1
|
Yu X, Cao Y, Mao C, Tao C, Chen W. Association Between Genetically Proxied SLC12A2 Inhibition and Inflammatory Bowel Disease: A Mendelian Randomization Study. Biochem Genet 2025:10.1007/s10528-025-11037-y. [PMID: 39913044 DOI: 10.1007/s10528-025-11037-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/12/2025] [Indexed: 02/07/2025]
Abstract
The global rise in hypertension prompts the use of medications to manage blood pressure. However, selecting first-line drugs remains challenging as their efficacy often stems from blood pressure reduction rather than specific pharmacological actions. Evaluating interactions between antihypertensive drugs and common diseases can aid tailored treatment. Here, we assess the potential link between antihypertensives and inflammatory bowel disease (IBD). Summary-level coronary heart disease (CHD) data (184,305 individuals), systolic BP (SBP) data (757,601 individuals), ulcerative ileocolitis data (361,188 individuals), ulcerative colitis data (364,454 individuals), other ulcerative colitis data (361,619 individuals), and ulcerative proctitis data (361,700 individuals) were all from genome-wide association studies (GWASs), FinnGen or eQTL studies publicly accessible. The DrugBank10 and ChEMBL11 databases function to identify genes encoding protein products targeted by active constituents of BP-lowering drugs. Summary-data-based MR (SMR) estimated the associations between expressions of drug target genes and symptoms of IBD. A multivariable MR study was further conducted to examine if the observed association was direct association. Subsequently, we collected blood samples from IBD patients in the Gastroenterology Department of Gastroenterology, the First Affiliated Hospital of Anhui Medical University and blood from healthy individuals at the physical examination center. Real-time quantitative PCR was employed to detect the expression changes of drug target genes in the peripheral blood of patients with IBD. Furthermore, we used Caco2 cells to construct an in vitro model of IBD, examined the expression of the target molecules, and verified the potential of Bumetanide to improve IBD. SMR analysis revealed that enhanced SLC12A2 gene expression in blood (equivalent to a one standard deviation increase) was a risk factor for ulcerative ileocolitis (beta = 0.5861, se = 0.2972, p = 0.0486) and enhanced gene expression of ACE was a protective factor. Additionally, SCNN1D and SLC16A1 played protective roles of IBD, while NR3C1 was identified as a risk factor. However, among these genes, only SLC12A2 was considered to influence the progress of inflammatory bowel disease through systolic blood pressure based on Mendelian randomization analysis results. Other genes may be associated with IBD depending on the expression of their own proteins, independent of changes in blood pressure. In the peripheral blood of IBD patients and in vitro experiments, SCL12A2 has been shown to be highly expressed in IBD. In vitro experiments have confirmed that Bumetanide can inhibit SCL12A2 to improve tight junctions, reduce inflammation levels, and ameliorate IBD symptoms. Therapeutic inhibition of SCL12A2 may benefit patients with IBD. In the future, this study may contribute to the selection of more personalized antihypertensive medications for different subgroups of hypertensive patients.
Collapse
Affiliation(s)
- Xin Yu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Urology, Anhui Provincial Children's Hospital, Hefei, Anhui, China
| | - Yongsheng Cao
- Department of Urology, Anhui Provincial Children's Hospital, Hefei, Anhui, China
| | - Changkun Mao
- Department of Urology, Anhui Provincial Children's Hospital, Hefei, Anhui, China
| | - Chengpin Tao
- Department of Urology, Anhui Provincial Children's Hospital, Hefei, Anhui, China
| | - Wei Chen
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
2
|
Gamba G. From Fish Physiology to Human Disease: The Discovery of the NCC, NKCC2, and the Cation-Coupled Chloride Cotransporters. KIDNEY360 2024; 5:133-141. [PMID: 37968800 PMCID: PMC10833596 DOI: 10.34067/kid.0000000000000307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/26/2023] [Indexed: 11/17/2023]
Abstract
The renal Na-K-2Cl and Na-Cl cotransporters are the major salt reabsorption pathways in the thick ascending limb of Henle loop and the distal convoluted tubule, respectively. These transporters are the target of the loop and thiazide type diuretics extensively used in the world for the treatment of edematous states and arterial hypertension. The diuretics appeared in the market many years before the salt transport systems were discovered. The evolving of the knowledge and the cloning of the genes encoding the Na-K-2Cl and Na-Cl cotransporters were possible thanks to the study of marine species. This work presents the history of how we came to know the mechanisms for the loop and thiazide type diuretics actions, the use of marine species in the cloning process of these cotransporters and therefore in the whole solute carrier cotransproters 12 (SLC12) family of electroneutral cation chloride cotransporters, and the disease associated with each member of the family.
Collapse
Affiliation(s)
- Gerardo Gamba
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City, Mexico
| |
Collapse
|
3
|
Zhang S, Meor Azlan NF, Josiah SS, Zhou J, Zhou X, Jie L, Zhang Y, Dai C, Liang D, Li P, Li Z, Wang Z, Wang Y, Ding K, Wang Y, Zhang J. The role of SLC12A family of cation-chloride cotransporters and drug discovery methodologies. J Pharm Anal 2023; 13:1471-1495. [PMID: 38223443 PMCID: PMC10785268 DOI: 10.1016/j.jpha.2023.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/20/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023] Open
Abstract
The solute carrier family 12 (SLC12) of cation-chloride cotransporters (CCCs) comprises potassium chloride cotransporters (KCCs, e.g. KCC1, KCC2, KCC3, and KCC4)-mediated Cl- extrusion, and sodium potassium chloride cotransporters (N[K]CCs, NKCC1, NKCC2, and NCC)-mediated Cl- loading. The CCCs play vital roles in cell volume regulation and ion homeostasis. Gain-of-function or loss-of-function of these ion transporters can cause diseases in many tissues. In recent years, there have been considerable advances in our understanding of CCCs' control mechanisms in cell volume regulations, with many techniques developed in studying the functions and activities of CCCs. Classic approaches to directly measure CCC activity involve assays that measure the transport of potassium substitutes through the CCCs. These techniques include the ammonium pulse technique, radioactive or nonradioactive rubidium ion uptake-assay, and thallium ion-uptake assay. CCCs' activity can also be indirectly observed by measuring γ-aminobutyric acid (GABA) activity with patch-clamp electrophysiology and intracellular chloride concentration with sensitive microelectrodes, radiotracer 36Cl-, and fluorescent dyes. Other techniques include directly looking at kinase regulatory sites phosphorylation, flame photometry, 22Na+ uptake assay, structural biology, molecular modeling, and high-throughput drug screening. This review summarizes the role of CCCs in genetic disorders and cell volume regulation, current methods applied in studying CCCs biology, and compounds developed that directly or indirectly target the CCCs for disease treatments.
Collapse
Affiliation(s)
- Shiyao Zhang
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 363001, China
| | - Nur Farah Meor Azlan
- Institute of Biomedical and Clinical Sciences, Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, EX4 4PS, UK
| | - Sunday Solomon Josiah
- Institute of Biomedical and Clinical Sciences, Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, EX4 4PS, UK
| | - Jing Zhou
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Biological Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiaoxia Zhou
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 363001, China
| | - Lingjun Jie
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 363001, China
| | - Yanhui Zhang
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 363001, China
| | - Cuilian Dai
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 363001, China
| | - Dong Liang
- Aurora Discovery Inc., Foshan, Guangdong, 528300, China
| | - Peifeng Li
- Institute for Translational Medicine, Qingdao University, Qingdao, Shandong, 266021, China
| | - Zhengqiu Li
- School of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Zhen Wang
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yun Wang
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Biological Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Ke Ding
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yan Wang
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 363001, China
| | - Jinwei Zhang
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 363001, China
- Institute of Biomedical and Clinical Sciences, Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, EX4 4PS, UK
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
4
|
Delpire E, Koumangoye R. NKCC1 in human diseases: is the SLC12A2 gene haploinsufficient? Am J Physiol Cell Physiol 2023; 325:C385-C390. [PMID: 37399495 PMCID: PMC10393318 DOI: 10.1152/ajpcell.00238.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/17/2023] [Accepted: 06/17/2023] [Indexed: 07/05/2023]
Abstract
Mutations in the SLC12A2 gene, which encodes the Na-K-2Cl cotransporter-1 (NKCC1), are linked to various conditions such as neurodevelopmental deficits, deafness, and fluid secretion in different epithelia. Cases of complete NKCC1 deficiency in young patients are straightforward, leading to clinical presentations that overlap with the phenotypes observed in NKCC1 knockout mouse models. However, cases involving deleterious variants in one allele are more difficult, as the clinical presentation is variable, and the cause-effect relationship is not always clear. For instance, we worked on a single patient's case from multiple angles and published six related papers to convince ourselves of the cause-and-effect relationship between her NKCC1 mutation and her clinical presentations. The cluster of mutations in a small portion of the carboxyl terminus and its association with deafness point to a cause-and-effect relationship, even if the molecular mechanism is unknown. Overall, the preponderance of evidence suggests that the SLC12A2 gene is a human disease-causing and likely haploinsufficient gene that requires further investigation.
Collapse
Affiliation(s)
- Eric Delpire
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Rainelli Koumangoye
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| |
Collapse
|
5
|
Moseng MA, Su CC, Rios K, Cui M, Lyu M, Glaza P, Klenotic PA, Delpire E, Yu EW. Inhibition mechanism of NKCC1 involves the carboxyl terminus and long-range conformational coupling. SCIENCE ADVANCES 2022; 8:eabq0952. [PMID: 36306358 PMCID: PMC9616490 DOI: 10.1126/sciadv.abq0952] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
The Na-K-2Cl cotransporter-1 (NKCC1) is an electroneutral Na+-dependent transporter responsible for simultaneously translocating Na+, K+, and Cl- ions into cells. In human tissue, NKCC1 plays a critical role in regulating cytoplasmic volume, fluid intake, chloride homeostasis, and cell polarity. Here, we report four structures of human NKCC1 (hNKCC1), both in the absence and presence of loop diuretic (bumetanide or furosemide), using single-particle cryo-electron microscopy. These structures allow us to directly observe various novel conformations of the hNKCC1 dimer. They also reveal two drug-binding sites located at the transmembrane and cytosolic carboxyl-terminal domains, respectively. Together, our findings enable us to delineate an inhibition mechanism that involves a coupled movement between the cytosolic and transmembrane domains of hNKCC1.
Collapse
Affiliation(s)
- Mitchell A. Moseng
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Chih-Chia Su
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Kerri Rios
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Meng Cui
- Department of Pharmaceutical Sciences, Northeastern University School of Pharmacy, Boston, MA 02115, USA
| | - Meinan Lyu
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Przemyslaw Glaza
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Philip A. Klenotic
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Edward W. Yu
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
6
|
Gamba G. Arterial Blood Pressure, Neuronal Excitability, Mineral Metabolism and Cell Volume Regulation Mechanisms Revealed by Xenopus laevis oocytes. MEMBRANES 2022; 12:911. [PMID: 36295670 PMCID: PMC9612257 DOI: 10.3390/membranes12100911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/16/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Xenopus laevis oocytes have been an invaluable tool to discover and explore the molecular mechanisms and characteristics of many proteins, in particular integral membrane proteins. The oocytes were fundamental in many projects designed to identify the cDNA encoding a diversity of membrane proteins including receptors, transporters, channels and pores. In addition to being a powerful tool for cloning, oocytes were later used to experiment with the functional characterization of many of the identified proteins. In this review I present an overview of my personal 30-year experience using Xenopus laevis oocytes and the impact this had on a variety of fields such as arterial blood pressure, neuronal excitability, mineral metabolism and cell volume regulation.
Collapse
Affiliation(s)
- Gerardo Gamba
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 04510, Mexico
| |
Collapse
|
7
|
Adadey SM, Wonkam-Tingang E, Alves de Souza Rios L, Aboagye ET, Esoh K, Manyisa N, De Kock C, Awandare GA, Mowla S, Wonkam A. Cell-based analysis of CLIC5A and SLC12A2 variants associated with hearing impairment in two African families. Front Genet 2022; 13:924904. [PMID: 36035115 PMCID: PMC9403182 DOI: 10.3389/fgene.2022.924904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/18/2022] [Indexed: 01/18/2023] Open
Abstract
We have previously reported CLIC5A and SLC12A2 variants in two families from Cameroon and Ghana, segregating non-syndromic hearing impairment (NSHI). In this study, biological assays were performed to further functionally investigate the pathogenicity of CLIC5 [c.224T>C; p.(L75P)] and SCL12A2 [c.2935G>A: p.(E979K)] variants. Ectopic expression of the proteins in a cell model shows that compared to wild-type, both the CLIC5A and SLC12A2 variants were overexpressed. The mutant CLIC5A protein appears as aggregated perinuclear bodies while the wild-type protein was evenly distributed in the cytoplasm. Furthermore, cells transfected with the wild-type CLIC5A formed thin membrane filopodia-like protrusions which were absent in the CLIC5A mutant expressing and control cells. On the other hand, the wild-type SLC12A2 expressing cells had an axon-like morphology which was not observed in the mutant expressing and control cells. A network analysis revealed that CLIC5A can interact with at least eight proteins at the base of the stereocilia. This study has generated novel biological data associated with the pathogenicity of targeted variants in CLIC5A and SLC12A2, found in two African families, and therefore expands our understanding of their pathobiology in hearing impairment.
Collapse
Affiliation(s)
- Samuel Mawuli Adadey
- Department of Pathology, Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Department of Biochemistry, Cell, and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Edmond Wonkam-Tingang
- Department of Pathology, Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Leonardo Alves de Souza Rios
- Department of Pathology, Division of Haematology, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, South Africa
| | - Elvis Twumasi Aboagye
- Department of Pathology, Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Department of Biochemistry, Cell, and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Kevin Esoh
- Department of Pathology, Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Noluthando Manyisa
- Department of Pathology, Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Carmen De Kock
- Department of Pathology, Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Gordon A. Awandare
- Department of Biochemistry, Cell, and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Shaheen Mowla
- Department of Pathology, Division of Haematology, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, South Africa
| | - Ambroise Wonkam
- Department of Pathology, Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- McKusick-Nathans Institute and Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
8
|
Delpire E, Ben-Ari Y. A Wholistic View of How Bumetanide Attenuates Autism Spectrum Disorders. Cells 2022; 11:2419. [PMID: 35954263 PMCID: PMC9367773 DOI: 10.3390/cells11152419] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/22/2022] [Accepted: 08/03/2022] [Indexed: 01/27/2023] Open
Abstract
The specific NKCC1 cotransporter antagonist, bumetanide, attenuates the severity of Autism Spectrum Disorders (ASD), and many neurodevelopmental or neurodegenerative disorders in animal models and clinical trials. However, the pervasive expression of NKCC1 in many cell types throughout the body is thought to challenge the therapeutic efficacy of bumetanide. However, many peripheral functions, including intestinal, metabolic, or vascular, etc., are perturbed in brain disorders contributing to the neurological sequels. Alterations of these functions also increase the incidence of the disorder suggesting complex bidirectional links with the clinical manifestations. We suggest that a more holistic view of ASD and other disorders is warranted to account for the multiple sites impacted by the original intra-uterine insult. From this perspective, large-spectrum active repositioned drugs that act centrally and peripherally might constitute a useful approach to treating these disorders.
Collapse
Affiliation(s)
- Eric Delpire
- Departments of Anesthesiology and Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Yehezkel Ben-Ari
- NeuroChlore, Campus Scientifique de Luminy, 163 Route de Luminy, 13273 Marseilles, France
| |
Collapse
|
9
|
Hui KK, Chater TE, Goda Y, Tanaka M. How Staying Negative Is Good for the (Adult) Brain: Maintaining Chloride Homeostasis and the GABA-Shift in Neurological Disorders. Front Mol Neurosci 2022; 15:893111. [PMID: 35875665 PMCID: PMC9305173 DOI: 10.3389/fnmol.2022.893111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/10/2022] [Indexed: 01/27/2023] Open
Abstract
Excitatory-inhibitory (E-I) imbalance has been shown to contribute to the pathogenesis of a wide range of neurodevelopmental disorders including autism spectrum disorders, epilepsy, and schizophrenia. GABA neurotransmission, the principal inhibitory signal in the mature brain, is critically coupled to proper regulation of chloride homeostasis. During brain maturation, changes in the transport of chloride ions across neuronal cell membranes act to gradually change the majority of GABA signaling from excitatory to inhibitory for neuronal activation, and dysregulation of this GABA-shift likely contributes to multiple neurodevelopmental abnormalities that are associated with circuit dysfunction. Whilst traditionally viewed as a phenomenon which occurs during brain development, recent evidence suggests that this GABA-shift may also be involved in neuropsychiatric disorders due to the "dematuration" of affected neurons. In this review, we will discuss the cell signaling and regulatory mechanisms underlying the GABA-shift phenomenon in the context of the latest findings in the field, in particular the role of chloride cotransporters NKCC1 and KCC2, and furthermore how these regulatory processes are altered in neurodevelopmental and neuropsychiatric disorders. We will also explore the interactions between GABAergic interneurons and other cell types in the developing brain that may influence the GABA-shift. Finally, with a greater understanding of how the GABA-shift is altered in pathological conditions, we will briefly outline recent progress on targeting NKCC1 and KCC2 as a therapeutic strategy against neurodevelopmental and neuropsychiatric disorders associated with improper chloride homeostasis and GABA-shift abnormalities.
Collapse
Affiliation(s)
- Kelvin K. Hui
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, United States
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Thomas E. Chater
- Laboratory for Synaptic Plasticity and Connectivity, RIKEN Center for Brain Science, Wako, Japan
| | - Yukiko Goda
- Laboratory for Synaptic Plasticity and Connectivity, RIKEN Center for Brain Science, Wako, Japan
- Synapse Biology Unit, Okinawa Institute for Science and Technology Graduate University, Onna, Japan
| | - Motomasa Tanaka
- Laboratory for Protein Conformation Diseases, RIKEN Center for Brain Science, Wako, Japan
| |
Collapse
|
10
|
NKCC1 Deficiency in Forming Hippocampal Circuits Triggers Neurodevelopmental Disorder: Role of BDNF-TrkB Signalling. Brain Sci 2022; 12:brainsci12040502. [PMID: 35448033 PMCID: PMC9030861 DOI: 10.3390/brainsci12040502] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/06/2022] [Accepted: 04/12/2022] [Indexed: 12/10/2022] Open
Abstract
The time-sensitive GABA shift from excitatory to inhibitory is critical in early neural circuits development and depends upon developmentally regulated expression of cation-chloride cotransporters NKCC1 and KCC2. NKCC1, encoded by the SLC12A2 gene, regulates neuronal Cl− homeostasis by chloride import working opposite KCC2. The high NKCC1/KCC2 expression ratio decreases in early neural development contributing to GABA shift. Human SLC12A2 loss-of-function mutations were recently associated with a multisystem disorder affecting neural development. However, the multisystem phenotype of rodent Nkcc1 knockout models makes neurodevelopment challenging to study. Brain-Derived Neurotrophic Factor (BDNF)-NTRK2/TrkB signalling controls KCC2 expression during neural development, but its impact on NKCC1 is still controversial. Here, we discuss recent evidence supporting BDNF-TrkB signalling controlling Nkcc1 expression and the GABA shift during hippocampal circuit formation. Namely, specific deletion of Ntrk2/Trkb from immature mouse hippocampal dentate granule cells (DGCs) affects their integration and maturation in the hippocampal circuitry and reduces Nkcc1 expression in their target region, the CA3 principal cells, leading to premature GABA shift, ultimately influencing the establishment of functional hippocampal circuitry and animal behaviour in adulthood. Thus, immature DGCs emerge as a potential therapeutic target as GABAergic transmission is vital for specific neural progenitors generating dentate neurogenesis in early development and the mature brain.
Collapse
|
11
|
Kohler JN, Glanton E, Boyd BM, Sillari CH, Marwaha S, Wheeler MT. Genetic counselor roles in the undiagnosed diseases network research study: Clinical care, collaboration, and curation. J Genet Couns 2022; 31:326-337. [PMID: 34374469 PMCID: PMC11305122 DOI: 10.1002/jgc4.1493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/14/2021] [Accepted: 07/23/2021] [Indexed: 12/22/2022]
Abstract
Genetic counselors (GCs) are increasingly filling important positions on research study teams, but there is limited literature describing the roles of GCs in these settings. GCs on the Undiagnosed Diseases Network (UDN) study team serve in a variety of roles across the research network and provide an opportunity to better understand genetic counselor roles in research. To quantitatively characterize the tasks regularly performed and professional fulfillment derived from these tasks, two surveys were administered to UDN GCs in a stepwise fashion. Responses from the first, free-response survey elicited the scope of tasks which informed development of a second structured, multiple-select survey. In survey 2, respondents were asked to select which roles they performed. Across 19 respondents, roles in survey 2 received a total of 947 selections averaging approximately 10 selections per role. When asked to indicate what roles they performed, respondent selected a mean of 50 roles (range 22-70). Survey 2 data were analyzed via thematic coding of responses and hierarchical cluster analysis to identify patterns in responses. From the thematic analysis, 20 non-overlapping codes emerged in seven categories: clinical interaction and care, communication, curation, leadership, participant management, research, and team management. Three themes emerged from the categories that represented the roles of GCs in the UDN: clinical care, collaboration, and curation. Cluster analyses showed that responses were more similar among individuals at the same institution than between institutions. This study highlights the ways GCs apply their unique skill set in the context of a clinical translational research network. Additionally, findings from this study reinforce the wide applicability of core skills that are part of genetic counseling training. Clinical literacy, genomics expertise and analysis, interpersonal, psychosocial and counseling skills, education, professional practice skills, and an understanding of research processes make genetic counselors well suited for such roles and poised to positively impact research experiences and outcomes for participants.
Collapse
Affiliation(s)
- Jennefer N Kohler
- Center for Undiagnosed Diseases, Stanford University, Stanford, CA, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Emily Glanton
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Color Genomics, Burlingame, CA, USA
| | - Brenna M Boyd
- Department of Medical Genetics, University of Washington, Seattle, WA, USA
| | - Catherine H Sillari
- NIH Undiagnosed Diseases Program, Office of the Clinical Director, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Shruti Marwaha
- Center for Undiagnosed Diseases, Stanford University, Stanford, CA, USA
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Matthew T Wheeler
- Center for Undiagnosed Diseases, Stanford University, Stanford, CA, USA
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
12
|
Koumangoye R. The role of Cl - and K + efflux in NLRP3 inflammasome and innate immune response activation. Am J Physiol Cell Physiol 2022; 322:C645-C652. [PMID: 35171697 DOI: 10.1152/ajpcell.00421.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Inflammation is part of innate immunity and is a natural response of the body to bacteria, virus, any other pathogen infections, or to damaged tissues. However, too much inflammation or chronic inflammation contributes to a wide variety of diseases such as inflammatory bowel disease, cancer, type 2 diabetes, heart disease, or autoimmune disease such as rheumatoid arthritis. Recent studies underscored the critical role of K+ and Cl- efflux in the activation of the inflammasome. The NLRP3 inflammasome is a multiprotein complex that mediates the production of the proinflammatory cytokines IL-1β and IL-18 and initiates the inflammatory cell death or pyroptosis. The NLRP3 inflammasome can be activated by multiple stimuli such as extracellular ATP, microbial toxins, ROS, mitochondria DNA or particulate matter. Although the precise mechanisms of NLRP3 activation and regulation by these diverse agonists remain unclear, multiple reports indicate that all NLRP3 agonists ultimately lead to a drop in intracellular concentration of potassium (K+ efflux) and chloride (Cl- efflux). The WNK-SPAK/OSR1-[N]KCC pathway plays a critical role maintaining K+ and Cl- ions concentration in the cell. Recent advances indicate that the WNK-SPAK-[N]KCC pathway play a role in the activation of the innate immune response. This review highlights recent discoveries detailing how ion transport regulates innate immune cell response to inflammatory stimuli.
Collapse
Affiliation(s)
- Rainelli Koumangoye
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN, United States
| |
Collapse
|
13
|
Qian F, Jiang X, Chai R, Liu D. The Roles of Solute Carriers in Auditory Function. Front Genet 2022; 13:823049. [PMID: 35154281 PMCID: PMC8827148 DOI: 10.3389/fgene.2022.823049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022] Open
Abstract
Solute carriers (SLCs) are important transmembrane transporters with members organized into 65 families. They play crucial roles in transporting many important molecules, such as ions and some metabolites, across the membrane, maintaining cellular homeostasis. SLCs also play important roles in hearing. It has been found that mutations in some SLC members are associated with hearing loss. In this review, we summarize SLC family genes related with hearing dysfunction to reveal the vital roles of these transporters in auditory function. This summary could help us understand the auditory physiology and the mechanisms of hearing loss and further guide future studies of deafness gene identification.
Collapse
Affiliation(s)
- Fuping Qian
- School of Life Sciences, Nantong University, Nantong, China
| | - Xiaoge Jiang
- Department of Rehabilitation Medicine, The Second People's Hospital of Nantong, Affiliated Rehabilitation Hospital of Nantong University, Nantong, China
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, Southeast University, Nanjing, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, China.,Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China.,Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Dong Liu
- School of Life Sciences, Nantong University, Nantong, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
14
|
McNeill A, Aurora P, Rajput K, Nash R, Stals K, Robinson H, Wakeling E. Dominant and recessive SLC12A2-syndrome. Am J Med Genet A 2021; 188:996-999. [PMID: 34797034 DOI: 10.1002/ajmg.a.62573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/17/2021] [Accepted: 10/29/2021] [Indexed: 12/18/2022]
Affiliation(s)
- Alisdair McNeill
- Department of Neuroscience, The University of Sheffield, Sheffield, UK.,Clinical Genetics, Sheffield Children's Hospital NHS Foundation Trust, Sheffield, UK
| | - Paul Aurora
- Department of Audiological Medicine, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Kaukab Rajput
- Department of Audiological Medicine, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Robert Nash
- Department of Audiological Medicine, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Karen Stals
- Exeter Genomics Laboratory, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Hannah Robinson
- Exeter Genomics Laboratory, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Emma Wakeling
- North East Thames Regional Genetic Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| |
Collapse
|
15
|
Portioli C, Ruiz Munevar MJ, De Vivo M, Cancedda L. Cation-coupled chloride cotransporters: chemical insights and disease implications. TRENDS IN CHEMISTRY 2021; 3:832-849. [PMID: 34604727 PMCID: PMC8461084 DOI: 10.1016/j.trechm.2021.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cation-coupled chloride cotransporters (CCCs) modulate the transport of sodium and/or potassium cations coupled with chloride anions across the cell membrane. CCCs thus help regulate intracellular ionic concentration and consequent cell volume homeostasis. This has been largely exploited in the past to develop diuretic drugs that act on CCCs expressed in the kidney. However, a growing wealth of evidence has demonstrated that CCCs are also critically involved in a great variety of other pathologies, motivating most recent drug discovery programs targeting CCCs. Here, we examine the structure–function relationship of CCCs. By linking recent high-resolution cryogenic electron microscopy (cryo-EM) data with older biochemical/functional studies on CCCs, we discuss the mechanistic insights and opportunities to design selective CCC modulators to treat diverse pathologies. The structural topology and function of all cation-coupled chloride cotransporters (CCCs) have been continuously investigated over the past 40 years, with great progress also thanks to the recent cryogenic electron microscopy (cryo-EM) resolution of the structures of five CCCs. In particular, such studies have clarified the structure–function relationship for the Na-K-Cl cotransporter NKCC1 and K-Cl cotransporters KCC1–4. The constantly growing evidence of the crucial involvement of CCCs in physiological and various pathological conditions, as well as the evidence of their wide expression in diverse body tissues, has promoted CCCs as targets for the discovery and development of new, safer, and more selective/effective drugs for a plethora of pathologies. Post-translational modification anchor points on the structure of CCCs may offer alternative strategies for small molecule drug discovery.
Collapse
Affiliation(s)
- Corinne Portioli
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genoa, Italy.,Laboratory of Molecular Modeling and Drug Discovery, IIT, Via Morego, 30 16163 Genoa, Italy
| | | | - Marco De Vivo
- Laboratory of Molecular Modeling and Drug Discovery, IIT, Via Morego, 30 16163 Genoa, Italy
| | - Laura Cancedda
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genoa, Italy.,Dulbecco Telethon Institute, Via Varese 16b, 00185 Rome, Italy
| |
Collapse
|
16
|
van Putten MJ, Fahlke C, Kafitz KW, Hofmeijer J, Rose CR. Dysregulation of Astrocyte Ion Homeostasis and Its Relevance for Stroke-Induced Brain Damage. Int J Mol Sci 2021; 22:5679. [PMID: 34073593 PMCID: PMC8198632 DOI: 10.3390/ijms22115679] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 12/14/2022] Open
Abstract
Ischemic stroke is a leading cause of mortality and chronic disability. Either recovery or progression towards irreversible failure of neurons and astrocytes occurs within minutes to days, depending on remaining perfusion levels. Initial damage arises from energy depletion resulting in a failure to maintain homeostasis and ion gradients between extra- and intracellular spaces. Astrocytes play a key role in these processes and are thus central players in the dynamics towards recovery or progression of stroke-induced brain damage. Here, we present a synopsis of the pivotal functions of astrocytes at the tripartite synapse, which form the basis of physiological brain functioning. We summarize the evidence of astrocytic failure and its consequences under ischemic conditions. Special emphasis is put on the homeostasis and stroke-induced dysregulation of the major monovalent ions, namely Na+, K+, H+, and Cl-, and their involvement in maintenance of cellular volume and generation of cerebral edema.
Collapse
Affiliation(s)
- Michel J.A.M. van Putten
- Department of Clinical Neurophysiology, University of Twente, 7522 NB Enschede, The Netherlands; (M.J.A.M.v.P.); (J.H.)
| | - Christoph Fahlke
- Institut für Biologische Informationsprozesse, Molekular-und Zellphysiologie (IBI-1), Forschungszentrum Jülich, 52425 Jülich, Germany;
| | - Karl W. Kafitz
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Jeannette Hofmeijer
- Department of Clinical Neurophysiology, University of Twente, 7522 NB Enschede, The Netherlands; (M.J.A.M.v.P.); (J.H.)
| | - Christine R. Rose
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| |
Collapse
|
17
|
Delpire E. Advances in the development of novel compounds targeting cation-chloride cotransporter physiology. Am J Physiol Cell Physiol 2021; 320:C324-C340. [PMID: 33356948 PMCID: PMC8294628 DOI: 10.1152/ajpcell.00566.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 01/05/2023]
Abstract
For about half a century, the pharmacology of electroneutral cation-chloride cotransporters has been dominated by a few drugs that are widely used in clinical medicine. Because these diuretic drugs are so good at what they do, there has been little incentive in expanding their pharmacology. The increasing realization that cation-chloride cotransporters are involved in many other key physiological processes and the knowledge that different tissues express homologous proteins with matching transport functions have rekindled interest in drug discovery. This review summarizes the methods available to assess the function of these transporters and describe the multiple efforts that have made to identify new compounds. We describe multiple screens targeting KCC2 function and one screen designed to find compounds that discriminate between NKCC1 and NKCC2. Two of the KCC2 screens identified new inhibitors that are 3-4 orders of magnitude more potent than furosemide. Additional screens identified compounds that purportedly increase cell surface expression of the cotransporter, as well as several FDA-approved drugs that increase KCC2 transcription and expression. The technical details of each screen biased them toward specific processes in the life cycle of the transporter, making these efforts independent and complementary. In addition, each drug discovery effort contributes to our understanding of the biology of the cotransporters.
Collapse
Affiliation(s)
- Eric Delpire
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
18
|
Gagnon KB, Delpire E. Sodium Transporters in Human Health and Disease. Front Physiol 2021; 11:588664. [PMID: 33716756 PMCID: PMC7947867 DOI: 10.3389/fphys.2020.588664] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022] Open
Abstract
Sodium (Na+) electrochemical gradients established by Na+/K+ ATPase activity drives the transport of ions, minerals, and sugars in both excitable and non-excitable cells. Na+-dependent transporters can move these solutes in the same direction (cotransport) or in opposite directions (exchanger) across both the apical and basolateral plasma membranes of polarized epithelia. In addition to maintaining physiological homeostasis of these solutes, increases and decreases in sodium may also initiate, directly or indirectly, signaling cascades that regulate a variety of intracellular post-translational events. In this review, we will describe how the Na+/K+ ATPase maintains a Na+ gradient utilized by multiple sodium-dependent transport mechanisms to regulate glucose uptake, excitatory neurotransmitters, calcium signaling, acid-base balance, salt-wasting disorders, fluid volume, and magnesium transport. We will discuss how several Na+-dependent cotransporters and Na+-dependent exchangers have significant roles in human health and disease. Finally, we will discuss how each of these Na+-dependent transport mechanisms have either been shown or have the potential to use Na+ in a secondary role as a signaling molecule.
Collapse
Affiliation(s)
- Kenneth B. Gagnon
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, United States
| | - Eric Delpire
- Department of Anesthesiology, School of Medicine, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
19
|
Bilal Shamsi M, Saleh M, Almuntashri M, Alharby E, Samman M, Peake RWA, Al-Fadhli FM, Alasmari A, Faqeih EA, Almontashiri NAM. Clinical characterization and further confirmation of the autosomal recessive SLC12A2 disease. J Hum Genet 2021; 66:689-695. [PMID: 33500540 DOI: 10.1038/s10038-021-00904-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 01/05/2021] [Accepted: 01/13/2021] [Indexed: 12/25/2022]
Abstract
Heterozygous pathogenic variants in SLC12A2 are reported in patients with nonsyndromic hearing loss. Recently, homozygous loss-of-function variants have been reported in two patients with syndromic intellectual disability, with or without hearing loss. However, the clinical and molecular spectrum of SLC12A2 disease has yet to be characterized and confirmed. Using whole-exome sequencing, we detected a homozygous splicing variant in four patients from two independent families with severe developmental delay, microcephaly, respiratory abnormalities, and subtle dysmorphic features, with or without congenital hearing loss. We also reviewed the reported cases with pathogenic variants associated with autosomal dominant and recessive forms of the SLC12A2 disease. About 50% of the cases have syndromic and nonsyndromic congenital hearing loss. All patients harboring the recessive forms of the disease presented with severe global developmental delay. Interestingly, all reported variants are located in the c-terminal domain, suggesting a critical role of this domain for the proper function of the encoded co-transporter protein. In conclusion, our study provides an additional confirmation of the autosomal recessive SLC12A2 disease.
Collapse
Affiliation(s)
- Monis Bilal Shamsi
- Center for Genetics and Inherited Diseases, Taibah University, Almadinah Almunwarah, Saudi Arabia
| | - Mohamed Saleh
- Section of Medical Genetics, Children's Specialist Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Makki Almuntashri
- Department of Medical Imaging, King Abdulaziz Medical City, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Essa Alharby
- Center for Genetics and Inherited Diseases, Taibah University, Almadinah Almunwarah, Saudi Arabia
| | - Manar Samman
- Molecular Pathology, Pathology and Clinical Laboratory Medicine Administration, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Roy W A Peake
- Department of Laboratory Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Fatima M Al-Fadhli
- Unit of Genetic Diseases, Department of Pediatrics, Maternity and Children's Hospital, Almadinah Almunwarah, Saudi Arabia
| | - Ali Alasmari
- Section of Medical Genetics, Children's Specialist Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Eissa A Faqeih
- Section of Medical Genetics, Children's Specialist Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Naif A M Almontashiri
- Center for Genetics and Inherited Diseases, Taibah University, Almadinah Almunwarah, Saudi Arabia. .,Faculty of Applied Medical Sciences, Taibah University, Almadinah Almunwarah, Saudi Arabia.
| |
Collapse
|
20
|
Further confirmation of the association of SLC12A2 with non-syndromic autosomal-dominant hearing impairment. J Hum Genet 2021; 66:1169-1175. [PMID: 34226616 PMCID: PMC8612923 DOI: 10.1038/s10038-021-00954-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/08/2021] [Accepted: 06/20/2021] [Indexed: 02/06/2023]
Abstract
Congenital hearing impairment (HI) is genetically heterogeneous making its genetic diagnosis challenging. Investigation of novel HI genes and variants will enhance our understanding of the molecular mechanisms and to aid genetic diagnosis. We performed exome sequencing and analysis using DNA samples from affected members of two large families from Ghana and Pakistan, segregating autosomal-dominant (AD) non-syndromic HI (NSHI). Using in silico approaches, we modeled and evaluated the effect of the likely pathogenic variants on protein structure and function. We identified two likely pathogenic variants in SLC12A2, c.2935G>A:p.(E979K) and c.2939A>T:p.(E980V), which segregate with NSHI in a Ghanaian and Pakistani family, respectively. SLC12A2 encodes an ion transporter crucial in the homeostasis of the inner ear endolymph and has recently been reported to be implicated in syndromic and non-syndromic HI. Both variants were mapped to alternatively spliced exon 21 of the SLC12A2 gene. Exon 21 encodes for 17 residues in the cytoplasmatic tail of SLC12A2, is highly conserved between species, and preferentially expressed in cochlear tissues. A review of previous studies and our current data showed that out of ten families with either AD non-syndromic or syndromic HI, eight (80%) had variants within the 17 amino acid residue region of exon 21 (48 bp), suggesting that this alternate domain is critical to the transporter activity in the inner ear. The genotypic spectrum of SLC12A2 was expanded and the involvement of SLC12A2 in ADNSHI was confirmed. These results also demonstrate the role that SLC12A2 plays in ADNSHI in diverse populations including sub-Saharan Africans.
Collapse
|
21
|
Talsness DM, Owings KG, Coelho E, Mercenne G, Pleinis JM, Partha R, Hope KA, Zuberi AR, Clark NL, Lutz CM, Rodan AR, Chow CY. A Drosophila screen identifies NKCC1 as a modifier of NGLY1 deficiency. eLife 2020; 9:e57831. [PMID: 33315011 PMCID: PMC7758059 DOI: 10.7554/elife.57831] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 12/12/2020] [Indexed: 12/12/2022] Open
Abstract
N-Glycanase 1 (NGLY1) is a cytoplasmic deglycosylating enzyme. Loss-of-function mutations in the NGLY1 gene cause NGLY1 deficiency, which is characterized by developmental delay, seizures, and a lack of sweat and tears. To model the phenotypic variability observed among patients, we crossed a Drosophila model of NGLY1 deficiency onto a panel of genetically diverse strains. The resulting progeny showed a phenotypic spectrum from 0 to 100% lethality. Association analysis on the lethality phenotype, as well as an evolutionary rate covariation analysis, generated lists of modifying genes, providing insight into NGLY1 function and disease. The top association hit was Ncc69 (human NKCC1/2), a conserved ion transporter. Analyses in NGLY1-/- mouse cells demonstrated that NKCC1 has an altered average molecular weight and reduced function. The misregulation of this ion transporter may explain the observed defects in secretory epithelium function in NGLY1 deficiency patients.
Collapse
Affiliation(s)
- Dana M Talsness
- Department of Human Genetics, University of Utah School of MedicineSalt Lake CityUnited States
| | - Katie G Owings
- Department of Human Genetics, University of Utah School of MedicineSalt Lake CityUnited States
| | - Emily Coelho
- Department of Human Genetics, University of Utah School of MedicineSalt Lake CityUnited States
| | - Gaelle Mercenne
- Department of Internal Medicine, Division of Nephrology and Hypertension, and Molecular Medicine Program, University of UtahSalt Lake CityUnited States
| | - John M Pleinis
- Department of Internal Medicine, Division of Nephrology and Hypertension, and Molecular Medicine Program, University of UtahSalt Lake CityUnited States
| | - Raghavendran Partha
- Department of Computational and Systems Biology, University of PittsburghPittsburghUnited States
| | - Kevin A Hope
- Department of Human Genetics, University of Utah School of MedicineSalt Lake CityUnited States
| | - Aamir R Zuberi
- Genetic Resource Science, The Jackson LaboratoryBar HarborUnited States
| | - Nathan L Clark
- Department of Human Genetics, University of Utah School of MedicineSalt Lake CityUnited States
| | - Cathleen M Lutz
- Genetic Resource Science, The Jackson LaboratoryBar HarborUnited States
| | - Aylin R Rodan
- Department of Internal Medicine, Division of Nephrology and Hypertension, and Molecular Medicine Program, University of UtahSalt Lake CityUnited States
- Medical Service, Veterans Affairs Salt Lake City Health Care SystemSalt Lake CityUnited States
| | - Clement Y Chow
- Department of Human Genetics, University of Utah School of MedicineSalt Lake CityUnited States
| |
Collapse
|
22
|
Al-Majdoub ZM, Couto N, Achour B, Harwood MD, Carlson G, Warhurst G, Barber J, Rostami-Hodjegan A. Quantification of Proteins Involved in Intestinal Epithelial Handling of Xenobiotics. Clin Pharmacol Ther 2020; 109:1136-1146. [PMID: 33113152 PMCID: PMC8048492 DOI: 10.1002/cpt.2097] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/10/2020] [Indexed: 12/17/2022]
Abstract
The intestinal epithelium represents a natural barrier against harmful xenobiotics, while facilitating the uptake of nutrients and other substances. Understanding the interaction of chemicals with constituents of the intestinal epithelium and their fate in the body requires quantitative measurement of relevant proteins in in vitro systems and intestinal epithelium. Recent studies have highlighted the mismatch between messenger RNA (mRNA) and protein abundance for several drug‐metabolizing enzymes and transporters in the highly dynamic environment of the intestinal epithelium; mRNA abundances cannot therefore be used as a proxy for protein abundances in the gut, necessitating direct measurements. The objective was to determine the expression of a wide range proteins pertinent to metabolism and disposition of chemicals and nutrients in the intestinal epithelium. Ileum and jejunum biopsy specimens were obtained from 16 patients undergoing gastrointestinal elective surgery. Mucosal fractions were prepared and analyzed using targeted and global proteomic approaches. A total of 29 enzymes, 32 transporters, 6 tight junction proteins, 2 adhesion proteins, 1 alkaline phosphatase, 1 thioredoxin, 5 markers, and 1 regulatory protein were quantified—60 for the first time. The global proteomic method identified a further 5,222 proteins, which are retained as an open database for interested parties to explore. This study significantly expands our knowledge of a wide array of proteins important for xenobiotic handling in the intestinal epithelium. Quantitative systems biology models will benefit from the novel systems data generated in the present study and the translation path offered for in vitro to in vivo translation.
Collapse
Affiliation(s)
- Zubida M Al-Majdoub
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester, UK
| | - Narciso Couto
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester, UK
| | - Brahim Achour
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester, UK
| | | | - Gordon Carlson
- Gut Barrier Group, Inflammation and Repair, University of Manchester, Salford Royal NHS Trust, Salford, UK
| | - Geoffrey Warhurst
- Gut Barrier Group, Inflammation and Repair, University of Manchester, Salford Royal NHS Trust, Salford, UK
| | - Jill Barber
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester, UK
| | - Amin Rostami-Hodjegan
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester, UK.,Certara UK (Simcyp Division), Sheffield, UK
| |
Collapse
|
23
|
Virtanen MA, Uvarov P, Hübner CA, Kaila K. NKCC1, an Elusive Molecular Target in Brain Development: Making Sense of the Existing Data. Cells 2020; 9:cells9122607. [PMID: 33291778 PMCID: PMC7761970 DOI: 10.3390/cells9122607] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 12/14/2022] Open
Abstract
Ionotropic GABA transmission is mediated by anion (mainly Cl−)-permeable GABAA receptors (GABAARs). In immature neurons, GABA exerts depolarizing and sometimes functionally excitatory actions, based on active uptake of Cl− by the Na-K-2Cl cotransporter NKCC1. While functional evidence firmly shows NKCC1-mediated ion transport in immature and diseased neurons, molecular detection of NKCC1 in the brain has turned out to be extremely difficult. In this review, we describe the highly inconsistent data that are available on the cell type-specific expression patterns of the NKCC1 mRNA and protein in the CNS. We discuss the major technical caveats, including a lack of knock-out-controlled immunohistochemistry in the forebrain, possible effects of alternative splicing on the binding of antibodies and RNA probes, and the wide expression of NKCC1 in different cell types, which make whole-tissue analyses of NKCC1 useless for studying its neuronal expression. We also review novel single-cell RNAseq data showing that most of the NKCC1 in the adult CNS may, in fact, be expressed in non-neuronal cells, especially in glia. As future directions, we suggest single-cell NKCC1 mRNA and protein analyses and the use of genetically tagged endogenous proteins or systematically designed novel antibodies, together with proper knock-out controls, for the visualization of endogenous NKCC1 in distinct brain cell types and their subcellular compartments.
Collapse
Affiliation(s)
- Mari A. Virtanen
- Molecular and Integrative Biosciences, University of Helsinki, 00014 Helsinki, Finland; (M.A.V.); (P.U.)
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Pavel Uvarov
- Molecular and Integrative Biosciences, University of Helsinki, 00014 Helsinki, Finland; (M.A.V.); (P.U.)
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Christian A. Hübner
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller Universität, 07747 Jena, Germany;
| | - Kai Kaila
- Molecular and Integrative Biosciences, University of Helsinki, 00014 Helsinki, Finland; (M.A.V.); (P.U.)
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
- Correspondence: ; Tel.: +358-407256759
| |
Collapse
|
24
|
Koumangoye R, Bastarache L, Delpire E. NKCC1: Newly Found as a Human Disease-Causing Ion Transporter. FUNCTION 2020; 2:zqaa028. [PMID: 33345190 PMCID: PMC7727275 DOI: 10.1093/function/zqaa028] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 01/06/2023] Open
Abstract
Among the electroneutral Na+-dependent chloride transporters, NKCC1 had until now evaded identification as a protein causing human diseases. The closely related SLC12A transporters, NKCC2 and NCC have been identified some 25 years ago as responsible for Bartter and Gitelman syndromes: two renal-dependent salt wasting disorders. Absence of disease was most surprising since the NKCC1 knockout mouse was shown in 1999 to be viable, albeit with a wide range of deleterious phenotypes. Here we summarize the work of the past 5 years that introduced us to clinical cases involving NKCC1. The most striking cases are of 3 children with inherited mutations, who have complete absence of NKCC1 expression. These cases establish that lack of NKCC1 causes deafness; CFTR-like secretory defects with mucus accumulation in lung and intestine; severe xerostomia, hypotonia, dysmorphic facial features, and severe neurodevelopmental disorder. Another intriguing case is of a patient with a dominant deleterious SLC12A2 allele. This de novo mutation introduced a premature stop codon leading to a truncated protein. This mutant transporter seems to exert dominant-negative effect on wild-type transporter only in epithelial cells. The patient who suffers from lung, bladder, intestine, pancreas, and multiple endocrine abnormalities has, however, normal hearing and cognition. Finally, new reports substantiate the haploinsufficiency prediction of the SLC12A2 gene. Cases with single allele mutations in SLC12A2 have been linked to hearing loss and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Rainelli Koumangoye
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Lisa Bastarache
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA,Corresponding author. E-mail:
| |
Collapse
|
25
|
Murillo-de-Ozores AR, Chávez-Canales M, de los Heros P, Gamba G, Castañeda-Bueno M. Physiological Processes Modulated by the Chloride-Sensitive WNK-SPAK/OSR1 Kinase Signaling Pathway and the Cation-Coupled Chloride Cotransporters. Front Physiol 2020; 11:585907. [PMID: 33192599 PMCID: PMC7606576 DOI: 10.3389/fphys.2020.585907] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/29/2020] [Indexed: 12/15/2022] Open
Abstract
The role of Cl- as an intracellular signaling ion has been increasingly recognized in recent years. One of the currently best described roles of Cl- in signaling is the modulation of the With-No-Lysine (K) (WNK) - STE20-Proline Alanine rich Kinase (SPAK)/Oxidative Stress Responsive Kinase 1 (OSR1) - Cation-Coupled Cl- Cotransporters (CCCs) cascade. Binding of a Cl- anion to the active site of WNK kinases directly modulates their activity, promoting their inhibition. WNK activation due to Cl- release from the binding site leads to phosphorylation and activation of SPAK/OSR1, which in turn phosphorylate the CCCs. Phosphorylation by WNKs-SPAK/OSR1 of the Na+-driven CCCs (mediating ions influx) promote their activation, whereas that of the K+-driven CCCs (mediating ions efflux) promote their inhibition. This results in net Cl- influx and feedback inhibition of WNK kinases. A wide variety of alterations to this pathway have been recognized as the cause of several human diseases, with manifestations in different systems. The understanding of WNK kinases as Cl- sensitive proteins has allowed us to better understand the mechanistic details of regulatory processes involved in diverse physiological phenomena that are reviewed here. These include cell volume regulation, potassium sensing and intracellular signaling in the renal distal convoluted tubule, and regulation of the neuronal response to the neurotransmitter GABA.
Collapse
Affiliation(s)
- Adrián Rafael Murillo-de-Ozores
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - María Chávez-Canales
- Unidad de Investigación UNAM-INC, Instituto Nacional de Cardiología Ignacio Chávez and Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Paola de los Heros
- Unidad de Investigación UNAM-INC, Research Division, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gerardo Gamba
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - María Castañeda-Bueno
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
26
|
Zhang L, Wu X, Lin X. Gene therapy for genetic mutations affecting non-sensory cells in the cochlea. Hear Res 2020; 394:107858. [PMID: 31791650 DOI: 10.1016/j.heares.2019.107858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/13/2019] [Accepted: 11/22/2019] [Indexed: 01/15/2023]
Abstract
Congenital hearing loss (HL) affects about 1 in every 500 infants. Among those affected more than half are caused by genetic mutations. According to the cellular sites affected by mutations in the cochlea, deafness genes could be classified into three major groups: those affecting the function of hair cells and synapses, cochlear supporting cells, and cells in the stria vascularis (SV) as well as in the lateral wall. The second and third groups account for more than half of all sensorineural hearing loss (SNHL) cases caused by genetic mutations. Current major treatment options for SNHL patients are hearing aids and cochlear implants (CIs). Hearing aids can only help patients with moderate to severe HL. Resolution of CIs is still improving and these devices are quite expensive especially when lifetime rehabilitation and maintenance costs are included. Tremendous efforts have been made to find novel treatments that are expected to restore hearing with higher-resolution and more natural quality, and to have a significantly lower cost over the lifetime of uses. Gene therapy studies have made impressive progresses in preclinical trials. This review focuses on deafness genes that affect supporting cells and cells in the SV of the cochlea. We will discuss recent progresses and remaining challenges for gene therapies targeting mutations in deafness genes belonging to this category.
Collapse
Affiliation(s)
- Li Zhang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Department of Otolaryngology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322-3030, USA
| | - Xuewen Wu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital of Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China; Department of Otolaryngology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322-3030, USA
| | - Xi Lin
- Department of Otolaryngology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322-3030, USA.
| |
Collapse
|
27
|
McNeill A, Iovino E, Mansard L, Vache C, Baux D, Bedoukian E, Cox H, Dean J, Goudie D, Kumar A, Newbury-Ecob R, Fallerini C, Renieri A, Lopergolo D, Mari F, Blanchet C, Willems M, Roux AF, Pippucci T, Delpire E. SLC12A2 variants cause a neurodevelopmental disorder or cochleovestibular defect. Brain 2020; 143:2380-2387. [PMID: 32658972 PMCID: PMC7447514 DOI: 10.1093/brain/awaa176] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 01/22/2023] Open
Abstract
The SLC12 gene family consists of SLC12A1-SLC12A9, encoding electroneutral cation-coupled chloride co-transporters. SCL12A2 has been shown to play a role in corticogenesis and therefore represents a strong candidate neurodevelopmental disorder gene. Through trio exome sequencing we identified de novo mutations in SLC12A2 in six children with neurodevelopmental disorders. All had developmental delay or intellectual disability ranging from mild to severe. Two had sensorineural deafness. We also identified SLC12A2 variants in three individuals with non-syndromic bilateral sensorineural hearing loss and vestibular areflexia. The SLC12A2 de novo mutation rate was demonstrated to be significantly elevated in the deciphering developmental disorders cohort. All tested variants were shown to reduce co-transporter function in Xenopus laevis oocytes. Analysis of SLC12A2 expression in foetal brain at 16-18 weeks post-conception revealed high expression in radial glial cells, compatible with a role in neurogenesis. Gene co-expression analysis in cells robustly expressing SLC12A2 at 16-18 weeks post-conception identified a transcriptomic programme associated with active neurogenesis. We identify SLC12A2 de novo mutations as the cause of a novel neurodevelopmental disorder and bilateral non-syndromic sensorineural hearing loss and provide further data supporting a role for this gene in human neurodevelopment.
Collapse
Affiliation(s)
- Alisdair McNeill
- Department of Neuroscience, University of Sheffield, Sheffield, UK,Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, UK,Sheffield Clinical Genetics Service, Sheffield Children's Hospital NHS Foundation Trust, Sheffield, UK,Correspondence to: Alisdair McNeill, PhD FRCP Edin DCH Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield, S10 2HQ, UK E-mail:
| | - Emanuela Iovino
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Luke Mansard
- Laboratory of Molecular Genetics, CHU Montpellier, University of Montpellier, Montpellier, France
| | - Christel Vache
- Laboratory of Molecular Genetics, CHU Montpellier, University of Montpellier, Montpellier, France
| | - David Baux
- Laboratory of Molecular Genetics, CHU Montpellier, University of Montpellier, Montpellier, France
| | - Emma Bedoukian
- Roberts Individualized Medical Genetics Center, Children’s Hospital of Philadelphia, Philadelphia, USA
| | - Helen Cox
- Regional Clinical Genetics Unit, Birmingham Women’s and Children’s Hospital NHS Foundation Trust, Mindelsohn Way, Birmingham, UK
| | - John Dean
- North of Scotland Genetics Service, Aberdeen Royal Infirmary, Foresterhill, Aberdeen, UK
| | - David Goudie
- East of Scotland Regional Genetics Service, Level 6, Ninewells Hospital, Dundee, UK
| | - Ajith Kumar
- Clinical Genetics Unit, Great Ormond Street Hospital, Great Ormond Street, London, UK
| | - Ruth Newbury-Ecob
- Bristol Regional Genetics Service, St Michael’s Hospital, Southwell Street, Bristol, UK
| | - Chiara Fallerini
- Medical Genetics, University of Siena, Siena, Italy,Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Alessandra Renieri
- Medical Genetics, University of Siena, Siena, Italy,Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Diego Lopergolo
- Medical Genetics, University of Siena, Siena, Italy,Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Francesca Mari
- Medical Genetics, University of Siena, Siena, Italy,Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Catherine Blanchet
- Centre of Reference for Genetic Sensory diseases, CHU Montpellier, University of Montpellier, Montpellier, France
| | - Marjolaine Willems
- Department of Clinical Genetics, CHU Montpellier, University of Montpellier, Montpellier, France
| | - Anne-Francoise Roux
- Laboratory of Molecular Genetics, CHU Montpellier, University of Montpellier, Montpellier, France
| | - Tommaso Pippucci
- Medical Genetics Unit, Polyclinic Sant’Orsola-Malpighi University Hospital, Bologna, Italy
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN, USA,Correspondence to: Alisdair McNeill, PhD FRCP Edin DCH Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield, S10 2HQ, UK E-mail:
| |
Collapse
|
28
|
Stödberg T, Magnusson M, Lesko N, Wredenberg A, Martin Munoz D, Stranneheim H, Wedell A. SLC12A2 mutations cause NKCC1 deficiency with encephalopathy and impaired secretory epithelia. NEUROLOGY-GENETICS 2020; 6:e478. [PMID: 32754646 PMCID: PMC7357422 DOI: 10.1212/nxg.0000000000000478] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/27/2020] [Indexed: 12/29/2022]
Abstract
Objective To describe the phenotype in 2 sisters with a rare constellation of neurologic symptoms and secretory impairments and to identify the etiology by the use of whole-genome sequencing (WGS). Methods After an extensive workup failed to reveal the cause of disease, in a girl with a previously not reported phenotype, WGS of the proband, her diseased older sister, an older healthy brother, and their parents was performed, and potentially pathogenic variants were analyzed. Results The proband and her older sister both presented with neonatal Staphylococcus aureus parotitis, apneas, disappearance of the Moro reflex, and hypotonia. The proband survived. Her brain MRI showed white matter and basal ganglia abnormalities, and CSF damage biomarkers were increased. At age 8 years, she exhibits a constellation of symptoms including severe neurodevelopmental disorder, hearing impairment, gastrointestinal problems, and a striking lack of tear fluid, saliva, and sweat. Her respiratory mucosa is dry with potentially life-threatening mucus plugging. Through WGS, 2 loss-of-function variants in SLC12A2 were identified that follow an autosomal recessive inheritance pattern. Conclusions Taken together with a single previously reported case and the close resemblance to the phenotypes of corresponding mouse models, our study firmly establishes biallelic variants in SLC12A2 as causing human disease and adds data regarding the neurologic phenotype.
Collapse
Affiliation(s)
- Tommy Stödberg
- Department of Women's and Children's Health (T.S.), Department of Molecular Medicine and Surgery (M.M., N.L., H.S., A. Wedell), Science for Life Laboratory (M.M., H.S., A. Wedell), Department of Medical Biochemistry and Biophysics (A. Wredenberg), and Department of Clinical Neuroscience (D.M.M.), Karolinska Institutet; and Department of Pediatric Neurology (T.S.), Centre for Inherited Metabolic Diseases (N.L., A. Wredenberg, H.S., A. Wedell), and Department of Neuroradiology (D.M.M.), Karolinska University Hospital, Stockholm, Sweden
| | - Måns Magnusson
- Department of Women's and Children's Health (T.S.), Department of Molecular Medicine and Surgery (M.M., N.L., H.S., A. Wedell), Science for Life Laboratory (M.M., H.S., A. Wedell), Department of Medical Biochemistry and Biophysics (A. Wredenberg), and Department of Clinical Neuroscience (D.M.M.), Karolinska Institutet; and Department of Pediatric Neurology (T.S.), Centre for Inherited Metabolic Diseases (N.L., A. Wredenberg, H.S., A. Wedell), and Department of Neuroradiology (D.M.M.), Karolinska University Hospital, Stockholm, Sweden
| | - Nicole Lesko
- Department of Women's and Children's Health (T.S.), Department of Molecular Medicine and Surgery (M.M., N.L., H.S., A. Wedell), Science for Life Laboratory (M.M., H.S., A. Wedell), Department of Medical Biochemistry and Biophysics (A. Wredenberg), and Department of Clinical Neuroscience (D.M.M.), Karolinska Institutet; and Department of Pediatric Neurology (T.S.), Centre for Inherited Metabolic Diseases (N.L., A. Wredenberg, H.S., A. Wedell), and Department of Neuroradiology (D.M.M.), Karolinska University Hospital, Stockholm, Sweden
| | - Anna Wredenberg
- Department of Women's and Children's Health (T.S.), Department of Molecular Medicine and Surgery (M.M., N.L., H.S., A. Wedell), Science for Life Laboratory (M.M., H.S., A. Wedell), Department of Medical Biochemistry and Biophysics (A. Wredenberg), and Department of Clinical Neuroscience (D.M.M.), Karolinska Institutet; and Department of Pediatric Neurology (T.S.), Centre for Inherited Metabolic Diseases (N.L., A. Wredenberg, H.S., A. Wedell), and Department of Neuroradiology (D.M.M.), Karolinska University Hospital, Stockholm, Sweden
| | - Daniel Martin Munoz
- Department of Women's and Children's Health (T.S.), Department of Molecular Medicine and Surgery (M.M., N.L., H.S., A. Wedell), Science for Life Laboratory (M.M., H.S., A. Wedell), Department of Medical Biochemistry and Biophysics (A. Wredenberg), and Department of Clinical Neuroscience (D.M.M.), Karolinska Institutet; and Department of Pediatric Neurology (T.S.), Centre for Inherited Metabolic Diseases (N.L., A. Wredenberg, H.S., A. Wedell), and Department of Neuroradiology (D.M.M.), Karolinska University Hospital, Stockholm, Sweden
| | - Henrik Stranneheim
- Department of Women's and Children's Health (T.S.), Department of Molecular Medicine and Surgery (M.M., N.L., H.S., A. Wedell), Science for Life Laboratory (M.M., H.S., A. Wedell), Department of Medical Biochemistry and Biophysics (A. Wredenberg), and Department of Clinical Neuroscience (D.M.M.), Karolinska Institutet; and Department of Pediatric Neurology (T.S.), Centre for Inherited Metabolic Diseases (N.L., A. Wredenberg, H.S., A. Wedell), and Department of Neuroradiology (D.M.M.), Karolinska University Hospital, Stockholm, Sweden
| | - Anna Wedell
- Department of Women's and Children's Health (T.S.), Department of Molecular Medicine and Surgery (M.M., N.L., H.S., A. Wedell), Science for Life Laboratory (M.M., H.S., A. Wedell), Department of Medical Biochemistry and Biophysics (A. Wredenberg), and Department of Clinical Neuroscience (D.M.M.), Karolinska Institutet; and Department of Pediatric Neurology (T.S.), Centre for Inherited Metabolic Diseases (N.L., A. Wredenberg, H.S., A. Wedell), and Department of Neuroradiology (D.M.M.), Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
29
|
Macnamara EF, D’Souza P, Tifft CJ. The undiagnosed diseases program: Approach to diagnosis. TRANSLATIONAL SCIENCE OF RARE DISEASES 2020; 4:179-188. [PMID: 32477883 PMCID: PMC7250153 DOI: 10.3233/trd-190045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Undiagnosed and rare conditions are collectively common and affect millions of people worldwide. The NIH Undiagnosed Diseases Program (UDP) strives to achieve both a comprehensive diagnosis and a better understanding of the mechanisms of disease for many of these individuals. Through the careful review of records, a well-orchestrated inpatient evaluation, genomic sequencing and testing, and with the use of emerging strategies such as matchmaking programs, the UDP succeeds nearly 30 percent of the time for these highly selective cases. Although the UDP process is built on a unique set of resources, case examples demonstrate steps genetic professionals can take, in both clinical and research settings, to arrive at a diagnosis for their most challenging cases.
Collapse
Affiliation(s)
- Ellen F. Macnamara
- National Institutes of Health, Undiagnosed Diseases Program, Common Fund, Office of the Director, Bethesda, MD, USA
| | - Precilla D’Souza
- National Institutes of Health, Undiagnosed Diseases Program, Common Fund, Office of the Director, Bethesda, MD, USA
| | - Undiagnosed Diseases Network
- National Institutes of Health, Undiagnosed Diseases Program, Common Fund, Office of the Director, Bethesda, MD, USA
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Cynthia J. Tifft
- National Institutes of Health, Undiagnosed Diseases Program, Common Fund, Office of the Director, Bethesda, MD, USA
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
30
|
Morgan A, Pelliccione G, Ambrosetti U, Dell’Orco D, Girotto G. SLC12A2: a new gene associated with autosomal dominant Non-Syndromic hearing loss in humans. HEARING BALANCE AND COMMUNICATION 2020. [DOI: 10.1080/21695717.2020.1726670] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- A. Morgan
- Department of Medicine, Surgery and Health Sciences, University of Trieste
- Institute for Maternal and Child Health – IRCCS, Burlo Garofolo, Trieste, Italy
| | - G. Pelliccione
- Institute for Maternal and Child Health – IRCCS, Burlo Garofolo, Trieste, Italy
| | - U. Ambrosetti
- UO Audiology, Fondazione IRCCS Ca Granda, Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Milan, Italy
- Audiology Unit, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - D. Dell’Orco
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy
| | - G. Girotto
- Department of Medicine, Surgery and Health Sciences, University of Trieste
- Institute for Maternal and Child Health – IRCCS, Burlo Garofolo, Trieste, Italy
| |
Collapse
|
31
|
Koumangoye R, Omer S, Kabeer MH, Delpire E. Novel Human NKCC1 Mutations Cause Defects in Goblet Cell Mucus Secretion and Chronic Inflammation. Cell Mol Gastroenterol Hepatol 2019; 9:239-255. [PMID: 31655271 PMCID: PMC6957845 DOI: 10.1016/j.jcmgh.2019.10.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 10/06/2019] [Accepted: 10/15/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Infections resulting from intestinal yeast and bacteria affect a large number of patients with deficits in absorptive or secretory epithelial transport mechanisms. The basolateral Na+-K+-2Cl- cotransporter (NKCC1) has been implicated in intestinal epithelial fluid secretion. Two patients with deleterious heterozygous (NKCC1-DFX, DFX for Asp-Phe-stop codon) or homozygous (Kilquist) mutations in SLC12A2 (NKCC1) suffered from gastrointestinal deficits. Because of chronic infections, the colon and the small intestine of the NKCC1-DFX patient were resected surgically. METHODS To investigate how NKCC1 affects the integrity and function of the gut epithelia, we used a mouse model recapitulating the NKCC1-DFX patient mutation. Electron microscopy and immunostaining were used to analyze the integrity of the colonic mucus layers and immune cell infiltration. Fluorescence in situ hybridization was performed on the distal colon sections to measure bacteria translocation to the mucosa and submucosa. Citrobacter rodentium was used to measure mouse ability to clear enteric infection. A multiplex cytokine assay was used to analyze mouse inflammatory response to infection. RESULTS We show that NKCC1-DFX expression causes defective goblet cell mucus granule exocytosis, leading to secretion of intact granules into the lumen of the large intestine. In addition, NKCC1-DFX colon submucosal glands secrete mucus that remained attached to the epithelium. Importantly, expression of the mutant NKCC1 or complete loss of NKCC1 function leads to aggravated inflammatory response to C rodentium infection. Compared with wild-type, NKCC1-DFX mice showed decreased expression of claudin-2, a tight junction protein involved in paracellular Na+ and water transport and enteric infection clearance. CONCLUSIONS Our data indicate that NKCC1-DFX impairs gut barrier function by affecting mucus secretion and immune properties.
Collapse
Affiliation(s)
- Rainelli Koumangoye
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Salma Omer
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Mustafa H. Kabeer
- Pediatric General and Thoracic Surgery, Children’s Hospital Orange County, Orange, California,Department of Surgery, University of California, Irvine, California
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee,Correspondence Address correspondence to: Eric Delpire, PhD, Department of Anesthesiology, Vanderbilt University School of Medicine, T-4202 Medical Center North, 1161 21st Avenue South, Nashville, Tennessee 37232-2520. fax: (615) 343-3916.
| |
Collapse
|