1
|
Pitsikas N. Evaluation of the potential efficacy of the nitric oxide donor molsidomine for the treatment of schizophrenia. Med Gas Res 2025; 15:228-233. [PMID: 39511754 PMCID: PMC11918460 DOI: 10.4103/mgr.medgasres-d-24-00070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/14/2024] [Accepted: 10/14/2024] [Indexed: 11/15/2024] Open
Abstract
Schizophrenia is a chronic devastating psychiatric disease characterized by a high recurrence rate. Pharmacological management of this disorder appears disappointing since it is associated with a lack of efficacy for negative symptoms and cognitive deficits, typical features of schizophrenia, and the presence of severe undesired side effects. Thus, novel molecules with high efficacy and low toxicity for the treatment of schizophrenia are urgently needed. The involvement of the gaseous molecule nitric oxide in the pathogenesis of schizophrenia is well documented since low concentrations of nitric oxide are associated with this psychiatric disease. Therefore, chemicals able to normalize nitric oxide levels, such as nitric oxide donors, might be useful for the management of this type of schizophrenia. Molsidomine is a nitric oxide donor and is under investigation as a novel antischizophrenia agent. The aim of this review is to critically evaluate the potential efficacy of this molecule for the treatment of schizophrenia.
Collapse
Affiliation(s)
- Nikolaos Pitsikas
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| |
Collapse
|
2
|
Goldwaser EL, Wang DJJ, Adhikari BM, Chiappelli J, Shao X, Yu J, Lu T, Chen S, Marshall W, Yuen A, Kvarta M, Ma Y, Du X, Gao S, Saeedi O, Bruce H, Donnelly P, O’Neill H, Shuldiner AR, Mitchell BD, Kochunov P, Hong LE. Evidence of Neurovascular Water Exchange and Endothelial Vascular Dysfunction in Schizophrenia: An Exploratory Study. Schizophr Bull 2023; 49:1325-1335. [PMID: 37078962 PMCID: PMC10483475 DOI: 10.1093/schbul/sbad057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
BACKGROUND AND HYPOTHESIS Mounting evidence supports cerebrovascular contributions to schizophrenia spectrum disorder (SSD) but with unknown mechanisms. The blood-brain barrier (BBB) is at the nexus of neural-vascular exchanges, tasked with regulating cerebral homeostasis. BBB abnormalities in SSD, if any, are likely more subtle compared to typical neurological insults and imaging measures that assess large molecule BBB leakage in major neurological events may not be sensitive enough to directly examine BBB abnormalities in SSD. STUDY DESIGN We tested the hypothesis that neurovascular water exchange (Kw) measured by non-invasive diffusion-prepared arterial spin label MRI (n = 27 healthy controls [HC], n = 32 SSD) is impaired in SSD and associated with clinical symptoms. Peripheral vascular endothelial health was examined by brachial artery flow-mediated dilation (n = 44 HC, n = 37 SSD) to examine whether centrally measured Kw is related to endothelial functions. STUDY RESULTS Whole-brain average Kw was significantly reduced in SSD (P = .007). Exploratory analyses demonstrated neurovascular water exchange reductions in the right parietal lobe, including the supramarginal gyrus (P = .002) and postcentral gyrus (P = .008). Reduced right superior corona radiata (P = .001) and right angular gyrus Kw (P = .006) was associated with negative symptoms. Peripheral endothelial function was also significantly reduced in SSD (P = .0001). Kw in 94% of brain regions in HC positively associated with peripheral endothelial function, which was not observed in SSD, where the correlation was inversed in 52% of brain regions. CONCLUSIONS This study provides initial evidence of neurovascular water exchange abnormalities, which appeared clinically associated, especially with negative symptoms, in schizophrenia.
Collapse
Affiliation(s)
- Eric L Goldwaser
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Danny J J Wang
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Nueroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Bhim M Adhikari
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joshua Chiappelli
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Xingfeng Shao
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Nueroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jiaao Yu
- Department of Mathematics, University of Maryland, College Park, MD, USA
| | - Tong Lu
- Department of Mathematics, University of Maryland, College Park, MD, USA
| | - Shuo Chen
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Mathematics, University of Maryland, College Park, MD, USA
| | - Wyatt Marshall
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alexa Yuen
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mark Kvarta
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Yizhou Ma
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Xiaoming Du
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Si Gao
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Osamah Saeedi
- Department of Ophthalmology and Visual Sciences, University of Maryland Medical Center, Baltimore, MD, USA
| | - Heather Bruce
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Patrick Donnelly
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hugh O’Neill
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alan R Shuldiner
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Braxton D Mitchell
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Geriatrics Research and Education Clinical Center, Baltimore Veterans Administration Medical Center, Baltimore, MD, USA
| | - Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - L Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
3
|
Steinert JR, Amal H. The contribution of an imbalanced redox signalling to neurological and neurodegenerative conditions. Free Radic Biol Med 2023; 194:71-83. [PMID: 36435368 DOI: 10.1016/j.freeradbiomed.2022.11.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022]
Abstract
Nitric oxide and other redox active molecules such as oxygen free radicals provide essential signalling in diverse neuronal functions, but their excess production and insufficient scavenging induces cytotoxic redox stress which is associated with numerous neurodegenerative and neurological conditions. A further component of redox signalling is mediated by a homeostatic regulation of divalent metal ions, the imbalance of which contributes to neuronal dysfunction. Additional antioxidant molecules such as glutathione and enzymes such as super oxide dismutase are involved in maintaining a physiological redox status within neurons. When cellular processes are perturbed and generation of free radicals overwhelms the antioxidants capacity of the neurons, a resulting redox damage leads to neuronal dysfunction and cell death. Cellular sources for production of redox-active molecules may include NADPH oxidases, mitochondria, cytochrome P450 and nitric oxide (NO)-generating enzymes, such as endothelial, neuronal and inducible NO synthases. Several neurodegenerative and developmental neurological conditions are associated with an imbalanced redox state as a result of neuroinflammatory processes leading to nitrosative and oxidative stress. Ongoing research aims at understanding the causes and consequences of such imbalanced redox homeostasis and its role in neuronal dysfunction.
Collapse
Affiliation(s)
- Joern R Steinert
- Division of Physiology, Pharmacology and Neuroscience, University of Nottingham, School of Life Sciences, Nottingham, NG7 2NR, UK.
| | - Haitham Amal
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
4
|
Zoupa E, Pitsikas N. The Nitric Oxide (NO) Donor Sodium Nitroprusside (SNP) and Its Potential for the Schizophrenia Therapy: Lights and Shadows. Molecules 2021; 26:molecules26113196. [PMID: 34073534 PMCID: PMC8199342 DOI: 10.3390/molecules26113196] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 01/31/2023] Open
Abstract
Schizophrenia is a severe psychiatric disorder affecting up to 1% of the worldwide population. Available therapy presents different limits comprising lack of efficiency in attenuating negative symptoms and cognitive deficits, typical features of schizophrenia and severe side effects. There is pressing requirement, therefore, to develop novel neuroleptics with higher efficacy and safety. Nitric oxide (NO), an intra- and inter-cellular messenger in the brain, appears to be implicated in the pathogenesis of schizophrenia. In particular, underproduction of this gaseous molecule is associated to this mental disease. The latter suggests that increment of nitrergic activity might be of utility for the medication of schizophrenia. Based on the above, molecules able to enhance NO production, as are NO donors, might represent a class of compounds candidates. Sodium nitroprusside (SNP) is a NO donor and is proposed as a promising novel compound for the treatment of schizophrenia. In the present review, we intended to critically assess advances in research of SNP for the therapy of schizophrenia and discuss its potential superiority over currently used neuroleptics.
Collapse
|
5
|
Tripathi MK, Kartawy M, Amal H. The role of nitric oxide in brain disorders: Autism spectrum disorder and other psychiatric, neurological, and neurodegenerative disorders. Redox Biol 2020; 34:101567. [PMID: 32464501 PMCID: PMC7256645 DOI: 10.1016/j.redox.2020.101567] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/21/2022] Open
Abstract
Nitric oxide (NO) is a multifunctional signalling molecule and a neurotransmitter that plays an important role in physiological and pathophysiological processes. In physiological conditions, NO regulates cell survival, differentiation and proliferation of neurons. It also regulates synaptic activity, plasticity and vesicle trafficking. NO affects cellular signalling through protein S-nitrosylation, the NO-mediated posttranslational modification of cysteine thiols (SNO). SNO can affect protein activity, protein-protein interaction and protein localization. Numerous studies have shown that excessive NO and SNO can lead to nitrosative stress in the nervous system, contributing to neuropathology. In this review, we summarize the role of NO and SNO in the progression of neurodevelopmental, psychiatric and neurodegenerative disorders, with special attention to autism spectrum disorder (ASD). We provide mechanistic insights into the contribution of NO in diverse brain disorders. Finally, we suggest that pharmacological agents that can inhibit or augment the production of NO as well as new approaches to modulate the formation of SNO-proteins can serve as a promising approach for the treatment of diverse brain disorders.
Collapse
Affiliation(s)
- Manish Kumar Tripathi
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maryam Kartawy
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Haitham Amal
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
6
|
Oxidation-reduction mechanisms in psychiatric disorders: A novel target for pharmacological intervention. Pharmacol Ther 2020; 210:107520. [PMID: 32165136 DOI: 10.1016/j.pharmthera.2020.107520] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 03/02/2020] [Indexed: 12/16/2022]
Abstract
While neurotransmitter dysfunction represents a key component in mental illnesses, there is now a wide agreement for a central pathophysiological hub that includes hormones, neuroinflammation, redox mechanisms as well as oxidative stress. With respect to oxidation-reduction (redox) mechanisms, preclinical and clinical evidence suggests that an imbalance in the pro/anti-oxidative homeostasis toward the increased production of substances with oxidizing potential may contribute to the etiology and manifestation of different psychiatric disorders. The substantial and continous demand for energy renders the brain highly susceptible to disturbances in its energy supply, especially following exposure to stressful events, which may lead to overproduction of reactive oxygen and nitrogen species under conditions of perturbed antioxidant defenses. This will eventually induce different molecular alterations, including extensive protein and lipid peroxidation, increased blood-brain barrier permeability and neuroinflammation, which may contribute to the changes in brain function and morphology observed in mental illnesses. This view may also reconcile different key concepts for psychiatric disorders, such as the neurodevelopmental origin of these diseases, as well as the vulnerability of selective cellular populations that are critical for specific functional abnormalities. The possibility to pharmacologically modulate the redox system is receiving increasing interest as a novel therapeutic strategy to counteract the detrimental effects of the unbalance in brain oxidative mechanisms. This review will describe the main mechanisms and mediators of the redox system and will examine the alterations of oxidative stress found in animal models of psychiatric disorders as well as in patients suffering from mental illnesses, such as schizophrenia and major depressive disorder. In addition, it will discuss studies that examined the effects of psychotropic drugs, including antipsychotics and antidepressants, on the oxidative balance as well as studies that investigated the effectiveness of a direct modulation of oxidative mechanisms in counteracting the behavioral and functional alterations associated with psychiatric disorders, which supports the promising role of the redox system as a novel therapeutic target for the improved treatment of brain disorders.
Collapse
|
7
|
Banegas I, Prieto I, Segarra AB, Martínez-Cañamero M, de Gasparo M, Ramírez-Sánchez M. Angiotensin II, dopamine and nitric oxide. An asymmetrical neurovisceral interaction between brain and plasma to regulate blood pressure. AIMS Neurosci 2019; 6:116-127. [PMID: 32341972 PMCID: PMC7179365 DOI: 10.3934/neuroscience.2019.3.116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 07/24/2019] [Indexed: 11/19/2022] Open
Abstract
Vital functions, such as blood pressure, are regulated within a framework of neurovisceral integration in which various factors are involved under normal conditions maintaining a delicate balance. Imbalance of any of these factors can lead to various pathologies. Blood pressure control is the result of the balanced action of central and peripheral factors that increase or decrease. Special attention for blood pressure control was put on the neurovisceral interaction between Angiotensin II and the enzymes that regulate its activity as well as on nitric oxide and dopamine. Several studies have shown that such interaction is asymmetrically organized. These studies suggest that the neuronal activity related to the production of nitric oxide in plasma is also lateralized and, consequently, changes in plasma nitric oxide influence neuronal function. This observation provides a new aspect revealing the complexity of the blood pressure regulation and, undoubtedly, makes such study more motivating as it may affect the approach for treatment.
Collapse
Affiliation(s)
- I Banegas
- Department of Health Sciences, University of Jaén, Jaén, Spain
| | - I Prieto
- Department of Health Sciences, University of Jaén, Jaén, Spain
| | - A B Segarra
- Department of Health Sciences, University of Jaén, Jaén, Spain
| | | | - M de Gasparo
- Cardiovascular and Metabolic Syndrome Adviser, Rossemaison, Switzerland
| | | |
Collapse
|
8
|
Wang X, Ding S, Lu Y, Jiao Z, Zhang L, Zhang Y, Yang Y, Zhang Y, Li W, Lv L. Effects of sodium nitroprusside in the acute dizocilpine (MK-801) animal model of schizophrenia. Brain Res Bull 2019; 147:140-147. [PMID: 30772438 DOI: 10.1016/j.brainresbull.2019.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 01/17/2019] [Accepted: 02/11/2019] [Indexed: 11/16/2022]
Abstract
Schizophrenia treatment remains a major challenge, especially the associated cognitive impairments, as these are not consistently alleviated by conventional antipsychotics. Recent animal and clinical studies suggest that the nitric oxide (NO) donor sodium nitroprusside (SNP) reduces the psychiatric symptoms and cognitive deficits of schizophrenia. The present study was designed to investigate the efficacy of SNP against schizophrenia-like behavioral and cognitive deficits in the dizocilpine (MK-801) rat model. We used the rotarod and open field tests to identify the SNP dose which had no adverse effects on rat's exploratory and motor behavior, then established the schizophrenia model by injecting adult Sprague-Dawley rats intraperitoneally with MK-801 (0.4 mg/kg) with or without SNP pre-treatment. Behavioral changes were examined after 10 min. Prepulse inhibition (PPI) and the Y maze tests were conducted to assess cognitive deficits, and elevated plus maze and open field tests to assess anxiety-like behaviors. Preliminary rotarod and open field tests demonstrated that 2.5 mg/kg SNP had no effect on motor performance. Acute MK-801 treatment induced both cognitive deficits and anxiety. Co-administration of SNP (2.5 mg/kg) failed to improve these schizophrenia-like abnormalities. Sodium nitroprusside appears unable to improve schizophrenia-like symptoms and cognitive deficits induced by MK-801, inconsistent with the effectiveness of SNP as an adjunct therapy for anxiety disorders and working memory impairments in schizophrenia patients. Future studies are required to define an effective dose range for SNP monotherapy and adjunct therapy in different rodent models.
Collapse
Affiliation(s)
- Xiujuan Wang
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, No.388, Jianshe Middle Road, Xinxiang, 453002, Henan, People's Republic of China.
| | - Shuang Ding
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, No.388, Jianshe Middle Road, Xinxiang, 453002, Henan, People's Republic of China.
| | - Yanli Lu
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, No.388, Jianshe Middle Road, Xinxiang, 453002, Henan, People's Republic of China.
| | - Zhiqiang Jiao
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, No.388, Jianshe Middle Road, Xinxiang, 453002, Henan, People's Republic of China.
| | - Lin Zhang
- Wuhan Mental Health Center, The Ninth Clinical College of Huazhong University of Science and Technology, No.93, Youyi Road, Wuhan, 430022, Hubei, People's Republic of China.
| | - Yan Zhang
- The Third Affiliated Hospital of Xinxiang Medical University, No.83, Hulan East Road, Xinxiang, 453002, Henan, People's Republic of China.
| | - Yongfeng Yang
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, No.388, Jianshe Middle Road, Xinxiang, 453002, Henan, People's Republic of China; Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, Xinxiang, People's Republic of China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, People's Republic of China.
| | - Yujuan Zhang
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, No.388, Jianshe Middle Road, Xinxiang, 453002, Henan, People's Republic of China.
| | - Wenqiang Li
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, No.388, Jianshe Middle Road, Xinxiang, 453002, Henan, People's Republic of China; Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, Xinxiang, People's Republic of China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, People's Republic of China.
| | - Luxian Lv
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, No.388, Jianshe Middle Road, Xinxiang, 453002, Henan, People's Republic of China; Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, Xinxiang, People's Republic of China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, People's Republic of China.
| |
Collapse
|
9
|
Liu F, Zhang B, Xie L, Ruan Y, Xu X, Zeng Y, Messina L, Zhao J, Fan X. Changes in plasma levels of nitric oxide metabolites and negative symptoms after 16-week minocycline treatment in patients with schizophrenia. Schizophr Res 2018. [PMID: 29526457 DOI: 10.1016/j.schres.2018.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE This study examined the effect of adjunctive minocycline on psychopathology and possibly relevant biomarkers in patients with schizophrenia. METHOD In a 16-week randomized, double-blind, placebo-controlled study, subjects received either minocycline (200mg per day) or placebo. Psychopathology was assessed using the Scale for the Assessment of Negative Symptoms (SANS) and the Positive and Negative Syndrome Scale (PANSS) at baseline and week 16. Plasma levels of tumor necrosis factor α (TNFα), interleukin-1 β (IL-1β) and nitric oxide metabolites were assessed at both time points. RESULTS Fifty-five patients completed the study (27 in the minocycline group, 28 in the placebo group). The minocycline group had significant decreases in the SANS total sore, the PANSS total score and the PANSS negative symptoms score at week 16 compared to the placebo group. In addition, the minocycline group had a significant decrease in plasma levels of nitric oxide metabolites, but no significant difference in changes in plasma levels of IL-1β or TNF-α, compared to the placebo group at week 16. Further, the more decrease in plasma levels of nitric oxide metabolites was associated with less improvement in negative symptoms. CONCLUSION The beneficial effect of adjunctive minocycline treatment on negative symptoms might be through mechanisms other than the nitric oxide pathway. The implications for future studies were discussed.
Collapse
Affiliation(s)
- Fang Liu
- First Affiliated Hospital of Kunming Medical University, Kunming, China; Mental Health Institute of the Second Xiangya Hospital, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, China
| | - Bingkui Zhang
- First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Liqin Xie
- First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ye Ruan
- Mental Health Center of Yunnan Province, Kunming, China
| | - XiuFeng Xu
- First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yong Zeng
- First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Louis Messina
- Division of vascular surgery, University of Massachusetts Medical School/UMass Memorial Health Care, Worcester, MA, United States
| | - Jingping Zhao
- Mental Health Institute of the Second Xiangya Hospital, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, China.
| | - Xiaoduo Fan
- Psychotic Disorders Program, University of Massachusetts Medical School/UMass Memorial Health Care, Worcester, MA, United States.
| |
Collapse
|
10
|
Davison J, O'Gorman A, Brennan L, Cotter DR. A systematic review of metabolite biomarkers of schizophrenia. Schizophr Res 2018; 195:32-50. [PMID: 28947341 DOI: 10.1016/j.schres.2017.09.021] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 09/01/2017] [Accepted: 09/14/2017] [Indexed: 12/23/2022]
Abstract
Current diagnosis of schizophrenia relies exclusively on the potentially subjective interpretation of clinical symptoms and social functioning as more objective biological measurement and medical diagnostic tests are not presently available. The use of metabolomics in the discovery of disease biomarkers has grown in recent years. Metabolomic methods could aid in the discovery of diagnostic biomarkers of schizophrenia. This systematic review focuses on biofluid metabolites associated with schizophrenia. A systematic search of Web of Science and Ovid Medline databases was conducted and 63 studies investigating metabolite biomarkers of schizophrenia were included. A review of these studies revealed several potential metabolite signatures of schizophrenia including reduced levels of essential polyunsaturated fatty acids (EPUFAs), vitamin E and creatinine; and elevated levels of lipid peroxidation metabolites and glutamate. Further research is needed to validate these biomarkers and would benefit from large cohort studies and more homogeneous and well-defined subject groups.
Collapse
Affiliation(s)
- Jennifer Davison
- RCSI Psychiatry, Royal College of Surgeons in Ireland, Education and Research Centre Beaumont Hospital, Dublin 9, Ireland; Institute of Food & Health, UCD School of Agriculture and Food Science, University College Dublin, Dublin 4, Ireland
| | - Aoife O'Gorman
- RCSI Psychiatry, Royal College of Surgeons in Ireland, Education and Research Centre Beaumont Hospital, Dublin 9, Ireland; Institute of Food & Health, UCD School of Agriculture and Food Science, University College Dublin, Dublin 4, Ireland
| | - Lorraine Brennan
- Institute of Food & Health, UCD School of Agriculture and Food Science, University College Dublin, Dublin 4, Ireland
| | - David R Cotter
- RCSI Psychiatry, Royal College of Surgeons in Ireland, Education and Research Centre Beaumont Hospital, Dublin 9, Ireland.
| |
Collapse
|
11
|
Diana MC, Peres FF, Justi V, Bressan RA, Lacerda ALT, Crippa JA, Hallak JEC, Abilio VC. Sodium nitroprusside is effective in preventing and/or reversing the development of schizophrenia-related behaviors in an animal model: The SHR strain. CNS Neurosci Ther 2018; 24:624-632. [PMID: 29656549 DOI: 10.1111/cns.12852] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/20/2018] [Accepted: 03/10/2018] [Indexed: 12/16/2022] Open
Abstract
AIMS The treatment of schizophrenia with antipsychotics is still unsatisfactory. Therefore, the search for new treatments and prevention is crucial, and animal models are fundamental tools for this objective. Preclinical and clinical data evidence the antipsychotic profile of sodium nitroprusside (SNP), a nitric oxide (NO) donor. We aimed to investigate SNP in treating and/or preventing the schizophrenia-related behaviors presented by the spontaneously hypertensive rats (SHR) strain. METHODS Wistar rats (WR) and SHRs were submitted to two schemes of treatment: (i) a single injection of SNP or vehicle in adulthood; (ii) a long-term early treatment from 30 to 60 postnatal day with SNP or vehicle. The following behaviors were evaluated 24 hours after the acute treatment or 30 days after the long-term treatment: locomotion, social interaction, and contextual fear conditioning. RESULTS Spontaneously hypertensive rats presented hyperlocomotion, decreased social interaction, and impaired contextual fear conditioning. Single injection of SNP decreased social interaction in both strains and induced a deficit in contextual fear conditioning in WR. Oppositely, early treatment with SNP prevented the behavioral abnormalities in adult SHRs without promoting any effects in WR. CONCLUSION Our preclinical data point to SNP as a preventive and safe strategy with a broad range of effectiveness to the positive, negative, and cognitive symptoms of schizophrenia.
Collapse
Affiliation(s)
- Mariana C Diana
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil.,National Institute for Translational Medicine (INCT-TM, CNPq/FAPESP/CAPES), Ribeirão Preto, Brazil
| | - Fernanda F Peres
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil.,National Institute for Translational Medicine (INCT-TM, CNPq/FAPESP/CAPES), Ribeirão Preto, Brazil
| | - Veronica Justi
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil.,National Institute for Translational Medicine (INCT-TM, CNPq/FAPESP/CAPES), Ribeirão Preto, Brazil
| | - Rodrigo A Bressan
- LiNC-Laboratório Interdisciplinar de Neurociências Clínicas, Department of Psychiatry, Federal University of São Paulo, São Paulo, Brazil
| | - Acioly L T Lacerda
- National Institute for Translational Medicine (INCT-TM, CNPq/FAPESP/CAPES), Ribeirão Preto, Brazil.,LiNC-Laboratório Interdisciplinar de Neurociências Clínicas, Department of Psychiatry, Federal University of São Paulo, São Paulo, Brazil
| | - José Alexandre Crippa
- National Institute for Translational Medicine (INCT-TM, CNPq/FAPESP/CAPES), Ribeirão Preto, Brazil.,Department of Neurosciences and Behaviour, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Jaime E C Hallak
- National Institute for Translational Medicine (INCT-TM, CNPq/FAPESP/CAPES), Ribeirão Preto, Brazil.,Department of Neurosciences and Behaviour, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Vanesssa Costhek Abilio
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil.,National Institute for Translational Medicine (INCT-TM, CNPq/FAPESP/CAPES), Ribeirão Preto, Brazil
| |
Collapse
|
12
|
Nakashima M, Imada H, Shiraishi E, Ito Y, Suzuki N, Miyamoto M, Taniguchi T, Iwashita H. Phosphodiesterase 2A Inhibitor TAK-915 Ameliorates Cognitive Impairments and Social Withdrawal in N-Methyl-d-Aspartate Receptor Antagonist-Induced Rat Models of Schizophrenia. J Pharmacol Exp Ther 2018; 365:179-188. [PMID: 29440309 DOI: 10.1124/jpet.117.245506] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 02/05/2018] [Indexed: 11/22/2022] Open
Abstract
The pathophysiology of schizophrenia has been associated with glutamatergic dysfunction. Modulation of the glutamatergic signaling pathway, including N-methyl-d-aspartate (NMDA) receptors, can provide a new therapeutic target for schizophrenia. Phosphodiesterase 2A (PDE2A) is highly expressed in the forebrain, and is a dual substrate enzyme that hydrolyzes both cAMP and cGMP, which play pivotal roles as intracellular second messengers downstream of NMDA receptors. Here we characterize the in vivo pharmacological profile of a selective and brain-penetrant PDE2A inhibitor, (N-{(1S)-1-[3-fluoro-4-(trifluoromethoxy)phenyl]-2-methoxyethyl}-7-methoxy-2-oxo-2,3-dihydropyrido[2,3-b]pyrazine-4(1H)-carboxamide) (TAK-915) as a novel treatment of schizophrenia. Oral administration of TAK-915 at 3 and 10 mg/kg significantly increased cGMP levels in the frontal cortex, hippocampus, and striatum of rats. TAK-915 at 10 mg/kg significantly upregulated the phosphorylation of α-amino-3-hydroxy-5-methylisoxazole-4-proprionic acid receptor subunit GluR1 in the rat hippocampus. TAK-915 at 3 and 10 mg/kg significantly attenuated episodic memory deficits induced by the NMDA receptor antagonist (+)-MK-801 hydrogen maleate (MK-801) in the rat passive avoidance test. TAK-915 at 10 mg/kg significantly attenuated working memory deficits induced by MK-801 in the rat radial arm maze test. Additionally, TAK-915 at 10 mg/kg prevented subchronic phencyclidine-induced social withdrawal in social interaction in rats. In contrast, TAK-915 did not produce antipsychotic-like activity; TAK-915 had little effect on MK-801- or methamphetamine-induced hyperlocomotion in rats. These results suggest that TAK-915 has a potential to ameliorate cognitive impairments and social withdrawal in schizophrenia.
Collapse
Affiliation(s)
- Masato Nakashima
- Neuroscience Drug Discovery Unit (M.N., H.Im., E.S., Y.I., N.S., T.T., H.Iw.) and Drug Metabolism and Pharmacokinetics Research Laboratories (M.M.), Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Haruka Imada
- Neuroscience Drug Discovery Unit (M.N., H.Im., E.S., Y.I., N.S., T.T., H.Iw.) and Drug Metabolism and Pharmacokinetics Research Laboratories (M.M.), Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Eri Shiraishi
- Neuroscience Drug Discovery Unit (M.N., H.Im., E.S., Y.I., N.S., T.T., H.Iw.) and Drug Metabolism and Pharmacokinetics Research Laboratories (M.M.), Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Yuki Ito
- Neuroscience Drug Discovery Unit (M.N., H.Im., E.S., Y.I., N.S., T.T., H.Iw.) and Drug Metabolism and Pharmacokinetics Research Laboratories (M.M.), Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Noriko Suzuki
- Neuroscience Drug Discovery Unit (M.N., H.Im., E.S., Y.I., N.S., T.T., H.Iw.) and Drug Metabolism and Pharmacokinetics Research Laboratories (M.M.), Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Maki Miyamoto
- Neuroscience Drug Discovery Unit (M.N., H.Im., E.S., Y.I., N.S., T.T., H.Iw.) and Drug Metabolism and Pharmacokinetics Research Laboratories (M.M.), Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Takahiko Taniguchi
- Neuroscience Drug Discovery Unit (M.N., H.Im., E.S., Y.I., N.S., T.T., H.Iw.) and Drug Metabolism and Pharmacokinetics Research Laboratories (M.M.), Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Hiroki Iwashita
- Neuroscience Drug Discovery Unit (M.N., H.Im., E.S., Y.I., N.S., T.T., H.Iw.) and Drug Metabolism and Pharmacokinetics Research Laboratories (M.M.), Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| |
Collapse
|
13
|
MacKay MAB, Paylor JW, Wong JTF, Winship IR, Baker GB, Dursun SM. Multidimensional Connectomics and Treatment-Resistant Schizophrenia: Linking Phenotypic Circuits to Targeted Therapeutics. Front Psychiatry 2018; 9:537. [PMID: 30425662 PMCID: PMC6218602 DOI: 10.3389/fpsyt.2018.00537] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/10/2018] [Indexed: 01/08/2023] Open
Abstract
Schizophrenia is a very complex syndrome that involves widespread brain multi-dysconnectivity. Neural circuits within specific brain regions and their links to corresponding regions are abnormal in the illness. Theoretical models of dysconnectivity and the investigation of connectomics and brain network organization have been examined in schizophrenia since the early nineteenth century. In more recent years, advancements have been achieved with the development of neuroimaging tools that have provided further clues to the structural and functional organization of the brain and global neural networks in the illness. Neural circuitry that extends across prefrontal, temporal and parietal areas of the cortex as well as limbic and other subcortical brain regions is disrupted in schizophrenia. As a result, many patients have a poor response to antipsychotic treatment and treatment failure is common. Treatment resistance that is specific to positive, negative, and cognitive domains of the illness may be related to distinct circuit phenotypes unique to treatment-refractory disease. Currently, there are no customized neural circuit-specific and targeted therapies that address this neural dysconnectivity. Investigation of targeted therapeutics that addresses particular areas of substantial regional dysconnectivity is an intriguing approach to precision medicine in schizophrenia. This review examines current findings of system and circuit-level brain dysconnectivity in treatment-resistant schizophrenia based on neuroimaging studies. Within a connectome context, on-off circuit connectivity synonymous with excitatory and inhibitory neuronal pathways is discussed. Mechanistic cellular, neurochemical and molecular studies are included with specific emphasis given to cell pathology and synaptic communication in glutamatergic and GABAergic systems. In this review we attempt to deconstruct how augmenting treatments may be applied within a circuit context to improve circuit integration and treatment response. Clinical studies that have used a variety of glutamate receptor and GABA interneuron modulators, nitric oxide-based therapies and a variety of other strategies as augmenting treatments with antipsychotic drugs are included. This review supports the idea that the methodical mapping of system-level networks to both on (excitatory) and off (inhibitory) cellular circuits specific to treatment-resistant disease may be a logical and productive approach in directing future research toward the advancement of targeted pharmacotherapeutics in schizophrenia.
Collapse
Affiliation(s)
- Mary-Anne B MacKay
- Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - John W Paylor
- Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - James T F Wong
- Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Ian R Winship
- Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Glen B Baker
- Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Serdar M Dursun
- Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
14
|
Morera-Fumero AL, Díaz-Mesa E, Abreu-Gonzalez P, Fernandez-Lopez L, Guillen-Pino F. A three-month longitudinal study of changes in day/night serum total antioxidant capacity in paranoid schizophrenia. PLoS One 2017; 12:e0189348. [PMID: 29220388 PMCID: PMC5722332 DOI: 10.1371/journal.pone.0189348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/24/2017] [Indexed: 01/15/2023] Open
Abstract
Free radicals and an oxidant/antioxidant imbalance have been involved in the schizophrenia pathophysiology. The total antioxidant capacity (TAC) is a measure of the antioxidant capacity of a system. Day/night changes are a biological characteristic of hormones such as melatonin or cortisol. There is little information about TAC day/night changes in schizophrenia patients. The aim of this research is to study if there are day/night changes in serum TAC levels of schizophrenia patients. Thirty-two DSM-IV schizophrenia paranoid patients were studied. Blood was sampled at 12:00 and 00:00 h at admission, discharge and three months after hospital discharge (TMAHD). TAC results are expressed as mmol of Trolox/L. Patients did not have day/night TAC differences at admission (12:00: 0.67±0.12 vs. 00:00: 0.61±0.14, p>0.14) or discharge (12:00: 0.65±0.15 vs. 00:00: 0.65±0.12, p>0.99). At TMHD, patients had significantly higher TAC levels at midday than midnight (12:00: 0.83±0.10 vs. 00:00: 0.74±0.12, p<0.006) as it has been reported in healthy subjects. There were no significant TAC differences at 12.00 and 00:00 between admission and discharge. At TMAHD, patients had significantly higher TAC levels than at admission and discharge, both at 12:00 and 00:00 h. In conclusion, the absence of day/night serum TAC changes when clinically relapsed and the normalization of day/night serum TAC changes at TMHD can be considered as a biological marker of schizophrenia evolution.
Collapse
Affiliation(s)
- Armando L. Morera-Fumero
- Departamento de Medicina Interna, Dermatología y Psiquiatría, Facultad de Ciencias de la Salud, Universidad de la Laguna (ULL), La Laguna, Santa Cruz de Tenerife, España
- Consultoría Psiquiátrica SC, Santa Cruz de Tenerife, España
| | - Estefanía Díaz-Mesa
- Servicio de Psiquiatría, Hospital Universitario de Canarias, La Laguna, Santa Cruz de Tenerife, España
| | - Pedro Abreu-Gonzalez
- Departamento de Ciencias Médicas Básicas: Unidad de Fisiología, Facultad de Ciencias de la Salud, Universidad de la Laguna (ULL), La Laguna, Santa Cruz de Tenerife, España
| | - Lourdes Fernandez-Lopez
- Departamento de Medicina Interna, Dermatología y Psiquiatría, Facultad de Ciencias de la Salud, Universidad de la Laguna (ULL), La Laguna, Santa Cruz de Tenerife, España
- Sociedad para la Investigación y Asistencia en Salud Mental, Santa Cruz de Tenerife, España
| | - Fernando Guillen-Pino
- Departamento de Medicina Interna, Dermatología y Psiquiatría, Facultad de Ciencias de la Salud, Universidad de la Laguna (ULL), La Laguna, Santa Cruz de Tenerife, España
| |
Collapse
|
15
|
Ku HL, Wang JK, Lee HC, Lane TJ, Liu IC, Chen YC, Lee YT, Lin IC, Lin CP, Hu CJ, Chi NF. Cerebral blood flow autoregulation is impaired in schizophrenia: A pilot study. Schizophr Res 2017; 188:63-67. [PMID: 28108227 DOI: 10.1016/j.schres.2017.01.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/04/2017] [Accepted: 01/07/2017] [Indexed: 12/13/2022]
Abstract
Patients with schizophrenia have a higher risk of cardiovascular diseases and higher mortality from them than does the general population; however, the underlying mechanism remains unclear. Impaired cerebral autoregulation is associated with cerebrovascular diseases and their mortality. Increased or decreased cerebral blood flow in different brain regions has been reported in patients with schizophrenia, which implies impaired cerebral autoregulation. This study investigated the cerebral autoregulation in 21 patients with schizophrenia and 23 age- and sex-matched healthy controls. None of the participants had a history of cardiovascular diseases, hypertension, or diabetes. All participants underwent 10-min blood pressure and cerebral blood flow recording through finger plethysmography and Doppler ultrasonography, respectively. Cerebral autoregulation was assessed by analyzing two autoregulation indices: the mean blood pressure and cerebral blood flow correlation coefficient (Mx), and the phase shift between the waveforms of blood pressure and cerebral blood flow determined using transfer function analysis. Compared with the controls, the patients had a significantly higher Mx (0.257 vs. 0.399, p=0.036) and lower phase shift (44.3° vs. 38.7° in the 0.07-0.20Hz frequency band, p=0.019), which indicated impaired maintenance of constant cerebral blood flow and a delayed cerebrovascular autoregulatory response. Impaired cerebral autoregulation may be caused by schizophrenia and may not be an artifact of coexisting medical conditions. The mechanism underlying impaired cerebral autoregulation in schizophrenia and its probable role in the development of cerebrovascular diseases require further investigation.
Collapse
Affiliation(s)
- Hsiao-Lun Ku
- Department of Psychiatry, Taipei Medical University Shuang Ho Hospital, New Taipei City, Taiwan; Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Brain and Consciousness Research Center, Taipei Medical University Shuang Ho Hospital, New Taipei City, Taiwan
| | - Jiunn-Kae Wang
- Department of Psychiatry, Taipei Medical University Shuang Ho Hospital, New Taipei City, Taiwan; Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Brain and Consciousness Research Center, Taipei Medical University Shuang Ho Hospital, New Taipei City, Taiwan
| | - Hsin-Chien Lee
- Department of Psychiatry, Taipei Medical University Shuang Ho Hospital, New Taipei City, Taiwan; Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Research Center of Sleep Medicine, College of Medicine, Taipei, Taiwan
| | - Timothy Joseph Lane
- Brain and Consciousness Research Center, Taipei Medical University Shuang Ho Hospital, New Taipei City, Taiwan; Graduate Institute of Humanities in Medicine, College of Humanities and Social Sciences, Taipei Medical University, Taipei, Taiwan; Institute of European and American Studies, Academia Sinica, Taipei, Taiwan; Research Center for Mind, Brain and Learning, National Chengchi University, Taipei, Taiwan
| | - I-Chao Liu
- Department of Psychiatry, Taipei Medical University Shuang Ho Hospital, New Taipei City, Taiwan; Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yung-Chan Chen
- Department of Psychiatry, Taipei Medical University Shuang Ho Hospital, New Taipei City, Taiwan
| | - Yao-Tung Lee
- Department of Psychiatry, Taipei Medical University Shuang Ho Hospital, New Taipei City, Taiwan
| | - I-Cheng Lin
- Department of Psychiatry, Taipei Medical University Shuang Ho Hospital, New Taipei City, Taiwan
| | - Chia-Pei Lin
- Department of Psychiatry, Taipei Medical University Shuang Ho Hospital, New Taipei City, Taiwan
| | - Chaur-Jong Hu
- Department of Neurology, Taipei Medical University Shuang Ho Hospital, New Taipei City, Taiwan; Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Cerebrovascular Research Center, Taipei Medical University, Taipei, Taiwan
| | - Nai-Fang Chi
- Department of Neurology, Taipei Medical University Shuang Ho Hospital, New Taipei City, Taiwan; Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Cerebrovascular Research Center, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
16
|
Redox dysregulation, immuno-inflammatory alterations and genetic variants of BDNF and MMP-9 in schizophrenia: Pathophysiological and phenotypic implications. Schizophr Res 2017; 188:98-109. [PMID: 28100419 DOI: 10.1016/j.schres.2017.01.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/15/2016] [Accepted: 01/07/2017] [Indexed: 11/22/2022]
Abstract
BACKGROUND Although a clear mechanism underlying the pathophysiology of schizophrenia (SZ) remains elusive, oxidative stress, inflammatory syndrome and immune activation have become an attractive hypothesis for explaining the pathophysiology of SZ. Data from prior studies on the role of matrix metalloproteinase 9 (MMP-9) and brain-derived neurotrophic factor (BDNF) single nucleotide polymorphisms (SNPs) in SZ are contradictory. We aimed to investigate whether oxidative stress, inflammatory and immune activation markers as well as MMP-9 levels may be implicated in SZ pathogenesis. The association of MMP-9 and BDNF SNPs with the clinical expression of SZ was examined. SUBJECTS AND METHODS Ninety-four subjects were recruited, including 44 SZ patients and 50 healthy controls. Serum levels of thiobarbituric acid reactive substances (TBARS), protein carbonyl content (PCC), nitrite, C-reactive protein (CRP), interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-α), Beta-2 microglobulin (Β2M), complement component 3 (C3), C4 and MMP-9 were measured. The MMP-9 -1562C>T and BDNF196G>A SNPs were genotyped using polymerase chain reaction-restriction fragment length polymorphism assay. Psychopathology was assessed using the positive and negative syndrome scale (PANSS). RESULTS SZ patients showed significantly higher TBARS, PCC, nitrite, CRP, IL-6, TNF-α, Β2M, C3 and MMP-9 levels than controls. In distinguishing SZ patients from healthy controls, CRP and MMP-9 yielded similar discriminatory performance, and both perform better than IL-6, Β2M, C3, nitrite, TBARS, PCC, TNF-α and C4. The MMP-9 -1562C>T SNP genotypes distribution didn't differ significantly between controls and SZ patients. As compared to controls, SZ patients harbor a significantly higher frequency of the BDNF196GG genotype and a lower frequency of the BDNF196GA/AA genotype. Patients carrying the MMP-9 -1562CC or BDNF196GG genotype revealed a significantly higher PANSS than those carrying MMP-9 -1562CT/TT or BDNF196GA/AA genotype. Male gender and the MMP-9 -1562CC genotype were identified as independent predictive factors for higher PANSS. CONCLUSIONS Redox dysregulation and alterations in the immuno-inflammatory pathways are major culprits in the pathogenesis of SZ. MMP-9 and BDNF SNPs are associated with the clinical phenotype of SZ and, thus, may be a useful marker predicting the phenotypic expression and prognosis of SZ patients.
Collapse
|
17
|
Gunes M, Altindag A, Bulut M, Demir S, Ibiloglu AO, Kaya MC, Atli A, Aksoy N. Oxidative metabolism may be associated with negative symptoms in schizophrenia. PSYCHIAT CLIN PSYCH 2017. [DOI: 10.1080/24750573.2017.1293243] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
18
|
Morera-Fumero AL, Díaz-Mesa E, Abreu-Gonzalez P, Fernandez-Lopez L, Cejas-Mendez MDR. Low levels of serum total antioxidant capacity and presence at admission and absence at discharge of a day/night change as a marker of acute paranoid schizophrenia relapse. Psychiatry Res 2017; 249:200-205. [PMID: 28126575 DOI: 10.1016/j.psychres.2017.01.043] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 11/07/2016] [Accepted: 01/18/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND An oxidant-antioxidant system dysregulation has been described as a schizophrenia pathophysiological base. The total antioxidant capacity (TAC) is one measure of the antioxidant capacity of a system. Day/night concentration changes is a biological characteristic of hormones such as melatonin or cortisol. There is no information about TAC day/night changes in schizophrenia. AIMS Studying the existence of a day/night TAC change in schizophrenia. METHOD Forty-three DSM-IV paranoid schizophrenia inpatients participated in the study. Thirty healthy subjects matched by age and gender acted as control group. Blood was sampled at 12:00 and 00:00h the day after admission and the day before discharge. Serum TAC was measured by the ABTS radical cation technique and expressed in Trolox mmol/L. RESULTS Patients had significantly lower TAC levels at admission and discharge (12:00 and 00:00) than controls. At admission patients had a TAC day/night change, with higher day-time than night-time levels (0.66±0.14 vs 0.60±0.15) as well as healthy subjects (0.83±0.07 vs 0.77±0.11). At discharge patients had a similar TAC level at 12:00 and 00:00 (0.64±0.15 vs 0.63±0.14). CONCLUSION Schizophrenic patients present a deficit of the antioxidant system. The initial presence and the later absence of a day/night change deserves future studies.
Collapse
Affiliation(s)
- Armando L Morera-Fumero
- Departamento de Medicina Interna, Dermatología y Psiquiatría, Facultad de Medicina, Universidad de La Laguna (ULL), 38071. La Laguna, Santa Cruz de Tenerife, Islas Canarias, Spain; Consultoria Psiquiátrica, Santa Cruz de Tenerife, Islas Canarias, Spain.
| | - Estefanía Díaz-Mesa
- Servicio de Psiquiatría, Hospital Universitario de Canarias, Ofra. Santa Cruz de Tenerife, Spain
| | - Pedro Abreu-Gonzalez
- Departmento de Ciencias Medicas Basicas: Unidad de Fisiología, Facultad de Medicina, Universidad de La Laguna (ULL), La Laguna, Santa Cruz de Tenerife, Islas Canarias, Spain
| | - Lourdes Fernandez-Lopez
- Departamento de Medicina Interna, Dermatología y Psiquiatría, Facultad de Medicina, Universidad de La Laguna (ULL), 38071. La Laguna, Santa Cruz de Tenerife, Islas Canarias, Spain; Sociedad para la Investigación y Asistencia en Salud Mental, Santa Cruz de Tenerife, Spain
| | | |
Collapse
|
19
|
Dhami K, MacKay M, Maia-de-Oliveira JP, Hallak J, Todd K, Baker G, Dursun S. Novel Targets for Development of Drugs for Treating Schizophrenia: Focus on Glycine, D-Serine and Nitric Oxide. ACTA ACUST UNITED AC 2016. [DOI: 10.5455/bcp.20130629042437] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Kamaldeep Dhami
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| | - Marnie MacKay
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| | - Joao Paulo Maia-de-Oliveira
- National Institute of Science and Technology in Translational Medicine, Ribeirao Preto Medical School, Sao Paulo, Brazil
| | - Jaime Hallak
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
- National Institute of Science and Technology in Translational Medicine, Ribeirao Preto Medical School, Sao Paulo, Brazil
| | - Kathryn Todd
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| | - Glen Baker
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
- National Institute of Science and Technology in Translational Medicine, Ribeirao Preto Medical School, Sao Paulo, Brazil
| | - Serdar Dursun
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
- National Institute of Science and Technology in Translational Medicine, Ribeirao Preto Medical School, Sao Paulo, Brazil
| |
Collapse
|
20
|
Koga M, Serritella AV, Sawa A, Sedlak TW. Implications for reactive oxygen species in schizophrenia pathogenesis. Schizophr Res 2016; 176:52-71. [PMID: 26589391 DOI: 10.1016/j.schres.2015.06.022] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/20/2015] [Accepted: 06/23/2015] [Indexed: 12/18/2022]
Abstract
Oxidative stress is a well-recognized participant in the pathophysiology of multiple brain disorders, particularly neurodegenerative conditions such as Alzheimer's and Parkinson's diseases. While not a dementia, a wide body of evidence has also been accumulating for aberrant reactive oxygen species and inflammation in schizophrenia. Here we highlight roles for oxidative stress as a common mechanism by which varied genetic and epidemiologic risk factors impact upon neurodevelopmental processes that underlie the schizophrenia syndrome. While there is longstanding evidence that schizophrenia may not have a single causative lesion, a common pathway involving oxidative stress opens the possibility for intervention at susceptible phases.
Collapse
Affiliation(s)
- Minori Koga
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 3-166, Baltimore, MD 21287, USA
| | - Anthony V Serritella
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 3-166, Baltimore, MD 21287, USA
| | - Akira Sawa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 3-166, Baltimore, MD 21287, USA
| | - Thomas W Sedlak
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 3-166, Baltimore, MD 21287, USA.
| |
Collapse
|
21
|
Nonaka-Hashida S, Sekine M, Ozeki Y, Fujii K, Akiyama K, Shimoda K, Tsunoda M, Katane M, Saitoh Y, Miyamoto T, Homma H. Plasma concentrations of three methylated arginines, endogenous nitric oxide synthase inhibitors, in schizophrenic patients undergoing antipsychotic drug treatment. Psychiatry Res 2016; 238:203-210. [PMID: 27086234 DOI: 10.1016/j.psychres.2016.02.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 01/13/2016] [Accepted: 02/15/2016] [Indexed: 01/16/2023]
Abstract
Plasma concentration of three methylated arginines, endogenous nitric oxide synthase inhibitors, is not studied in schizophrenic patients. The purpose of this study was to determine plasma concentrations of N(G)-monomethyl-L-arginine (l-NMMA), N(G),N(G)-dimethyl-L-arginine (ADMA), N(G),N(G')-dimethyl-L-arginine (SDMA), and l-arginine in 56 male and 45 female schizophrenic patients undergoing antipsychotic drug treatment versus those of 39 male and 24 female healthy controls. Plasma concentrations of methylated arginines and l-arginine were measured using newly developed high performance liquid chromatography with fluorescence detection which we previously reported. Methylated arginine levels were slightly but significantly higher in schizophrenic patients. L-Arginine levels and the l-arginine/(ADMA+l-NMMA) ratio were higher in schizophrenic patients than in healthy controls. It is considered that pharmacological treatment of schizophrenic patients may lower methylated arginine levels that are increased by the disease, and increase L-arginine levels, eliciting an improvement in nitric oxide (NO) bioavailability.
Collapse
Affiliation(s)
- Satoko Nonaka-Hashida
- Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan; Pfizer Worldwide Research & Development, Tokyo Laboratories, Tokyo, Japan
| | - Masae Sekine
- Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Yuji Ozeki
- Department of Psychiatry Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Kumiko Fujii
- Department of Psychiatry Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Kazufumi Akiyama
- Department of Biological Psychiatry and Neuroscience, Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Kazutaka Shimoda
- Department of Psychiatry Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Makoto Tsunoda
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Masumi Katane
- Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Yasuaki Saitoh
- Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Tetsuya Miyamoto
- Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Hiroshi Homma
- Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan.
| |
Collapse
|
22
|
The nitric oxide donor sodium nitroprusside attenuates recognition memory deficits and social withdrawal produced by the NMDA receptor antagonist ketamine and induces anxiolytic-like behaviour in rats. Psychopharmacology (Berl) 2016; 233:1045-54. [PMID: 26685991 DOI: 10.1007/s00213-015-4181-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 12/07/2015] [Indexed: 12/27/2022]
Abstract
RATIONALE Experimental evidence indicates that the non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist ketamine impairs cognition and can mimic certain aspects of positive and negative symptoms of schizophrenia in rodents. Nitric oxide (NO) is considered as an intracellular messenger in the brain, and its abnormalities have been linked to schizophrenia. OBJECTIVES The present study was designed to investigate the ability of the NO donor sodium nitroprusside (SNP) to counteract schizophrenia-like behavioural deficits produced by ketamine in rats. METHODS The ability of SNP to reverse ketamine-induced memory deficits and social withdrawal were assessed using the novel object recognition task (NORT) and the social interaction test, respectively. Furthermore, since anxiety disorders are noted to occur commonly in schizophrenics, the effects of SNP on anxiety-like behaviour were examined using the light/dark test. Locomotor activity was also assessed as an independent measure of the potential motoric effects of this NO donor. RESULTS SNP (0.3 and 1 mg/kg) reversed ketamine (3 mg/kg)-induced short-term recognition memory deficits. SNP (1 mg/kg) counteracted the ketamine (8 mg/kg)-induced social isolation in the social interaction test. The anxiolytic-like effects in the light/dark test of SNP (1 mg/kg) cannot be attributed to changes in locomotor activity. CONCLUSIONS Our findings illustrate a functional interaction between the nitrergic and glutamatergic system that may be of relevance for schizophrenia-like behavioural deficits. The data also suggest a role of NO in anxiety.
Collapse
|
23
|
Djordjević VV, Lazarević D, Ćosić V, Knežević MZ, Djordjević VB, Stojanović I. Diagnostic Accuracy of Brain-derived Neurotrophic Factor and Nitric Oxide in Patients with Schizophrenia: A pilot study. J Med Biochem 2016; 35:7-16. [PMID: 28356859 PMCID: PMC5346796 DOI: 10.1515/jomb-2015-0010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 06/16/2015] [Indexed: 01/26/2023] Open
Abstract
Background Brain-derived neurotrophic factor (BDNF) and nitric oxide (NO) play multiple roles in the developing and adult CNS. Since BDNF and NO metabolisms are dysregulated in schizophrenia, we measured these markers simultaneously in the blood of schizophrenics and assessed their diagnostic accuracy. Methods Thirty-eight patients with schizophrenia classified according to demographic characteristics, symptomatologyand therapy and 39 age- and gender-matched healthy controls were enrolled. BDNF was determined by the ELISA technique while the concentration of nitrite/nitrate (NO2−/NO3−) was measured by the colorimetric method. Results Serum BDNF levels were significantly lower (20.38±3.73 ng/mL, P = 1.339E-05), whilst plasma NO2−/NO3− concentrations were significantly higher (84.3 (72–121) μmol/L, P=4.357E-08) in patients with schizophrenia than in healthy controls (25.65±4.32 ng/mL; 60.9 (50–76) μmol/L, respectively). The lowest value of BDNF (18.14±3.26 ng/mL) and the highest NO2−/NO3− concentration (115.3 (80–138) μmol/L) were found in patients treated with second-generation antipsychotics (SGA). The patients diseased before the age of 24 and the patients suffering for up to one year had significantly lower serum BDNF levels than those diseased after the age of 24 and the patients who were ill longer than one year. Both BDNF and NO2−/NO3− showed good diagnostic accuracy, but BDNF had better ROC curve characteristics, especially in patients with negative symptomatology. Conclusions BDNF and nitrite/nitrate showed inverse changes in schizophrenic patients. The most pronounced changes were found in patients treated with second-generation antipsychotics. Although BDNF is not specific of schizophrenia, it may be a clinically useful biomarker for the diagnosis of patients expressing predominantly negative symptoms.
Collapse
Affiliation(s)
| | | | - Vladan Ćosić
- Centre for Medical Biochemistry, Clinical Centre Niš, Serbia
| | | | | | | |
Collapse
|
24
|
The role of nitric oxide donors in schizophrenia: Basic studies and clinical applications. Eur J Pharmacol 2015; 766:106-13. [DOI: 10.1016/j.ejphar.2015.09.045] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 09/14/2015] [Accepted: 09/28/2015] [Indexed: 01/04/2023]
|
25
|
Lopes R, Soares R, Coelho R, Figueiredo-Braga M. Angiogenesis in the pathophysiology of schizophrenia — A comprehensive review and a conceptual hypothesis. Life Sci 2015; 128:79-93. [DOI: 10.1016/j.lfs.2015.02.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 01/27/2015] [Accepted: 02/12/2015] [Indexed: 01/11/2023]
|
26
|
Flatow J, Buckley P, Miller BJ. Meta-analysis of oxidative stress in schizophrenia. Biol Psychiatry 2013; 74:400-9. [PMID: 23683390 PMCID: PMC4018767 DOI: 10.1016/j.biopsych.2013.03.018] [Citation(s) in RCA: 359] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 03/20/2013] [Accepted: 03/22/2013] [Indexed: 02/06/2023]
Abstract
BACKGROUND Schizophrenia is associated with impaired antioxidant defense, including abnormal serum, plasma, and red blood cell (RBC) oxidative stress parameters. We performed a meta-analysis of these associations, considering the effect of clinical status and antipsychotic treatment after an acute exacerbation of psychosis. METHODS We identified articles by searching PubMed, PsychInfo, and Institute for Scientific Information, and the reference lists of identified studies. RESULTS Forty-four studies met the inclusion criteria. Total antioxidant status seemed to be a state marker, because levels were significantly decreased in cross-sectional studies of serum and plasma in first-episode psychosis (FEP) and significantly increased in longitudinal studies of antipsychotic treatment for acute exacerbations of psychosis (p < .01 for each). The RBC catalase and plasma nitrite seemed to be state-related markers, because levels in cross-sectional studies were significantly decreased in FEP (p < .01) and significantly increased in stable outpatients (p = .01). In contrast, RBC superoxide dismutase seemed to be a trait marker for schizophrenia, because levels in cross-sectional studies were significantly decreased in acutely relapsed inpatients, FEP, and stable outpatients (p < .01 for each). CONCLUSIONS Oxidative stress abnormalities in FEP suggest an effect that might be independent of antipsychotic medications. Although some parameters (total antioxidant status, RBC catalase, and plasma nitrite) might be state markers for acute exacerbations of psychosis, others (RBC superoxide dismutase) might be trait markers; however, more longitudinal studies are needed. Our findings suggest that oxidative stress might serve as a potential biomarker in the etiopathophysiology and clinical course of schizophrenia.
Collapse
Affiliation(s)
- Joshua Flatow
- Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA
| | | | | |
Collapse
|
27
|
Nitric Oxide Plasma/Serum Levels In Patients With Schizophrenia: A Systematic Review And Meta-Analysis. BRAZILIAN JOURNAL OF PSYCHIATRY 2012; 34 Suppl 2:S149-55. [DOI: 10.1016/j.rbp.2012.07.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 02/29/2012] [Indexed: 12/14/2022]
|
28
|
The relationship between serum uric acid concentration and metabolic syndrome in patients with schizophrenia or schizoaffective disorder. J Clin Psychopharmacol 2012; 32:585-92. [PMID: 22926590 DOI: 10.1097/jcp.0b013e3182664e64] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Higher prevalence rates of metabolic syndrome (MetS) in patients with schizophrenia are getting more and more attention. Uric acid (UA) has been frequently reported to be associated with MetS in the general population. Sex difference in this relationship is inconsistent. As a selective antioxidant, UA has also been found to be reduced in patients with schizophrenia, and this effect may be prominent in men. With the inconsistent presentations, higher rate of MetS but possible lower UA concentrations, the aim of this study was to investigate the relationship by sexes between serum UA concentrations and prevalence of MetS in patients with schizophrenia or schizoaffective disorder. A total of 637 patients, 342 male and 295 female, were enrolled from 36 psychiatric rehabilitation institutions. Cross-sectional anthropometrical data, biochemical analysis, and serum UA were measured. Serum UA concentrations were divided into quartiles by sexes. Modified National Cholesterol Education Program Adult Treatment Panel III criteria for Asians were used as diagnosis of MetS. After adjustment, higher UA concentrations are associated with hypertriglyceridemia, low high-density lipoprotein cholesterol level, and high blood pressure in men and with hypertriglyceridemia in women. Significantly higher odds ratios for MetS in the UA third (4.02; 95% confidence interval, 1.33-12.1) and fourth quartiles (9.28; 95% confidence interval, 2.90-29.8) compared with the lowest quartile were found in men but not in women after adjustment. These results suggest that lower UA concentrations in male patients with schizophrenia or schizoaffective disorder are associated with lower risk of MetS.
Collapse
|
29
|
Gourgiotis I, Kampouri NG, Koulouri V, Lempesis IG, Prasinou MD, Georgiadou G, Pitsikas N. Nitric oxide modulates apomorphine-induced recognition memory deficits in rats. Pharmacol Biochem Behav 2012; 102:507-14. [DOI: 10.1016/j.pbb.2012.06.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 06/14/2012] [Accepted: 06/18/2012] [Indexed: 02/04/2023]
|
30
|
Minutolo G, Petralia A, Dipasquale S, Aguglia E. Nitric oxide in patients with schizophrenia: the relationship with the severity of illness and the antipsychotic treatment. Expert Opin Pharmacother 2012; 13:1989-97. [DOI: 10.1517/14656566.2012.713346] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
31
|
Yao JK, Keshavan MS. Antioxidants, redox signaling, and pathophysiology in schizophrenia: an integrative view. Antioxid Redox Signal 2011; 15:2011-35. [PMID: 21126177 PMCID: PMC3159108 DOI: 10.1089/ars.2010.3603] [Citation(s) in RCA: 214] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 11/26/2010] [Accepted: 12/02/2010] [Indexed: 12/19/2022]
Abstract
Schizophrenia (SZ) is a brain disorder that has been intensively studied for over a century; yet, its etiology and multifactorial pathophysiology remain a puzzle. However, significant advances have been made in identifying numerous abnormalities in key biochemical systems. One among these is the antioxidant defense system (AODS) and redox signaling. This review summarizes the findings to date in human studies. The evidence can be broadly clustered into three major themes: perturbations in AODS, relationships between AODS alterations and other systems (i.e., membrane structure, immune function, and neurotransmission), and clinical implications. These domains of AODS have been examined in samples from both the central nervous system and peripheral tissues. Findings in patients with SZ include decreased nonenzymatic antioxidants, increased lipid peroxides and nitric oxides, and homeostatic imbalance of purine catabolism. Reductions of plasma antioxidant capacity are seen in patients with chronic illness as well as early in the course of SZ. Notably, these data indicate that many AODS alterations are independent of treatment effects. Moreover, there is burgeoning evidence indicating a link among oxidative stress, membrane defects, immune dysfunction, and multineurotransmitter pathologies in SZ. Finally, the body of evidence reviewed herein provides a theoretical rationale for the development of novel treatment approaches.
Collapse
Affiliation(s)
- Jeffrey K Yao
- Medical Research Service, VA Pittsburgh Healthcare System,7180 Highland Drive, Pittsburgh, PA 15206, USA.
| | | |
Collapse
|
32
|
Crespi BJ, Thiselton DL. Comparative immunogenetics of autism and schizophrenia. GENES BRAIN AND BEHAVIOR 2011; 10:689-701. [DOI: 10.1111/j.1601-183x.2011.00710.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Bitanihirwe BKY, Woo TUW. Oxidative stress in schizophrenia: an integrated approach. Neurosci Biobehav Rev 2010; 35:878-93. [PMID: 20974172 DOI: 10.1016/j.neubiorev.2010.10.008] [Citation(s) in RCA: 342] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2010] [Revised: 09/18/2010] [Accepted: 10/17/2010] [Indexed: 01/17/2023]
Abstract
Oxidative stress has been suggested to contribute to the pathophysiology of schizophrenia. In particular, oxidative damage to lipids, proteins, and DNA as observed in schizophrenia is known to impair cell viability and function, which may subsequently account for the deteriorating course of the illness. Currently available evidence points towards an alteration in the activities of enzymatic and nonenzymatic antioxidant systems in schizophrenia. In fact, experimental models have demonstrated that oxidative stress induces behavioral and molecular anomalies strikingly similar to those observed in schizophrenia. These findings suggest that oxidative stress is intimately linked to a variety of pathophysiological processes, such as inflammation, oligodendrocyte abnormalities, mitochondrial dysfunction, hypoactive N-methyl-d-aspartate receptors and the impairment of fast-spiking gamma-aminobutyric acid interneurons. Such self-sustaining mechanisms may progressively worsen producing the functional and structural consequences associated with schizophrenia. Recent clinical studies have shown antioxidant treatment to be effective in ameliorating schizophrenic symptoms. Hence, identifying viable therapeutic strategies to tackle oxidative stress and the resulting physiological disturbances provide an exciting opportunity for the treatment and ultimately prevention of schizophrenia.
Collapse
Affiliation(s)
- Byron K Y Bitanihirwe
- Laboratory of Behavioural Neurobiology, Swiss Federal Institute of Technology, Zurich, Schorenstrasse 16, Schwerzenbach CH 8603, Switzerland.
| | | |
Collapse
|