1
|
Calistri NL, Liby TA, Hu Z, Zhang H, Dane MA, Gross SM, Heiser LM. TNBC response to paclitaxel phenocopies interferon response which reveals cell cycle-associated resistance mechanisms. Sci Rep 2025; 15:4294. [PMID: 39905117 PMCID: PMC11794704 DOI: 10.1038/s41598-024-82218-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 12/03/2024] [Indexed: 02/06/2025] Open
Abstract
Paclitaxel is a standard of care neoadjuvant therapy for patients with triple negative breast cancer (TNBC); however, it shows limited benefit for locally advanced or metastatic disease. Here we used a coordinated experimental-computational approach to explore the influence of paclitaxel on the cellular and molecular responses of TNBC cells. We found that escalating doses of paclitaxel resulted in multinucleation, promotion of senescence, and initiation of DNA damage induced apoptosis. Single-cell RNA sequencing (scRNA-seq) of TNBC cells after paclitaxel treatment revealed upregulation of innate immune programs canonically associated with interferon response and downregulation of cell cycle progression programs. Systematic exploration of transcriptional responses to paclitaxel and cancer-associated microenvironmental factors revealed common gene programs induced by paclitaxel, IFNB, and IFNG. Transcription factor (TF) enrichment analysis identified 13 TFs that were both enriched based on activity of downstream targets and also significantly upregulated after paclitaxel treatment. Functional assessment with siRNA knockdown confirmed that the TFs FOSL1, NFE2L2 and ELF3 mediate cellular proliferation and also regulate nuclear structure. We further explored the influence of these TFs on paclitaxel-induced cell cycle behavior via live cell imaging, which revealed altered progression rates through G1, S/G2 and M phases. We found that ELF3 knockdown synergized with paclitaxel treatment to lock cells in a G1 state and prevent cell cycle progression. Analysis of publicly available breast cancer patient data showed that high ELF3 expression was associated with poor prognosis and enrichment in programs associated with cell cycle progression. Together these analyses disentangle the diverse aspects of paclitaxel response and identify ELF3 upregulation as a putative biomarker of paclitaxel resistance in TNBC.
Collapse
Affiliation(s)
- Nicholas L Calistri
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR, USA
| | - Tiera A Liby
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR, USA
| | - Zhi Hu
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR, USA
| | - Hongmei Zhang
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR, USA
| | - Mark A Dane
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR, USA
| | - Sean M Gross
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR, USA
| | - Laura M Heiser
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR, USA.
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
2
|
Calistri NL, Liby TA, Hu Z, Zhang H, Dane M, Gross SM, Heiser LM. TNBC response to paclitaxel phenocopies interferon response which reveals cell cycle-associated resistance mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.596911. [PMID: 38895265 PMCID: PMC11185620 DOI: 10.1101/2024.06.04.596911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Paclitaxel is a standard of care neoadjuvant therapy for patients with triple negative breast cancer (TNBC); however, it shows limited benefit for locally advanced or metastatic disease. Here we used a coordinated experimental-computational approach to explore the influence of paclitaxel on the cellular and molecular responses of TNBC cells. We found that escalating doses of paclitaxel resulted in multinucleation, promotion of senescence, and initiation of DNA damage induced apoptosis. Single-cell RNA sequencing (scRNA-seq) of TNBC cells after paclitaxel treatment revealed upregulation of innate immune programs canonically associated with interferon response and downregulation of cell cycle progression programs. Systematic exploration of transcriptional responses to paclitaxel and cancer-associated microenvironmental factors revealed common gene programs induced by paclitaxel, IFNB, and IFNG. Transcription factor (TF) enrichment analysis identified 13 TFs that were both enriched based on activity of downstream targets and also significantly upregulated after paclitaxel treatment. Functional assessment with siRNA knockdown confirmed that the TFs FOSL1, NFE2L2 and ELF3 mediate cellular proliferation and also regulate nuclear structure. We further explored the influence of these TFs on paclitaxel-induced cell cycle behavior via live cell imaging, which revealed altered progression rates through G1, S/G2 and M phases. We found that ELF3 knockdown synergized with paclitaxel treatment to lock cells in a G1 state and prevent cell cycle progression. Analysis of publicly available breast cancer patient data showed that high ELF3 expression was associated with poor prognosis and enrichment programs associated with cell cycle progression. Together these analyses disentangle the diverse aspects of paclitaxel response and identify ELF3 upregulation as a putative biomarker of paclitaxel resistance in TNBC.
Collapse
Affiliation(s)
- Nicholas L Calistri
- Biomedical Engineering Department, Oregon Health & Science University, Portland Oregon
| | - Tiera A. Liby
- Biomedical Engineering Department, Oregon Health & Science University, Portland Oregon
| | - Zhi Hu
- Biomedical Engineering Department, Oregon Health & Science University, Portland Oregon
| | - Hongmei Zhang
- Biomedical Engineering Department, Oregon Health & Science University, Portland Oregon
| | - Mark Dane
- Biomedical Engineering Department, Oregon Health & Science University, Portland Oregon
| | - Sean M. Gross
- Biomedical Engineering Department, Oregon Health & Science University, Portland Oregon
| | - Laura M. Heiser
- Biomedical Engineering Department, Oregon Health & Science University, Portland Oregon
- Knight Cancer Institute, Oregon Health & Science University, Portland Oregon
| |
Collapse
|
3
|
Ammer LM, Vollmann-Zwerenz A, Ruf V, Wetzel CH, Riemenschneider MJ, Albert NL, Beckhove P, Hau P. The Role of Translocator Protein TSPO in Hallmarks of Glioblastoma. Cancers (Basel) 2020; 12:cancers12102973. [PMID: 33066460 PMCID: PMC7602186 DOI: 10.3390/cancers12102973] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/09/2020] [Accepted: 10/09/2020] [Indexed: 12/18/2022] Open
Abstract
Simple Summary The translocator protein (TSPO) has been under extensive investigation as a specific marker in positron emission tomography (PET) to visualize brain lesions following injury or disease. In recent years, TSPO is increasingly appreciated as a potential novel therapeutic target in cancer. In Glioblastoma (GBM), the most malignant primary brain tumor, TSPO expression levels are strongly elevated and scientific evidence accumulates, hinting at a pivotal role of TSPO in tumorigenesis and glioma progression. The aim of this review is to summarize the current literature on TSPO with respect to its role both in diagnostics and especially with regard to the critical hallmarks of cancer postulated by Hanahan and Weinberg. Overall, our review contributes to a better understanding of the functional significance of TSPO in Glioblastoma and draws attention to TSPO as a potential modulator of treatment response and thus an important factor that may influence the clinical outcome of GBM. Abstract Glioblastoma (GBM) is the most fatal primary brain cancer in adults. Despite extensive treatment, tumors inevitably recur, leading to an average survival time shorter than 1.5 years. The 18 kDa translocator protein (TSPO) is abundantly expressed throughout the body including the central nervous system. The expression of TSPO increases in states of inflammation and brain injury due to microglia activation. Not least due to its location in the outer mitochondrial membrane, TSPO has been implicated with a broad spectrum of functions. These include the regulation of proliferation, apoptosis, migration, as well as mitochondrial functions such as mitochondrial respiration and oxidative stress regulation. TSPO is frequently overexpressed in GBM. Its expression level has been positively correlated to WHO grade, glioma cell proliferation, and poor prognosis of patients. Several lines of evidence indicate that TSPO plays a functional part in glioma hallmark features such as resistance to apoptosis, invasiveness, and proliferation. This review provides a critical overview of how TSPO could regulate several aspects of tumorigenesis in GBM, particularly in the context of the hallmarks of cancer proposed by Hanahan and Weinberg in 2011.
Collapse
Affiliation(s)
- Laura-Marie Ammer
- Wilhelm Sander-NeuroOncology Unit and Department of Neurology, University Hospital Regensburg, 93053 Regensburg, Germany; (L.-M.A.); (A.V.-Z.)
| | - Arabel Vollmann-Zwerenz
- Wilhelm Sander-NeuroOncology Unit and Department of Neurology, University Hospital Regensburg, 93053 Regensburg, Germany; (L.-M.A.); (A.V.-Z.)
| | - Viktoria Ruf
- Center for Neuropathology and Prion Research, Ludwig Maximilians University of Munich, 81377 Munich, Germany;
| | - Christian H. Wetzel
- Molecular Neurosciences, Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany;
| | | | - Nathalie L. Albert
- Department of Nuclear Medicine, Ludwig-Maximilians-University Munich, 81377 Munich, Germany;
| | - Philipp Beckhove
- Regensburg Center for Interventional Immunology (RCI) and Department Internal Medicine III, University Hospital Regensburg, 93053 Regensburg, Germany;
| | - Peter Hau
- Wilhelm Sander-NeuroOncology Unit and Department of Neurology, University Hospital Regensburg, 93053 Regensburg, Germany; (L.-M.A.); (A.V.-Z.)
- Correspondence:
| |
Collapse
|
4
|
Yu DH, Xu ZY, Mo S, Yuan L, Cheng XD, Qin JJ. Targeting MDMX for Cancer Therapy: Rationale, Strategies, and Challenges. Front Oncol 2020; 10:1389. [PMID: 32850448 PMCID: PMC7419686 DOI: 10.3389/fonc.2020.01389] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/01/2020] [Indexed: 12/11/2022] Open
Abstract
The oncogene MDMX, also known as MDM4 is a critical negative regulator of the tumor suppressor p53 and has been implicated in the initiation and progression of human cancers. Increasing evidence indicates that MDMX is often amplified and highly expressed in human cancers, promotes cancer cell growth, and inhibits apoptosis by dampening p53-mediated transcription of its target genes. Inhibiting MDMX-p53 interaction has been found to be effective for restoring the tumor suppressor activity of p53. Therefore, MDMX is becoming one of the most promising molecular targets for developing anticancer therapeutics. In the present review, we mainly focus on the current MDMX-targeting strategies and known MDMX inhibitors, as well as their mechanisms of action and in vitro and in vivo anticancer activities. We also propose other potential targeting strategies for developing more specific and effective MDMX inhibitors for cancer therapy.
Collapse
Affiliation(s)
- De-Hua Yu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhi-Yuan Xu
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Shaowei Mo
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Li Yuan
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiang-Dong Cheng
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Jiang-Jiang Qin
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.,Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| |
Collapse
|
5
|
Zhu ZZ, Bao LL, Zhao K, Xu Q, Zhu JY, Zhu KX, Wen BJ, Ye YQ, Wan XX, Wang LL, He SQ, Cong WM. Copy Number Aberrations of Multiple Genes Identified as Prognostic Markers for Extrahepatic Metastasis-free Survival of Patients with Hepatocellular Carcinoma. Curr Med Sci 2019; 39:759-765. [PMID: 31612394 DOI: 10.1007/s11596-019-2103-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 06/21/2019] [Indexed: 12/22/2022]
Abstract
Extrahepatic metastasis confers unfavorable patient prognosis in patients with hepatocellular carcinoma (HCC), however, reliable markers allowing prediction of extrahepatic metastasis at the time of initial diagnosis are still lacking. This study was to identify gene-level copy number aberrations (CNAs) related to extrahepatic metastasis-free survival of HCC patients, and further examine the associations between CNAs and gene expression. Array comparative genomic hybridization (aCGH) and expression array were used to analyze gene CNAs and expression levels, respectively. The associations between CNAs of a panel of 20 genes and extrahepatic metastasis-free survival were analyzed in 66 patients with follow-up period of 1.6-90.5 months. The gene expression levels between HCCs with and without gene CNA were compared in 109 patients with HCC. We observed that gains at MDM4 and BCL2L1, and losses at APC and FBXW7 were independent prognostic markers for extrahepatic metastasis-free survival of HCC patients. Integration analysis of aCGH and expression data showed that MDM4 and BCL2L1 were significantly upregulated in HCCs with gene gain, while APC and FBXW7 were significantly downregulated in HCCs with gene loss. We concluded that gene gains at MDM4 and BCL2L1, and losses at APC and FBXW7, with concordant expression changes, were associated with extrahepatic metastasis-free survival of HCC patients and have potential to act as novel prognostic markers.
Collapse
Affiliation(s)
- Zhong-Zheng Zhu
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Ling-Ling Bao
- Department of Oncology, No. 113 Hospital of People's Liberation Army, Anhui Medical University, Ningbo, 315040, China
| | - Kun Zhao
- Department of Education, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Qing Xu
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| | - Jia-Yi Zhu
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ke-Xuan Zhu
- Department of Burns and Plastic Surgery, General Hospital of Liaoning Provincial Armed Police Force of PLA, Shenyang, 110034, China
| | - Bing-Ji Wen
- Department of Oncology, No. 113 Hospital of People's Liberation Army, Anhui Medical University, Ningbo, 315040, China
| | - Ying-Quan Ye
- Department of Oncology, No. 113 Hospital of People's Liberation Army, Anhui Medical University, Ningbo, 315040, China
| | - Xiao-Xi Wan
- Department of Oncology, No. 113 Hospital of People's Liberation Army, Anhui Medical University, Ningbo, 315040, China
| | - Liang-Liang Wang
- Department of Oncology, No. 113 Hospital of People's Liberation Army, Anhui Medical University, Ningbo, 315040, China
| | - Song-Qin He
- Department of Oncology, No. 113 Hospital of People's Liberation Army, Anhui Medical University, Ningbo, 315040, China
| | - Wen-Ming Cong
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China
| |
Collapse
|
6
|
Zhang Y, Sturgis EM, Wei P, Liu H, Wang Z, Ma Y, Liu C, Gu KJ, Wei Q, Li G. A genetic variant within MDM4 3'UTR miRNA binding site is associated with HPV16-positive tumors and survival of oropharyngeal cancer. Mol Carcinog 2019; 58:2276-2285. [PMID: 31513313 DOI: 10.1002/mc.23116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/27/2019] [Accepted: 09/03/2019] [Indexed: 12/24/2022]
Abstract
As mouse double minute 4 (MDM4) and HPV16 E6 oncoproteins play important roles in inhibition of p53 activity, a functional polymorphism (rs4245739) in the 3' untranslated regions of MDM4 targeted by microRNA-191 may alter its expression level or functional efficiency, thus affecting tumor status and survival in human papillomavirus (HPV)-positive squamous cell carcinoma of oropharynx (SCCOP). A total of 564 incident SCCOP patients with definitive radiotherapy were included for determination of tumor HPV16 status and genotypes of the polymorphism. Univariate and multivariable Cox models were performed to assess the associations between the polymorphism and outcomes. We found that MDM4 rs4245739 had statistically significant associations with tumor HPV-positivity and survival of SCCOP patients. Patients with AC/CC variant genotypes of MDM4 rs4245739 were approximately 3-fold more likely to be HPV16-positive tumors among SCCOP patients compared with common homozygous AA genotype (adjusted odds ratio = 3.2, 95% confidence interval = 1.9-5.5). Moreover, patients with MDM4 rs4245739 AC/CC variant genotypes had significantly better overall, disease-specific, and disease-free survival compared with those with the corresponding common homozygous AA genotype (all log-rank = P < .05); and these genotypes were significantly associated with an approximately three to four times reduced risk of overall death, death owing to disease, and recurrence after multivariable adjustment. Finally, the significant effects of MDM4 rs4245739 polymorphism on survival were found among HPV16-positive SCCOP patients only after the stratified analyses by tumor HPV status. We concluded that MDM4 rs4245739 polymorphism is significantly associated with tumor HPV status and survival of SCCOP, especially in HPV16-positive SCCOP patients treated with definitive radiotherapy; nevertheless, prospective larger studies are warranted.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Otolaryngology Head and Neck Surgery, Capital Medical University, Beijing, China.,Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Erich M Sturgis
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Peng Wei
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hongliang Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina
| | - Ziqiao Wang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yiding Ma
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Chuan Liu
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kyle J Gu
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina
| | - Guojun Li
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
7
|
MDM4 contributes to the increased risk of glioma susceptibility in Han Chinese population. Sci Rep 2018; 8:11093. [PMID: 30038284 PMCID: PMC6056491 DOI: 10.1038/s41598-018-29468-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 07/12/2018] [Indexed: 01/03/2023] Open
Abstract
Recently, MDM4 gene has been reported to be a susceptibility gene for glioma in Europeans, but the molecular mechanism of glioma pathogenesis remains unknown. The aim of this study was to investigate whether common variants of MDM4 contribute to the risk of glioma in Han Chinese individuals. A total of 24 single-nucleotide polymorphisms (SNPs) of the MDM4 gene were assessed in a dataset of 562 glioma patients (non-glioblastoma) and 1,192 cancer-free controls. The SNP rs4252707 was found to be strongly associated with the risk of non-GBM (P = 0.000101, adjusted odds ratio (OR) = 1.34, 95% confidence interval (CI) = 1.16–1.55). Further analyses indicated that there was a significant association between A allele of rs4252707 associated with the increased non-GBM risk. Haplotype analysis also confirmed a result similar to that of the single-SNP analysis. Using stratification analyses, we found the association of rs4252707 with an increased non-GBM risk in adults (≥18 years, P = 0.0016) and individuals without IR exposure history (P = 0.0013). Our results provide strong evidence that the MDM4 gene is tightly linked to genetic susceptibility for non-GBM risk in Han Chinese population, indicating a important role for MDM4 gene in the etiology of glioma.
Collapse
|
8
|
González-Tablas M, Crespo I, Vital AL, Otero Á, Nieto AB, Sousa P, Patino-Alonso MC, Corchete LA, Tão H, Rebelo O, Barbosa M, Almeida MR, Guedes AF, Lopes MC, French PJ, Orfao A, Tabernero MD. Prognostic stratification of adult primary glioblastoma multiforme patients based on their tumor gene amplification profiles. Oncotarget 2018; 9:28083-28102. [PMID: 29963263 PMCID: PMC6021328 DOI: 10.18632/oncotarget.25562] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/14/2018] [Indexed: 01/08/2023] Open
Abstract
Several classification systems have been proposed to address genomic heterogeneity of glioblastoma multiforme, but they either showed limited prognostic value and/or are difficult to implement in routine diagnostics. Here we propose a prognostic stratification model for these primary tumors based on tumor gene amplification profiles, that might be easily implemented in routine diagnostics, and potentially improve the patients management. Gene amplification profiles were prospectively evaluated in 80 primary glioblastoma multiforme tumors using single-nucleotide polymorphism arrays and the results obtained validated in publicly available data from 267/347 cases. Gene amplification was detected in 45% of patients, and chromosome 7p11.2 including the EGFR gene, was the most frequently amplified chromosomal region – either alone (18%) or in combination with amplification of DNA sequences in other chromosomal regions (10% of cases). Other frequently amplified DNA sequences included regions in chromosomes 12q(10%), 4q12(7%) and 1q32.1(4%). Based on their gene amplification profiles, glioblastomas were subdivided into: i) tumors with no gene amplification (55%); ii) tumors with chromosome 7p/EGFR gene amplification (with or without amplification of other chromosomal regions) (38%); and iii) glioblastoma multiforme with a single (11%) or multiple (6%) amplified DNA sequences in chromosomal regions other than chromosome 7p. From the prognostic point of view, these amplification profiles showed a significant impact on overall survival of glioblastoma multiforme patients (p>0.001). Based on these gene amplification profiles, a risk-stratification scoring system was built for prognostic stratification of glioblastoma which might be easily implemented in routine diagnostics, and potentially contribute to improved patient management.
Collapse
Affiliation(s)
- María González-Tablas
- Centre for Cancer Research (CIC IBMCC-CSIC/USAL), Department of Medicine, CIBERONC, University of Salamanca, Salamanca, Spain
| | - Inês Crespo
- Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Ana Luísa Vital
- Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Álvaro Otero
- Servicio de Neurocirugía, Hospital Universitario e Instituto Biosanitario de Salamanca (IBSAL), Salamanca, Spain
| | - Ana Belén Nieto
- Department of Statistics, University of Salamanca, Salamanca, Spain
| | - Pablo Sousa
- Servicio de Neurocirugía, Hospital Universitario e Instituto Biosanitario de Salamanca (IBSAL), Salamanca, Spain
| | | | - Luis Antonio Corchete
- Departamento de Hematología, Hospital Universitario, IBSAL, IBMCC (USAL-CSIC), Salamanca, Spain
| | - Hermínio Tão
- Neurosurgery Service, University Hospital of Coimbra, Coimbra, Portugal
| | - Olinda Rebelo
- Neuropathology Laboratory, Neurology Service, University Hospital of Coimbra, Coimbra, Portugal
| | - Marcos Barbosa
- Neurosurgery Service, University Hospital of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | | | - Ana Filipa Guedes
- Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - María Celeste Lopes
- Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Pim J French
- Department of Neurology, Erasmus MC, Rotterdam, The Netherlands
| | - Alberto Orfao
- Centre for Cancer Research (CIC IBMCC-CSIC/USAL), Department of Medicine, CIBERONC, University of Salamanca, Salamanca, Spain.,Instituto Biosanitario de Salamanca (IBSAL), Salamanca, Spain
| | - María Dolores Tabernero
- Centre for Cancer Research (CIC IBMCC-CSIC/USAL), Department of Medicine, CIBERONC, University of Salamanca, Salamanca, Spain.,Instituto Biosanitario de Salamanca (IBSAL), Salamanca, Spain
| |
Collapse
|
9
|
Pant V, Larsson CA, Aryal N, Xiong S, You MJ, Quintas-Cardama A, Lozano G. Tumorigenesis promotes Mdm4-S overexpression. Oncotarget 2018; 8:25837-25847. [PMID: 28460439 PMCID: PMC5432220 DOI: 10.18632/oncotarget.15552] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/06/2017] [Indexed: 11/29/2022] Open
Abstract
Disruption of the p53 tumor suppressor pathway is a primary cause of tumorigenesis. In addition to mutation of the p53 gene itself, overexpression of major negative regulators of p53, MDM2 and MDM4, also act as drivers for tumor development. Recent studies suggest that expression of splice variants of Mdm2 and Mdm4 may be similarly involved in tumor development. In particular, multiple studies show that expression of a splice variant of MDM4, MDM4-S correlates with tumor aggressiveness and can be used as a prognostic marker in different tumor types. However, in the absence of prospective studies, it is not clear whether expression of MDM4-S in itself is oncogenic or is simply an outcome of tumorigenesis. Here we have examined the role of Mdm4-S in tumor development in a transgenic mouse model. Our results suggest that splicing of Mdm4 does not promote tumor development and does not cooperate with other oncogenic insults to alter tumor latency or aggressiveness. We conclude that Mdm4-S overexpression is a consequence of splicing defects in tumor cells rather than a cause of tumor evolution.
Collapse
Affiliation(s)
- Vinod Pant
- Department of Genetics, M.D. Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Connie A Larsson
- Department of Genetics, M.D. Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Neeraj Aryal
- Department of Genetics, M.D. Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Shunbin Xiong
- Department of Genetics, M.D. Anderson Cancer Center, Houston, Texas, 77030, USA
| | - M James You
- Department of Hematopathology, M.D. Anderson Cancer Center, Houston, Texas, 77030, USA
| | | | - Guillermina Lozano
- Department of Genetics, M.D. Anderson Cancer Center, Houston, Texas, 77030, USA
| |
Collapse
|
10
|
Aryal NK, Wasylishen AR, Pant V, Riley-Croce M, Lozano G. Loss of digestive organ expansion factor ( Diexf) reveals an essential role during murine embryonic development that is independent of p53. Oncotarget 2017; 8:103996-104006. [PMID: 29262616 PMCID: PMC5732782 DOI: 10.18632/oncotarget.22087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/10/2017] [Indexed: 01/01/2023] Open
Abstract
Increased levels of inhibitors of the p53 tumor suppressor such as Mdm2 and Mdm4 drive tumor development and thus serve as targets for therapeutic intervention. Recently, digestive organ expansion factor (Diexf) has been identified as a novel inhibitor of p53 in zebrafish. Here, we address the potential role of Diexf as a regulator of the p53 pathway in mammals by generating Diexf knockout mice. We demonstrate that, similar to Mdm2 and Mdm4, homozygous deletion of Diexf is embryonic lethal. However, unlike in Mdm2 and Mdm4 mice, loss of p53 does not rescue this phenotype. Moreover, Diexf heterozygous animals are not sensitive to sub-lethal ionizing radiation. Thus, we conclude that Diexf is an essential developmental gene in the mouse, but is not a significant regulator of the p53 pathway during development or in response to ionizing radiation.
Collapse
Affiliation(s)
- Neeraj K Aryal
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Genes and Development Program, The University of Texas MD Anderson Cancer Center, UT Health Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Amanda R Wasylishen
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Vinod Pant
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Maurisa Riley-Croce
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Guillermina Lozano
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
11
|
Zhao H, Xie YZ, Xing R, Sun M, Chi F, Zeng YC. MDMX is a prognostic factor for non-small cell lung cancer and regulates its sensitivity to cisplatin. Cell Oncol (Dordr) 2017; 40:357-365. [PMID: 28567715 DOI: 10.1007/s13402-017-0325-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2017] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Chemoradiotherapy is the standard treatment modality for advanced non-small cell lung cancer (NSCLC). However, drug and radiation resistance remain major factors influencing its clinical outcome. The purpose of this study was to evaluate whether MDMX can affect the chemosensitivity and clinical outcome of NSCLC. METHODS Quantitative real-time PCR (qRT-PCR) was performed to assess MDMX mRNA expression levels in 105 primary NSCLC tissues, its corresponding non-cancerous tissues and two NSCLC-derived cell lines (A549 and SK-MES-1). In addition, immunohistochemistry was carried out to detect MDMX protein expression in the primary NSCLC tissues. The MDMX expression levels were correlated with clinicopathological and survival features. The effects of MDMX expression knockdown on NSCLC cell proliferation and chemosensitivity were evaluated using MTT, flow cytometry and soft agar colony assays. RESULTS We found that the mRNA expression level of MDMX in NSCLC tissues was significantly higher than that in its corresponding non-tumorous tissues. High MDMX expression was found to be related to poor tumor cell differentiation, advanced TNM stages and the occurrence of lymph node metastases. Patients with a high MDMX expression level exhibited a lower overall survival rate than those with a low expression level. Multivariate analysis showed that a high MDMX protein expression level may serve as an independent prognostic factor for NSCLC patients. In addition, we found that MDMX expression knockdown combined with cisplatin treatment in vitro significantly increased apoptosis and decreased soft agar colony formation in NSCLC-derived cells. CONCLUSIONS Our data indicate that MDMX expression may serve as an independent unfavorable prognostic factor for NSCLC patient outcome, which in turn may at least partly be due to the ability of the MDMX protein to regulate the proliferative capacity and chemosensitivity of NSCLC cells.
Collapse
Affiliation(s)
- Han Zhao
- Department of Medical Oncology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang, 110022, China
| | - Yu-Zhuo Xie
- Department of Medical Oncology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang, 110022, China
| | - Rui Xing
- Department of Medical Oncology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang, 110022, China
| | - Ming Sun
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Feng Chi
- Department of Medical Oncology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang, 110022, China
| | - Yue-Can Zeng
- Department of Medical Oncology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang, 110022, China.
| |
Collapse
|
12
|
Lee XA, Verma C, Sim AY. Designing dual inhibitors of Mdm2/MdmX: Unexpected coupling of water with gatekeeper Y100/99. Proteins 2017; 85:1493-1506. [DOI: 10.1002/prot.25310] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 03/28/2017] [Accepted: 04/17/2017] [Indexed: 01/06/2023]
Affiliation(s)
- Xiong An Lee
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR); Matrix 138671 Singapore
| | - Chandra Verma
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR); Matrix 138671 Singapore
- Department of Biological Sciences; National University of Singapore; 117543 Singapore
- School of Biological Sciences; Nanyang Technological University; 637551 Singapore
| | - Adelene Y.L Sim
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR); Matrix 138671 Singapore
| |
Collapse
|
13
|
Abstract
MDM4, an essential negative regulator of the P53 tumor suppressor, is frequently overexpressed in cancer cells that harbor a wild-type P53. By a mechanism based on alternative splicing, the MDM4 gene generates two mutually exclusive isoforms: MDM4-FL, which encodes the full-length MDM4 protein, and a shorter splice variant called MDM4-S. Previous results suggested that the MDM4-S isoform could be an important driver of tumor development. In this short review, we discuss a recent set of data indicating that MDM4-S is more likely a passenger isoform during tumorigenesis and that targeting MDM4 splicing to prevent MDM4-FL protein expression appears as a promising strategy to reactivate p53 in cancer cells. The benefits and risks associated with this strategy are also discussed.
Collapse
|
14
|
Carr MI, Jones SN. Regulation of the Mdm2-p53 signaling axis in the DNA damage response and tumorigenesis. Transl Cancer Res 2016; 5:707-724. [PMID: 28690977 PMCID: PMC5501481 DOI: 10.21037/tcr.2016.11.75] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The p53 tumor suppressor acts as a guardian of the genome in mammalian cells undergoing DNA double strand breaks induced by a various forms of cell stress, including inappropriate growth signals or ionizing radiation. Following damage, p53 protein levels become greatly elevated in cells and p53 functions primarily as a transcription factor to regulate the expression a wide variety of genes that coordinate this DNA damage response. In cells undergoing high amounts of DNA damage, p53 can promote apoptosis, whereas in cells undergoing less damage, p53 promotes senescence or transient cell growth arrest and the expression of genes involved in DNA repair, depending upon the cell type and level of damage. Failure of the damaged cell to undergo growth arrest or apoptosis, or to respond to the DNA damage by other p53-coordinated mechanisms, can lead to inappropriate cell growth and tumorigenesis. In cells that have successfully responded to genetic damage, the amount of p53 present in the cell must return to basal levels in order for the cell to resume normal growth and function. Although regulation of p53 levels and function is coordinated by many proteins, it is now widely accepted that the master regulator of p53 is Mdm2. In this review, we discuss the role(s) of p53 in the DNA damage response and in tumor suppression, and how post-translational modification of Mdm2 regulates the Mdm2-p53 signaling axis to govern p53 activities in the cell.
Collapse
Affiliation(s)
- Michael I Carr
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Stephen N Jones
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| |
Collapse
|
15
|
Saito Y, Nakagawa T, Kakihana A, Nakamura Y, Nabika T, Kasai M, Takamori M, Yamagishi N, Kuga T, Hatayama T, Nakayama Y. Yeast Two-Hybrid and One-Hybrid Screenings Identify Regulators ofhsp70Gene Expression. J Cell Biochem 2016; 117:2109-17. [DOI: 10.1002/jcb.25517] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 02/10/2016] [Indexed: 01/02/2023]
Affiliation(s)
- Youhei Saito
- Department of Biochemistry and Molecular Biology; Kyoto Pharmaceutical University; 5 Nakauchi-cho, Misasagi, Yamashina-ku Kyoto 607-8414 Japan
| | - Takanobu Nakagawa
- Department of Biochemistry and Molecular Biology; Kyoto Pharmaceutical University; 5 Nakauchi-cho, Misasagi, Yamashina-ku Kyoto 607-8414 Japan
| | - Ayana Kakihana
- Department of Biochemistry and Molecular Biology; Kyoto Pharmaceutical University; 5 Nakauchi-cho, Misasagi, Yamashina-ku Kyoto 607-8414 Japan
| | - Yoshia Nakamura
- Department of Biochemistry and Molecular Biology; Kyoto Pharmaceutical University; 5 Nakauchi-cho, Misasagi, Yamashina-ku Kyoto 607-8414 Japan
| | - Tomomi Nabika
- Department of Biochemistry and Molecular Biology; Kyoto Pharmaceutical University; 5 Nakauchi-cho, Misasagi, Yamashina-ku Kyoto 607-8414 Japan
| | - Michihiro Kasai
- Department of Biochemistry and Molecular Biology; Kyoto Pharmaceutical University; 5 Nakauchi-cho, Misasagi, Yamashina-ku Kyoto 607-8414 Japan
| | - Mai Takamori
- Department of Biochemistry and Molecular Biology; Kyoto Pharmaceutical University; 5 Nakauchi-cho, Misasagi, Yamashina-ku Kyoto 607-8414 Japan
| | - Nobuyuki Yamagishi
- Department of Biochemistry and Molecular Biology; Kyoto Pharmaceutical University; 5 Nakauchi-cho, Misasagi, Yamashina-ku Kyoto 607-8414 Japan
| | - Takahisa Kuga
- Department of Biochemistry and Molecular Biology; Kyoto Pharmaceutical University; 5 Nakauchi-cho, Misasagi, Yamashina-ku Kyoto 607-8414 Japan
| | - Takumi Hatayama
- Department of Biochemistry and Molecular Biology; Kyoto Pharmaceutical University; 5 Nakauchi-cho, Misasagi, Yamashina-ku Kyoto 607-8414 Japan
| | - Yuji Nakayama
- Department of Biochemistry and Molecular Biology; Kyoto Pharmaceutical University; 5 Nakauchi-cho, Misasagi, Yamashina-ku Kyoto 607-8414 Japan
| |
Collapse
|
16
|
Wu WW, Bi WL, Kang YJ, Ramkissoon SH, Prasad S, Shih HA, Reardon DA, Dunn IF. Adult Atypical Teratoid/Rhabdoid Tumors. World Neurosurg 2016; 85:197-204. [DOI: 10.1016/j.wneu.2015.08.076] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 08/23/2015] [Accepted: 08/24/2015] [Indexed: 12/17/2022]
|
17
|
Comparative transcriptomics reveals similarities and differences between astrocytoma grades. BMC Cancer 2015; 15:952. [PMID: 26673168 PMCID: PMC4682229 DOI: 10.1186/s12885-015-1939-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 11/01/2015] [Indexed: 11/23/2022] Open
Abstract
Background Astrocytomas are the most common primary brain tumors distinguished into four histological grades. Molecular analyses of individual astrocytoma grades have revealed detailed insights into genetic, transcriptomic and epigenetic alterations. This provides an excellent basis to identify similarities and differences between astrocytoma grades. Methods We utilized public omics data of all four astrocytoma grades focusing on pilocytic astrocytomas (PA I), diffuse astrocytomas (AS II), anaplastic astrocytomas (AS III) and glioblastomas (GBM IV) to identify similarities and differences using well-established bioinformatics and systems biology approaches. We further validated the expression and localization of Ang2 involved in angiogenesis using immunohistochemistry. Results Our analyses show similarities and differences between astrocytoma grades at the level of individual genes, signaling pathways and regulatory networks. We identified many differentially expressed genes that were either exclusively observed in a specific astrocytoma grade or commonly affected in specific subsets of astrocytoma grades in comparison to normal brain. Further, the number of differentially expressed genes generally increased with the astrocytoma grade with one major exception. The cytokine receptor pathway showed nearly the same number of differentially expressed genes in PA I and GBM IV and was further characterized by a significant overlap of commonly altered genes and an exclusive enrichment of overexpressed cancer genes in GBM IV. Additional analyses revealed a strong exclusive overexpression of CX3CL1 (fractalkine) and its receptor CX3CR1 in PA I possibly contributing to the absence of invasive growth. We further found that PA I was significantly associated with the mesenchymal subtype typically observed for very aggressive GBM IV. Expression of endothelial and mesenchymal markers (ANGPT2, CHI3L1) indicated a stronger contribution of the micro-environment to the manifestation of the mesenchymal subtype than the tumor biology itself. We further inferred a transcriptional regulatory network associated with specific expression differences distinguishing PA I from AS II, AS III and GBM IV. Major central transcriptional regulators were involved in brain development, cell cycle control, proliferation, apoptosis, chromatin remodeling or DNA methylation. Many of these regulators showed directly underlying DNA methylation changes in PA I or gene copy number mutations in AS II, AS III and GBM IV. Conclusions This computational study characterizes similarities and differences between all four astrocytoma grades confirming known and revealing novel insights into astrocytoma biology. Our findings represent a valuable resource for future computational and experimental studies. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1939-9) contains supplementary material, which is available to authorized users.
Collapse
|
18
|
Gansmo LB, Romundstad P, Birkeland E, Hveem K, Vatten L, Knappskog S, Lønning PE. MDM4 SNP34091 (rs4245739) and its effect on breast-, colon-, lung-, and prostate cancer risk. Cancer Med 2015; 4:1901-7. [PMID: 26471763 PMCID: PMC5123711 DOI: 10.1002/cam4.555] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 07/31/2015] [Accepted: 09/07/2015] [Indexed: 12/21/2022] Open
Abstract
The MDM4 protein plays an important part in the negative regulation of the tumor suppressor p53 through its interaction with MDM2. In line with this, MDM4 amplification has been observed in several tumor forms. A polymorphism (rs4245739 A>C; SNP34091) in the MDM4 3′ untranslated region has been reported to create a target site for hsa‐miR‐191, resulting in decreased MDM4 mRNA levels. In this population‐based case–control study, we examined the potential association between MDM4 SNP34091, alone and in combination with the MDM2 SNP309T>G (rs2279744), and the risk of breast‐, colon‐, lung‐, and prostate cancer in Norway. SNP34091 was genotyped in 7,079 cancer patients as well as in 3,747 gender‐ and age‐matched healthy controls. MDM4 SNP34091C was not associated with risk for any of the tumor forms examined, except for a marginally significant association with reduced risk for breast cancer in a recessive model (OR = 0.77: 95% CI = 0.59–0.99). Stratifying according to MDM2 SNP309 status, we observed a reduced risk for breast cancer related to MDM4 SNP34091CC among individuals harboring the MDM2 SNP309GG genotype (OR = 0.41; 95% CI = 0.21–0.82). We conclude, MDM4 SNP34091 status to be associated with reduced risk of breast cancer, in particular in individuals carrying the MDM2 SNP309GG genotype, but not to be associated with either lung‐, colon‐ or prostate cancer.
Collapse
Affiliation(s)
- Liv B Gansmo
- Section of Oncology, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Pål Romundstad
- Faculty of Medicine, Department of Public Health, Norwegian University of Science and Technology, Trondheim, Norway
| | - Einar Birkeland
- Section of Oncology, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Kristian Hveem
- Faculty of Medicine, Department of Public Health, Norwegian University of Science and Technology, Trondheim, Norway
| | - Lars Vatten
- Faculty of Medicine, Department of Public Health, Norwegian University of Science and Technology, Trondheim, Norway
| | - Stian Knappskog
- Section of Oncology, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Per Eystein Lønning
- Section of Oncology, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Oncology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
19
|
Wolter M, Werner T, Malzkorn B, Reifenberger G. Role of microRNAs Located on Chromosome Arm 10q in Malignant Gliomas. Brain Pathol 2015. [PMID: 26223576 DOI: 10.1111/bpa.12294] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Deletions of chromosome arm 10q are found in most glioblastomas and subsets of lower grade gliomas. Mutations in the PTEN gene at 10q23.3 are restricted to less than half of the 10q-deleted gliomas, suggesting additional glioma-associated tumor suppressors on 10q. We investigated 64 astrocytic gliomas of different malignancy grades for aberrant expression of 16 microRNAs (miRNAs) on 10q. Thereby, we identified four miRNAs (miR-107, miR-146b-5p, miR-346, miR-1287-5p) whose expression was frequently down-regulated in anaplastic astrocytomas and/or glioblastomas. DNA methylation analyses revealed 5'-CpG site hypermethylation of miR-346 in more than two-thirds of primary glioblastomas, while aberrant 5'-CpG site methylation of miR-146b-5p was frequent in IDH1-mutant astrocytomas and secondary glioblastomas. Overexpression of either of the four miRNAs in glioma cell lines reduced cell proliferation and/or increased caspase-3/7 activity. Expression analyses of miRNA overexpressing glioma cells and 3'-untranslated region luciferase reporter gene assays revealed evidence that these miRNAs post-transcriptionally regulate expression of glioma-relevant genes, including CDK6 (miR-107), EGFR (miR-146b-5p, miR-1287-5p), TERT and SEMA6A (miR-346), all of which are overexpressed in malignant gliomas in situ. In summary, we show that the 10q-located miRNAs miR-107, miR-146b-5p, miR-346 and miR-1287-5p are frequently down-regulated in malignant gliomas and thereby may support overexpression of important glioma growth-promoting genes.
Collapse
Affiliation(s)
- Marietta Wolter
- Department of Neuropathology, Heinrich Heine University, Düsseldorf, Germany
| | - Thomas Werner
- Department of Neuropathology, Heinrich Heine University, Düsseldorf, Germany
| | - Bastian Malzkorn
- Department of Neuropathology, Heinrich Heine University, Düsseldorf, Germany
| | - Guido Reifenberger
- Department of Neuropathology, Heinrich Heine University, Düsseldorf, Germany.,German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
20
|
Waugh MG. Chromosomal Instability and Phosphoinositide Pathway Gene Signatures in Glioblastoma Multiforme. Mol Neurobiol 2014; 53:621-630. [PMID: 25502460 PMCID: PMC4703635 DOI: 10.1007/s12035-014-9034-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 11/30/2014] [Indexed: 12/29/2022]
Abstract
Structural rearrangements of chromosome 10 are frequently observed in glioblastoma multiforme and over 80 % of tumour samples archived in the catalogue of somatic mutations in cancer database had gene copy number loss for PI4K2A which encodes phosphatidylinositol 4-kinase type IIalpha. PI4K2A loss of heterozygosity mirrored that of PTEN, another enzyme that regulates phosphoinositide levels and also PIK3AP1, MINPP1, INPP5A and INPP5F. These results indicated a reduction in copy number for a set of phosphoinositide signalling genes that co-localise to chromosome 10q. This analysis was extended to a panel of phosphoinositide pathway genes on other chromosomes and revealed a number of previously unreported associations with glioblastoma multiforme. Of particular note were highly penetrant copy number losses for a group of X-linked phosphoinositide phosphatase genes OCRL, MTM1 and MTMR8; copy number amplifications for the chromosome 19 genes PIP5K1C, AKT2 and PIK3R2, and also for the phospholipase C genes PLCB1, PLCB4 and PLCG1 on chromosome 20. These mutations are likely to affect signalling and trafficking functions dependent on the PI(4,5)P2, PI(3,4,5)P3 and PI(3,5)P2 lipids as well as the inositol phosphates IP3, IP5 and IP6. Analysis of flanking genes with functionally unrelated products indicated that chromosomal instability as opposed to a phosphoinositide-specific process underlay this pattern of copy number variation. This in silico study suggests that in glioblastoma multiforme, karyotypic changes have the potential to cause multiple abnormalities in sets of genes involved in phosphoinositide metabolism and this may be important for understanding drug resistance and phosphoinositide pathway redundancy in the advanced disease state.
Collapse
Affiliation(s)
- Mark G Waugh
- Lipid and Membrane Biology Group, Institute for Liver and Digestive Health, UCL, Royal Free Campus, Rowland Hill Street, London, NW3 2PF, UK.
| |
Collapse
|
21
|
Bardot B, Bouarich-Bourimi R, Leemput J, Lejour V, Hamon A, Plancke L, Jochemsen AG, Simeonova I, Fang M, Toledo F. Mice engineered for an obligatory Mdm4 exon skipping express higher levels of the Mdm4-S isoform but exhibit increased p53 activity. Oncogene 2014; 34:2943-8. [PMID: 25088193 DOI: 10.1038/onc.2014.230] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 05/15/2014] [Accepted: 06/24/2014] [Indexed: 12/14/2022]
Abstract
Mdm4, a protein related to the ubiquitin-ligase Mdm2, is an essential inhibitor of tumor suppressor protein p53. In both human and mouse cells, the Mdm4 gene encodes two major transcripts: one encodes the full-length oncoprotein (designated below as Mdm4-FL), whereas the other, resulting from a variant splicing that skips exon 6, encodes the shorter isoform Mdm4-S. Importantly, increased Mdm4-S mRNA levels were observed in several human cancers, and correlated with poor survival. However, the role of Mdm4-S in cancer progression remains controversial, because the Mdm4-S protein appeared to be a potent p53 inhibitor when overexpressed, but the splice variant also leads to a decrease in Mdm4-FL expression. To unambiguously determine the physiological impact of the Mdm4-S splice variant, we generated a mouse model with a targeted deletion of the Mdm4 exon 6, thereby creating an obligatory exon skipping. The mutant allele (Mdm4(ΔE6)) prevented the expression of Mdm4-FL, but also led to increased Mdm4-S mRNA levels. Mice homozygous for this allele died during embryonic development, but were rescued by a concomitant p53 deficiency. Furthermore in a hypomorphic p53(ΔP/ΔP) context, the Mdm4(ΔE6) allele led to p53 activation and delayed the growth of oncogene-induced tumors. We next determined the effect of Mdm4(+/ΔE6) heterozygosity in a hypermorphic p53(+/Δ31) genetic background, recently shown to be extremely sensitive to Mdm4 activity. Mdm4(+/ΔE6) p53(+/Δ31) pups were born, but suffered from aplastic anemia and died before weaning, again indicating an increased p53 activity. Our results demonstrate that the main effect of a skipping of Mdm4 exon 6 is not the synthesis of the Mdm4-S protein, but rather a decrease in Mdm4-FL expression. These and other data suggest that increased Mdm4-S mRNA levels might correlate with more aggressive cancers without encoding significant amounts of a potential oncoprotein. Hypotheses that may account for this apparent paradox are discussed.
Collapse
Affiliation(s)
- B Bardot
- 1] Institut Curie, Centre de recherche, Genetics of Tumor Suppression (Equipe Labellisée Ligue 2014), Paris, France [2] UPMC Univ Paris 06, Paris, France [3] CNRS UMR 3244, Paris, France
| | - R Bouarich-Bourimi
- 1] Institut Curie, Centre de recherche, Genetics of Tumor Suppression (Equipe Labellisée Ligue 2014), Paris, France [2] UPMC Univ Paris 06, Paris, France [3] CNRS UMR 3244, Paris, France
| | - J Leemput
- 1] Institut Curie, Centre de recherche, Genetics of Tumor Suppression (Equipe Labellisée Ligue 2014), Paris, France [2] UPMC Univ Paris 06, Paris, France [3] CNRS UMR 3244, Paris, France
| | - V Lejour
- 1] Institut Curie, Centre de recherche, Genetics of Tumor Suppression (Equipe Labellisée Ligue 2014), Paris, France [2] UPMC Univ Paris 06, Paris, France [3] CNRS UMR 3244, Paris, France
| | - A Hamon
- 1] Institut Curie, Centre de recherche, Genetics of Tumor Suppression (Equipe Labellisée Ligue 2014), Paris, France [2] UPMC Univ Paris 06, Paris, France [3] CNRS UMR 3244, Paris, France
| | - L Plancke
- 1] Institut Curie, Centre de recherche, Genetics of Tumor Suppression (Equipe Labellisée Ligue 2014), Paris, France [2] UPMC Univ Paris 06, Paris, France [3] CNRS UMR 3244, Paris, France
| | - A G Jochemsen
- Leiden University Medical Center, Leiden, The Netherlands
| | - I Simeonova
- 1] Institut Curie, Centre de recherche, Genetics of Tumor Suppression (Equipe Labellisée Ligue 2014), Paris, France [2] UPMC Univ Paris 06, Paris, France [3] CNRS UMR 3244, Paris, France
| | - M Fang
- 1] Institut Curie, Centre de recherche, Genetics of Tumor Suppression (Equipe Labellisée Ligue 2014), Paris, France [2] UPMC Univ Paris 06, Paris, France [3] CNRS UMR 3244, Paris, France
| | - F Toledo
- 1] Institut Curie, Centre de recherche, Genetics of Tumor Suppression (Equipe Labellisée Ligue 2014), Paris, France [2] UPMC Univ Paris 06, Paris, France [3] CNRS UMR 3244, Paris, France
| |
Collapse
|
22
|
Sun XX, Dai MS. Deubiquitinating enzyme regulation of the p53 pathway: A lesson from Otub1. World J Biol Chem 2014; 5:75-84. [PMID: 24920999 PMCID: PMC4050119 DOI: 10.4331/wjbc.v5.i2.75] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 01/11/2014] [Accepted: 03/14/2014] [Indexed: 02/05/2023] Open
Abstract
Deubiquitination has emerged as an important mechanism of p53 regulation. A number of deubiquitinating enzymes (DUBs) from the ubiquitin-specific protease family have been shown to regulate the p53-MDM2-MDMX networks. We recently reported that Otub1, a DUB from the OTU-domain containing protease family, is a novel p53 regulator. Interestingly, Otub1 abrogates p53 ubiquitination and stabilizes and activates p53 in cells independently of its deubiquitinating enzyme activity. Instead, it does so by inhibiting the MDM2 cognate ubiquitin-conjugating enzyme (E2) UbcH5. Otub1 also regulates other biological signaling through this non-canonical mechanism, suppression of E2, including the inhibition of DNA-damage-induced chromatin ubiquitination. Thus, Otub1 evolves as a unique DUB that mainly suppresses E2 to regulate substrates. Here we review the current progress made towards the understanding of the complex regulation of the p53 tumor suppressor pathway by DUBs, the biological function of Otub1 including its positive regulation of p53, and the mechanistic insights into how Otub1 suppresses E2.
Collapse
|
23
|
Wang CL, Wang JY, Liu ZY, Ma XM, Wang XW, Jin H, Zhang XP, Fu D, Hou LJ, Lu YC. Ubiquitin-specific protease 2a stabilizes MDM4 and facilitates the p53-mediated intrinsic apoptotic pathway in glioblastoma. Carcinogenesis 2014; 35:1500-9. [PMID: 24445145 DOI: 10.1093/carcin/bgu015] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The mouse double minute 4 (MDM4) oncoprotein may inhibit tumorigenesis by regulating the apoptotic mediator p53. Ubiquitin-specific protease 2a (USP2a) is a deubiquitinating enzyme that protects MDM4 against degradation, so USP2-MDM4 interaction may be a key determinant of the malignant potential of human cancers. MDM4 and USP2a, as well as the MDM4-USP2a complex, were more highly expressed in glioblastoma multiforme tissue samples from patients with good prognosis compared with patients with poor prognosis. Analysis of the prognostic parameters indicated that MDM4 expression was positively correlated with an increased likelihood for survival. Compared with the poor prognosis patients, mitochondria from good prognosis glioma patients contained higher levels of both MDM4 and the proapoptotic protein p53Ser46(P). In U87MG glioma cell line, the overexpression of MDM4 enhanced ultraviolet (UV)-induced cytochrome c release and apoptosis. In contrast, MDM4 knockdown decreased mitochondrial p53Ser46(P) levels and rescued cells from UV-induced apoptosis. The expression of MDM4 and USP2a were positively correlated with each other. MDM4-USP2a complexes were found only in the cytoplasmic fraction, whereas the mitochondrial fraction contained MDM4-p53Ser46(P) and MDM4-Bcl-2 complexes. Overexpression of USP2a increased p53 and p53Ser46(P) levels in the mitochondria, whereas simultaneous MDM4 knockdown completely reversed this effect. UV-induced apoptosis was reduced by USP2a knockdown but restored by the simultaneous overexpression of MDM4. This apoptotic response was reduced by knockdown of p53 but not p21. Our results suggest that USP2a binds to and stabilizes MDM4; thus in turn, it enhances the mitochondrial localization of p53 and promotes apoptosis in glioma cells.
Collapse
Affiliation(s)
- Chun-Lin Wang
- Department of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200003, China, Department of Neurosurgery, the 105th Hospital of PLA, Hefei 230000, Anhui Province, China
| | - Jun-Yu Wang
- Department of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Zhen-Yang Liu
- Department of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Xiao-Mei Ma
- Department of Pathology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Xiao-Wen Wang
- Department of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Hai Jin
- Department of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Xiao-Ping Zhang
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai JiaoTong University School of Medicine, 225 South Chongqing Road, Shanghai 200025, China and Department of Nuclear Medicine, Shanghai 10th People's Hospital, Tongji University School of Medicine, 301 Yan Chang Road, Shanghai 200072, China
| | - Da Fu
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai JiaoTong University School of Medicine, 225 South Chongqing Road, Shanghai 200025, China and
| | - Li-Jun Hou
- Department of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200003, China,
| | - Yi-Cheng Lu
- Department of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200003, China,
| |
Collapse
|
24
|
Abstract
Discovered in 1987 and 1997 respectively, Mdm2 and MdmX represent two critical cellular regulators of the p53 tumor suppressor. This chapter reviews each from initial discovery to our current understanding of their deregulation in human cancer with a focus on how each regulator impacts p53 function. While p53 independent activities of Mdm2 and MdmX are noted the reader is directed to other reviews on this topic. The chapter concludes with an examination of the various mechanisms of Mdm-deregulation and an assessment of the current therapeutic approaches to target Mdm2 and MdmX overexpression.
Collapse
|
25
|
Holliday EB, Sulman EP. Tumor prognostic factors and the challenge of developing predictive factors. Curr Oncol Rep 2013; 15:33-46. [PMID: 23224629 DOI: 10.1007/s11912-012-0283-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Histopathologic classification has been widely used to type and grade primary brain tumors. However, the diverse behavior of primary brain tumors has made prognostic determinations based purely on clinical and histopathologic variables difficult. Recent advances in the molecular genetics of brain tumors have helped to explain the witnessed heterogeneity regarding response to treatment, time to progression, and overall survival. Additionally, there has been interest in identifying predictive factors to help direct patients to therapeutic interventions specific to their tumor and patient biology. Further identification of both prognostic and predictive biomarkers will make possible better patient stratification and individualization of treatment.
Collapse
Affiliation(s)
- Emma B Holliday
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | |
Collapse
|
26
|
Gannon HS, Jones SN. Using Mouse Models to Explore MDM-p53 Signaling in Development, Cell Growth, and Tumorigenesis. Genes Cancer 2012; 3:209-18. [PMID: 23150754 DOI: 10.1177/1947601912455324] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The p53 transcription factor regulates the expression of numerous genes whose products affect cell proliferation, senescence, cellular metabolism, apoptosis, and DNA repair. These p53-mediated effects can inhibit the growth of stressed or mutated cells and suppress tumorigenesis in the organism. However, the various growth-inhibitory properties of p53 must be kept in check in nondamaged cells in order to facilitate proper embryogenesis or the homeostatic maintenance of adult tissues. This requisite inhibition of p53 is performed primarily by the MDM oncoproteins, Mdm2 and MdmX. These p53-binding proteins limit p53 activity both in normal cells and in stressed cells seeking to promote resolution of their p53-stress response. Many mouse models bearing genetic alterations in Mdm2 or MdmX have been generated to explore the function and regulation of MDM-p53 signaling in development, in tissue homeostasis, in aging, and in cancer. These models not only have demonstrated a critical need for Mdm2 and MdmX in normal cell growth and in development but more recently have identified the MDM-p53 signaling axis as a key regulator of the cellular response to a wide variety of genetic or metabolic stresses. In this review, we discuss what has been learned from various studies of these Mdm2 and MdmX mouse models and highlight a few of the many important remaining questions.
Collapse
Affiliation(s)
- Hugh S Gannon
- University of Massachusetts Medical School, Worcester, MA, USA
| | | |
Collapse
|
27
|
Amplified and homozygously deleted genes in glioblastoma: impact on gene expression levels. PLoS One 2012; 7:e46088. [PMID: 23029397 PMCID: PMC3460955 DOI: 10.1371/journal.pone.0046088] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 08/27/2012] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) displays multiple amplicons and homozygous deletions that involve relevant pathogenic genes and other genes whose role remains unknown. METHODOLOGY Single-nucleotide polymorphism (SNP)-arrays were used to determine the frequency of recurrent amplicons and homozygous deletions in GBM (n = 46), and to evaluate the impact of copy number alterations (CNA) on mRNA levels of the genes involved. PRINCIPAL FINDINGS Recurrent amplicons were detected for chromosomes 7 (50%), 12 (22%), 1 (11%), 4 (9%), 11 (4%), and 17 (4%), whereas homozygous deletions involved chromosomes 9p21 (52%) and 10q (22%). Most genes that displayed a high correlation between DNA CNA and mRNA levels were coded in the amplified chromosomes. For some amplicons the impact of DNA CNA on mRNA expression was restricted to a single gene (e.g., EGFR at 7p11.2), while for others it involved multiple genes (e.g., 11 and 5 genes at 12q14.1-q15 and 4q12, respectively). Despite homozygous del(9p21) and del(10q23.31) included multiple genes, association between these DNA CNA and RNA expression was restricted to the MTAP gene. CONCLUSIONS Overall, our results showed a high frequency of amplicons and homozygous deletions in GBM with variable impact on the expression of the genes involved, and they contributed to the identification of other potentially relevant genes.
Collapse
|
28
|
Longerich T. [Genome-wide molecular screening for the identification of new targets in human hepatocellular carcinoma]. DER PATHOLOGE 2012; 33 Suppl 2:302-6. [PMID: 22948473 DOI: 10.1007/s00292-012-1628-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Molecular hepatocarcinogenesis represents a step-wise process which in most cases is associated with a well-defined chronic liver disease. By meta-analysis of classical comparative genomic hybridization (CGH) data an oncogenetic progression model could be generated (1q gain→ 8q gain → 4q loss → 16q loss → 13q loss). Array-based CGH allows the identification of etiology-dependent and independent genomic alterations. The Mouse Double Minute homologue 4 (MDM4) was shown to act as an oncogene of 1q32.1 gains in human hepatocellular carcinoma (HCC). Integration of genomic and epigenomic data facilitated the identification of tumor suppressor gene candidates in human HCC. For instance, Polo-like kinase 3 (PLK3) is frequently inactivated via promoter hypermethylation in combination with a loss of the second allele at 1p34.1. Both MDM4 overexpression and methylation-dependent inactivation of PLK3 represent potential targets for future therapeutic approaches.
Collapse
Affiliation(s)
- T Longerich
- Pathologisches Institut, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 224, 69120 Heidelberg.
| |
Collapse
|
29
|
Valles I, Pajares MJ, Segura V, Guruceaga E, Gomez-Roman J, Blanco D, Tamura A, Montuenga LM, Pio R. Identification of novel deregulated RNA metabolism-related genes in non-small cell lung cancer. PLoS One 2012; 7:e42086. [PMID: 22876301 PMCID: PMC3410905 DOI: 10.1371/journal.pone.0042086] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 07/02/2012] [Indexed: 01/01/2023] Open
Abstract
Lung cancer is a leading cause of cancer death worldwide. Several alterations in RNA metabolism have been found in lung cancer cells; this suggests that RNA metabolism-related molecules are involved in the development of this pathology. In this study, we searched for RNA metabolism-related genes that exhibit different expression levels between normal and tumor lung tissues. We identified eight genes differentially expressed in lung adenocarcinoma microarray datasets. Of these, seven were up-regulated whereas one was down-regulated. Interestingly, most of these genes had not previously been associated with lung cancer. These genes play diverse roles in mRNA metabolism: three are associated with the spliceosome (ASCL3L1, SNRPB and SNRPE), whereas others participate in RNA-related processes such as translation (MARS and MRPL3), mRNA stability (PCBPC1), mRNA transport (RAE), or mRNA editing (ADAR2, also known as ADARB1). Moreover, we found a high incidence of loss of heterozygosity at chromosome 21q22.3, where the ADAR2 locus is located, in NSCLC cell lines and primary tissues, suggesting that the downregulation of ADAR2 in lung cancer is associated with specific genetic losses. Finally, in a series of adenocarcinoma patients, the expression of five of the deregulated genes (ADAR2, MARS, RAE, SNRPB and SNRPE) correlated with prognosis. Taken together, these results support the hypothesis that changes in RNA metabolism are involved in the pathogenesis of lung cancer, and identify new potential targets for the treatment of this disease.
Collapse
Affiliation(s)
- Iñaki Valles
- Division of Oncology, Center for Applied Medical Research, Pamplona, Spain
| | - Maria J. Pajares
- Division of Oncology, Center for Applied Medical Research, Pamplona, Spain
- Department of Histology and Pathology, School of Medicine, University of Navarra, Pamplona, Spain
| | - Victor Segura
- Genomics & Bioinformatics Unit, Center for Applied Medical Research, Pamplona, Spain
| | - Elisabet Guruceaga
- Genomics & Bioinformatics Unit, Center for Applied Medical Research, Pamplona, Spain
| | - Javier Gomez-Roman
- Department of Pathology, Marques de Valdecilla University Hospital, School of Medicine, University of Cantabria, Santander, Spain
| | - David Blanco
- Division of Oncology, Center for Applied Medical Research, Pamplona, Spain
- Department of Histology and Pathology, School of Medicine, University of Navarra, Pamplona, Spain
| | - Akiko Tamura
- Department of Thoracic Surgery, Clinica Universidad de Navarra, Pamplona, Spain
| | - Luis M. Montuenga
- Division of Oncology, Center for Applied Medical Research, Pamplona, Spain
- Department of Histology and Pathology, School of Medicine, University of Navarra, Pamplona, Spain
- * E-mail: (RP); (LMM)
| | - Ruben Pio
- Division of Oncology, Center for Applied Medical Research, Pamplona, Spain
- Department of Biochemistry, School of Sciences, University of Navarra, Pamplona, Spain
- * E-mail: (RP); (LMM)
| |
Collapse
|
30
|
Mandke P, Wyatt N, Fraser J, Bates B, Berberich SJ, Markey MP. MicroRNA-34a modulates MDM4 expression via a target site in the open reading frame. PLoS One 2012; 7:e42034. [PMID: 22870278 PMCID: PMC3411609 DOI: 10.1371/journal.pone.0042034] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 06/29/2012] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND MDM4, also called MDMX or HDMX in humans, is an important negative regulator of the p53 tumor suppressor. MDM4 is overexpressed in about 17% of all cancers and more frequently in some types, such as colon cancer or retinoblastoma. MDM4 is known to be post-translationally regulated by MDM2-mediated ubiquitination to decrease its protein levels in response to genotoxic stress, resulting in accumulation and activation of p53. At the transcriptional level, MDM4 gene regulation has been less clearly understood. We have reported that DNA damage triggers loss of MDM4 mRNA and a concurrent increase in p53 activity. These experiments attempt to determine a mechanism for down-regulation of MDM4 mRNA. METHODOLOGY/PRINCIPAL FINDINGS Here we report that MDM4 mRNA is a target of hsa-mir-34a (miR-34a). MDM4 mRNA contains a lengthy 3' untranslated region; however, we find that it is a miR-34a site within the open reading frame (ORF) of exon 11 that is responsible for the repression. Overexpression of miR-34a, but not a mutant miR-34a, is sufficient to decrease MDM4 mRNA levels to an extent identical to those of known miR-34a target genes. Likewise, MDM4 protein levels are decreased by miR-34a overexpression. Inhibition of endogenous miR-34a increased expression of miR-34a target genes and MDM4. A portion of MDM4 exon 11 containing this 8mer-A1 miR-34a site fused to a luciferase reporter gene is sufficient to confer responsiveness, being inhibited by additional expression of exogenous mir-34a and activated by inhibition of miR-34a. CONCLUSIONS/SIGNIFICANCE These data establish a mechanism for the observed DNA damage-induced negative regulation of MDM4 and potentially provide a novel means to manipulate MDM4 expression without introducing DNA damage.
Collapse
Affiliation(s)
- Pooja Mandke
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, Ohio, United States of America
| | - Nicholas Wyatt
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, Ohio, United States of America
| | - Jillian Fraser
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, Ohio, United States of America
| | - Benjamin Bates
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, Ohio, United States of America
| | - Steven J. Berberich
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, Ohio, United States of America
| | - Michael P. Markey
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, Ohio, United States of America
- * E-mail:
| |
Collapse
|
31
|
Lenos K, Grawenda AM, Lodder K, Kuijjer ML, Teunisse AFAS, Repapi E, Grochola LF, Bartel F, Hogendoorn PCW, Wuerl P, Taubert H, Cleton-Jansen AM, Bond GL, Jochemsen AG. Alternate splicing of the p53 inhibitor HDMX offers a superior prognostic biomarker than p53 mutation in human cancer. Cancer Res 2012; 72:4074-84. [PMID: 22700878 DOI: 10.1158/0008-5472.can-12-0215] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Conventional high-grade osteosarcoma is the most common primary bone malignancy. Although altered expression of the p53 inhibitor HDMX (Mdmx/Mdm4) is associated with cancer risk, progression, and outcome in other tumor types, little is known about its role in osteosarcoma. High expression of the Hdmx splice variant HDMX-S relative to the full-length transcript (the HDMX-S/HDMX-FL ratio) correlates with reduced HDMX protein expression, faster progression, and poorer survival in several cancers. Here, we show that the HDMX-S/HDMX-FL ratio positively correlates with less HDMX protein expression, faster metastatic progression, and a trend to worse overall survival in osteosarcomas. We found that the HDMX-S/HDMX-FL ratio associated with common somatic genetic lesions connected with p53 inhibition, such as p53 mutation and HDM2 overexpression in osteosarcoma cell lines. Interestingly, this finding was not limited to osteosarcomas as we observed similar associations in breast cancer and a variety of other cancer cell lines, as well as in tumors from patients with soft tissue sarcoma. The HDMX-S/HDMX-FL ratio better defined patients with sarcoma with worse survival rates than p53 mutational status. We propose a novel role for alternative splicing of HDMX, whereby it serves as a mechanism by which HDMX protein levels are reduced in cancer cells that have already inhibited p53 activity. Alternative splicing of HDMX could, therefore, serve as a more effective biomarker for p53 pathway attenuation in cancers than p53 gene mutation.
Collapse
Affiliation(s)
- Kristiaan Lenos
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Wang Z, Sturgis EM, Zhang Y, Huang Z, Zhou Q, Wei Q, Li G. Combined p53-related genetic variants together with HPV infection increase oral cancer risk. Int J Cancer 2011; 131:E251-8. [PMID: 22052649 DOI: 10.1002/ijc.27335] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 10/21/2011] [Indexed: 01/11/2023]
Abstract
To explore the role of polymorphisms of p53-related genes in etiology of oral cancer, we investigated joint effects of seven putatively functional polymorphisms of p53 (codon 72 Arg/Pro), p73 (4/14 GC/AT), murine double minute 2 gene (MDM2; A2164G and T2580G) and MDM4 (rs11801299 G > A, rs10900598 G > T and rs1380576 C > G) on risk of human papillomavirus (HPV)16-associated oral cancer in a case-control study with 325 cases and 335 cancer-free controls. We found that HPV16 seropositivity alone was associated with an increased risk of oral cancer [adjusted odds ratio (OR), 3.1; 95% confidence interval (CI), 2.1-4.6]. After combining genotypes of seven polymorphisms and using the low-risk group (0-3 combined risk genotypes) and HPV16 seronegativity as the reference group, the medium-risk (4 combined risk genotypes) and high-risk groups (5-7 combined risk genotypes) and HPV16 seronegativity were associated with only an OR of 1.6 (95% CI, 1.1-2.5) and 1.2 (95% CI, 0.7-1.9) for oral cancer risk, respectively, whereas the low-risk, medium-risk and high-risk groups and HPV16 seropositivity were significantly associated with a higher OR of 2.1 (95% CI, 1.2-3.6), 4.0 (95% CI, 1.8-9.1) and 19.1 (95% CI, 5.7-64.2), respectively. Notably, such effect modification by these combined risk genotypes was particularly pronounced in young subjects (aged < 50 years), never smokers and patients with oropharyngeal cancer. Taken together, these findings suggest that the combined risk genotypes of p53-related genes may modify risk of HPV16-associated oral cancer, especially in young patients, never-smokers and patients with oropharyngeal cancer. Larger studies are needed to validate our findings.
Collapse
Affiliation(s)
- Zhongqiu Wang
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Jia D, Wei L, Guo W, Zha R, Bao M, Chen Z, Zhao Y, Ge C, Zhao F, Chen T, Yao M, Li J, Wang H, Gu J, He X. Genome-wide copy number analyses identified novel cancer genes in hepatocellular carcinoma. Hepatology 2011; 54:1227-36. [PMID: 21688285 DOI: 10.1002/hep.24495] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 06/02/2011] [Indexed: 01/22/2023]
Abstract
UNLABELLED A powerful way to identify driver genes with causal roles in carcinogenesis is to detect genomic regions that undergo frequent alterations in cancers. Here we identified 1,241 regions of somatic copy number alterations in 58 paired hepatocellular carcinoma (HCC) tumors and adjacent nontumor tissues using genome-wide single nucleotide polymorphism (SNP) 6.0 arrays. Subsequently, by integrating copy number profiles with gene expression signatures derived from the same HCC patients, we identified 362 differentially expressed genes within the aberrant regions. Among these, 20 candidate genes were chosen for further functional assessments. One novel tumor suppressor (tripartite motif-containing 35 [TRIM35]) and two putative oncogenes (hairy/enhancer-of-split related with YRPW motif 1 [HEY1] and small nuclear ribonucleoprotein polypeptide E [SNRPE]) were discovered by various in vitro and in vivo tumorigenicity experiments. Importantly, it was demonstrated that decreases of TRIM35 expression are a frequent event in HCC and the expression level of TRIM35 was negatively correlated with tumor size, histological grade, and serum alpha-fetoprotein concentration. CONCLUSION These results showed that integration of genomic and transcriptional data offers powerful potential for identifying novel cancer genes in HCC pathogenesis.
Collapse
Affiliation(s)
- Deshui Jia
- Shanghai Medical College, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Lenos K, de Lange J, Teunisse AFAS, Lodder K, Verlaan-de Vries M, Wiercinska E, van der Burg MJM, Szuhai K, Jochemsen AG. Oncogenic functions of hMDMX in in vitro transformation of primary human fibroblasts and embryonic retinoblasts. Mol Cancer 2011; 10:111. [PMID: 21910853 PMCID: PMC3179748 DOI: 10.1186/1476-4598-10-111] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 09/12/2011] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND In around 50% of all human cancers the tumor suppressor p53 is mutated. It is generally assumed that in the remaining tumors the wild-type p53 protein is functionally impaired. The two main inhibitors of p53, hMDM2 (MDM2) and hMDMX (MDMX/MDM4) are frequently overexpressed in wild-type p53 tumors. Whereas the main activity of hMDM2 is to degrade p53 protein, its close homolog hMDMX does not degrade p53, but it represses its transcriptional activity. Here we study the role of hMDMX in the neoplastic transformation of human fibroblasts and embryonic retinoblasts, since a high number of retinoblastomas contain elevated hMDMX levels. METHODS We made use of an in vitro transformation model using a retroviral system of RNA interference and gene overexpression in primary human fibroblasts and embryonic retinoblasts. Consecutive knockdown of RB and p53, overexpression of SV40-small t, oncogenic HRasV12 and HA-hMDMX resulted in a number of stable cell lines representing different stages of the transformation process, enabling a comparison between loss of p53 and hMDMX overexpression. The cell lines were tested in various assays to assess their oncogenic potential. RESULTS Both p53-knockdown and hMDMX overexpression accelerated proliferation and prevented growth suppression induced by introduction of oncogenic Ras, which was required for anchorage-independent growth and the ability to form tumors in vivo. Furthermore, we found that hMDMX overexpression represses basal p53 activity to some extent. Transformed fibroblasts with very high levels of hMDMX became largely resistant to the p53 reactivating drug Nutlin-3. The Nutlin-3 response of hMDMX transformed retinoblasts was intact and resembled that of retinoblastoma cell lines. CONCLUSIONS Our studies show that hMDMX has the essential properties of an oncogene. Its constitutive expression contributes to the oncogenic phenotype of transformed human cells. Its main function appears to be p53 inactivation. Therefore, developing new drugs targeting hMDMX is a valid approach to obtain new treatments for a subset of human tumors expressing wild-type p53.
Collapse
Affiliation(s)
- Kristiaan Lenos
- Department of Molecular Cell Biology, Leiden University Medical Center, P,O, Box 9600, 2300 RC Leiden, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Yu H, Sturgis EM, Liu Z, Wang LE, Wei Q, Li G. Modifying effect of MDM4 variants on risk of HPV16-associated squamous cell carcinoma of oropharynx. Cancer 2011; 118:1684-92. [PMID: 21823114 DOI: 10.1002/cncr.26423] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 06/15/2011] [Accepted: 06/16/2011] [Indexed: 12/14/2022]
Abstract
BACKGROUND The p53 pathway plays a critical role in maintaining genomic stability and preventing tumor formation. Given the roles of both MDM4 and HPV16 E6 oncoproteins in inhibition of p53 activity, we tested the hypothesis that MDM4 polymorphisms are associated with the risk of HPV16-associated squamous cell carcinoma of head and neck (SCCHN). METHODS Genotyping was conducted on 3 tagging single nucleotide polymorphisms (rs11801299 G>A, rs10900598 G>T, and rs1380576 C>G) in MDM4, and serology was used to determine HPV 16 exposure in 380 cases and 335 cancer-free controls that were frequency-matched by age, sex, smoking, and drinking status. RESULTS None of 3 MDM4 polymorphisms alone was significantly associated with risk of overall SCCHN. With further analysis stratified by HPV16 serology and tumor site, we found that each polymorphism individually modified the risk of HPV16-associated squamous cell carcinoma of the oropharynx (SCCOP), and such effect modification was particularly pronounced in never smokers and never drinkers. CONCLUSION The risk of HPV16-associated SCCOP could be modified by MDM4 polymorphisms. Large and prospective studies are needed to validate our findings.
Collapse
Affiliation(s)
- Hongping Yu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | | | | | | |
Collapse
|
36
|
Zhao Z, Liu Y, He H, Chen X, Chen J, Lu YC. Candidate genes influencing sensitivity and resistance of human glioblastoma to Semustine. Brain Res Bull 2011; 86:189-94. [PMID: 21807073 DOI: 10.1016/j.brainresbull.2011.07.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 07/07/2011] [Accepted: 07/13/2011] [Indexed: 12/28/2022]
Abstract
OBJECTIVE The prognosis of glioblastoma (GBM) is poor. The therapeutic outcome of conventional surgical and adjuvant treatments remains unsatisfactory, and therefore individualized adjuvant chemotherapy has aroused more attention. Microarrays have been applied to study mechanism of GBM development and progression but it has difficulty in determining responsible genes from the plethora of genes on microarrays unrelated to outcome. The present study was attempted to use bioinformatics method to investigate candidate genes that may influence chemosensitivity of GBM to Semustine (Me-CCNU). METHODS Clinical data of 4 GBM patients in Affymetrix microarray were perfected through long-term follow-up study. Differential expression genes between the long- and short-survival groups were picked out, GO-analysis and pathway-analysis of the differential expression genes were performed. Me-CCNU-related signal transduction networks were constructed. The methods combined three steps before were used to screen core genes that influenced Me-CCNU chemosensitivity in GBM. RESULTS In Affymetrix microarray there were altogether 2018 differential expression genes that influenced survival duration of GBM. Of them, 934 genes were up-regulated and 1084 down-regulated. They mainly participated in 94 pathways. Me-CCNU-related signal transduction networks were constructed. The total number of genes in the networks was 466, of which 66 were also found in survival duration-related differential expression genes. Studied key genes through GO-analysis, pathway-analysis and in the Me-CCNU-related signal transduction networks, 25 core genes that influenced chemosensitivity of GBM to Me-CCNU were obtained, including TP53, MAP2K2, EP300, PRKCA, TNF, CCND1, AKT2, RBL1, CDC2, ID2, RAF1, CDKN2C, FGFR1, SP1, CDK6, IGFBP3, MDM4, PDGFD, SOCS2, CCNG2, CDK2, SDC2, STMN1, TCF7L1, TUBB. CONCLUSION Bioinformatics may help excavate and analyze large amounts of data in microarrays by means of rigorous experimental planning, scientific statistical analysis and collection of complete data about survival of GBM patients. In the present study, a novel differential gene expression pattern was constructed and advanced study will provide new targets for chemosensitivity of GBM.
Collapse
Affiliation(s)
- Zhenyu Zhao
- Department of Neurosurgery, ChangZheng Hospital, Second Military Medical University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
37
|
Heterodimerization of Mdm2 and Mdm4 is critical for regulating p53 activity during embryogenesis but dispensable for p53 and Mdm2 stability. Proc Natl Acad Sci U S A 2011; 108:11995-2000. [PMID: 21730132 PMCID: PMC3141986 DOI: 10.1073/pnas.1102241108] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Mdm2 and Mdm4 are homologous RING domain-containing proteins that negatively regulate the tumor suppressor p53 under physiological and stress conditions. The RING domain of Mdm2 encodes an E3-ubiquitin ligase that promotes p53 degradation. In addition, Mdm2 and Mdm4 interact through their respective RING domains. The in vivo significance of Mdm2-Mdm4 heterodimerization in regulation of p53 function is unknown. In this study, we generated an Mdm4 conditional allele lacking the RING domain to investigate its role in Mdm2 and p53 regulation. Our results demonstrate that homozygous deletion of the Mdm4 RING domain results in prenatal lethality. Mechanistically, Mdm2-Mdm4 heterodimerization is critical for inhibiting lethal p53 activation during early embryogenesis. However, Mdm2-Mdm4 interaction is dispensable for regulating p53 activity as well as the stability of Mdm2 and p53 at later stages of development. We propose that Mdm4 is a key cofactor of Mdm2 that inhibits p53 activity primarily during early embryogenesis but is dispensable for regulating p53 and Mdm2 stability in the adult mouse.
Collapse
|
38
|
Genome integrity of myeloproliferative neoplasms in chronic phase and during disease progression. Blood 2011; 118:167-76. [DOI: 10.1182/blood-2011-01-331678] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Abstract
Philadelphia chromosome–negative myeloproliferative neoplasms (MPNs) are clonal myeloid disorders with increased production of terminally differentiated cells. The disease course is generally chronic, but some patients show disease progression (secondary myelofibrosis or accelerated phase) and/or leukemic transformation. We investigated chromosomal aberrations in 408 MPN samples using high-resolution single-nucleotide polymorphism microarrays to identify disease-associated somatic lesions. Of 408 samples, 37.5% had a wild-type karyotype and 62.5% harbored at least 1 chromosomal aberration. We identified 25 recurrent aberrations that were found in 3 or more samples. An increased number of chromosomal lesions was significantly associated with patient age, as well as with disease progression and leukemic transformation, but no association was observed with MPN subtypes, Janus kinase 2 (JAK2) mutational status, or disease duration. Aberrations of chromosomes 1q and 9p were positively associated with disease progression to secondary myelofibrosis or accelerated phase. Changes of chromosomes 1q, 7q, 5q, 6p, 7p, 19q, 22q, and 3q were positively associated with post-MPN acute myeloid leukemia. We mapped commonly affected regions to single target genes on chromosomes 3p (forkhead box P1 [FOXP1]), 4q (tet oncogene family member 2 [TET2]), 7p (IKAROS family zinc finger 1 [IKZF1]), 7q (cut-like homeobox 1 [CUX1]), 12p (ets variant 6 [ETV6]), and 21q (runt-related transcription factor 1 [RUNX1]). Our data provide insight into the genetic complexity of MPNs and implicate new genes involved in disease progression.
Collapse
|
39
|
|
40
|
Bralten LBC, Kloosterhof NK, Gravendeel LAM, Sacchetti A, Duijm EJ, Kros JM, van den Bent MJ, Hoogenraad CC, Sillevis Smitt PAE, French PJ. Integrated genomic profiling identifies candidate genes implicated in glioma-genesis and a novel LEO1-SLC12A1 fusion gene. Genes Chromosomes Cancer 2010; 49:509-17. [PMID: 20196086 DOI: 10.1002/gcc.20760] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We performed genotyping and exon-level expression profiling on 21 glioblastomas (GBMs) and 19 oligodendrogliomas (ODs) to identify genes involved in glioma initiation and/or progression. Low-copy number amplifications (2.5 < n < 7) and high-copy number amplifications (n > 7) were more frequently observed in GBMs; ODs generally have more heterozygous deletions per tumor. Four high-copy amplicons were identified in more than one sample and resulted in overexpression of the known oncogenes EGFR, MDM2, and CDK4. In the fourth amplicon, RBBP5, a member of the RB pathway, may act as a novel oncogene in GBMs. Not all hCNAs contain known genes, which may suggest that other transcriptional and/or regulatory elements are the target for amplification. Regions with most frequent allelic loss, both in ODs and GBMs, resulted in a reduced expression of known tumor suppressor genes. We identified a homozygous deletion spanning the Pragmin gene in one sample, but direct sequencing of all coding exons in 20 other glioma samples failed to detect additional genetic changes. Finally, we screened for fusion genes by identifying aberrant 5'-3' expression of genes that lie over regions of a copy number change. A fusion gene between exon 11 of LEO1 and exon 10 of SLC12A1 was identified. Our data show that integrated genomic profiling can identify genes involved in tumor initiation, and/or progression and can be used as an approach to identify novel fusion genes.
Collapse
|
41
|
Expression of targeting protein for Xenopus kinesin-like protein 2 is associated with progression of human malignant astrocytoma. Brain Res 2010; 1352:200-7. [PMID: 20599806 DOI: 10.1016/j.brainres.2010.06.060] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 06/23/2010] [Accepted: 06/23/2010] [Indexed: 12/30/2022]
Abstract
In humans, the targeting protein for Xenopus kinesin-like protein 2 (TPX2) is a cell cycle-associated protein, and altered TPX2 expression has been found in various malignancies. However, the contribution of TPX2 expression to astrocytoma progression is unclear. The aim of this study was to investigate TPX2 expression in human astrocytoma samples and cell lines. TPX2 protein expression was detected in the nucleus of astrocytoma tissues by immunohistochemistry and immunofluorescence staining. Real-time PCR and Western blot analysis showed that the expression levels of TPX2 were higher in high-grade astrocytoma tissues and cell lines than that in low-grade astrocytoma tissues and normal cell lines. Immunohistochemical analysis of tumor tissues from 52 patients with astrocytoma showed that TPX2 over-expression was significantly associated with decreased patient survival. In addition, down-regulation of the TPX2 gene by RNA interference inhibited proliferation of U87 cells. TPX2 gene silencing also increased early-stage apoptosis in U87 cells. Western blotting and real-time PCR showed changes in the protein and mRNA expression of Aurora A, Ran, p53, c-Myc and cyclin B1 in U87 cells that had been transfected with pSUPER/TPX2/siRNA. These data suggest that TPX2 expression is associated with the progression of malignant astrocytoma.
Collapse
|
42
|
Jin G, Cook S, Cui B, Chen WC, Keir ST, Killela P, Di C, Payne CA, Gregory SG, McLendon R, Bigner DD, Yan H. HDMX regulates p53 activity and confers chemoresistance to 3-bis(2-chloroethyl)-1-nitrosourea. Neuro Oncol 2010; 12:956-66. [PMID: 20472715 DOI: 10.1093/neuonc/noq045] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Glioblastoma multiforme (GBM) is one of the deadliest tumors afflicting humans, and the mechanisms of its onset and progression remain largely undefined. Our attempts to elucidate its molecular pathogenesis through DNA copy-number analysis by genome-wide digital karyotyping and single nucleotide polymorphism arrays identified a dramatic focal amplification on chromosome 1q32 in 4 of 57 GBM tumors. Quantitative real-time PCR measurements revealed that HDMX is the most commonly amplified and overexpressed gene in the 1q32 locus. Further genetic screening of 284 low- and high-grade gliomas revealed that HDMX amplifications occur solely in pediatric and adult GBMs and that they are mutually exclusive of TP53 mutations and MDM2 amplifications. Here, we demonstrate that HDMX regulates p53 to promote GBM growth and attenuates tumor response to chemotherapy. In GBM cells, HDMX overexpression inhibits p53-mediated transcriptional activation of p21, releases cells from G0 to G1 phase, and enhances cellular proliferation. HDMX overexpression does not affect the expression of PUMA and BAX proapoptotic genes. While in GBM cells treated with the chemotherapeutic agent 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU), HDMX appears to stabilize p53 and promote phosphorylation of the DNA double-stranded break repair protein H2AX, up-regulate the DNA repair gene VPX, stimulate DNA repair, and confer resistance to BCNU. In summary, HDMX exhibits bona fide oncogenic properties and offers a promising molecular target for GBM therapeutic intervention.
Collapse
Affiliation(s)
- Genglin Jin
- Department of Pathology, Pediatric Brain Tumor Foundation Institute and Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
The p53 tumor suppressor protein is frequently mutated in human tumors. It is thought that the p53 pathway is indirectly impaired in the remaining tumors, for example by overexpression of its important regulators Mdm2 and Mdm4, making them attractive targets for the development of anti-cancer agents. Recent studies have suggested that Mdm4 levels determine the sensitivity of tumor cells for anti-cancer therapy. To investigate this possibility, we studied the drug sensitivity of several breast cancer cell lines containing wild-type p53, but expressing different Mdm4 levels. We show that endogenous Mdm4 levels can affect the sensitivity of breast cancer cells to anti-cancer agents, but in a cell line-dependent manner and depending on an intact apoptotic response. Furthermore, treatment with the non-genotoxic agent Nutlin-3 sensitizes cells for doxorubicin, showing that activation of p53 by targeting its regulators is an efficient strategy to decrease cell viability of breast cancer cells. These results confirm a function of Mdm4 in determining the efficacy of chemotherapeutic agents to induce apoptosis of cancer cells in a p53-dependent manner, although additional undetermined factors also influence the drug response. Targeting Mdm4 to sensitize tumor cells for chemotherapeutic drugs might be a strategy to effectively treat tumors harboring wild-type p53.
Collapse
|
44
|
Bunderson-Schelvan M, Erbe AK, Schwanke C, Pershouse MA. Suppression of the mouse double minute 4 gene causes changes in cell cycle control in a human mesothelial cell line responsive to ultraviolet radiation exposure. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2009; 50:753-9. [PMID: 19472317 PMCID: PMC2789868 DOI: 10.1002/em.20498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The TP53 tumor suppressor gene is the most frequently inactivated gene in human cancer identified to date. However, TP53 mutations are rare in human mesotheliomas, as well as in many other types of cancer, suggesting that aberrant TP53 function may be due to alterations in its regulatory pathways. Mouse double minute 4 (MDM4) has been shown to be a key regulator of TP53 activity, both independently as well as in concert with its structural homolog, Mouse Double Minute 2 (MDM2). The purpose of this study was to characterize the effects of MDM4 suppression on TP53 and other proteins involved in cell cycle control before and after ultraviolet (UV) exposure in MeT5a cells, a nonmalignant human mesothelial line. Short hairpin RNA (shRNA) was used to investigate the impact of MDM4 on TP53 function and cellular transcription. Suppression of MDM4 was confirmed by Western blot. MDM4 suppressed cells were analyzed for cell cycle changes with and without exposure to UV. Changes in cell growth as well as differences in the regulation of direct transcriptional targets of TP53, CDKN1A (cyclin-dependent kinase 1alpha, p21) and BAX, suggest a shift from cell cycle arrest to apoptosis upon increasing UV exposure. These results demonstrate the importance of MDM4in cell cycle regulation as well as a possible role inthe pathogenesis of mesothelioma-type cancers.
Collapse
|
45
|
Abstract
High-grade gliomas (HGGs) represent a heterogenous group of tumors and account for most primary brain tumors. Despite aggressive therapies, they are invariably associated with poor patient outcome. These tumors include the anaplastic (World Health Organization [WHO] grade III) histologies of astrocytomas, oligodendrogliomas, and ependymomas and the WHO grade IV glioblastoma multiforme (GBM). The recent elucidation of the fundamental molecular alterations associated with these tumors has begun to unravel the critical events in their tumorigenesis but for the most part has done little to alter patient survival. Prognostication for patients with these tumors has relied principally on tumor grade and clinical factors (age, performance status, and so on) and has been inexact at best in identifying those with long-term survival potential. An even greater challenge has been to identify predictive biomarkers of therapy in the hope of tailoring a patient's therapy based on their tumor's molecular characteristics. This review discusses the molecular pathology of high-grade gliomas, with particular emphasis on anaplastic astrocytomas and GBMs because these represent the most common forms of malignant gliomas. It also focuses on the molecular signatures defined by large-scale gene expression profiling experiments because these studies are at the forefront in developing new biomarkers and identifying new therapeutic targets.
Collapse
Affiliation(s)
- Erik P Sulman
- Department of Radiation Oncology, The University of Texas, M.D. Anderson Cancer Center, Houston, TX 77030, USA.
| | | | | |
Collapse
|
46
|
Yin D, Ogawa S, Kawamata N, Tunici P, Finocchiaro G, Eoli M, Ruckert C, Huynh T, Liu G, Kato M, Sanada M, Jauch A, Dugas M, Black KL, Koeffler HP. High-resolution genomic copy number profiling of glioblastoma multiforme by single nucleotide polymorphism DNA microarray. Mol Cancer Res 2009; 7:665-677. [PMID: 19435819 DOI: 10.1158/1541-7786.mcr-08-0270] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Glioblastoma multiforme (GBM) is an extremely malignant brain tumor. To identify new genomic alterations in GBM, genomic DNA of tumor tissue/explants from 55 individuals and 6 GBM cell lines were examined using single nucleotide polymorphism DNA microarray (SNP-Chip). Further gene expression analysis relied on an additional 56 GBM samples. SNP-Chip results were validated using several techniques, including quantitative PCR (Q-PCR), nucleotide sequencing, and a combination of Q-PCR and detection of microsatellite markers for loss of heterozygosity with normal copy number [acquired uniparental disomy (AUPD)]. Whole genomic DNA copy number in each GBM sample was profiled by SNP-Chip. Several signaling pathways were frequently abnormal. Either the p16(INK4A)/p15(INK4B)-CDK4/6-pRb or p14(ARF)-MDM2/4-p53 pathways were abnormal in 89% (49 of 55) of cases. Simultaneous abnormalities of both pathways occurred in 84% (46 of 55) samples. The phosphoinositide 3-kinase pathway was altered in 71% (39 of 55) GBMs either by deletion of PTEN or amplification of epidermal growth factor receptor and/or vascular endothelial growth factor receptor/platelet-derived growth factor receptor alpha. Deletion of chromosome 6q26-27 often occurred (16 of 55 samples). The minimum common deleted region included PARK2, PACRG, QKI, and PDE10A genes. Further reverse transcription Q-PCR studies showed that PARK2 expression was decreased in another collection of GBMs at a frequency of 61% (34 of 56) of samples. The 1p36.23 region was deleted in 35% (19 of 55) of samples. Notably, three samples had homozygous deletion encompassing this site. Also, a novel internal deletion of a putative tumor suppressor gene, LRP1B, was discovered causing an aberrant protein. AUPDs occurred in 58% (32 of 55) of the GBM samples and five of six GBM cell lines. A common AUPD was found at chromosome 17p13.3-12 (included p53 gene) in 13 of 61 samples and cell lines. Single-strand conformational polymorphism and nucleotide sequencing showed that 9 of 13 of these samples had homozygous p53 mutations, suggesting that mitotic recombination duplicated the abnormal p53 gene, probably providing a growth advantage to these cells. A significantly shortened survival time was found in patients with 13q14 (RB) deletion or 17p13.1 (p53) deletion/AUPD. Taken together, these results suggest that this technique is a rapid, robust, and inexpensive method to profile genome-wide abnormalities in GBM.
Collapse
Affiliation(s)
- Dong Yin
- Division of Hematology and Oncology, Cedars-Sinai Medical Center, University of California at Los Angeles School of Medicine, Davis Building 5022 Room, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Molecular neuropathology of gliomas. Int J Mol Sci 2009; 10:184-212. [PMID: 19333441 PMCID: PMC2662467 DOI: 10.3390/ijms10010184] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 01/02/2009] [Accepted: 01/05/2009] [Indexed: 01/21/2023] Open
Abstract
Gliomas are the most common primary human brain tumors. They comprise a heterogeneous group of benign and malignant neoplasms that are histologically classified according to the World Health Organization (WHO) classification of tumors of the nervous system. Over the past 20 years the cytogenetic and molecular genetic alterations associated with glioma formation and progression have been intensely studied and genetic profiles as additional aids to the definition of brain tumors have been incorporated in the WHO classification. In fact, first steps have been undertaken in supplementing classical histopathological diagnosis by the use of molecular tests, such as MGMT promoter hypermethylation in glioblastomas or detection of losses of chromosome arms 1p and 19q in oligodendroglial tumors. The tremendous progress that has been made in the use of array-based profiling techniques will likely contribute to a further molecular refinement of glioma classification and lead to the identification of glioma core pathways that can be specifically targeted by more individualized glioma therapies.
Collapse
|
48
|
Abstract
Astrocytic gliomas are the most common primary brain tumors and account for up to two thirds of all tumors of glial origin. In this review we outline the basic histological and epidemiological aspects of the different astrocytoma subtypes in adults. In addition, we summarize the key genetic alterations that have been attributed to astrocytoma patho-genesis and progression. Recent progress has been made by interpreting genetic alterations in a pathway-related context so that they can be directly targeted by the application of specific inhibitors. Also, the first steps have been taken in refining classical histopathological diagnosis by use of molecular predictive markers, for example, MGMT promoter hypermethylation in glioblastomas. Progress in this direction will be additionally accelerated by the employment of high-throughput profiling techniques, such as array-CGH and gene expression profiling. Finally, the tumor stem cell hypothesis has challenged our way of understanding astrocytoma biology by emphasizing intratumoral heterogeneity. Novel animal models will provide us with the opportunity to comprehensively study this multilayered disease and explore novel therapeutic approaches in vivo.
Collapse
|
49
|
Karakoula K, Suarez-Merino B, Ward S, Phipps KP, Harkness W, Hayward R, Thompson D, Jacques TS, Harding B, Beck J, Thomas DGT, Warr TJ. Real-time quantitative PCR analysis of pediatric ependymomas identifies novel candidate genes including TPR at 1q25 and CHIBBY at 22q12-q13. Genes Chromosomes Cancer 2008; 47:1005-22. [PMID: 18663750 DOI: 10.1002/gcc.20607] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Loss of chromosome 22 and gain of 1q are the most frequent genomic aberrations in ependymomas, indicating that genes mapping to these regions are critical in their pathogenesis. Using real-time quantitative PCR, we measured relative copy numbers of 10 genes mapping to 22q12.3-q13.33 and 10 genes at 1q21-32 in a series of 47 pediatric intracranial ependymomas. Loss of one or more of the genes on 22 was detected in 81% of cases, with RAC2 and C22ORF2 at 22q12-q13.1 being deleted most frequently in 38% and 32% of ependymoma samples, respectively. Combined analysis of quantitative-PCR with methylation-specific PCR and bisulphite sequencing revealed a high rate (>60% ependymoma) of transcriptional inactivation of C22ORF2, indicating its potential importance in the development of pediatric ependymomas. Increase of relative copy numbers of at least one gene on 1q were detected in 61% of cases, with TPR at 1q25 displaying relative copy number gains in 38% of cases. Patient age was identified as a significant adverse prognostic factor, as a significantly shorter overall survival time (P = 0.0056) was observed in patients <2 years of age compared with patients who were >2 years of age. Loss of RAC2 at 22q13 or amplification of TPR at 1q25 was significantly associated with shorter overall survival in these younger patients (P = 0.0492 and P = < 0.0001, respectively). This study identifies candidate target genes within 1q and 22q that are potentially important in the pathogenesis of intracranial pediatric ependymomas.
Collapse
Affiliation(s)
- Katherine Karakoula
- Department of Molecular Neuroscience, Institute of Neurology, University College London, National Hospital for Neurology and Neurosurgery, London, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Idbaih A, Crinière E, Marie Y, Rousseau A, Mokhtari K, Kujas M, El Houfi Y, Carpentier C, Paris S, Boisselier B, Laigle-Donadey F, Thillet J, Sanson M, Hoang-Xuan K, Delattre JY. Gene amplification is a poor prognostic factor in anaplastic oligodendrogliomas. Neuro Oncol 2008; 10:540-7. [PMID: 18544654 DOI: 10.1215/15228517-2008-022] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Various gene amplifications have been observed in gliomas. Prognostic-genomic correlations testing simultaneously all these amplified genes have never been conducted in anaplastic oligodendrogliomas. A set of 38 genes that have been reported to be amplified in gliomas and investigated as the main targets of amplicons were studied in a series of 52 anaplastic oligodendrogliomas using bacterial artificial chromosome-array based comparative genomic hybridization and quantitative polymerase chain reaction. Among the 38 target genes, 15 were found to be amplified in at least one tumor. Overall, 27% of anaplastic oligodendrogliomas exhibited at least one gene amplification. The most frequently amplified genes were epidermal growth factor receptor (EGFR) and cyclin-dependent kinase 4/sarcoma amplified sequence (CDK4/SAS) in 17% and 8% of anaplastic oligodendrogliomas, respectively. Gene amplification and codeletion of chromosome arms 1p/19q were perfectly exclusive (p = 0.005). In uni- and multivariate analyses, gene amplification was a negative prognostic factor for progression-free survival and overall survival in anaplastic oligodendrogliomas, providing complementary information to the classic prognostic factors identified in anaplastic oligodendrogliomas (extent of surgery, KPS, and chromosome arms 1p/19q status).
Collapse
Affiliation(s)
- Ahmed Idbaih
- Institut National de la Santé et de la Recherche Médicale, U711, Université Pierre et Marie Curie, Hôpital Pitié-Salpêtrière, Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|