1
|
Cutshaw MK, Sciaudone M, Bowman NM. Risk Factors for Progression to Chronic Chagas Cardiomyopathy: A Systematic Review and Meta-Analysis. Am J Trop Med Hyg 2023; 108:791-800. [PMID: 36848894 PMCID: PMC10076993 DOI: 10.4269/ajtmh.22-0630] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/19/2022] [Indexed: 03/01/2023] Open
Abstract
Approximately one-third of people with chronic Trypanosoma cruzi infection develop Chagas cardiomyopathy, which carries a poor prognosis. Accurate prediction of which individuals will go on to develop Chagas cardiomyopathy remains elusive. We performed a systematic review of literature comparing characteristics of individuals with chronic Chagas disease with or without evidence of cardiomyopathy. Studies were not excluded on the basis of language or publication date. Our review yielded a total of 311 relevant publications. We further examined the subset of 170 studies with data regarding individual age, sex, or parasite load. A meta-analysis of 106 eligible studies indicated that male sex was associated with having Chagas cardiomyopathy (Hedge's g: 1.56, 95% CI: 1.07-2.04), and a meta-analysis of 91 eligible studies indicated that older age was associated with having Chagas cardiomyopathy (Hedge's g: 0.66, 95% CI: 0.41-0.91). A meta-analysis of four eligible studies did not find an association between parasite load and disease state. This study provides the first systematic review to assess whether age, sex, and parasite load are associated with Chagas cardiomyopathy. Our findings suggest that older and male patients with Chagas disease are more likely to have cardiomyopathy, although we are unable to identify causal relationships due to the high heterogeneity and predominantly retrospective study designs in the current literature. Prospective, multidecade studies are needed to better characterize the clinical course of Chagas disease and identify risk factors for progression to Chagas cardiomyopathy.
Collapse
Affiliation(s)
| | - Michael Sciaudone
- Section of Infectious Diseases, Tulane University School of Medicine, New Orleans, Louisiana
| | - Natalie M. Bowman
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
2
|
Puerta CJ, Cuellar A, Lasso P, Mateus J, Gonzalez JM. Trypanosoma cruzi-specific CD8 + T cells and other immunological hallmarks in chronic Chagas cardiomyopathy: Two decades of research. Front Cell Infect Microbiol 2023; 12:1075717. [PMID: 36683674 PMCID: PMC9846209 DOI: 10.3389/fcimb.2022.1075717] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/01/2022] [Indexed: 01/05/2023] Open
Abstract
Trypanosoma cruzi, the causal agent of Chagas disease, has coexisted with humans for thousands of years. Therefore, the parasite has developed several mechanisms of antigenic variability that has allowed it to live inside the cells and evade the host immune response. Since T. cruzi displays an intracellular cycle-stage, our research team focused on providing insights into the CD8+ T cells immune response in chronic Chagas cardiomyopathy. We began our work in the 2000s studying parasite antigens that induce natural immune responses such as the KMP11 protein and TcTLE, its N-terminal derived peptide. Different approaches allowed us to reveal TcTLE peptide as a promiscuous CD8+ T cell epitope, able of inducing multifunctional cellular immune responses and eliciting a humoral response capable of decreasing parasite movement and infective capacity. Next, we demonstrated that as the disease progresses, total CD8+ T cells display a dysfunctional state characterized by a prolonged hyper-activation state along with an increase of inhibitory receptors (2B4, CD160, PD-1, TIM-3, CTLA-4) expression, an increase of specific terminal effector T cells (TTE), a decrease of proliferative capacity, a decrease of stem cell memory (TSCM) frequency, and a decrease of CD28 and CD3ζ expression. Thus, parasite-specific CD8+ T cells undergo clonal exhaustion, distinguished by an increase in late-differentiated cells, a mono-functional response, and enhanced expression of inhibitory receptors. Finally, it was found that anti-parasitic treatment induces an improved CD8+ T cell response in asymptomatic individuals, and a mouse animal model led us to establish a correlation between the quality of the CD8+ T cell responses and the outcome of chronic infection. In the future, using OMICs strategies, the identification of the specific cellular signals involved in disease progression will provide an invaluable resource for discovering new biomarkers of progression or new vaccine and immunotherapy strategies. Also, the inclusion of the TcTLE peptide in the rational design of epitope-based vaccines, the development of immunotherapy strategies using TSCM or the blocking of inhibitory receptors, and the use of the CD8+ T cell response quality to follow treatments, immunotherapies or vaccines, all are alternatives than could be explored in the fight against Chagas disease.
Collapse
Affiliation(s)
- Concepción J. Puerta
- Laboratory of Molecular Parasitology, Infectious Diseases Group, Department of Microbiology, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Adriana Cuellar
- Clinical Laboratory Sciences Group, Department of Microbiology, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Paola Lasso
- Laboratory of Molecular Parasitology, Infectious Diseases Group, Department of Microbiology, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Jose Mateus
- Laboratory of Molecular Parasitology, Infectious Diseases Group, Department of Microbiology, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - John M. Gonzalez
- Group of Biomedical Sciences, School of Medicine, Universidad de Los Andes, Bogotá, Colombia
| |
Collapse
|
3
|
Sabino EC, Franco LAM, Venturini G, Velho Rodrigues M, Marques E, de Oliveira-da Silva LC, Martins LNA, Ferreira AM, Almeida PEC, Silva FDD, Leite SF, Nunes MDCP, Haikal DS, Oliveira CDL, Cardoso CS, Seidman JG, Seidman CE, Casas JP, Ribeiro ALP, Krieger JE, Pereira AC. Genome-wide association study for Chagas Cardiomyopathy identify a new risk locus on chromosome 18 associated with an immune-related protein and transcriptional signature. PLoS Negl Trop Dis 2022; 16:e0010725. [PMID: 36215317 PMCID: PMC9550069 DOI: 10.1371/journal.pntd.0010725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/10/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Chronic Chagas Cardiomyopathy (CCC) usually develops between 10 and 20 years after the first parasitic infection and is one of the leading causes of end-stage heart failure in Latin America. Despite the great inter-individual variability in CCC susceptibility (only 30% of infected individuals ever present CCC), there are no known predictors for disease development in those chronically infected. METHODOLOGY/PRINCIPAL FINDINGS We describe a new susceptibility locus for CCC through a GWAS analysis in the SaMi-Trop cohort, a population-based study conducted in a Chagas endemic region from Brazil. This locus was also associated with CCC in the REDS II Study. The newly identified locus (rs34238187, OR 0.73, p-value 2.03 x 10-9) spans a haplotype of approximately 30Kb on chromosome 18 (chr18: 5028302-5057621) and is also associated with 80 different traits, most of them blood protein traits significantly enriched for immune-related biological pathways. Hi-C data show that the newly associated locus is able to interact with chromatin sites as far as 10Mb on chromosome 18 in a number of different cell types and tissues. Finally, we were able to confirm, at the tissue transcriptional level, the immune-associated blood protein signature using a multi-tissue differential gene expression and enrichment analysis. CONCLUSIONS/SIGNIFICANCE We suggest that the newly identified locus impacts CCC risk among T cruzi infected individuals through the modulation of a downstream transcriptional and protein signature associated with host-parasite immune response. Functional characterization of the novel risk locus is warranted.
Collapse
Affiliation(s)
- Ester Cerdeira Sabino
- Departamento de Moléstias Infecciosas e Parasitárias, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
- Laboratório de Parasitologia Médica (LIM-46), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Lucas Augusto Moysés Franco
- Departamento de Moléstias Infecciosas e Parasitárias, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
- Laboratório de Parasitologia Médica (LIM-46), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Gabriela Venturini
- Laboratorio de Genetica e Cardiologia Molecular, Instituto do Coracao (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazila
- Genetics Department, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Mariliza Velho Rodrigues
- Laboratorio de Genetica e Cardiologia Molecular, Instituto do Coracao (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazila
| | - Emanuelle Marques
- Laboratorio de Genetica e Cardiologia Molecular, Instituto do Coracao (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazila
| | - Lea Campos de Oliveira-da Silva
- Departamento de Moléstias Infecciosas e Parasitárias, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
- Laboratório de Parasitologia Médica (LIM-46), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | | | - Ariela Mota Ferreira
- Departamento de Moléstias Infecciosas e Parasitárias, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | | | - Felipe Dias Da Silva
- Departamento de Moléstias Infecciosas e Parasitárias, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
- Laboratório de Parasitologia Médica (LIM-46), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | | | | | | | | | | | - Jonathan G. Seidman
- Genetics Department, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Christine E. Seidman
- Genetics Department, Harvard Medical School, Boston, Massachusetts, United States of America
- Cardiovascular Division, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Juan P. Casas
- Massachusetts Veterans Epidemiology Research and Information Center, Veterans Affairs Boston Healthcare System, Boston, Massachusetts, United States of America
- Division of Aging, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Antonio Luiz Pinho Ribeiro
- Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Telehealth Center, Hospital das Clínicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jose E. Krieger
- Laboratorio de Genetica e Cardiologia Molecular, Instituto do Coracao (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazila
| | - Alexandre C. Pereira
- Laboratorio de Genetica e Cardiologia Molecular, Instituto do Coracao (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazila
- Genetics Department, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
4
|
Zuluaga JDH, Santos-Barbosa JC, Cuellar A, Puerta CJ, Gonzalez JM. False positive serology of prepandemic chagasic samples with SARS-CoV-2 antigen. Trop Med Int Health 2022; 27:1009-1012. [PMID: 36101498 DOI: 10.1111/tmi.13818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
OBJECTIVE To determine whether prepandemic sera from patients with Chagas disease recognize SARS-CoV-2 antigens. MATERIALS AND METHODS Forty sera from patients with Chagas disease were tested for the presence of IgG cross-reactivity against the nucleocapsid protein (NP) and spike (S) SARS-CoV-2 proteins by ELISA. Positive samples were tested again using a different ELISA and CLIA, both against NP. RESULTS None of the sera from patients with Chagas disease, previously confirmed as positive for the presence of anti-T. cruzi antibodies reacted against the SARS-CoV-2 S protein, and 6 samples tested positive for the NP antigen (15%). The 6 positive samples were re-tested, 5 remained positive by ELISA and all were negative by CLIA. CONCLUSION According to our data, false-positive results might be a concern in the detection of SARS-CoV-2 antibodies in patients with Chagas disease.
Collapse
Affiliation(s)
- Juan Diego H Zuluaga
- Laboratorio de Ciencias Básicas Médicas, School of Medicine, Universidad de Los Andes, Bogotá, DC, Colombia
| | - Juan C Santos-Barbosa
- Laboratorio de Ciencias Básicas Médicas, School of Medicine, Universidad de Los Andes, Bogotá, DC, Colombia
| | - Adriana Cuellar
- Grupo en Ciencias de Laboratorio Clínico, School of Sciences, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
| | - Concepción J Puerta
- Laboratorio de Parasitología Molecular, Grupo de Enfermedades Infecciosas, Microbiology Department, School of Sciences, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
| | - John M Gonzalez
- Laboratorio de Ciencias Básicas Médicas, School of Medicine, Universidad de Los Andes, Bogotá, DC, Colombia
| |
Collapse
|
5
|
Simultaneous monitoring assay for T-cell receptor stimulation-dependent activation of CD4 and CD8 T cells using inducible markers on the cell surface. Biochem Biophys Res Commun 2021; 571:53-59. [PMID: 34303196 DOI: 10.1016/j.bbrc.2021.07.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/10/2021] [Indexed: 12/19/2022]
Abstract
Isolation of antigen (Ag)-specific T cells is an important step in the investigation of T-cell immunity. Activation-induced markers (AIMs), such as CD154/tumor necrosis factor (TNF)/CD107A/CD134/CD137 enable the sorting of Ag-specific T cells without using human leukocyte antigen (HLA)-multimers. However, optimal conditions suitable for simultaneous detection of both Ag-specific CD4 and CD8 T cells have not been investigated. Here, conditions were optimized to simultaneously detect the maximum number of activated CD4 and CD8 T cells in a TCR-dependent manner. First, the frequency of total pools of AIM-positive cells induced by superantigen, staphylococcal enterotoxin B (SEB), stimulation in various culture conditions was monitored and compared side-by-side. The total amount of AIM-positive CD4 T cells, but not CD8 T cells, was significantly abrogated by addition of brefeldin A. TNF-alpha converting enzyme inhibitor treatment effectively increased the TNF-positive population, without affecting other markers' positivity. AIM-positive CD4 T cells and CD8 T cells were detected at least 3 h after stimulation. Furthermore, examination of the multiple combination of each marker revealed that minimum contribution of CD134 on the total pool of AIM-positive cells at this setting, suggesting the essential and non-essential AIMs to maximize the detected number of AIM-positive cells. Taken together, this optimized method will be a useful tool for the simultaneous monitoring the T-cell receptor stimulation-dependent activation of CD4 and CD8 T cells using inducible markers on the cell surface including Ag-specific T cells.
Collapse
|
6
|
Gonzalez-Mancera MS, Bolaños NI, Salamanca M, Orjuela GA, Rodriguez AN, Gonzalez JM. Percentages of CD4+CD8+ Double-positive T Lymphocytes in the Peripheral Blood of Adults from a Blood Bank in Bogotá, Colombia. Turk J Haematol 2019; 37:36-41. [PMID: 31612695 PMCID: PMC7057749 DOI: 10.4274/tjh.galenos.2019.2019.0256] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Objective: CD4+CD8+ double-positive T-cells (DPTs) have been classified as a separate T-cell subpopulation, with two main phenotypes: CD4high CD8low and CD4low CD8high. In recent years, the relevance of DPTs in the pathogenesis of infections, tumors, and autoimmune diseases has been recognized. Reference values among healthy individuals remain unknown. Therefore, the aim of this study is to provide a reference value for DPTs in peripheral blood from healthy donors in a blood bank in Bogotá, Colombia, and to determine the activation status using a surface marker. Materials and Methods: One hundred healthy donors were enrolled in the study. Peripheral blood cells were stained for CD3, CD4, CD8, and CD154 (CD40L), and cellular viability was assessed with 7-aminoactinomycin D and analyzed by flow cytometry. Results: The median value for DPTs was 2.6% (interquartile range=1.70%-3.67%). Women had higher percentages of DPTs than men (3.3% vs. 2.1%). The subpopulation of CD4low CD8high showed higher expression of CD154 than the other T-cell subpopulations. Conclusion: DPT reference values were obtained from blood bank donors. A sex difference was found, and the CD4low CD8high subpopulation had the highest activation marker expression.
Collapse
Affiliation(s)
| | - Natalia I. Bolaños
- University of los Andes, School of Medicine, Grupo de Ciencias Básicas Médicas, Bogotá, Colombia
| | - Manuel Salamanca
- University of los Andes, School of Medicine, Grupo de Ciencias Básicas Médicas, Bogotá, Colombia
| | | | | | - John M. Gonzalez
- University of los Andes, School of Medicine, Grupo de Ciencias Básicas Médicas, Bogotá, Colombia
| |
Collapse
|
7
|
Mateus J, Guerrero P, Lasso P, Cuervo C, González JM, Puerta CJ, Cuéllar A. An Animal Model of Acute and Chronic Chagas Disease With the Reticulotropic Y Strain of Trypanosoma cruzi That Depicts the Multifunctionality and Dysfunctionality of T Cells. Front Immunol 2019; 10:918. [PMID: 31105709 PMCID: PMC6499084 DOI: 10.3389/fimmu.2019.00918] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 04/09/2019] [Indexed: 12/15/2022] Open
Abstract
Chagas disease (ChD), a complex and persistent parasitosis caused by Trypanosoma cruzi, represents a natural model of chronic infection, in which some people exhibit cardiac or digestive complications that can result in death 20–40 years after the initial infection. Nonetheless, due to unknown mechanisms, some T. cruzi-infected individuals remain asymptomatic throughout their lives. Actually, no vaccine is available to prevent ChD, and treatments for chronic ChD patients are controversial. Chronically T. cruzi-infected individuals exhibit a deterioration of T cell function, an exhaustion state characterized by poor cytokine production and increased inhibitory receptor co-expression, suggesting that these changes are potentially related to ChD progression. Moreover, an effective anti-parasitic treatment appears to reverse this state and improve the T cell response. Taking into account these findings, the functionality state of T cells might provide a potential correlate of protection to detect individuals who will or will not develop the severe forms of ChD. Consequently, we investigated the T cell response, analyzed by flow cytometry with two multicolor immunofluorescence panels, to assess cytokines/cytotoxic molecules and the expression of inhibitory receptors, in a murine model of acute (10 and 30 days) and chronic (100 and 260 days) ChD, characterized by parasite persistence for up to 260 days post-infection and moderate inflammation of the colon and liver of T. cruzi-infected mice. Acute ChD induced a high antigen-specific multifunctional T cell response by producing IFN-γ, TNF-α, IL-2, granzyme B, and perforin; and a high frequency of T cells co-expressed 2B4, CD160, CTLA-4, and PD-1. In contrast, chronically infected mice with moderate inflammatory infiltrate in liver tissue exhibited monofunctional antigen-specific cells, high cytotoxic activity (granzyme B and perforin), and elevated levels of inhibitory receptors (predominantly CTLA-4 and PD-1) co-expressed on T cells. Taken together, these data support our previous results showing that similar to humans, the T. cruzi persistence in mice promotes the dysfunctionality of T cells, and these changes might correlate with ChD progression. Thus, these results constitute a model that will facilitate an in-depth search for immune markers and correlates of protection, as well as long-term studies of new immunotherapy strategies for ChD.
Collapse
Affiliation(s)
- Jose Mateus
- Grupo Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia.,Grupo de Enfermedades Infecciosas, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Paula Guerrero
- Grupo Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Paola Lasso
- Grupo Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia.,Grupo de Enfermedades Infecciosas, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Claudia Cuervo
- Grupo de Enfermedades Infecciosas, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - John Mario González
- Grupo de Ciencias Básicas Médicas, Facultad de Medicina, Universidad de los Andes, Bogotá, Colombia
| | - Concepción J Puerta
- Grupo de Enfermedades Infecciosas, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Adriana Cuéllar
- Grupo Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
8
|
Acevedo GR, Girard MC, Gómez KA. The Unsolved Jigsaw Puzzle of the Immune Response in Chagas Disease. Front Immunol 2018; 9:1929. [PMID: 30197647 PMCID: PMC6117404 DOI: 10.3389/fimmu.2018.01929] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/06/2018] [Indexed: 12/26/2022] Open
Abstract
Trypanosoma cruzi interacts with the different arms of the innate and adaptive host's immune response in a very complex and flowery manner. The history of host-parasite co-evolution has provided this protozoan with means of resisting, escaping or subverting the mechanisms of immunity and establishing a chronic infection. Despite many decades of research on the subject, the infection remains incurable, and the factors that steer chronic Chagas disease from an asymptomatic state to clinical onset are still unclear. As the relationship between T. cruzi and the host immune system is intricate, so is the amount and diversity of scientific knowledge on the matter. Many of the mechanisms of immunity are fairly well understood, but unveiling the factors that lead each of these to success or failure, within the coordinated response as a whole, requires further research. The intention behind this Review is to compile the available information on the different aspects of the immune response, with an emphasis on those phenomena that have been studied and confirmed in the human host. For ease of comprehension, it has been subdivided in sections that cover the main humoral and cell-mediated components involved therein. However, we also intend to underline that these elements are not independent, but function intimately and concertedly. Here, we summarize years of investigation carried out to unravel the puzzling interplay between the host and the parasite.
Collapse
Affiliation(s)
| | | | - Karina A. Gómez
- Laboratorio de Inmunología de las Infecciones por Tripanosomátidos, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|