1
|
Chu F, Esworthy RS, Shen B, Doroshow JH. Role of the microbiota in ileitis of a mouse model of inflammatory bowel disease-Glutathione peroxide isoenzymes 1 and 2-double knockout mice on a C57BL background. Microbiologyopen 2020; 9:e1107. [PMID: 32810389 PMCID: PMC7568258 DOI: 10.1002/mbo3.1107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/19/2020] [Accepted: 07/25/2020] [Indexed: 12/13/2022] Open
Abstract
C57Bl6 (B6) mice devoid of glutathione peroxidases 1 and 2 (Gpx1/2-DKO) develop ileitis after weaning. We previously showed germ-free Gpx1/2-DKO mice of mixed B6.129 background did not develop ileocolitis. Here, we examine the composition of the ileitis provoking microbiota in B6 Gpx1/2-DKO mice. DNA was isolated from the ileum fecal stream and subjected to high-throughput sequencing of the V3 and V4 regions of the 16S rRNA gene to determine the abundance of operational taxonomic units (OTUs). We analyzed the role of bacteria by comparing the microbiomes of the DKO and pathology-free non-DKO mice. Mice were treated with metronidazole, streptomycin, and vancomycin to alter pathology and correlate the OTU abundances with pathology levels. Principal component analysis based on Jaccard distance of abundance showed 3 distinct outcomes relative to the source Gpx1/2-DKO microbiome. Association analyses of pathology and abundance of OTUs served to rule out 7-11 of 24 OTUs for involvement in the ileitis. Collections of OTUs were identified that appeared to be linked to ileitis in this animal model and would be classified as commensals. In Gpx1/2-DKO mice, host oxidant generation from NOX1 and DUOX2 in response to commensals may compromise the ileum epithelial barrier, a role generally ascribed to oxidants generated from mitochondria, NOX2 and endoplasmic reticulum stress in response to presumptive pathogens in IBD. Elevated oxidant levels may contribute to epithelial cell shedding, which is strongly associated with progress toward inflammation in Gpx1/2-DKO mice and predictive of relapse in IBD by allowing leakage of microbial components into the submucosa.
Collapse
Affiliation(s)
- Fong‐Fong Chu
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital and College of Clinical Medicine of HenanUniversity of Science and TechnologyLuoyangChina
| | - R. Steven Esworthy
- Department of Cancer Genetics and EpigeneticsBeckman Research InstituteCity of HopeDuarteCAUSA
| | - Binghui Shen
- Department of Cancer Genetics and EpigeneticsBeckman Research InstituteCity of HopeDuarteCAUSA
| | - James H. Doroshow
- Center for Cancer Research and Division of Cancer Treatment and DiagnosisNational Cancer InstituteBethesdaMDUSA
| |
Collapse
|
2
|
Ige SF, Adeniyi MJ, Olayinka AT, Kehinde IC. Role of dietary maize formulations in the healing of experimental acetic acid induced ulcerative colitis in male rats. CHINESE J PHYSIOL 2020; 63:156-162. [PMID: 32859882 DOI: 10.4103/cjp.cjp_33_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Dietary factors do not only contribute to remission of diseases but also play important roles in the progression of medical conditions. We investigated the effect of different formulations of maize diets on the healing of experimental acetic acid-induced ulcerative colitis (UC) in male rats. Thirty-five (35) male Wistar rats (150-170 g) were randomly divided into control (CTR), UC, UC + high maize diet (HMD), UC + low maize diet (LMD), and UC + maize-free diet (MFD) groups. CTR, UC, UC + HMD, UC + LMD, and UC + MFD groups were administered different formulations of dietary maize ranging from 0% to 70%. Body weight change (BWC), colon weight, macroscopic ulcer score, catalase, glutathione (GSH), tumor necrosis factor-α (TNF-α), myeloperoxidase, diarrhea score, superoxide dismutase (SOD), Ki-67 expression, and histological studies were done. Results were analyzed using SPSS 23. UC + LMD and UC + MFD groups showed a duration-dependent reduction in negative BWC, respectively. When compared with UC group, UC + LMD and UC + MFD significantly increased (P < 0.05) GSH and SOD respectively but had no effect on TNF-α and diarrhea score. UC + HMD increased diarrhea and macroscopic ulcer scores with Ki-67 expression highest in UC + MFD. The study indicated that consumption of either LMD or maize-free diet by colitic rats relatively enhanced healing of UC.
Collapse
Affiliation(s)
- Serah Funke Ige
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Mayowa J Adeniyi
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, Edo University, Iyamho, Edo State, Nigeria
| | - Alabi Timilehin Olayinka
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Idowu Christiana Kehinde
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| |
Collapse
|
3
|
Jiang Y, Zhou Y, Zheng Y, Guo H, Gao L, Chen P, Feng D, Qi R, Li X, Chang Y, Chu FF, Gao Q. Expression of inositol-requiring enzyme 1β is downregulated in colorectal cancer. Oncol Lett 2017; 13:1109-1118. [PMID: 28454221 PMCID: PMC5403352 DOI: 10.3892/ol.2017.5590] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/12/2016] [Indexed: 12/22/2022] Open
Abstract
The endoplasmic reticulum stress inositol-requiring enzyme (IRE) 1α/X-box binding protein (XBP) 1 signaling pathway is involved in the tumorigenesis of breast and prostate cancer. Mucin 2 (MUC2) protects colon tissues from the formation of tumors. In human colorectal cancer (CRC) the role of IRE1α, and its analogue, IRE1β, has yet to be elucidated. In the present study, the expression levels of IRE1α, IRE1β, un-spliced XBP1u, spliced XBP1s and MUC2 in surgically resected cancerous and adjacent non-cancerous tissues from patients with CRC were investigated. The IRE1α, IRE1β, XBP1u, XBP1s and MUC2 mRNA expression levels were determined using reverse transcription-quantitative polymerase chain reaction, and the protein expression levels were detected using immunohistochemistry and western blotting. The association between the expression levels of IRE1α, IRE1β and MUC2 and the clinicopathological features of patients with CRC was subsequently analyzed. The mRNA expression levels of IRE1β and MUC2 were decreased by ~2.1 and ~4.5-fold in CRC tissues, respectively, as compared with the adjacent normal tissues. The protein expression levels of IRE1β and MUC2 were decreased by ~8.0 and ~2.0-fold in the CRC tissues, respectively. IRE1β mRNA expression levels were positively correlated with MUC2 mRNA expression levels. IRE1β expression levels were revealed to be significantly associated with lymph node metastasis, tumor stage and histological differentiation. However, IRE1α, XBP1u and XBP1s mRNA and IRE1α protein expression levels were not observed to significantly differ between cancerous tissues and the adjacent normal tissues. The results indicated that the expression of IRE1β, but not IRE1α, may protect colon tissue from developing CRC by inducing MUC2 expression. Therefore, decreased IRE1β expression levels may be associated with the development of CRC through the inhibition of MUC2 expression.
Collapse
Affiliation(s)
- Yalin Jiang
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital and College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan 471023, P.R. China.,Department of Clinical Laboratory, The First Affiliated Hospital and College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan 471023, P.R. China
| | - Yunfeng Zhou
- Shenzhen University Health Science Center, Shenzhen, Guangdong 518060, P.R. China
| | - Yufeng Zheng
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital and College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan 471023, P.R. China
| | - Hong Guo
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital and College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan 471023, P.R. China
| | - Lei Gao
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital and College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan 471023, P.R. China
| | - Pan Chen
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital and College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan 471023, P.R. China
| | - Dandan Feng
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital and College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan 471023, P.R. China
| | - Ran Qi
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital and College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan 471023, P.R. China
| | - Xiaozhen Li
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital and College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan 471023, P.R. China
| | - Yongchao Chang
- Department of Clinical Laboratory, The First Affiliated Hospital and College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan 471023, P.R. China
| | - Fong-Fong Chu
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital and College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan 471023, P.R. China
| | - Qiang Gao
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital and College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan 471023, P.R. China
| |
Collapse
|
4
|
Lee D, Albenberg L, Compher C, Baldassano R, Piccoli D, Lewis JD, Wu GD. Diet in the pathogenesis and treatment of inflammatory bowel diseases. Gastroenterology 2015; 148:1087-106. [PMID: 25597840 PMCID: PMC4409494 DOI: 10.1053/j.gastro.2015.01.007] [Citation(s) in RCA: 276] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 01/12/2015] [Accepted: 01/13/2015] [Indexed: 12/14/2022]
Abstract
Some of the most common symptoms of the inflammatory bowel diseases (IBD, which include ulcerative colitis and Crohn's disease) are abdominal pain, diarrhea, and weight loss. It is therefore not surprising that clinicians and patients have wondered whether dietary patterns influence the onset or course of IBD. The question of what to eat is among the most commonly asked by patients, and among the most difficult to answer for clinicians. There are substantial variations in dietary behaviors of patients and recommendations for them, although clinicians do not routinely endorse specific diets for patients with IBD. Dietary clinical trials have been limited by their inability to include a placebo control, contamination of study groups, and inclusion of patients receiving medical therapies. Additional challenges include accuracy of information on dietary intake, complex interactions between foods consumed, and differences in food metabolism among individuals. We review the roles of diet in the etiology and management of IBD based on plausible mechanisms and clinical evidence. Researchers have learned much about the effects of diet on the mucosal immune system, epithelial function, and the intestinal microbiome; these findings could have significant practical implications. Controlled studies of patients receiving enteral nutrition and observations made from patients on exclusion diets have shown that components of whole foods can have deleterious effects for patients with IBD. Additionally, studies in animal models suggested that certain nutrients can reduce intestinal inflammation. In the future, engineered diets that restrict deleterious components but supplement beneficial nutrients could be used to modify the luminal intestinal environment of patients with IBD; these might be used alone or in combination with immunosuppressive agents, or as salvage therapy for patients who do not respond or lose responsiveness to medical therapies. Stricter diets might be required to induce remission, and more sustainable exclusion diets could be used to maintain long-term remission.
Collapse
Affiliation(s)
| | | | | | | | | | - James D. Lewis
- Co-Corresponding authors: James D. Lewis, Professor of Medicine and Epidemiology, Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, 720 Blockley Hall, 423 Guardian Drive, Philadelphia, PA 19104-6021, Office: (215) 573-5137, Fax: (215) 573-0813, ; Gary D. Wu, Professor of Medicine, Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Suite 915, Biomedical Research Building, 421 Curie Boulevard, Philadelphia, PA 19104, Office: (215) 898-0158, Fax: (215) 573-2024,
| | - Gary D. Wu
- Co-Corresponding authors: James D. Lewis, Professor of Medicine and Epidemiology, Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, 720 Blockley Hall, 423 Guardian Drive, Philadelphia, PA 19104-6021, Office: (215) 573-5137, Fax: (215) 573-0813, ; Gary D. Wu, Professor of Medicine, Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Suite 915, Biomedical Research Building, 421 Curie Boulevard, Philadelphia, PA 19104, Office: (215) 898-0158, Fax: (215) 573-2024,
| |
Collapse
|
5
|
Kim BW, Esworthy RS, Hahn MA, Pfeifer GP, Chu FF. Expression of lactoperoxidase in differentiated mouse colon epithelial cells. Free Radic Biol Med 2012; 52:1569-76. [PMID: 22343415 PMCID: PMC3341587 DOI: 10.1016/j.freeradbiomed.2012.02.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 01/30/2012] [Accepted: 02/06/2012] [Indexed: 12/19/2022]
Abstract
Lactoperoxidase (LPO) is known to be present in secreted fluids, such as milk and saliva. Functionally, LPO teams up with dual oxidases (DUOXs) to generate bactericidal hypothiocyanite in the presence of thiocyanate. DUOX2 is expressed in intestinal epithelium, but there is little information on LPO expression in this tissue. To fill the gap of knowledge, we have analyzed Lpo gene expression and its regulation in mouse intestine. In wild-type (WT) C57BL/6 (B6) mouse intestine, an appreciable level of mouse Lpo gene expression was detected in the colon, but not the ileum. However, in B6 mice deficient in glutathione peroxidase (GPx)-1 and -2, GPx1/2-double-knockout (DKO), which had intestinal pathology, the colon Lpo mRNA levels increased 5- to 12-fold depending on mouse age. The Lpo mRNA levels in WT and DKO 129S1/SvlmJ (129) colon were even higher, 9- and 5-fold, than in B6 DKO colon. Higher levels of Lpo protein and enzymatic activity were also detected in the 129 mouse colon compared to B6 colon. Lpo protein was expressed in the differentiated colon epithelial cells, away from the crypt base, as shown by immunohistochemistry. Similar to human LPO mRNA, mouse Lpo mRNA had multiple spliced forms, although only the full-length variant 1 was translated. Higher methylation was found in the 129 than in the B6 strain, in DKO than in control colon, and in older than in juvenile mice. However, methylation of the Lpo intragenic CpG island was not directly induced by inflammation, because dextran sulfate sodium-induced colitis did not increase DNA methylation in B6 DKO colon. Also, Lpo DNA methylation is not correlated with gene expression.
Collapse
Affiliation(s)
| | | | | | | | - Fong-Fong Chu
- Corresponding author: Fong-Fong Chu, 1500 East Duarte Road, Duarte, CA 91010, USA. Tel: 626-359-8111 x63831, FAX: 626-930-5330,
| |
Collapse
|
6
|
Abstract
Sequences of molecular events that initiate and advance the progression of human colorectal cancer (CRC) are becoming clearer. Accepting that these events, once they are in place, accumulate over time, rapid disease progression might be expected. Yet CRC usually develops slowly over decades. Emerging insights suggest that the tumor cell microenvironment encompassing fibroblasts and endothelial and immune cells dictate when, whether, and how malignancies progress. Signaling pathways that affect the microenvironment and the inflammatory response seem to play a central role in CRC. Indeed, some of these pathways directly regulate the stem/progenitor cell niche at the base of the crypt; it now appears that the survival and growth of neoplastic cells often relies upon their subverted engagement of these pathways. Spurned on by the use of gene manipulation technologies in the mouse, dissecting and recapitulating these complex molecular interactions between the tumor and its microenvironment in the gastrointestinal (GI) tract is a reality. In parallel, our ability to isolate and grow GI stem cells in vitro enables us, for the first time, to complement reductionist in vitro findings with complex in vivo observations. Surprisingly, data suggest that the large number of signaling pathways underpinning the reciprocal interaction between the neoplastic epithelium and its microenvironment converge on a small number of common transcription factors. Here, we review the separate and interactive roles of NFκB, Stat3, and Myb, transcription factors commonly overexpressed or excessively activated in CRC. They confer molecular links between inflammation, stroma, the stem cell niche, and neoplastic cell growth.
Collapse
Affiliation(s)
- Matthias Ernst
- Ludwig Institute for Cancer Research, Melbourne, Victoria, Australia
| | | |
Collapse
|