ormond Street Hospital for ChildrenLondonUK
| | - Karin Tuschl
- Metabolic Medicine DepartmentGreat Ormond Street Hospital for ChildrenLondonUK
- University College London Great Ormond Street Institute for ChildrenLondonUK
| | - Spyros Batzios
- Metabolic Medicine DepartmentGreat Ormond Street Hospital for ChildrenLondonUK
| |
Collapse
|
9
|
Ronzoni L, Boito S, Meossi C, Cesaretti C, Rinaldi B, Agolini E, Rizzuti T, Pezzoli L, Silipigni R, Novelli A, Iascone M, Persico N, Natacci F. Prenatal ultrasound findings associated with PIGW variants: One more piece in the FRYNS syndrome puzzle? PIGW-related prenatal findings. Prenat Diagn 2022; 42:1493-1502. [PMID: 35788948 DOI: 10.1002/pd.6204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/15/2022] [Accepted: 06/27/2022] [Indexed: 01/27/2023]
Abstract
OBJECTIVE We describe the prenatal ultrasound findings and autopsy of three fetuses with multiple congenital anomalies (MCA) whose diagnostic workup suggested the same genetic etiology. We conducted a literature review to corroborate the molecular results and find evidence that the identified variants are responsible for the phenotype seen. METHODS Trio-based Exome Sequencing (ES) analysis was performed on chorionic villus samples. We reviewed available reports dealing with prenatal manifestations of genes involved in the Glycosylphosphatidylinositols (GPI) biosynthesis defects (GPIBDs). RESULTS Prenatal findings shared by all the three pregnancies included facial dysmorphisms, brain malformations of the posterior fossa, skeletal and genitourinary anomalies. ES analysis identified homozygous variants of uncertain significance in PIGW in the three fetuses. Prenatal findings of the three pregnancies overlapped with those previously described for PIGW variants and with those associated with PIGN, PIGV and PIGA variants. CONCLUSION Based on the phenotypic overlap between the prenatal findings in our three cases and other cases with pathogenic variants in other genes involved in GPIBDs, we speculate that the variants identified in the three fetuses are likely causal of their phenotype and that the PIGWclinical spectrum might extend to MCA, mainly involving brain, skeletal and genitourinary systems. Moreover, we suggest that also PIGW could be involved in Fryns/Fryns-like phenotypes.
Collapse
Affiliation(s)
- Luisa Ronzoni
- Clinical Genetics Unit, Fondazione IRCCS Ca' Granda Ospedale Policlinico di Milano, Milan, Italy
| | - Simona Boito
- Fetal Medicine and Surgery Service, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Camilla Meossi
- Clinical Genetics Unit, Fondazione IRCCS Ca' Granda Ospedale Policlinico di Milano, Milan, Italy
| | - Claudia Cesaretti
- Clinical Genetics Unit, Fondazione IRCCS Ca' Granda Ospedale Policlinico di Milano, Milan, Italy
| | - Berardo Rinaldi
- Clinical Genetics Unit, Fondazione IRCCS Ca' Granda Ospedale Policlinico di Milano, Milan, Italy
| | - Emanuele Agolini
- Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Tommaso Rizzuti
- Division of Pathology, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Laura Pezzoli
- Laboratory of Medical Genetics, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Rosamaria Silipigni
- Laboratory of Medical Genetics, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Maria Iascone
- Laboratory of Medical Genetics, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Nicola Persico
- Fetal Medicine and Surgery Service, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Federica Natacci
- Clinical Genetics Unit, Fondazione IRCCS Ca' Granda Ospedale Policlinico di Milano, Milan, Italy
| |
Collapse
|
10
|
Kuwayama R, Suzuki K, Nakamura J, Aizawa E, Yoshioka Y, Ikawa M, Nabatame S, Inoue KI, Shimmyo Y, Ozono K, Kinoshita T, Murakami Y. Establishment of mouse model of inherited PIGO deficiency and therapeutic potential of AAV-based gene therapy. Nat Commun 2022; 13:3107. [PMID: 35661110 PMCID: PMC9166810 DOI: 10.1038/s41467-022-30847-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/20/2022] [Indexed: 11/09/2022] Open
Abstract
Inherited glycosylphosphatidylinositol (GPI) deficiency (IGD) is caused by mutations in GPI biosynthesis genes. The mechanisms of its systemic, especially neurological, symptoms are not clarified and fundamental therapy has not been established. Here, we report establishment of mouse models of IGD caused by PIGO mutations as well as development of effective gene therapy. As the clinical manifestations of IGD are systemic and lifelong lasting, we treated the mice with adeno-associated virus for homology-independent knock-in as well as extra-chromosomal expression of Pigo cDNA. Significant amelioration of neuronal phenotypes and growth defect was achieved, opening a new avenue for curing IGDs.
Collapse
Affiliation(s)
- Ryoko Kuwayama
- Yabumoto Department of Intractable disease research, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.,Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Keiichiro Suzuki
- Graduate School of Frontier Bioscience, Osaka University, Osaka, Japan.,Graduate School of Engineering Science, Osaka University, Osaka, Japan.,Institute for Advanced Co-Creation Studies, Osaka University, Osaka, Japan
| | - Jun Nakamura
- Graduate School of Frontier Bioscience, Osaka University, Osaka, Japan
| | - Emi Aizawa
- Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | - Yoshichika Yoshioka
- Graduate School of Frontier Bioscience, Osaka University, Osaka, Japan.,Center for Information and Neural Networks, National Institute of Information and Communications Technology (NICT) and Osaka University, Osaka, Japan.,Center for Quantum Information and Quantum Biology, Osaka University, Osaka, Japan
| | - Masahito Ikawa
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Shin Nabatame
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ken-Ichi Inoue
- Systems Neuroscience Section, Department of Neuroscience, Primate Research Institute, Kyoto University, Kyoto, Japan
| | | | - Keiichi Ozono
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Taroh Kinoshita
- Yabumoto Department of Intractable disease research, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.,Immunoglycobiology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Yoshiko Murakami
- Yabumoto Department of Intractable disease research, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.
| |
Collapse
|
11
|
Toulmay A, Whittle FB, Yang J, Bai X, Diarra J, Banerjee S, Levine TP, Golden A, Prinz WA. Vps13-like proteins provide phosphatidylethanolamine for GPI anchor synthesis in the ER. J Cell Biol 2022; 221:e202111095. [PMID: 35015055 PMCID: PMC8757616 DOI: 10.1083/jcb.202111095] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/13/2022] Open
Abstract
Glycosylphosphatidylinositol (GPI) is a glycolipid membrane anchor found on surface proteins in all eukaryotes. It is synthesized in the ER membrane. Each GPI anchor requires three molecules of ethanolamine phosphate (P-Etn), which are derived from phosphatidylethanolamine (PE). We found that efficient GPI anchor synthesis in Saccharomyces cerevisiae requires Csf1; cells lacking Csf1 accumulate GPI precursors lacking P-Etn. Structure predictions suggest Csf1 is a tube-forming lipid transport protein like Vps13. Csf1 is found at contact sites between the ER and other organelles. It interacts with the ER protein Mcd4, an enzyme that adds P-Etn to nascent GPI anchors, suggesting Csf1 channels PE to Mcd4 in the ER at contact sites to support GPI anchor biosynthesis. CSF1 has orthologues in Caenorhabditis elegans (lpd-3) and humans (KIAA1109/TWEEK); mutations in KIAA1109 cause the autosomal recessive neurodevelopmental disorder Alkuraya-Kučinskas syndrome. Knockout of lpd-3 and knockdown of KIAA1109 reduced GPI-anchored proteins on the surface of cells, suggesting Csf1 orthologues in human cells support GPI anchor biosynthesis.
Collapse
Affiliation(s)
- Alexandre Toulmay
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Fawn B. Whittle
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Jerry Yang
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Xiaofei Bai
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Jessica Diarra
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Subhrajit Banerjee
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Tim P. Levine
- University College London, Institute of Ophthalmology, London, UK
| | - Andy Golden
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - William A. Prinz
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
12
|
Paprocka J, Hutny M, Hofman J, Tokarska A, Kłaniewska M, Szczałuba K, Stembalska A, Jezela-Stanek A, Śmigiel R. Spectrum of Neurological Symptoms in Glycosylphosphatidylinositol Biosynthesis Defects: Systematic Review. Front Neurol 2022; 12:758899. [PMID: 35058872 PMCID: PMC8763846 DOI: 10.3389/fneur.2021.758899] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Mutations of genes involved in the synthesis of glycosylphosphatidylinositol and glycosylphosphatidylinositol-anchored proteins lead to rare syndromes called glycosylphosphatidylinositol-anchored proteins biosynthesis defects. Alterations of their structure and function in these disorders impair often fundamental processes in cells, resulting in severe clinical image. This study aimed to provide a systematic review of GPIBD cases reports published in English-language literature. Methods: The browsing of open-access databases (PubMed, PubMed Central. and Medline) was conducted, followed by statistical analysis of gathered information concerning neurological symptomatology. The inclusion criteria were: studies on humans, age at onset (<18 y.o.), and report of GPIBD cases with adequate data on the genetic background and symptomatology. Exclusion criteria were: publication type (manuscripts, personal communication, review articles); reports of cases of GPI biosynthesis genes mutations in terms of other disorders; reports of GPIBD cases concentrating on non-neurological symptoms; or articles concentrating solely on the genetic issues of GPI biosynthesis. Risk of bias was assessed using Joanna Brigs Institute Critical Appraisal Checklists. Data synthesis was conducted using STATISTICA 13.3.721.1 (StatSoft Polska Sp. z.o.o.). Used tests were chi-square, Fisher's exact test (for differences in phenotype), and Mann-Whitney U test (for differences in onset of developmental delay). Results: Browsing returned a total of 973 articles which, after ruling out the repetitions and assessing the inclusion and exclusion criteria, led to final inclusion of 77 articles (337 GPIBD cases) in the analysis. The main outcomes were prevalence of neurological symptoms, onset and semiology of seizures and their response to treatment, and onset of developmental delay. Based on this data a synthesis of phenotypical differences between the groups of GPIBD cases and the general GPIBD cases population was made. Discussion: A synthetical analysis of neurological components in clinical image of GPIBD patients was presented. It highlights the main features of these disorders, which might be useful in clinical practice for consideration in differential diagnosis with children presenting with early-onset seizures and developmental delay. The limitation of this review is the scarcity of the specific data in some reports, concerning the semiology and onset of two main features of GPIBD.
Collapse
Affiliation(s)
- Justyna Paprocka
- Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Michał Hutny
- Students' Scientific Society, Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Jagoda Hofman
- Students' Scientific Society, Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Agnieszka Tokarska
- Department of Pediatrics and Developmental Age Neurology, Upper Silesian Child Health Centre, Katowice, Poland
| | | | - Krzysztof Szczałuba
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | | | - Aleksandra Jezela-Stanek
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - Robert Śmigiel
- Department of Pediatrics, Medical University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
13
|
Tanigawa J, Nabatame S, Tominaga K, Nishimura Y, Maegaki Y, Kinosita T, Murakami Y, Ozono K. High-dose pyridoxine treatment for inherited glycosylphosphatidylinositol deficiency. Brain Dev 2021; 43:680-687. [PMID: 33824024 DOI: 10.1016/j.braindev.2021.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/21/2021] [Accepted: 02/28/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE We aimed to assess the efficacy and safety of high-dose pyridoxine treatment for seizures and its effects on development in patients with inherited glycosylphosphatidylinositol deficiencies (IGDs). METHODS In this prospective open-label multicenter pilot study, we enrolled patients diagnosed with IGDs using flow cytometry and/or genetic tests. The patients received oral pyridoxine (20-30 mg/kg/day) for 1 year, in addition to previous treatment. RESULTS All nine enrolled patients (mean age: 66.3 ± 44.3 months) exhibited marked decreases in levels of CD16, a glycosylphosphatidylinositol-anchored protein, on blood granulocytes. The underlying genetic causes of IGDs were PIGO, PIGL, and unknown gene mutations in two, two, and five patients, respectively. Six patients experienced seizures, while all patients presented with developmental delay (mean developmental age: 11.1 ± 8.1 months). Seizure frequencies were markedly (>50%) and drastically (>90%) reduced in three and one patients who experienced seizures, respectively. None of the patients presented with seizure exacerbation. Eight of nine patients exhibited modest improvements in development (P = 0.14). No adverse events were observed except for mild transient diarrhea in one patient. CONCLUSION One year of daily high-dose pyridoxine treatment was effective in the treatment of seizures in more than half of our patients with IGDs and modestly improved development in the majority of them. Moreover, such treatment was reasonably safe. These findings indicate that high-dose pyridoxine treatment may be effective against seizures in patients with IGDs, although further studies are required to confirm our findings. (University Hospital Medical Information Network Clinical Trials Registry [UMIN-CTR] number: UMIN000024185.).
Collapse
Affiliation(s)
- Junpei Tanigawa
- Department of Pediatrics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shin Nabatame
- Department of Pediatrics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Koji Tominaga
- Department of Pediatrics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Division of Developmental Neuroscience, United Graduate School of Child Development, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoko Nishimura
- Division of Child Neurology, Institute of Neurological Sciences, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, Tottori 683-8504, Japan
| | - Yoshihiro Maegaki
- Division of Child Neurology, Institute of Neurological Sciences, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, Tottori 683-8504, Japan
| | - Taroh Kinosita
- Research Institute for Microbial Diseases and World Premier International Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka Suita, Osaka 565-0871, Japan
| | - Yoshiko Murakami
- Research Institute for Microbial Diseases and World Premier International Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka Suita, Osaka 565-0871, Japan
| | - Keiichi Ozono
- Department of Pediatrics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
14
|
Okuda T, Yonekawa T, Murakami Y, Kinoshita T, Ito T, Matsushita K, Koike Y, Inoue M, Uchida K, Yodoya N, Ohashi H, Sawada H, Iwamoto S, Mitani Y, Hirayama M.
PIGO
variants in a boy with features of Mabry syndrome who also exhibits Fryns syndrome with peripheral neuropathy. Am J Med Genet A 2021. [DOI: 10.1002/ajmg.a.62005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Taro Okuda
- Department of Pediatrics Mie University Graduate School of Medicine Tsu Mie Japan
| | - Takahiro Yonekawa
- Department of Pediatrics Mie University Graduate School of Medicine Tsu Mie Japan
| | - Yoshiko Murakami
- Research Institute for Microbial Diseases and World Premier International Immunology Frontier Research Center Osaka University Osaka Japan
| | - Taroh Kinoshita
- Research Institute for Microbial Diseases and World Premier International Immunology Frontier Research Center Osaka University Osaka Japan
| | - Takahiro Ito
- Department of Pediatrics Mie University Graduate School of Medicine Tsu Mie Japan
| | - Kohei Matsushita
- Department of Gastrointestinal and Pediatric Surgery Mie University Graduate School of Medicine Tsu Mie Japan
| | - Yuhki Koike
- Department of Gastrointestinal and Pediatric Surgery Mie University Graduate School of Medicine Tsu Mie Japan
| | - Mikihiro Inoue
- Department of Gastrointestinal and Pediatric Surgery Mie University Graduate School of Medicine Tsu Mie Japan
| | - Keiichi Uchida
- Department of Gastrointestinal and Pediatric Surgery Mie University Graduate School of Medicine Tsu Mie Japan
| | - Noriko Yodoya
- Department of Pediatrics Mie University Graduate School of Medicine Tsu Mie Japan
| | - Hiroyuki Ohashi
- Department of Pediatrics Mie University Graduate School of Medicine Tsu Mie Japan
| | - Hirofumi Sawada
- Department of Pediatrics Mie University Graduate School of Medicine Tsu Mie Japan
| | - Shotaro Iwamoto
- Department of Pediatrics Mie University Graduate School of Medicine Tsu Mie Japan
| | - Yoshihide Mitani
- Department of Pediatrics Mie University Graduate School of Medicine Tsu Mie Japan
| | - Masahiro Hirayama
- Department of Pediatrics Mie University Graduate School of Medicine Tsu Mie Japan
| |
Collapse
|
15
|
Okai H, Ikema R, Nakamura H, Kato M, Araki M, Mizuno A, Ikeda A, Renbaum P, Segel R, Funato K. Cold‐sensitive phenotypes of a yeast null mutant of ARV1 support its role as a GPI flippase. FEBS Lett 2020; 594:2431-2439. [DOI: 10.1002/1873-3468.13843] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Haruka Okai
- School of Applied Biological Science Hiroshima University Higashi‐Hiroshima Japan
| | - Ryoko Ikema
- Graduate School of Integrated Sciences for Life Hiroshima University Higashi‐Hiroshima Japan
| | - Hiroki Nakamura
- Graduate School of Biosphere Science Hiroshima University Higashi‐Hiroshima Japan
| | - Mei Kato
- Graduate School of Integrated Sciences for Life Hiroshima University Higashi‐Hiroshima Japan
| | - Misako Araki
- Graduate School of Integrated Sciences for Life Hiroshima University Higashi‐Hiroshima Japan
| | - Ayumi Mizuno
- School of Applied Biological Science Hiroshima University Higashi‐Hiroshima Japan
| | - Atsuko Ikeda
- Graduate School of Biosphere Science Hiroshima University Higashi‐Hiroshima Japan
| | - Paul Renbaum
- Medical Genetics Institute Shaare Zedek Medical Center Jerusalem Israel
| | - Reeval Segel
- Medical Genetics Institute Shaare Zedek Medical Center Jerusalem Israel
| | - Kouichi Funato
- School of Applied Biological Science Hiroshima University Higashi‐Hiroshima Japan
- Graduate School of Integrated Sciences for Life Hiroshima University Higashi‐Hiroshima Japan
- Graduate School of Biosphere Science Hiroshima University Higashi‐Hiroshima Japan
| |
Collapse
|
16
|
Wu T, Yin F, Guang S, He F, Yang L, Peng J. The Glycosylphosphatidylinositol biosynthesis pathway in human diseases. Orphanet J Rare Dis 2020; 15:129. [PMID: 32466763 PMCID: PMC7254680 DOI: 10.1186/s13023-020-01401-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 05/06/2020] [Indexed: 01/15/2023] Open
Abstract
Glycosylphosphatidylinositol biosynthesis defects cause rare genetic disorders characterised by developmental delay/intellectual disability, seizures, dysmorphic features, and diverse congenital anomalies associated with a wide range of additional features (hypotonia, hearing loss, elevated alkaline phosphatase, and several other features). Glycosylphosphatidylinositol functions as an anchor to link cell membranes and protein. These proteins function as enzymes, adhesion molecules, complement regulators, or co-receptors in signal transduction pathways. Biallelic variants involved in the glycosylphosphatidylinositol anchored proteins biosynthetic pathway are responsible for a growing number of disorders, including multiple congenital anomalies-hypotonia-seizures syndrome; hyperphosphatasia with mental retardation syndrome/Mabry syndrome; coloboma, congenital heart disease, ichthyosiform dermatosis, mental retardation, and ear anomalies/epilepsy syndrome; and early infantile epileptic encephalopathy-55. This review focuses on the current understanding of Glycosylphosphatidylinositol biosynthesis defects and the associated genes to further understand its wide phenotype spectrum.
Collapse
Affiliation(s)
- Tenghui Wu
- Department of Pediatrics, XiangYa Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Hunan Children's Mental Disorders Research Center, XiangYa Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Fei Yin
- Department of Pediatrics, XiangYa Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Hunan Children's Mental Disorders Research Center, XiangYa Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Shiqi Guang
- Department of Pediatrics, XiangYa Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Hunan Children's Mental Disorders Research Center, XiangYa Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Fang He
- Department of Pediatrics, XiangYa Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Hunan Children's Mental Disorders Research Center, XiangYa Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Li Yang
- Department of Pediatrics, XiangYa Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Hunan Children's Mental Disorders Research Center, XiangYa Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Jing Peng
- Department of Pediatrics, XiangYa Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- Hunan Children's Mental Disorders Research Center, XiangYa Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
| |
Collapse
|
17
|
Abstract
At least 150 human proteins are glycosylphosphatidylinositol-anchored proteins (GPI-APs). The protein moiety of GPI-APs lacking transmembrane domains is anchored to the plasma membrane with GPI covalently attached to the C-terminus. The GPI consists of the conserved core glycan, phosphatidylinositol and glycan side chains. The entire GPI-AP is anchored to the outer leaflet of the lipid bilayer by insertion of fatty chains of phosphatidylinositol. Because of GPI-dependent membrane anchoring, GPI-APs have some unique characteristics. The most prominent feature of GPI-APs is their association with membrane microdomains or membrane rafts. In the polarized cells such as epithelial cells, many GPI-APs are exclusively expressed in the apical surfaces, whereas some GPI-APs are preferentially expressed in the basolateral surfaces. Several GPI-APs act as transcytotic transporters carrying their ligands from one compartment to another. Some GPI-APs are shed from the membrane after cleavage within the GPI by a GPI-specific phospholipase or a glycosidase. In this review, I will summarize the current understanding of GPI-AP biosynthesis in mammalian cells and discuss examples of GPI-dependent functions of mammalian GPI-APs.
Collapse
Affiliation(s)
- Taroh Kinoshita
- Yabumoto Department of Intractable Disease Research, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, Japan
| |
Collapse
|
18
|
Holtz AM, Harrington AW, McNamara ER, Kielian A, Soul JS, Martinez-Ojeda M, Levy PT. Expanding the phenotypic spectrum of Mabry Syndrome with novel PIGO gene variants associated with hyperphosphatasia, intractable epilepsy, and complex gastrointestinal and urogenital malformations. Eur J Med Genet 2019; 63:103802. [PMID: 31698102 DOI: 10.1016/j.ejmg.2019.103802] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/05/2019] [Accepted: 10/30/2019] [Indexed: 11/30/2022]
Abstract
Mabry syndrome is a glycophosphatidylinositol (GPI) deficiency characterized by intellectual disability, distinctive facial features, intractable seizures, and hyperphosphatasia. We expand the phenotypic spectrum of inherited GPI deficiencies with novel bi-allelic phosphatidylinositol glycan anchor biosynthesis class O (PIGO) variants in a neonate who presented with intractable epilepsy and complex gastrointestinal and urogenital malformations.
Collapse
Affiliation(s)
- Alexander M Holtz
- Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Amanda W Harrington
- Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Erin R McNamara
- Department of Urology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Agnieszka Kielian
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Janet S Soul
- Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA; Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Mayra Martinez-Ojeda
- Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Philip T Levy
- Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
19
|
Abstract
Introduction: Vitamin B6 dependent epilepsies are a group of treatable diseases (ALDH7A1 deficiency, PNPO deficiency, PLP binding protein deficiency, hyperprolinaemia type II and hypophosphatasia and glycosylphosphatidylinositol anchor synthesis defects) responding to pyridoxine or pyridoxal-5I-phosphate. Areas covered: A critical review was conducted on the therapeutic management of all the reported patients with genetically confirmed diagnoses of diseases affecting vitamin B6 metabolism and presenting with pyridoxine or pyridoxal-5I-phosphate dependent-seizures. Data about safety and efficacy were analyzed as well as the management of supplementation with pyridoxine or pyridoxal-5I-phosphate both in the acute phases and in the maintenance therapies. The authors also analyzed alternative therapeutic strategies for ALDH7A1 deficiency (lysine-restricted diet, arginine supplementation, oligonucleotide antisense therapy, upstream inhibition of aminoadipic semialdehyde synthase). Expert opinion: The administration of pyridoxine or pyridoxal-5I-phosphate should be considered in all intractable seizures also beyond the first year of life. Lysine restricted diet and arginine supplementation should be introduced in all the confirmed ALDH7A1 deficient patients. Pre or post-natal supplementation with pyridoxine should be given in familial cases until an eventual molecular genetic disconfirmation. Minor data about alternative therapies are available for other disorders of vitamin B6 metabolism.
Collapse
Affiliation(s)
- Mario Mastrangelo
- Division of Child Neurology and Infantile Psychiatry, Department of Human Neurosciences, Sapienza University of Rome , Roma , Italy
| | - Serena Cesario
- Division of Child Neurology and Infantile Psychiatry, Department of Human Neurosciences, Sapienza University of Rome , Roma , Italy
| |
Collapse
|
20
|
Manea E. A step closer in defining glycosylphosphatidylinositol anchored proteins role in health and glycosylation disorders. Mol Genet Metab Rep 2018; 16:67-75. [PMID: 30094187 PMCID: PMC6080220 DOI: 10.1016/j.ymgmr.2018.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/21/2018] [Accepted: 07/21/2018] [Indexed: 12/18/2022] Open
Abstract
Glycosylphosphatidylinositol anchored proteins (GPI-APs) represent a class of soluble proteins attached to the external leaflet of the plasma membrane by a post-translation modification, the GPI anchor. The 28 genes currently involved in the synthesis and remodelling of the GPI anchor add to the ever-growing class of congenital glycosylation disorders. Recent advances in next generation sequencing technology have led to the discovery of Mabry disease and CHIME syndrome genetic aetiology. Moreover, with each described mutation known phenotypes expand and new ones emerge without clear genotype-phenotype correlation. A protein database search was made for human GPI-APs with defined pathology to help building-up a physio-pathological mechanism from a clinical perspective. GPI-APs function in vitamin-B6 and folate transport, nucleotide metabolism and lipid homeostasis. Defining GPI-APs role in disease bears significant clinical implications.
Collapse
|
21
|
Brasil S, Pascoal C, Francisco R, Marques-da-Silva D, Andreotti G, Videira PA, Morava E, Jaeken J, Dos Reis Ferreira V. CDG Therapies: From Bench to Bedside. Int J Mol Sci 2018; 19:ijms19051304. [PMID: 29702557 PMCID: PMC5983582 DOI: 10.3390/ijms19051304] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/14/2018] [Accepted: 04/21/2018] [Indexed: 12/20/2022] Open
Abstract
Congenital disorders of glycosylation (CDG) are a group of genetic disorders that affect protein and lipid glycosylation and glycosylphosphatidylinositol synthesis. More than 100 different disorders have been reported and the number is rapidly increasing. Since glycosylation is an essential post-translational process, patients present a large range of symptoms and variable phenotypes, from very mild to extremely severe. Only for few CDG, potentially curative therapies are being used, including dietary supplementation (e.g., galactose for PGM1-CDG, fucose for SLC35C1-CDG, Mn2+ for TMEM165-CDG or mannose for MPI-CDG) and organ transplantation (e.g., liver for MPI-CDG and heart for DOLK-CDG). However, for the majority of patients, only symptomatic and preventive treatments are in use. This constitutes a burden for patients, care-givers and ultimately the healthcare system. Innovative diagnostic approaches, in vitro and in vivo models and novel biomarkers have been developed that can lead to novel therapeutic avenues aiming to ameliorate the patients’ symptoms and lives. This review summarizes the advances in therapeutic approaches for CDG.
Collapse
Affiliation(s)
- Sandra Brasil
- Portuguese Association for Congenital Disorders of Glycosylation (CDG), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
- Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
| | - Carlota Pascoal
- Portuguese Association for Congenital Disorders of Glycosylation (CDG), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
- Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
- Research Unit on Applied Molecular Biosciences (UCIBIO), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Lisboa, Portugal.
| | - Rita Francisco
- Portuguese Association for Congenital Disorders of Glycosylation (CDG), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
- Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
- Research Unit on Applied Molecular Biosciences (UCIBIO), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Lisboa, Portugal.
| | - Dorinda Marques-da-Silva
- Portuguese Association for Congenital Disorders of Glycosylation (CDG), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
- Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
- Research Unit on Applied Molecular Biosciences (UCIBIO), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Lisboa, Portugal.
| | - Giuseppina Andreotti
- Istituto di Chimica Biomolecolare-Consiglio Nazionale delle Ricerche (CNR), 80078 Pozzuoli, Italy.
| | - Paula A Videira
- Portuguese Association for Congenital Disorders of Glycosylation (CDG), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
- Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
- Research Unit on Applied Molecular Biosciences (UCIBIO), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Lisboa, Portugal.
| | - Eva Morava
- Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA.
| | - Jaak Jaeken
- Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
- Center for Metabolic Diseases, Universitaire Ziekenhuizen (UZ) and Katholieke Universiteit (KU) Leuven, 3000 Leuven, Belgium.
| | - Vanessa Dos Reis Ferreira
- Portuguese Association for Congenital Disorders of Glycosylation (CDG), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
- Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2820-287 Lisboa, Portugal.
| |
Collapse
|
22
|
Pagnamenta AT, Murakami Y, Anzilotti C, Titheradge H, Oates AJ, Morton J, Kinoshita T, Kini U, Taylor JC. A homozygous variant disrupting the PIGH start-codon is associated with developmental delay, epilepsy, and microcephaly. Hum Mutat 2018; 39:822-826. [PMID: 29573052 PMCID: PMC6001798 DOI: 10.1002/humu.23420] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/09/2018] [Accepted: 03/02/2018] [Indexed: 01/12/2023]
Abstract
Defective glycosylphosphatidylinositol (GPI)‐anchor biogenesis can cause a spectrum of predominantly neurological problems. For eight genes critical to this biological process, disease associations are not yet reported. Scanning exomes from 7,833 parent–child trios and 1,792 singletons from the DDD study for biallelic variants in this gene‐set uncovered a rare PIGH variant in a boy with epilepsy, microcephaly, and behavioral difficulties. Although only 2/2 reads harbored this c.1A > T transversion, the presence of ∼25 Mb autozygosity at this locus implied homozygosity, which was confirmed using Sanger sequencing. A similarly‐affected sister was also homozygous. FACS analysis of PIGH‐deficient CHO cells indicated that cDNAs with c.1A > T could not efficiently restore expression of GPI‐APs. Truncation of PIGH protein was consistent with the utilization of an in‐frame start‐site at codon 63. In summary, we describe siblings harboring a homozygous c.1A > T variant resulting in defective GPI‐anchor biogenesis and highlight the importance of exploring low‐coverage variants within autozygous regions.
Collapse
Affiliation(s)
- Alistair T Pagnamenta
- National Institute for Health Research Oxford Biomedical Research Centre, Wellcome Centre for Human Genetics, University of Oxford, Oxford, Oxfordshire, UK
| | - Yoshiko Murakami
- Yabumoto Department of Intractable Disease Research, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.,World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Consuelo Anzilotti
- Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Hannah Titheradge
- West Midlands Regional Clinical Genetics Service and Birmingham Health Partners, Birmingham Women's and Children's NHS Foundation Trust, Birmingham Women's Hospital, Mindelsohn Way, Edgbaston, Birmingham, UK
| | - Adam J Oates
- Radiology Department, Birmingham Children's Hospital, Birmingham, UK
| | - Jenny Morton
- West Midlands Regional Clinical Genetics Service and Birmingham Health Partners, Birmingham Women's and Children's NHS Foundation Trust, Birmingham Women's Hospital, Mindelsohn Way, Edgbaston, Birmingham, UK
| | -
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Taroh Kinoshita
- Yabumoto Department of Intractable Disease Research, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.,World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Usha Kini
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jenny C Taylor
- National Institute for Health Research Oxford Biomedical Research Centre, Wellcome Centre for Human Genetics, University of Oxford, Oxford, Oxfordshire, UK
| |
Collapse
|
23
|
Knaus A, Pantel JT, Pendziwiat M, Hajjir N, Zhao M, Hsieh TC, Schubach M, Gurovich Y, Fleischer N, Jäger M, Köhler S, Muhle H, Korff C, Møller RS, Bayat A, Calvas P, Chassaing N, Warren H, Skinner S, Louie R, Evers C, Bohn M, Christen HJ, van den Born M, Obersztyn E, Charzewska A, Endziniene M, Kortüm F, Brown N, Robinson PN, Schelhaas HJ, Weber Y, Helbig I, Mundlos S, Horn D, Krawitz PM. Characterization of glycosylphosphatidylinositol biosynthesis defects by clinical features, flow cytometry, and automated image analysis. Genome Med 2018; 10:3. [PMID: 29310717 PMCID: PMC5759841 DOI: 10.1186/s13073-017-0510-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 12/11/2017] [Indexed: 12/17/2022] Open
Abstract
Background Glycosylphosphatidylinositol biosynthesis defects (GPIBDs) cause a group of phenotypically overlapping recessive syndromes with intellectual disability, for which pathogenic mutations have been described in 16 genes of the corresponding molecular pathway. An elevated serum activity of alkaline phosphatase (AP), a GPI-linked enzyme, has been used to assign GPIBDs to the phenotypic series of hyperphosphatasia with mental retardation syndrome (HPMRS) and to distinguish them from another subset of GPIBDs, termed multiple congenital anomalies hypotonia seizures syndrome (MCAHS). However, the increasing number of individuals with a GPIBD shows that hyperphosphatasia is a variable feature that is not ideal for a clinical classification. Methods We studied the discriminatory power of multiple GPI-linked substrates that were assessed by flow cytometry in blood cells and fibroblasts of 39 and 14 individuals with a GPIBD, respectively. On the phenotypic level, we evaluated the frequency of occurrence of clinical symptoms and analyzed the performance of computer-assisted image analysis of the facial gestalt in 91 individuals. Results We found that certain malformations such as Morbus Hirschsprung and diaphragmatic defects are more likely to be associated with particular gene defects (PIGV, PGAP3, PIGN). However, especially at the severe end of the clinical spectrum of HPMRS, there is a high phenotypic overlap with MCAHS. Elevation of AP has also been documented in some of the individuals with MCAHS, namely those with PIGA mutations. Although the impairment of GPI-linked substrates is supposed to play the key role in the pathophysiology of GPIBDs, we could not observe gene-specific profiles for flow cytometric markers or a correlation between their cell surface levels and the severity of the phenotype. In contrast, it was facial recognition software that achieved the highest accuracy in predicting the disease-causing gene in a GPIBD. Conclusions Due to the overlapping clinical spectrum of both HPMRS and MCAHS in the majority of affected individuals, the elevation of AP and the reduced surface levels of GPI-linked markers in both groups, a common classification as GPIBDs is recommended. The effectiveness of computer-assisted gestalt analysis for the correct gene inference in a GPIBD and probably beyond is remarkable and illustrates how the information contained in human faces is pivotal in the delineation of genetic entities. Electronic supplementary material The online version of this article (doi:10.1186/s13073-017-0510-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexej Knaus
- Institut für Medizinische Genetik und Humangenetik, Charité Universitätsmedizin Berlin, 13353, Berlin, Germany.,Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité Universitätsmedizin Berlin, 13353, Berlin, Germany.,Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127, Bonn, Germany
| | - Jean Tori Pantel
- Institut für Medizinische Genetik und Humangenetik, Charité Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Manuela Pendziwiat
- Department of Neuropediatrics, University Medical Center Schleswig Holstein, 24105, Kiel, Germany
| | - Nurulhuda Hajjir
- Institut für Medizinische Genetik und Humangenetik, Charité Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Max Zhao
- Institut für Medizinische Genetik und Humangenetik, Charité Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Tzung-Chien Hsieh
- Institut für Medizinische Genetik und Humangenetik, Charité Universitätsmedizin Berlin, 13353, Berlin, Germany.,Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127, Bonn, Germany
| | - Max Schubach
- Institut für Medizinische Genetik und Humangenetik, Charité Universitätsmedizin Berlin, 13353, Berlin, Germany.,Berlin Institute of Health (BIH), 10178, Berlin, Germany
| | | | | | - Marten Jäger
- Institut für Medizinische Genetik und Humangenetik, Charité Universitätsmedizin Berlin, 13353, Berlin, Germany.,Berlin Institute of Health (BIH), 10178, Berlin, Germany
| | - Sebastian Köhler
- Institut für Medizinische Genetik und Humangenetik, Charité Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Hiltrud Muhle
- Department of Neuropediatrics, University Medical Center Schleswig Holstein, 24105, Kiel, Germany
| | - Christian Korff
- Unité de Neuropédiatrie, Université de Genève, CH-1211, Genève, Switzerland
| | - Rikke S Møller
- Danish Epilepsy Centre, DK-4293, Dianalund, Denmark.,Institute for Regional Health Services Research, University of Southern Denmark, DK-5000, Odense, Denmark
| | - Allan Bayat
- Department of Pediatrics, University Hospital of Hvidovre, 2650, Hvicovre, Denmark
| | - Patrick Calvas
- Service de Génétique Médicale, Hôpital Purpan, CHU, 31059, Toulouse, France
| | - Nicolas Chassaing
- Service de Génétique Médicale, Hôpital Purpan, CHU, 31059, Toulouse, France
| | | | | | | | - Christina Evers
- Genetische Poliklinik, Universitätsklinik Heidelberg, 69120, Heidelberg, Germany
| | - Marc Bohn
- St. Bernward Krankenhaus, 31134, Hildesheim, Germany
| | - Hans-Jürgen Christen
- Kinderkrankenhaus auf der Bult, Hannoversche Kinderheilanstalt, 30173, Hannover, Germany
| | | | - Ewa Obersztyn
- Institute of Mother and Child Department of Molecular Genetics, 01-211, Warsaw, Poland
| | - Agnieszka Charzewska
- Institute of Mother and Child Department of Molecular Genetics, 01-211, Warsaw, Poland
| | - Milda Endziniene
- Neurology Department, Lithuanian University of Health Sciences, 50009, Kaunas, Lithuania
| | - Fanny Kortüm
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Natasha Brown
- Victorian Clinical Genetics Services, Royal Children's Hospital, MCRI, Parkville, Australia.,Department of Clinical Genetics, Austin Health, Heidelberg, Australia
| | - Peter N Robinson
- The Jackson Laboratory for Genomic Medicine, 06032, Farmington, USA
| | - Helenius J Schelhaas
- Departement of Neurology, Academic Center for Epileptology, 5590, Heeze, The Netherlands
| | - Yvonne Weber
- Department of Neurology and Epileptology and Hertie Institute for Clinical Brain Research, University Tübingen, 72076, Tübingen, Germany
| | - Ingo Helbig
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127, Bonn, Germany.,Pediatric Neurology, Children's Hospital of Philadelphia, 3401, Philadelphia, USA
| | - Stefan Mundlos
- Institut für Medizinische Genetik und Humangenetik, Charité Universitätsmedizin Berlin, 13353, Berlin, Germany.,Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany
| | - Denise Horn
- Institut für Medizinische Genetik und Humangenetik, Charité Universitätsmedizin Berlin, 13353, Berlin, Germany.
| | - Peter M Krawitz
- Institut für Medizinische Genetik und Humangenetik, Charité Universitätsmedizin Berlin, 13353, Berlin, Germany. .,Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany. .,Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127, Bonn, Germany.
| |
Collapse
|