1
|
The protective role of Chitooligosaccharides against chronic ulcerative colitis induced by dextran sulfate sodium in mice. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
2
|
Katsogiannos P, Kamble PG, Pereira MJ, Sundbom M, Carlsson P, Eriksson JW, Espes D. Changes in Circulating Cytokines and Adipokines After RYGB in Patients with and without Type 2 Diabetes. Obesity (Silver Spring) 2021; 29:535-542. [PMID: 33624436 PMCID: PMC7986425 DOI: 10.1002/oby.23093] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/15/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE This study aimed to compare cytokine and adipokine levels in patients with obesity with and without type 2 diabetes (T2D) at baseline and 6 months after Roux-en-Y gastric bypass (RYGB) with healthy controls. METHODS A total of 34 patients (21 with T2D) with BMI of 30 to 45 kg/m2 were compared with 25 healthy controls without obesity. Cytokines, adipokines, and peptides of relevance for inflammation and metabolism were analyzed in plasma. RESULTS Significant decreases in weight and glycated hemoglobin A1c were observed. At baseline, interleukin-6 (IL-6), IFN-β, IL-18, leptin, and hepatocyte growth factor were higher in all patients with obesity compared with healthy controls. In patients without T2D, TNF-α, IL-1α, IL-2, IL-15, and visfatin were also increased, whereas bone morphogenic protein-4 was decreased. Following RYGB, IL-6 and hepatocyte growth factor were still increased in both groups compared with controls. In T2D patients, IFN-β, IL-27, IL-1α, IL-2, regenerating islet-derived protein 3A, visfatin, and osteopontin were found to be increased. In patients without T2D, TNF-α, IL-1α, IL-2, IL-15, leptin, and visfatin remained increased. CONCLUSIONS The altered cytokine profile of patients with obesity persisted after RYGB despite large weight loss and improved metabolic status, thus reflecting an inherent inflammatory state.
Collapse
Affiliation(s)
- Petros Katsogiannos
- Department of Medical ScienceClinical Diabetes and MetabolismUppsala UniversityUppsalaSweden
| | - Prasad G. Kamble
- Department of Medical ScienceClinical Diabetes and MetabolismUppsala UniversityUppsalaSweden
| | - Maria J. Pereira
- Department of Medical ScienceClinical Diabetes and MetabolismUppsala UniversityUppsalaSweden
| | - Magnus Sundbom
- Department of Surgical SciencesUppsala UniversityUppsalaSweden
| | - Per‐Ola Carlsson
- Department of Medical ScienceClinical Diabetes and MetabolismUppsala UniversityUppsalaSweden
- Department of Medical Cell BiologyUppsala UniversityUppsalaSweden
| | - Jan W. Eriksson
- Department of Medical ScienceClinical Diabetes and MetabolismUppsala UniversityUppsalaSweden
| | - Daniel Espes
- Department of Medical ScienceClinical Diabetes and MetabolismUppsala UniversityUppsalaSweden
- Department of Medical Cell BiologyUppsala UniversityUppsalaSweden
| |
Collapse
|
3
|
Li N, Zhang Y, Nepal N, Li G, Yang N, Chen H, Lin Q, Ji X, Zhang S, Jin S. Dental pulp stem cells overexpressing hepatocyte growth factor facilitate the repair of DSS-induced ulcerative colitis. Stem Cell Res Ther 2021; 12:30. [PMID: 33413675 PMCID: PMC7792189 DOI: 10.1186/s13287-020-02098-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/10/2020] [Indexed: 12/21/2022] Open
Abstract
Background Ulcerative colitis (UC) is a chronic and recurrent disease without satisfactory treatment strategies. Dental pulp stem cell (DPSC) transplantation has been proposed as a potential therapy for UC. This study aimed to investigate the therapeutic effects of the rat hepatocyte growth factor (HGF) gene transduced into DPSCs for UC. Methods The therapeutic effects of HGF-DPSCs transplanted intravenously into a rat model of UC induced by 5% dextran sulphate sodium (DSS) were compared with the other treatment groups (LV-HGF group, DPSCs group and GFP-DPSCs group). Immunofluorescence and immunohistochemistry were used to observe the localization and proliferation of HGF-DPSCs at the site of colon injury. The expression levels of inflammatory factors were detected by real-time quantitative PCR (RT-PCR) and western blotting. The oxidative stress markers were detected by ELISA. DAI scores and body weight changes were used to macroscopically evaluate the treatment of rats in each group. Results Immunofluorescence and immunohistochemistry assays showed that HGF-DPSCs homed to colon injury sites and colocalized with intestinal stem cell (ISC) markers (Bmi1, Musashi1 and Sox9) and significantly promoted protein expression (Bmi1, Musashi1, Sox9 and PCNA). Anti-inflammatory cytokine (TGF-β and IL-10) expression was the highest in the HGF-DPSCs group compared with the other treatment groups, while the expression of pro-inflammatory cytokines (TNF-α and INF-γ) was the lowest. Additionally, the oxidative stress response results showed that malondialdehyde (MDA) and myeloperoxidase (MPO) expression decreased while superoxide dismutase (SOD) expression increased, especially in the HGF-DPSCs group. The DAI scores showed a downward trend with time in the five treatment groups, whereas body weight increased, and the changes were most prominent in the HGF-DPSCs group. Conclusions The study indicated that HGF-DPSCs can alleviate injuries to the intestinal mucosa by transdifferentiating into ISC-like cells, promoting ISC-like cell proliferation, suppressing inflammatory responses and reducing oxidative stress damage, which provides new ideas for the clinical treatment of UC.
Collapse
Affiliation(s)
- Ning Li
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yichi Zhang
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Narayan Nepal
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Guoqing Li
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Ningning Yang
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Haoyuan Chen
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Qiuchi Lin
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xuechun Ji
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Sijia Zhang
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Shizhu Jin
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China.
| |
Collapse
|
4
|
Zheng X, Li Q, Tian H, Li H, Lv Y, Wang Y, He L, Huo Y, Hao Z. HIP/PAP protects against bleomycin-induced lung injury and inflammation and subsequent fibrosis in mice. J Cell Mol Med 2020; 24:6804-6821. [PMID: 32352211 PMCID: PMC7299702 DOI: 10.1111/jcmm.15334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/10/2019] [Accepted: 11/27/2019] [Indexed: 12/15/2022] Open
Abstract
Hepatocarcinoma‐intestine‐pancreas/pancreatitis‐associated protein (HIP/PAP), a C‐type lectin, exerts anti‐oxidative, anti‐inflammatory, bactericidal, anti‐apoptotic, and mitogenic functions in several cell types and tissues. In this study, we explored the role of HIP/PAP in pulmonary fibrosis (PF). Expression of HIP/PAP and its murine counterpart, Reg3B, was markedly increased in fibrotic human and mouse lung tissues. Adenovirus‐mediated HIP/PAP expression markedly alleviated bleomycin (BLM)‐induced lung injury, inflammation, and fibrosis in mice. Adenovirus‐mediated HIP/PAP expression alleviated oxidative injury and lessened the decrease in pulmonary superoxide dismutase (SOD) activity in BLM‐treated mice, increased pulmonary SOD expression in normal mice, and HIP/PAP upregulated SOD expression in cultured human alveolar epithelial cells (A549) and human lung fibroblasts (HLF‐1). Moreover, in vitro experiments showed that HIP/PAP suppressed the growth of HLF‐1 and ameliorated the H2O2‐induced apoptosis of human alveolar epithelial cells (A549 and HPAEpiC) and human pulmonary microvascular endothelial cells (HPMVEC). In HLF‐1, A549, HPAEpiC, and HPMVEC cells, HIP/PAP did not affect the basal levels, but alleviated the TGF‐β1‐induced down‐regulation of the epithelial/endothelial markers E‐cadherin and vE‐cadherin and the over‐expression of mesenchymal markers, such as α‐SMA and vimentin. In conclusion, HIP/PAP was found to serve as a potent protective factor in lung injury, inflammation, and fibrosis by attenuating oxidative injury, promoting the regeneration of alveolar epithelial cells, and antagonizing the pro‐fibrotic actions of the TGF‐β1/Smad signaling pathway.
Collapse
Affiliation(s)
- Xiaoyan Zheng
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qian Li
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hong Tian
- Research Center of Reproductive Medicine, Medical School of Xi'an Jiaotong University, Xi'an, China
| | - Hanchao Li
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yifei Lv
- Department of Gastroenterology, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yanhua Wang
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lan He
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yongwei Huo
- Research Center of Reproductive Medicine, Medical School of Xi'an Jiaotong University, Xi'an, China
| | - Zhiming Hao
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
5
|
Hepatocarcinoma-intestine-pancreas/pancreatitis-associated protein (HIP/PAP) confers protection against hepatic fibrosis through downregulation of transforming growth factor β receptor II. J Transl Med 2020; 100:466-482. [PMID: 31641222 DOI: 10.1038/s41374-019-0314-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/23/2019] [Accepted: 07/30/2019] [Indexed: 01/18/2023] Open
Abstract
Hepatocarcinoma-intestine-pancreas/pancreatitis-associated protein (HIP/PAP) has antimicrobial, antioxidant, anti-inflammatory, mitogenic, and antiapoptotic effects and thus exerts important functions in the maintenance of integrity and homeostasis of several organs, such as the gastrointestinal tract, pancreas, and liver. Although the potent hepatoprotective effect of HIP/PAP has been validated, its impact on liver fibrosis has not been reported. In this study, we evaluated the role of HIP/PAP on hepatic fibrosis and explored the possible underlying mechanisms. We found that the expression of HIP/PAP and its mouse counterpart, Reg3B, was markedly upregulated in fibrotic human or mouse livers. Intraperitoneal (i.p.) interleukin (IL)-10, IL-6, and TNF-α but not TGF-β1 significantly induced hepatic overexpression of Reg3B in mice. In both CCl4 and BDL liver fibrosis models, adenovirus-mediated ectopic expression of HIP/PAP markedly alleviated liver injury, inflammation, collagen deposition, hepatic stellate cell activation, and the overexpression of profibrotic cytokines, including transforming growth factor β1 (TGF-β1), platelet-derived growth factor (PDGF)-A, B, connective tissue growth factor (CTGF), and plasminogen activator inhibitor-1 (PAI-1), in mice. In vitro experiments demonstrated that, in addition to suppressing hepatic stellate cell proliferation and accelerating hepatocyte proliferation, HIP/PAP mitigated TGF-β1-induced hepatic stellate cell activation, hepatocyte epithelial-mesenchymal transition (EMT) and upregulated expression of profibrotic cytokines in both hepatic stellate cells and hepatocytes. Moreover, HIP/PAP attenuated the overexpression of TGF-β receptor II (TGF-βRII) in fibrotic mouse livers and decreased the basal expression of TGF-βRII in nonfibrotic mouse livers as well as in cultured hepatocytes and hepatic stellate cells, which is at least partly attributable to the TGF-β1-antagonizing function of HIP/PAP. This study indicates that increased expression of hepatic HIP/PAP serves as a countermeasure against liver injury and fibrosis. Exogenous supplementation of HIP/PAP might be a promising therapeutic agent for hepatic fibrosis as well as liver injury.
Collapse
|
6
|
Xu X, Fukui H, Ran Y, Wang X, Inoue Y, Ebisudani N, Nishimura H, Tomita T, Oshima T, Watari J, Kiyama H, Miwa H. The Link between Type III Reg and STAT3-Associated Cytokines in Inflamed Colonic Tissues. Mediators Inflamm 2019; 2019:7859460. [PMID: 31780871 PMCID: PMC6875322 DOI: 10.1155/2019/7859460] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/10/2019] [Accepted: 09/25/2019] [Indexed: 02/08/2023] Open
Abstract
Reg (regenerating gene) family proteins are known to be overexpressed in gastrointestinal (GI) tissues under conditions of inflammation. However, the pathophysiological significance of Reg family protein overexpression and its regulation is still unclear. In the present study, we investigated the profile of Reg family gene expression in a colitis model and focused on the regulation of Reg IIIβ and IIIγ, which are overexpressed in inflamed colonic mucosa. C57BL/6 mice were administered 2% dextran sulfate sodium (DSS) in drinking water for five days, and their colonic tissues were investigated histopathologically at interval for up to 12 weeks. Gene expression of the Reg family and cytokines (IL-6, IL-17, and IL-22) was evaluated by real-time RT-PCR, and Reg IIIβ/γ expression was examined by immunohistochemistry. The effects of cytokines on STAT3 phosphorylation and HIP/PAP (type III REG) expression in Caco2 and HCT116 cells were examined by Western blot analysis. Among Reg family genes, Reg IIIβ and IIIγ were alternatively overexpressed in the colonic tissues of mice with DSS-induced colitis. The expression of STAT3-associated cytokines (IL-6, IL-17, and IL-22) was also significantly increased in those tissues, being significantly correlated with that of Reg IIIβ/γ. STAT3 phosphorylation and HIP/PAP expression were significantly enhanced in Caco2 cells upon stimulation with IL-6, IL-17, and IL-22. In HCT116 cells, those enhancements were also observed by IL-6 and IL-22 stimulations but not IL-17. The link between type III Reg and STAT3-associated cytokines appears to play a pivotal role in the pathophysiology of DSS-induced colitis.
Collapse
Affiliation(s)
- Xin Xu
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
| | - Hirokazu Fukui
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Ying Ran
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xuan Wang
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yoshihito Inoue
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Nobuhiko Ebisudani
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Heihachiro Nishimura
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Toshihiko Tomita
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Tadayuki Oshima
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Jiro Watari
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Hiroshi Kiyama
- Department of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroto Miwa
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| |
Collapse
|
7
|
Solán L, Kwon M, Carbonell D, Dorado N, Balsalobre P, Serrano D, Chicano-Lavilla M, Anguita J, Gayoso J, Díez-Martín JL, Martínez-Laperche C, Buño I. ST2 and REG3α as Predictive Biomarkers After Haploidentical Stem Cell Transplantation Using Post-transplantation High-Dose Cyclophosphamide. Front Immunol 2019; 10:2338. [PMID: 31649665 PMCID: PMC6794466 DOI: 10.3389/fimmu.2019.02338] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/17/2019] [Indexed: 12/17/2022] Open
Abstract
Allogenic hematopoietic stem cell transplantation (allo-HSCT) is a curative procedure for several hematological malignancies. Haploidentical HSCT (haplo-HSCT) using high-dose post-transplantation cyclophosphamide (PTCy) makes transplantation possible for patients with no HLA-matched sibling donor. However, this treatment can cause complications, mainly infection, graft-vs.-host disease (GVHD), and conditioning-related toxicity. In recent years, different biomarkers in the form of tissue-specific proteins have been investigated; these may help us to predict complications of allo-HSCT. In this study we explored two such biomarkers, suppression of tumorigenicity 2 (ST2) and regenerating islet-derived 3α (REG3α), in the largest series reported of T cell–replete haplo-HSCT with PTCy. Plasma samples drawn from 87 patients at days +15 and +30 were analyzed. ST2 and REG3α levels at day +15 were not associated with post-transplant complications. ST2 levels at day +30 were higher in patients with grade II-IV acute GVHD, mainly those who received reduced intensity conditioning (RIC; median 2,503 vs. 1,830 ng/ml; p = 0.04). Of note, patients with higher plasma ST2 levels at day +30 also presented a higher incidence of non-relapse mortality (HR, 7.9; p = 0.004) and lower 2-year overall survival (25 vs. 44 months; p = 0.02) than patients with lower levels. Patients with REG3α levels higher than 1,989 pg/ml at day +30 presented a higher incidence of acute gastrointestinal GVHD in the whole cohort (HR, 8.37; p = 0.003) and in the RIC cohort (HR 6.59; p = 0.01). These data suggest that measurement of ST2 and REG3α might be useful for the prognosis and prediction of complications in patients undergoing haplo-HSCT with PTCy.
Collapse
Affiliation(s)
- Laura Solán
- Department of Hematology, Gregorio Marañón General University Hospital, Madrid, Spain.,Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - Mi Kwon
- Department of Hematology, Gregorio Marañón General University Hospital, Madrid, Spain.,Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - Diego Carbonell
- Department of Hematology, Gregorio Marañón General University Hospital, Madrid, Spain.,Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - Nieves Dorado
- Department of Hematology, Gregorio Marañón General University Hospital, Madrid, Spain.,Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - Pascual Balsalobre
- Department of Hematology, Gregorio Marañón General University Hospital, Madrid, Spain.,Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - David Serrano
- Department of Hematology, Gregorio Marañón General University Hospital, Madrid, Spain.,Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - María Chicano-Lavilla
- Department of Hematology, Gregorio Marañón General University Hospital, Madrid, Spain.,Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - Javier Anguita
- Department of Hematology, Gregorio Marañón General University Hospital, Madrid, Spain.,Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - Jorge Gayoso
- Department of Hematology, Gregorio Marañón General University Hospital, Madrid, Spain.,Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - José Luis Díez-Martín
- Department of Hematology, Gregorio Marañón General University Hospital, Madrid, Spain.,Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain.,Department of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Carolina Martínez-Laperche
- Department of Hematology, Gregorio Marañón General University Hospital, Madrid, Spain.,Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - Ismael Buño
- Department of Hematology, Gregorio Marañón General University Hospital, Madrid, Spain.,Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain.,Genomics Unit, Gregorio Marañón Health Research Institute (IiSGM), Gregorio Marañón General University Hospital, Madrid, Spain
| |
Collapse
|
8
|
Darnaud M, Dos Santos A, Gonzalez P, Augui S, Lacoste C, Desterke C, De Hertogh G, Valentino E, Braun E, Zheng J, Boisgard R, Neut C, Dubuquoy L, Chiappini F, Samuel D, Lepage P, Guerrieri F, Doré J, Bréchot C, Moniaux N, Faivre J. Enteric Delivery of Regenerating Family Member 3 alpha Alters the Intestinal Microbiota and Controls Inflammation in Mice With Colitis. Gastroenterology 2018; 154:1009-1023.e14. [PMID: 29133078 DOI: 10.1053/j.gastro.2017.11.003] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 10/28/2017] [Accepted: 11/06/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS Paneth cell dysfunction causes deficiencies in intestinal C-type lectins and antimicrobial peptides, which leads to dysbiosis of the intestinal microbiota, alters the mucosal barrier, and promotes development of inflammatory bowel diseases. We investigated whether transgenic (TG) expression of the human regenerating family member 3 alpha gene (REG3A) alters the fecal microbiota and affects development of colitis in mice. METHODS We performed studies with C57BL/6 mice that express human regenerating family member 3 alpha (hREG3A) in hepatocytes, via the albumin gene promoter. In these mice, hREG3A travels via the bile to the intestinal lumen. Some mice were given dextran sodium sulfate (DSS) to induce colitis. Feces were collected from mice and the composition of the microbiota was analyzed by 16S ribosomal RNA sequencing. The fecal microbiome was also analyzed from mice that express only 1 copy of human REG3A transgene but were fed feces from control mice (not expressing hREG3A) as newborns. Mice expressing hREG3A were monitored for DSS-induced colitis after cohousing or feeding feces from control mice. Colitis was induced in another set of control and hREG3A-TG mice by administration of trinitrobenzene sulfonic acid; some mice were given intrarectal injections of the hREG3A protein. Colon tissues were collected from mice and analyzed by histology and immunohistochemistry to detect mucin 2, as well as by 16S ribosomal RNA fluorescence in situ hybridization, transcriptional analyses, and quantitative polymerase chain reaction. We measured levels of reactive oxygen species (ROS) in bacterial cultures and fecal microbiota using 2',7'-dichlorofluorescein diacetate and flow cytometry. RESULTS The fecal microbiota of mice that express hREG3A had a significant shift in composition, compared with control mice, with enrichment of Clostridiales (Ruminococcaceae, Lachnospiraceae) and depletion of Bacteroidetes (Prevotellaceae); the TG mice developed less-severe colitis following administration of DSS than control mice, associated with preserved gut barrier integrity and reduced bacterial translocation, epithelial inflammation, and oxidative damage. A similar shift in the composition of the fecal microbiota occurred after a few months in TG mice heterozygous for REG3A that harbored a wild-type maternal microbiota at birth; these mice developed less-severe forms of colitis following DSS administration. Cohoused and germ-free mice fed feces from REG3A-TG mice and given DSS developed less-severe forms of colitis and had reduced lipopolysaccharide activation of the toll-like receptor 4 and increased survival times compared with mice not fed feces from REG3A-TG mice. REG3A TG mice developed only mild colonic inflammation after exposure to 2,4,6-trinitrobenzene sulfonic acid, compared with control mice. Control mice given intrarectal hREG3A and exposed to 2,4,6-trinitrobenzene sulfonic acid showed less colon damage and inflammation than mice not given intrarectal hREG3A. Fecal samples from REG3A-TG mice had lower levels of ROS than feces from control mice during DSS administration. Addition of hREG3A to bacterial cultures reduced levels of ROS and increased survival of oxygen-sensitive commensal bacteria (Faecalibacterium prausnitzii and Roseburia intestinalis). CONCLUSIONS Mice with hepatocytes that express hREG3A, which travels to the intestinal lumen, are less sensitive to colitis than control mice. We found hREG3A to alter the colonic microbiota by decreasing levels of ROS. Fecal microbiota from REG3A-TG mice protect non-TG mice from induction of colitis. These findings indicate a role for reduction of oxidative stress in preserving the gut microbiota and its ability to prevent inflammation.
Collapse
Affiliation(s)
- Marion Darnaud
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France; University Paris-Sud, Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, France
| | - Alexandre Dos Santos
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France; University Paris-Sud, Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, France
| | - Patrick Gonzalez
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France; University Paris-Sud, Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, France
| | - Sandrine Augui
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France; University Paris-Sud, Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, France
| | - Claire Lacoste
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France; University Paris-Sud, Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, France
| | - Christophe Desterke
- University Paris-Sud, Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, France
| | - Gert De Hertogh
- Department of Imaging and Pathology, Unit of Translational Cell and Tissue Research, University of Leuven, Leuven, Belgium
| | - Emma Valentino
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France; University Paris-Sud, Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, France
| | - Emilie Braun
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France; University Paris-Sud, Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, France
| | - Jinzi Zheng
- CEA, DSV, Institut d'Imagerie Biomédicale, Orsay, France; INSERM, U1023, Université Paris-Sud, Orsay, France
| | - Raphael Boisgard
- CEA, DSV, Institut d'Imagerie Biomédicale, Orsay, France; INSERM, U1023, Université Paris-Sud, Orsay, France
| | - Christel Neut
- LIRIC-U995, University Lille, Inserm, CHU Lille, Lille, France
| | | | - Franck Chiappini
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France; University Paris-Sud, Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, France
| | - Didier Samuel
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France; University Paris-Sud, Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, France
| | - Patricia Lepage
- Institut National de la Recherche Agronomique, UMR 1319 MICALIS, Jouy-en-Josas, France
| | - Francesca Guerrieri
- Center for Life NanoScience@Sapienza, Istituto Italiano di Tecnologia, Roma, Italy
| | - Joel Doré
- Institut National de la Recherche Agronomique, UMR 1319 MICALIS, Jouy-en-Josas, France
| | - Christian Bréchot
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France; University Paris-Sud, Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, France; Pasteur Institute, Paris, France
| | - Nicolas Moniaux
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France; University Paris-Sud, Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, France
| | - Jamila Faivre
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France; University Paris-Sud, Université Paris-Saclay, Faculté de Médecine Le Kremlin-Bicêtre, France; Assistance Publique-Hôpitaux de Paris (AP-HP), Pôle de Biologie Médicale, Paul-Brousse University Hospital, Villejuif, France.
| |
Collapse
|
9
|
Bonjoch L, Gironella M, Iovanna JL, Closa D. REG3β modifies cell tumor function by impairing extracellular vesicle uptake. Sci Rep 2017; 7:3143. [PMID: 28600520 PMCID: PMC5466682 DOI: 10.1038/s41598-017-03244-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/25/2017] [Indexed: 12/21/2022] Open
Abstract
Extracellular vesicles (EVs), including exosomes and microvesicles, are nano-sized membrane vesicles containing proteins and nucleic acids, which act as intercellular messengers. They play an important role in a variety of physiological processes, as well as in pathological situations such as inflammation or cancer. Here, we show that in the case of pancreatic ductal adenocarcinoma (PDAC), the healthy pancreatic tissue surrounding the tumor releases REG3β, a lectin that binds to the glycoproteins present in the surface of EVs, thus interfering with their uptake and internalization by target cells. In vitro, the disruption of the signaling mediated by EVs due to the presence of REG3β, prevents the EV-induced phenotypic switch in macrophages, inhibits the increased cell migration of cancer cells and reverses a number of metabolomic changes promoted by EVs. In vivo, the uptake of REG3β+ EVs by tumor cells is significantly impaired. Furthermore, it results in an increase of circulating REG3β+ EVs in blood of pancreatic cancer patients. Our findings highlight the effect of a lectin released by the healthy pancreatic tissue surrounding the tumor in modulating the EV-mediated interactions between different cell types in PDAC.
Collapse
Affiliation(s)
- Laia Bonjoch
- Dept Experimental Pathology, Institut d'Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones científicas (IIBB-CSIC), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, 08036, Spain
| | - Meritxell Gironella
- Gastrointestinal and Pancreatic Oncology, Hospital Clínic de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, 08036, Spain
| | - Juan Lucio Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), Institut National De La Santé Et De La Recherche Médicale (INSERM) Unit 1068, Centre National De La Recherche Scientifique (CNRS) Unit 7258, Aix-Marseille Université and Institut Paoli-Calmettes, 13273, Marseille, Cedex 09, France
| | - Daniel Closa
- Dept Experimental Pathology, Institut d'Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones científicas (IIBB-CSIC), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, 08036, Spain.
| |
Collapse
|
10
|
Carvalho RDDO, do Carmo FLR, de Oliveira Junior A, Langella P, Chatel JM, Bermúdez-Humarán LG, Azevedo V, de Azevedo MS. Use of Wild Type or Recombinant Lactic Acid Bacteria as an Alternative Treatment for Gastrointestinal Inflammatory Diseases: A Focus on Inflammatory Bowel Diseases and Mucositis. Front Microbiol 2017; 8:800. [PMID: 28536562 PMCID: PMC5422521 DOI: 10.3389/fmicb.2017.00800] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/19/2017] [Indexed: 12/26/2022] Open
Abstract
The human gastrointestinal tract (GIT) is highly colonized by bacterial communities, which live in a symbiotic relationship with the host in normal conditions. It has been shown that a dysfunctional interaction between the intestinal microbiota and the host immune system, known as dysbiosis, is a very important factor responsible for the development of different inflammatory conditions of the GIT, such as the idiopathic inflammatory bowel diseases (IBD), a complex and multifactorial disorder of the GIT. Dysbiosis has also been implicated in the pathogenesis of other GIT inflammatory diseases such as mucositis usually caused as an adverse effect of chemotherapy. As both diseases have become a great clinical problem, many research groups have been focusing on developing new strategies for the treatment of IBD and mucositis. In this review, we show that lactic acid bacteria (LAB) have been capable in preventing and treating both disorders in animal models, suggesting they may be ready for clinical trials. In addition, we present the most current studies on the use of wild type or genetically engineered LAB strains designed to express anti-inflammatory proteins as a promising strategy in the treatment of IBD and mucositis.
Collapse
Affiliation(s)
| | - Fillipe L R do Carmo
- Federal University of Minas Gerais - Instituto de Ciências BiológicasBelo Horizonte, Brazil
| | | | - Philippe Langella
- Micalis Institute, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-SaclayJouy-en-Josas, France
| | - Jean-Marc Chatel
- Micalis Institute, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-SaclayJouy-en-Josas, France
| | - Luis G Bermúdez-Humarán
- Micalis Institute, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-SaclayJouy-en-Josas, France
| | - Vasco Azevedo
- Federal University of Minas Gerais - Instituto de Ciências BiológicasBelo Horizonte, Brazil
| | - Marcela S de Azevedo
- Federal University of Minas Gerais - Instituto de Ciências BiológicasBelo Horizonte, Brazil
| |
Collapse
|
11
|
Carvalho RD, Breyner N, Menezes-Garcia Z, Rodrigues NM, Lemos L, Maioli TU, da Gloria Souza D, Carmona D, de Faria AMC, Langella P, Chatel JM, Bermúdez-Humarán LG, Figueiredo HCP, Azevedo V, de Azevedo MS. Secretion of biologically active pancreatitis-associated protein I (PAP) by genetically modified dairy Lactococcus lactis NZ9000 in the prevention of intestinal mucositis. Microb Cell Fact 2017; 16:27. [PMID: 28193209 PMCID: PMC5307810 DOI: 10.1186/s12934-017-0624-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 01/03/2017] [Indexed: 12/22/2022] Open
Abstract
Background Mucositis is one of the most relevant gastrointestinal inflammatory conditions in humans, generated by the use of chemotherapy drugs, such as 5-fluoracil (5-FU). 5-FU-induced mucositis affects 80% of patients undergoing oncological treatment causing mucosal gut dysfunctions and great discomfort. As current therapy drugs presents limitations in alleviating mucositis symptoms, alternative strategies are being pursued. Recent studies have shown that the antimicrobial pancreatitis-associated protein (PAP) has a protective role in intestinal inflammatory processes. Indeed, it was demonstrated that a recombinant strain of Lactococcus lactis expressing human PAP (LL-PAP) could prevent and improve murine DNBS-induced colitis, an inflammatory bowel disease (IBD) that causes severe inflammation of the colon. Hence, in this study we sought to evaluate the protective effects of LL-PAP on 5-FU-induced experimental mucositis in BALB/c mice as a novel approach to treat the disease. Results Our results show that non-recombinant L. lactis NZ9000 have antagonistic activity, in vitro, against the enteroinvasive gastrointestinal pathogen L. monocytogenes and confirmed PAP inhibitory effect against Opportunistic E. faecalis. Moreover, L. lactis was able to prevent histological damage, reduce neutrophil and eosinophil infiltration and secretory Immunoglobulin-A in mice injected with 5-FU. Recombinant lactococci carrying antimicrobial PAP did not improve those markers of inflammation, although its expression was associated with villous architecture preservation and increased secretory granules density inside Paneth cells in response to 5-FU inflammation. Conclusions We have demonstrated for the first time that L. lactis NZ9000 by itself, is able to prevent 5-FU-induced intestinal inflammation in BALB/c mice. Moreover, PAP delivered by recombinant L. lactis strain showed additional protective effects in mice epithelium, revealing to be a promising strategy to treat intestinal mucositis.
Collapse
Affiliation(s)
- Rodrigo D Carvalho
- Federal University of Minas Gerais (UFMG-ICB), Av. Antônio Carlos, 6627, CP 486, Belo Horizonte, MG, 31270-901, Brazil
| | - Natalia Breyner
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-En-Josas, France
| | - Zelia Menezes-Garcia
- Federal University of Minas Gerais (UFMG-ICB), Av. Antônio Carlos, 6627, CP 486, Belo Horizonte, MG, 31270-901, Brazil
| | - Nubia M Rodrigues
- Federal University of Minas Gerais (UFMG-ICB), Av. Antônio Carlos, 6627, CP 486, Belo Horizonte, MG, 31270-901, Brazil
| | - Luisa Lemos
- Federal University of Minas Gerais (UFMG-ICB), Av. Antônio Carlos, 6627, CP 486, Belo Horizonte, MG, 31270-901, Brazil
| | - Tatiane U Maioli
- Federal University of Minas Gerais (UFMG-ICB), Av. Antônio Carlos, 6627, CP 486, Belo Horizonte, MG, 31270-901, Brazil
| | - Danielle da Gloria Souza
- Federal University of Minas Gerais (UFMG-ICB), Av. Antônio Carlos, 6627, CP 486, Belo Horizonte, MG, 31270-901, Brazil.,Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-En-Josas, France
| | - Denise Carmona
- Federal University of Minas Gerais (UFMG-ICB), Av. Antônio Carlos, 6627, CP 486, Belo Horizonte, MG, 31270-901, Brazil
| | - Ana M C de Faria
- Federal University of Minas Gerais (UFMG-ICB), Av. Antônio Carlos, 6627, CP 486, Belo Horizonte, MG, 31270-901, Brazil
| | - Philippe Langella
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-En-Josas, France
| | - Jean-Marc Chatel
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-En-Josas, France
| | - Luis G Bermúdez-Humarán
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-En-Josas, France
| | - Henrique C P Figueiredo
- Federal University of Minas Gerais (UFMG-ICB), Av. Antônio Carlos, 6627, CP 486, Belo Horizonte, MG, 31270-901, Brazil
| | - Vasco Azevedo
- Federal University of Minas Gerais (UFMG-ICB), Av. Antônio Carlos, 6627, CP 486, Belo Horizonte, MG, 31270-901, Brazil
| | - Marcela S de Azevedo
- Federal University of Minas Gerais (UFMG-ICB), Av. Antônio Carlos, 6627, CP 486, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
12
|
Zheng XY, Lv YF, Li S, Li Q, Zhang QN, Zhang XT, Hao ZM. Recombinant adeno-associated virus carrying thymosin β 4 suppresses experimental colitis in mice. World J Gastroenterol 2017; 23:242-255. [PMID: 28127198 PMCID: PMC5236504 DOI: 10.3748/wjg.v23.i2.242] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 10/04/2016] [Accepted: 11/13/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the protective effect of a recombinant adeno-associated virus carrying thymosin β4 (AAV-Tβ4) on murine colitis via intracolonic administration.
METHODS AAV-Tβ4 was prepared and intracolonically used to mediate the secretory expression of Tβ4 in mouse colons. Dextran sulfate sodium (DSS) was applied to induce the murine ulcerative colitis, and 2,4,6-trinitrobenzene sulfonic acid (TNBS) was used to establish a mouse colitis model resembling Crohn’s disease. The disease severity and colon injuries were observed and graded to reveal the effects of AAV-Tβ4 on colitis. The activities of myeloperoxidase (MPO) and superoxide dismutase (SOD) and the content of malondialdehyde (MDA) were determined using biochemical assays. Colonic levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-10 were measured using ELISA, and mucosal epithelial cell apoptosis and proliferation were detected by TUNEL assay and immunochemistry, respectively.
RESULTS Recombinant AAVs efficiently delivered LacZ and Tβ4 into the colonic tissues of the mice, and AAV-Tβ4 led to a strong expression of Tβ4 in mouse colons. In both the DSS and TNBS colitis models, AAV-Tβ4-treated mice displayed distinctly attenuated colon injuries and reduced apoptosis rate of colonic mucosal epithelia. AAV-Tβ4 significantly reduced inflammatory cell infiltrations and relieved oxidative stress in the inflamed colons of the mice, as evidenced by decreases in MPO activity and MDA content and increases in SOD activity. AAV-Tβ4 also modulated colonic TNF-α, IL-1β and IL-10 levels and suppressed the compensatory proliferation of colonic epithelial cells in DSS- and TNBS-treated mice.
CONCLUSION Tβ4 exerts a protective effect on murine colitis, indicating that AAV-Tβ4 could potentially be developed into a promising agent for the therapy of inflammatory bowel diseases.
Collapse
|
13
|
Wu Y, Quan Y, Liu Y, Liu K, Li H, Jiang Z, Zhang T, Lei H, Radek KA, Li D, Wang Z, Lu J, Wang W, Ji S, Xia Z, Lai Y. Hyperglycaemia inhibits REG3A expression to exacerbate TLR3-mediated skin inflammation in diabetes. Nat Commun 2016; 7:13393. [PMID: 27830702 PMCID: PMC5109591 DOI: 10.1038/ncomms13393] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 09/27/2016] [Indexed: 12/19/2022] Open
Abstract
Dysregulated inflammatory responses are known to impair wound healing in diabetes, but the underlying mechanisms are poorly understood. Here we show that the antimicrobial protein REG3A controls TLR3-mediated inflammation after skin injury. This control is mediated by REG3A-induced SHP-1 protein, and acts selectively on TLR3-activated JNK2. In diabetic mouse skin, hyperglycaemia inhibits the expression of IL-17-induced IL-33 via glucose glycation. The decrease in cutaneous IL-33 reduces REG3A expression in epidermal keratinocytes. The reduction in REG3A is associated with lower levels of SHP-1, which normally inhibits TLR3-induced JNK2 phosphorylation, thereby increasing inflammation in skin wounds. To our knowledge, these findings show for the first time that REG3A can modulate specific cutaneous inflammatory responses and that the decrease in cutaneous REG3A exacerbates inflammation in diabetic skin wounds. Patients with diabetes often have delayed wound healing, associated with excessive inflammation. Here the authors report that REG3A inhibits TLR3-driven inflammation in skin wounds, and show that REG3A is reduced in models of diabetes, which exacerbates inflammation in diabetic wounds.
Collapse
Affiliation(s)
- Yelin Wu
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yanchun Quan
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yuanqi Liu
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Keiwei Liu
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Hongquan Li
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Ziwei Jiang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Tian Zhang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Hu Lei
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Katherine A Radek
- Department of Surgery, Burn and Shock Trauma Research Institute, Loyola University Chicago, Health Sciences Campus, Maywood, Illinois 60153, USA
| | - Dongqing Li
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Zhenhua Wang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jilong Lu
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Wang Wang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Shizhao Ji
- Burn Institute of Chinese PLA and Department of Burn Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Zhaofan Xia
- Burn Institute of Chinese PLA and Department of Burn Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Yuping Lai
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
14
|
Haldipur P, Dupuis N, Degos V, Moniaux N, Chhor V, Rasika S, Schwendimann L, le Charpentier T, Rougier E, Amouyal P, Amouyal G, Dournaud P, Bréchot C, El Ghouzzi V, Faivre J, Fleiss B, Mani S, Gressens P. HIP/PAP prevents excitotoxic neuronal death and promotes plasticity. Ann Clin Transl Neurol 2014; 1:739-54. [PMID: 25493266 PMCID: PMC4241802 DOI: 10.1002/acn3.127] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 07/18/2014] [Accepted: 07/30/2014] [Indexed: 12/31/2022] Open
Abstract
Objectives Excitotoxicity plays a significant role in the pathogenesis of perinatal brain injuries. Among the consequences of excessive activation of the N-methyl-d-aspartate (NMDA)-type glutamate are oxidative stress caused by free radical release from damaged mitochondria, neuronal death and subsequent loss of connectivity. Drugs that could protect nervous tissue and support regeneration are attractive therapeutic options. The hepatocarcinoma intestine pancreas protein/pancreatitis-associated protein I (HIP/PAP) or Reg3α, which is approved for clinical testing for the protection and regeneration of the liver, is upregulated in the central nervous system following injury or disease. Here, we examined the neuroprotective/neuroregenerative potential of HIP/PAP following excitotoxic brain injury. Methods We studied the expression of HIP/PAP and two of its putative effectors, cAMP-regulated phosphoprotein 19 (ARPP19) and growth-associated protein 43 (GAP-43), in the neonatal brain, and the protective/regenerative properties of HIP/PAP in three paradigms of perinatal excitotoxicity: intracerebral injection of the NMDA agonist ibotenate in newborn pups, a pediatric model of traumatic brain injury, and cultured primary cortical neurons. Results HIP/PAP, ARPP19, and GAP-43 were expressed in the neonatal mouse brain. HIP/PAP prevented the formation of cortical and white matter lesions and reduced neuronal death and glial activation following excitotoxic insults in vivo. In vitro, HIP/PAP promoted neuronal survival, preserved neurite complexity and fasciculation, and protected cell contents from reactive oxygen species (ROS)-induced damage. Interpretation HIP/PAP has strong neuroprotective/neuroregenerative potential following excitotoxic injury to the developing brain, and could represent an interesting therapeutic strategy in perinatal brain injury.
Collapse
Affiliation(s)
- Parthiv Haldipur
- National Brain Research Centre Manesar, India ; Centre for Neuroscience, IISC Bangalore, India
| | - Nina Dupuis
- Inserm U1141 Paris, France ; Univ Paris Diderot, Sorbonne Paris Cité UMRS 1141, Paris, France ; PremUP Paris, France
| | - Vincent Degos
- Inserm U1141 Paris, France ; Univ Paris Diderot, Sorbonne Paris Cité UMRS 1141, Paris, France ; PremUP Paris, France
| | - Nicolas Moniaux
- Inserm U785, Centre Hépatobiliaire Villejuif, France ; Faculté de Médecine, Université Paris-Sud Villejuif, France
| | - Vibol Chhor
- Inserm U1141 Paris, France ; Univ Paris Diderot, Sorbonne Paris Cité UMRS 1141, Paris, France ; PremUP Paris, France ; Division of Imaging Sciences and Biomedical Engineering, Centre for the Developing Brain, King's College London, King's Health Partners, St. Thomas' Hospital London, United Kingdom
| | - Sowmyalakshmi Rasika
- Inserm U1141 Paris, France ; Univ Paris Diderot, Sorbonne Paris Cité UMRS 1141, Paris, France ; PremUP Paris, France
| | - Leslie Schwendimann
- Inserm U1141 Paris, France ; Univ Paris Diderot, Sorbonne Paris Cité UMRS 1141, Paris, France ; PremUP Paris, France
| | - Tifenn le Charpentier
- Inserm U1141 Paris, France ; Univ Paris Diderot, Sorbonne Paris Cité UMRS 1141, Paris, France ; PremUP Paris, France
| | - Elodie Rougier
- Inserm U1141 Paris, France ; Univ Paris Diderot, Sorbonne Paris Cité UMRS 1141, Paris, France ; PremUP Paris, France
| | | | | | - Pascal Dournaud
- Inserm U1141 Paris, France ; Univ Paris Diderot, Sorbonne Paris Cité UMRS 1141, Paris, France ; PremUP Paris, France
| | - Christian Bréchot
- Inserm U785, Centre Hépatobiliaire Villejuif, France ; Faculté de Médecine, Université Paris-Sud Villejuif, France
| | - Vincent El Ghouzzi
- Inserm U1141 Paris, France ; Univ Paris Diderot, Sorbonne Paris Cité UMRS 1141, Paris, France ; PremUP Paris, France
| | - Jamila Faivre
- Inserm U785, Centre Hépatobiliaire Villejuif, France ; Faculté de Médecine, Université Paris-Sud Villejuif, France
| | - Bobbi Fleiss
- Inserm U1141 Paris, France ; Univ Paris Diderot, Sorbonne Paris Cité UMRS 1141, Paris, France ; PremUP Paris, France ; Division of Imaging Sciences and Biomedical Engineering, Centre for the Developing Brain, King's College London, King's Health Partners, St. Thomas' Hospital London, United Kingdom
| | - Shyamala Mani
- National Brain Research Centre Manesar, India ; Centre for Neuroscience, IISC Bangalore, India
| | - Pierre Gressens
- Inserm U1141 Paris, France ; Univ Paris Diderot, Sorbonne Paris Cité UMRS 1141, Paris, France ; PremUP Paris, France ; Division of Imaging Sciences and Biomedical Engineering, Centre for the Developing Brain, King's College London, King's Health Partners, St. Thomas' Hospital London, United Kingdom
| |
Collapse
|
15
|
Hao Z, Yang X, Lv Y, Li S, Purbey BK, Su H. Intracolonically administered adeno-associated virus-bone morphogenetic protein-7 ameliorates dextran sulphate sodium-induced acute colitis in rats. J Gene Med 2012; 14:482-90. [PMID: 22700475 DOI: 10.1002/jgm.2642] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The current treatment of ulcerative colitis (UC) is less than ideal and has room for improvement. Bone morphogenetic protein-7 (BMP-7) exerts a protective effect on experimental UC. Hence, we considered that intracolonically (i.c.) administered adeno-associated virus (AAV) delivering BMP-7 might have therapeutic potential for UC. METHODS Recombinant AAV type 2 vectors carrying enhanced green fluorescence protein (AAV-EGFP), LacZ (AAV-LacZ) and BMP-7 (AAV-BMP-7) were generated. Bioluminescence imaging, β-galactosidase assay and western blotting were applied to determine the colonic expression of EGFP, LacZ and BMP-7, respectively, after i.c. administration of the AAVs. Disease activity index (DAI) was observed daily during the 7 days of dextran sulphate sodium (DSS) treatment initiated 4 days after i.c. AAV-BMP-7, AAV-LacZ or phosphate-buffered saline. The colonic pathological morphology, mucosal myeloperoxidase (MPO) activity, malondialdehyde content, superoxide dismutase activity and proliferating cell nuclear antigen were determined at the end of DSS treatment. RESULTS When i.c administered to rats, AAV could efficiently transduce the colonic mucosa. Enema with AAV-BMP-7 significantly ameliorated DSS-induced colitis as indicated by reduced DAI, decreased macroscopic and histological scores and declined MPO activity compared to the controls. Furthermore i.c. AAV-BMP-7 significantly prevented oxidant damage and attenuated complementary mucosal cell proliferation in the DSS-treated rat colons. CONCLUSIONS Our data demonstrate that i.c. administration of AAV-BMP-7 efficiently mediates the ectopic BMP-7 expression in rat colon and further ameliorates DSS-induced UC in rats, suggesting that i.c. AAV-BMP-7 has the potential to be developed into an alternative therapeutic measure for the treatment of UC.
Collapse
Affiliation(s)
- Zhiming Hao
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China.
| | | | | | | | | | | |
Collapse
|