1
|
Arranz MJ, Salazar J, Hernández MH. Pharmacogenetics of antipsychotics: Clinical utility and implementation. Behav Brain Res 2020; 401:113058. [PMID: 33316324 DOI: 10.1016/j.bbr.2020.113058] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/23/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
Decades of research have produced extensive evidence of the contribution of genetic factors to the efficacy and toxicity of antipsychotics. Numerous genetic variants in genes controlling drug availability or involved in antipsychotic processes have been linked to treatment variability. The complex mechanism of action and multitarget profile of most antipsychotic drugs hinder the identification of pharmacogenetic markers of clinical value. Nevertheless, the validity of associations between variants in CYP1A2, CYP2D6, CYP2C19, ABCB1, DRD2, DRD3, HTR2A, HTR2C, BDNF, COMT, MC4R genes and antipsychotic response has been confirmed in independent candidate gene studies. Genome wide pharmacogenomic studies have proven the role of the glutamatergic pathway in mediating antipsychotic activity and have reported novel associations with antipsychotic response. However, only a limited number of the findings, mainly functional variants of CYP metabolic enzymes, have been shown to be of clinical utility and translated into useful pharmacogenetic markers. Based on the currently available information, actionable pharmacogenetics should be reduced to antipsychotics' dose adjustment according to the genetically predicted metabolic status (CYPs' profile) of the patient. Growing evidence suggests that such interventions will reduce antipsychotics' side-effects and increase treatment safety. Despite this evidence, the use of pharmacogenetics in psychiatric wards is minimal. Hopefully, further evidence on the clinical and economic benefits, the development of clinical protocols based on pharmacogenetic information, and improved and cheaper genetic testing will increase the implementation of pharmacogenetic guided prescription in clinical settings.
Collapse
Affiliation(s)
- Maria J Arranz
- Fundació Docència i Recerca Mútua Terrassa, Spain; Centro de investigación en Red de Salud Mental, CIBERSAM, Madrid, Spain; PHAGEX Research Group, Universitat Ramon LLull, Spain.
| | - Juliana Salazar
- Translational Medical Oncology Laboratory, Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau), Barcelona, Spain; U705, ISCIII Center for Biomedical Research on Rare Diseases (CIBERER), Barcelona, Spain; PHAGEX Research Group, Universitat Ramon LLull, Spain
| | - Marta H Hernández
- PHAGEX Research Group, Universitat Ramon LLull, Spain; School of Health Sciences Blanquerna. University Ramon Llull, Barcelona, Spain
| |
Collapse
|
2
|
Yoshida K, Müller DJ. Pharmacogenetics of Antipsychotic Drug Treatment: Update and Clinical Implications. MOLECULAR NEUROPSYCHIATRY 2020; 5:1-26. [PMID: 32399466 PMCID: PMC7206586 DOI: 10.1159/000492332] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/20/2018] [Indexed: 12/24/2022]
Abstract
Numerous genetic variants have been shown to be associated with antipsychotic response and adverse effects of schizophrenia treatment. However, the clinical application of these findings is limited. The aim of this narrative review is to summarize the most recent publications and recommendations related to the genetics of antipsychotic treatment and shed light on the clinical utility of pharmacogenetics/pharmacogenomics (PGx). We reviewed the literature on PGx studies with antipsychotic drugs (i.e., antipsychotic response and adverse effects) and commonly used commercial PGx tools for clinical practice. Publications and reviews were included with emphasis on articles published between January 2015 and April 2018. We found 44 studies focusing on antipsychotic response and 45 studies on adverse effects (e.g., antipsychotic-induced weight gain, movement disorders, hormonal abnormality, and clozapine-induced agranulocytosis/granulocytopenia), albeit with mixed results. Overall, several gene variants related to antipsychotic response and adverse effects in the treatment of patients with schizophrenia have been reported, and several commercial pharmacogenomic tests have become available. However, further well-designed investigations and replication studies in large and well-characterized samples are needed to facilitate the application of PGx findings to clinical practice.
Collapse
Affiliation(s)
- Kazunari Yoshida
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Daniel J. Müller
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Carbonell AU, Cho CH, Tindi JO, Counts PA, Bates JC, Erdjument-Bromage H, Cvejic S, Iaboni A, Kvint I, Rosensaft J, Banne E, Anagnostou E, Neubert TA, Scherer SW, Molholm S, Jordan BA. Haploinsufficiency in the ANKS1B gene encoding AIDA-1 leads to a neurodevelopmental syndrome. Nat Commun 2019; 10:3529. [PMID: 31388001 PMCID: PMC6684583 DOI: 10.1038/s41467-019-11437-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 07/13/2019] [Indexed: 12/23/2022] Open
Abstract
Neurodevelopmental disorders, including autism spectrum disorder, have complex polygenic etiologies. Single-gene mutations in patients can help define genetic factors and molecular mechanisms underlying neurodevelopmental disorders. Here we describe individuals with monogenic heterozygous microdeletions in ANKS1B, a predicted risk gene for autism and neuropsychiatric diseases. Affected individuals present with a spectrum of neurodevelopmental phenotypes, including autism, attention-deficit hyperactivity disorder, and speech and motor deficits. Neurons generated from patient-derived induced pluripotent stem cells demonstrate loss of the ANKS1B-encoded protein AIDA-1, a brain-specific protein highly enriched at neuronal synapses. A transgenic mouse model of Anks1b haploinsufficiency recapitulates a range of patient phenotypes, including social deficits, hyperactivity, and sensorimotor dysfunction. Identification of the AIDA-1 interactome using quantitative proteomics reveals protein networks involved in synaptic function and the etiology of neurodevelopmental disorders. Our findings formalize a link between the synaptic protein AIDA-1 and a rare, previously undefined genetic disease we term ANKS1B haploinsufficiency syndrome.
Collapse
Affiliation(s)
- Abigail U Carbonell
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, 10461, NY, USA
| | - Chang Hoon Cho
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, 10461, NY, USA
| | - Jaafar O Tindi
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, 10461, NY, USA
| | - Pamela A Counts
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, 10461, NY, USA
| | - Juliana C Bates
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, 10461, NY, USA
| | - Hediye Erdjument-Bromage
- Department of Cell Biology and Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, 10016, NY, USA
| | - Svetlana Cvejic
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, 10461, NY, USA
| | - Alana Iaboni
- Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, M46 1R8, ON, Canada
| | - Ifat Kvint
- Pediatric Neurology Clinic, Kaplan Medical Center, Hebrew University Hadassah Medical School, Rehovot, 76100, Israel
| | - Jenny Rosensaft
- Genetics Institute, Kaplan Medical Center, Hebrew University Hadassah Medical School, Rehovot, 76100, Israel
| | - Ehud Banne
- Genetics Institute, Kaplan Medical Center, Hebrew University Hadassah Medical School, Rehovot, 76100, Israel
| | - Evdokia Anagnostou
- Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, M46 1R8, ON, Canada
| | - Thomas A Neubert
- Department of Cell Biology and Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, 10016, NY, USA
- Department of Pharmacology, New York University School of Medicine, New York, 10016, NY, USA
| | - Stephen W Scherer
- Centre for Applied Genomics and McLaughlin Centre, Hospital for Sick Children and University of Toronto, Toronto, M56 0A4, ON, Canada
| | - Sophie Molholm
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, 10461, NY, USA
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, 10461, NY, USA
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, 10461, NY, USA
| | - Bryen A Jordan
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, 10461, NY, USA.
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, 10461, NY, USA.
| |
Collapse
|
4
|
Younis RM, Taylor RM, Beardsley PM, McClay JL. The ANKS1B gene and its associated phenotypes: focus on CNS drug response. Pharmacogenomics 2019; 20:669-684. [PMID: 31250731 PMCID: PMC6912848 DOI: 10.2217/pgs-2019-0015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 04/26/2019] [Indexed: 12/21/2022] Open
Abstract
The ANKS1B gene was a top finding in genome-wide association studies (GWAS) of antipsychotic drug response. Subsequent GWAS findings for ANKS1B include cognitive ability, educational attainment, body mass index, response to corticosteroids and drug dependence. We review current human association evidence for ANKS1B, in addition to functional studies that include two published mouse knockouts. The several GWAS findings in humans indicate that phenotypically relevant variation is segregating at the ANKS1B locus. ANKS1B shows strong plausibility for involvement in CNS drug response because it encodes a postsynaptic effector protein that mediates long-term changes to neuronal biology. Forthcoming data from large biobanks should further delineate the role of ANKS1B in CNS drug response.
Collapse
Affiliation(s)
- Rabha M Younis
- Department of Pharmacotherapy & Outcomes Science, Virginia Commonwealth University School of Pharmacy, Richmond, VA 23298, USA
| | - Rachel M Taylor
- Center for Military Psychiatry & Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MA 20910, USA
| | - Patrick M Beardsley
- Department of Pharmacology & Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
- Center for Biomarker Research & Personalized Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Joseph L McClay
- Department of Pharmacotherapy & Outcomes Science, Virginia Commonwealth University School of Pharmacy, Richmond, VA 23298, USA
| |
Collapse
|