1
|
Polash SA, Poddar A, Ahmady F, Kannourakis G, Jayachandran A, Shukla R. Impact of Ligand Concentration on the Properties of Nucleic-Acid-Encapsulated MOFs and Inflammation Modulation in Prostate Cancer Cells. ACS APPLIED BIO MATERIALS 2024; 7:7635-7645. [PMID: 39497260 DOI: 10.1021/acsabm.4c01185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The zeolitic imidazolate framework (ZIF) is one of the most explored metal-organic-framework-based systems for nucleic acid delivery to cancer cells. Current nucleic acid delivery tools exhibit several drawbacks, such as high manufacturing costs, endosomal entrapment, toxicity, and immunogenicity. However, the biomimetic mineralization of Zn-based ZIFs offers a low-cost and facile encapsulation of nucleic acids at room temperature in aqueous conditions. The efficiency of nucleic acid delivery and its subsequent impact on inflammation in cells are influenced by the physicochemical properties of the material. The imidazole content determines the formation and crystallinity of ZIF, and an optimal ratio ensures the formation of well-defined and highly crystalline structures. In this study, a series of siRNA-encapsulated ZIFs (siRNA@ZIF) were systematically prepared by varying ligand-to-metal (L/M) molar ratios. Our study demonstrates that variations in ligand concentrations influence the crystalline structures, particle size, and shape of siRNA@ZIF particles. At low L/M, two-dimensional siRNA@ZIF particles form with a size of 1 μm. As the L/M ratio increases gradually, the particle size decreases, resulting in three-dimensional particles ∼200 nm in size. We also observed better stability of siRNA@ZIF in water prepared using high L/M values and time-dependent cellular uptake by the cells. Additionally, no significant impact of the biocomposites on inflammation was found, indicating the lack of an unwanted immune response and nonimmunotoxic nature over longer periods (96 h). These findings highlight the necessity of fine-tuning ligand concentrations and synthesis chemistry in designing efficient and optimal ZIF-based systems as versatile delivery platforms for nucleic acids.
Collapse
Affiliation(s)
- Shakil Ahmed Polash
- Ian Potter NanoBiosensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3001, Australia
- Centre for Advanced Materials and Industrial Chemistry, RMIT University, Melbourne, VIC 3001, Australia
| | - Arpita Poddar
- Ian Potter NanoBiosensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3001, Australia
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3350, Australia
| | - Farah Ahmady
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3350, Australia
| | | | | | - Ravi Shukla
- Ian Potter NanoBiosensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3001, Australia
- Centre for Advanced Materials and Industrial Chemistry, RMIT University, Melbourne, VIC 3001, Australia
| |
Collapse
|
2
|
Pérez-Gómez JM, Montero-Hidalgo AJ, Fuentes-Fayos AC, Sarmento-Cabral A, Guzmán-Ruiz R, Malagón MM, Herrera-Martínez AD, Gahete MD, Luque RM. Exploring the role of the inflammasomes on prostate cancer: Interplay with obesity. Rev Endocr Metab Disord 2023; 24:1165-1187. [PMID: 37819510 PMCID: PMC10697898 DOI: 10.1007/s11154-023-09838-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/21/2023] [Indexed: 10/13/2023]
Abstract
Obesity is a weight-related disorder characterized by excessive adipose tissue growth and dysfunction which leads to the onset of a systemic chronic low-grade inflammatory state. Likewise, inflammation is considered a classic cancer hallmark affecting several steps of carcinogenesis and tumor progression. In this regard, novel molecular complexes termed inflammasomes have been identified which are able to react to a wide spectrum of insults, impacting several metabolic-related disorders, but their contribution to cancer biology remains unclear. In this context, prostate cancer (PCa) has a markedly inflammatory component, and patients frequently are elderly individuals who exhibit weight-related disorders, being obesity the most prevalent condition. Therefore, inflammation, and specifically, inflammasome complexes, could be crucial players in the interplay between PCa and metabolic disorders. In this review, we will: 1) discuss the potential role of each inflammasome component (sensor, molecular adaptor, and targets) in PCa pathophysiology, placing special emphasis on IL-1β/NF-kB pathway and ROS and hypoxia influence; 2) explore the association between inflammasomes and obesity, and how these molecular complexes could act as the cornerstone between the obesity and PCa; and, 3) compile current clinical trials regarding inflammasome targeting, providing some insights about their potential use in the clinical practice.
Collapse
Affiliation(s)
- Jesús M Pérez-Gómez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Antonio J Montero-Hidalgo
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Antonio C Fuentes-Fayos
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - André Sarmento-Cabral
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Rocio Guzmán-Ruiz
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - María M Malagón
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Aura D Herrera-Martínez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Endocrinology and Nutrition Service, HURS/IMIBIC, Córdoba, Spain
| | - Manuel D Gahete
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Raúl M Luque
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain.
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain.
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain.
| |
Collapse
|
3
|
Ratajczak W, Laszczyńska M, Rył A, Dołęgowska B, Sipak O, Stachowska E, Słojewski M, Lubkowska A. Tissue immunoexpression of IL-6 and IL-18 in aging men with BPH and MetS and their relationship with lipid parameters and gut microbiota-derived short chain fatty acids. Aging (Albany NY) 2023; 15:10875-10896. [PMID: 37847180 PMCID: PMC10637784 DOI: 10.18632/aging.205091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/24/2023] [Indexed: 10/18/2023]
Abstract
Recent studies indicate that inflammation is one of the causes of the development of benign prostatic hyperplasia (BPH). Inflammation may result from past infections, metabolic disorders, but also from the state of functioning of the intestinal microbiota. The aim of the study was to assess whether the diagnostic lipid parameters for metabolic syndrome and short-chain fatty acids (SCFAs) are related to the immunoexpression of interleukins in prostate tissue with benign hyperplasia. The study involved 103 men with BPH, who were divided into two groups depending on the presence of MetS. We analysed tissue immunoexpression of two proinflammatory interleukins: IL-6, which is known to be involved in the development of BPH, and IL-18, which has not been analysed so far. The results of our study indicate that men with BPH + MetS in the stroma of the prostate have a significantly higher overall percentage of IL-6+ cells compared to men without MetS (p = 0.034). The analysis of IL-18 immunoexpression in prostate tissue indicated that in men with BPH + MetS, the glandular part of the prostate had a significantly higher percentage of cells with strong IL-18 expression (p = 0.040). We also noticed a relationship between tissue expression of IL-6 and IL-18 and lipid parameters (TG and HDL). We conclude that lipid disorders occurring in men with BPH increase inflammation in the prostate gland. Moreover, it has also been demonstrated for the first time that, indirectly, through SCFAs, the gut microbiota can act to prevent or create an inflammatory microenvironment in the prostate gland.
Collapse
Affiliation(s)
- Weronika Ratajczak
- Department of Functional Diagnostics and Physical Medicine, Pomeranian Medical University, Żołnierska, Szczecin 71-210, Poland
| | - Maria Laszczyńska
- Department of Nursing, State University of Applied Sciences, Leśna, Koszalin 75-582, Poland
| | - Aleksandra Rył
- Department of Medical Rehabilitation and Clinical Physiotherapy, Pomeranian Medical University, Żołnierska, Szczecin 71-210, Poland
| | - Barbara Dołęgowska
- Department of Laboratory Medicine, Pomeranian Medical University, Powstańców Wielkopolskich, Szczecin 70-111, Poland
| | - Olimpia Sipak
- Department of Obstetrics and Pathology of Pregnancy, Pomeranian Medical University, Żołnierska, Żołnierska, Szczecin 71-210, Poland
| | - Ewa Stachowska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, Broniewskiego, Szczecin 71-460, Poland
| | - Marcin Słojewski
- Department of Urology and Urological Oncology, Pomeranian Medical University, Powstańców Wielkopolskich, Szczecin 70-111, Poland
| | - Anna Lubkowska
- Department of Functional Diagnostics and Physical Medicine, Pomeranian Medical University, Żołnierska, Szczecin 71-210, Poland
| |
Collapse
|
4
|
Wu F, Wang M, Zhong T, Xiao C, Chen X, Huang Y, Wu M, Yu J, Chen D. Inhibition of CDC20 potentiates anti-tumor immunity through facilitating GSDME-mediated pyroptosis in prostate cancer. Exp Hematol Oncol 2023; 12:67. [PMID: 37528490 PMCID: PMC10391908 DOI: 10.1186/s40164-023-00428-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 07/19/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND Increasing evidence suggests that immunotherapy, especially immune checkpoint inhibitors (ICIs), has the potential to facilitate long-term survival in various cancer besides prostate cancer. Emerging evidence indicated that pyroptosis, an immunogenic form of cell death, could trigger an anti-tumor immune microenvironment and enhance the effectiveness of immunotherapy. Nevertheless, the mechanism underlying the regulation of pyroptosis signaling in prostate cancer remains unclear. METHODS The differential expression of human E3 ligases in prostate cancer was integratedly analyzed from five independent public datasets. Moreover, the immunohistochemistry analysis of a tissue microarray derived from prostate cancer patients confirmed the results from the bioinformatic analysis. Furthermore, prostate cancer cell lines were evaluated via the next-generation RNA sequencing to assess transcriptomic profile upon CDC20 depletion. Next, qRT-PCR, Western blotting, cycloheximide assay, immunoprecipitation, and ubiquitination assay were employed to explore the correlation and interaction between CDC20 and GSDME. Both immune-deficient and immune-competent murine models were utilized to examine the anti-tumor efficacy of CDC20 inhibition with or without the anti-PD1 antibodies, respectively. To analyze the immune microenvironment of the xenografts, the tumor tissues were examined by immunohistochemistry and flow cytometry. RESULTS The analysis of multiple prostate cancer cohorts suggested that CDC20 was the most significantly over-expressed E3 ligase. In addition, CDC20 exerted a negative regulatory effect on the pyroptosis pathway by targeting GSDME for ubiquitination-mediated proteolysis in a degron-dependent manner. Knockdown of CDC20 leads to increased GSDME abundance and a transition from apoptosis to pyroptosis in response to death signals. Furthermore, in our syngeneic murine models, we found that depletion of CDC20 significantly enhances the anti-tumor immunity by promoting the infiltration of CD8+ T lymphocytes dependent on the existence of GSDME, as well as reducing myeloid immune cells. More importantly, Apcin, a small molecular inhibitor that targets CDC20, exhibited synergistic effects with anti-PD1-based immunotherapy in murine models of prostate cancer. CONCLUSIONS Overall, these findings provide new insights into the upstream regulation of GSDME-mediated pyroptosis by CDC20, which specifically interacts with GSDME and facilitates its ubiquitination in a degron-dependent manner. Importantly, our data highlight novel molecular pathways for targeting cellular pyroptosis and enhancing the effectiveness of anti-PD1-based immunotherapy.
Collapse
Affiliation(s)
- Fei Wu
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Shandong First Medical University, No.440 Jiyan Road, Jinan, Shandong, People's Republic of China
| | - Minglei Wang
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Shandong First Medical University, No.440 Jiyan Road, Jinan, Shandong, People's Republic of China
| | - Tao Zhong
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Shandong First Medical University, No.440 Jiyan Road, Jinan, Shandong, People's Republic of China
| | - Changyan Xiao
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Shandong First Medical University, No.440 Jiyan Road, Jinan, Shandong, People's Republic of China
| | - Xiaozheng Chen
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Shandong First Medical University, No.440 Jiyan Road, Jinan, Shandong, People's Republic of China
| | - Yiheng Huang
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Shandong First Medical University, No.440 Jiyan Road, Jinan, Shandong, People's Republic of China
| | - Meng Wu
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Shandong First Medical University, No.440 Jiyan Road, Jinan, Shandong, People's Republic of China
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Shandong First Medical University, No.440 Jiyan Road, Jinan, Shandong, People's Republic of China.
- Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, China.
| | - Dawei Chen
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Shandong First Medical University, No.440 Jiyan Road, Jinan, Shandong, People's Republic of China.
| |
Collapse
|
5
|
Interleukin-18 Is a Prognostic Marker and Plays a Tumor Suppressive Role in Colon Cancer. DISEASE MARKERS 2020; 2020:6439614. [PMID: 33294056 PMCID: PMC7714607 DOI: 10.1155/2020/6439614] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 09/17/2020] [Accepted: 11/11/2020] [Indexed: 12/24/2022]
Abstract
Interleukin-18 (IL-18) belongs to the IL-1 family and is an essential proinflammatory and immune regulatory cytokine. The present study was designed to investigate the expression and function of IL-18 in colon cancer. In clinical analyses, mRNA and protein expressions of IL-18 were decreased in tissues of colon cancer patients. This decreased expression of IL-18 was significantly correlated with the tumor size (P = 0.001) and American Joint Committee on Cancer (AJCC) stage (P = 0.013). Patients with IL-18-positive tumors had a better survival rate than patients with IL-18-negative tumors. Moreover, upregulation of IL-18 inhibited colon cancer cell proliferation. Our data suggest that the decreased expression of IL-18 in colon cancer was associated with prognosis and tumor proliferation. IL-18 may be considered a novel tumor suppressor and a potential therapeutic target for colon cancer patients.
Collapse
|
6
|
Zhou L, Zhang Y, Wang Y, Zhang M, Sun W, Dai T, Wang A, Wu X, Zhang S, Wang S, Zhou F. A Dual Role of Type I Interferons in Antitumor Immunity. ACTA ACUST UNITED AC 2020; 4:e1900237. [PMID: 33245214 DOI: 10.1002/adbi.201900237] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/17/2020] [Accepted: 02/20/2020] [Indexed: 12/12/2022]
Abstract
Type I interferons (IFN-Is) are a family of cytokines that exert direct antiviral effects and regulate innate and adaptive immune responses through direct and indirect mechanisms. It is generally believed that IFN-Is repress tumor development via restricting tumor proliferation and inducing antitumor immune responses. However, recent emerging evidence suggests that IFN-Is play a dual role in antitumor immunity. That is, in the early stage of tumorigenesis, IFN-Is promote the antitumor immune response by enhancing antigen presentation in antigen-presenting cells and activating CD8+ T cells. However, in the late stage of tumor progression, persistent expression of IFN-Is induces the expression of immunosuppressive factors (PD-L1, IDO, and IL-10) on the surface of dendritic cells and other bone marrow cells and inhibits their antitumor immunity. This review outlines these dual functions of IFN-Is in antitumor immunity and elucidates the involved mechanisms, as well as their applications in tumor therapy.
Collapse
Affiliation(s)
- Lili Zhou
- Jiangsu Key Laboratory of Infection and Immunity, The Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Yuqi Zhang
- Jiangsu Key Laboratory of Infection and Immunity, The Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Yongqiang Wang
- Jiangsu Key Laboratory of Infection and Immunity, The Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Meirong Zhang
- Jiangsu Key Laboratory of Infection and Immunity, The Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Wenhuan Sun
- Jiangsu Key Laboratory of Infection and Immunity, The Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Tong Dai
- Jiangsu Key Laboratory of Infection and Immunity, The Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Aijun Wang
- Department of Surgery, School of Medicine, UC Davis, Davis, CA, 95817, USA
| | - Xiaojin Wu
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Suping Zhang
- Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Pharmacology, Base for international Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, 518055, China
| | - Shuai Wang
- Jiangsu Key Laboratory of Infection and Immunity, The Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Fangfang Zhou
- Jiangsu Key Laboratory of Infection and Immunity, The Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
7
|
Gong D, Wang Y, Wang Y, Chen X, Chen S, Wang R, Liu L, Duan C, Luo S. Extensive serum cytokine analysis in patients with prostate cancer. Cytokine 2020; 125:154810. [DOI: 10.1016/j.cyto.2019.154810] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 07/09/2019] [Accepted: 08/09/2019] [Indexed: 12/23/2022]
|
8
|
Konjević GM, Vuletić AM, Mirjačić Martinović KM, Larsen AK, Jurišić VB. The role of cytokines in the regulation of NK cells in the tumor environment. Cytokine 2019; 117:30-40. [PMID: 30784898 DOI: 10.1016/j.cyto.2019.02.001] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 01/29/2019] [Accepted: 02/07/2019] [Indexed: 12/19/2022]
Abstract
Natural killer (NK) cells are innate lymphoid cells that are important effectors in the first line of defense toward transformed cells. This is mediated both by direct cytotoxic mechanisms and by production of immunoregulatory cytokines. Recent evidence has shown that NK cells also display memory, similar to the cells of the adaptive immune system. Cytokines are pivotal for the maturation, activation and survival of NK cells. Interleukins (IL)-2, IL-12, IL-15, IL-18, IL-21 and type I interferons positively regulate NK cell function, either independently or in cooperation, whereas other cytokines, such as IL-23 and IL-27, may enhance or suppress NK cell function depending on the context. In the tumor microenvironment, TGFβ, IL-10 and IL-6 suppress NK cell activity not only directly, but also indirectly, by affecting immunosuppressive cells and by antagonizing the effect of stimulatory cytokines, thereby dampening the antitumor response of NK cells and promoting subsequent tumor evasion and progression. Increased understanding of the NK cell response to cytokines has provided a better understanding of their impaired function in tumors which may aid in the development of novel immunotherapeutic strategies to enhance NK cell responses in cancer patients.
Collapse
Affiliation(s)
- Gordana M Konjević
- Department of Experimental Oncology, Institute of Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia; School of Medicine, University of Belgrade, Dr Subotića 8, 11000 Beograd, Serbia
| | - Ana M Vuletić
- Department of Experimental Oncology, Institute of Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia
| | - Katarina M Mirjačić Martinović
- Department of Experimental Oncology, Institute of Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia
| | - Annette K Larsen
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine, INSERM U938 and Sorbonne University, Kourilsky Building 1st Floor, Hôpital Saint-Antoine, 184 rue du Faubourg Saint Antoine, 75571 PARIS Cédex 12 France
| | - Vladimir B Jurišić
- Faculty of Medical Sciences, University of Kragujevac, P.BOX 124, 34000 Kragujevac, Serbia.
| |
Collapse
|
9
|
Staal J, Beyaert R. Inflammation and NF-κB Signaling in Prostate Cancer: Mechanisms and Clinical Implications. Cells 2018; 7:E122. [PMID: 30158439 PMCID: PMC6162478 DOI: 10.3390/cells7090122] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/24/2018] [Accepted: 08/27/2018] [Indexed: 12/26/2022] Open
Abstract
Prostate cancer is a highly prevalent form of cancer that is usually slow-developing and benign. Due to its high prevalence, it is, however, still the second most common cause of death by cancer in men in the West. The higher prevalence of prostate cancer in the West might be due to elevated inflammation from metabolic syndrome or associated comorbidities. NF-κB activation and many other signals associated with inflammation are known to contribute to prostate cancer malignancy. Inflammatory signals have also been associated with the development of castration resistance and resistance against other androgen depletion strategies, which is a major therapeutic challenge. Here, we review the role of inflammation and its link with androgen signaling in prostate cancer. We further describe the role of NF-κB in prostate cancer cell survival and proliferation, major NF-κB signaling pathways in prostate cancer, and the crosstalk between NF-κB and androgen receptor signaling. Several NF-κB-induced risk factors in prostate cancer and their potential for therapeutic targeting in the clinic are described. A better understanding of the inflammatory mechanisms that control the development of prostate cancer and resistance to androgen-deprivation therapy will eventually lead to novel treatment options for patients.
Collapse
Affiliation(s)
- Jens Staal
- VIB-UGent Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, 9052 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Rudi Beyaert
- VIB-UGent Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, 9052 Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
10
|
Timperi E, Focaccetti C, Gallerano D, Panetta M, Spada S, Gallo E, Visca P, Venuta F, Diso D, Prelaj A, Longo F, Facciolo F, Nisticò P, Barnaba V. IL-18 receptor marks functional CD8 + T cells in non-small cell lung cancer. Oncoimmunology 2017; 6:e1328337. [PMID: 28811967 DOI: 10.1080/2162402x.2017.1328337] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/26/2017] [Accepted: 05/05/2017] [Indexed: 12/22/2022] Open
Abstract
IL-18 is an inflammasome-related cytokine, member of the IL-1 family, produced by a wide range of cells in response to signals by several pathogen- or damage-associated molecular patterns. It can be highly represented in tumor patients, but its relevance in human cancer development is not clear. In this study, we provide evidence that IL-18 is principally expressed in tumor cells and, in concert with other conventional Th1 cell-driven cytokines, has a pivotal role in establishing a pro-inflammatory milieu in the tumor microenvironment of human non-small cell lung cancer (NSCLC). Interestingly, the analysis of tumor-infiltrating CD8+ T cell populations showed that (i) the relative IL-18 receptor (IL-18R) is significantly more expressed by the minority of cells with a functional phenotype (T-bet+Eomes+), than by the majority of those with the dysfunctional phenotype T-bet-Eomes+ generally resident within tumors; (ii) as a consequence, the former are significantly more responsive than the latter to IL-18 stimulus in terms of IFNγ production ex vivo; (iii) PD-1 expression does not discriminate these two populations. These data indicate that IL-18R may represent a biomarker of the minority of functional tumor-infiltrating CD8+ T cells in adenocarcinoma NSCLC patients. In addition, our results lead to envisage the possible therapeutic usage of IL-18 in NSCLC, even in combination with other checkpoint inhibitor approaches.
Collapse
Affiliation(s)
- Eleonora Timperi
- Dipartimento di Medicina Interna e Specialità Mediche, "Sapienza" Università di Roma, Rome, Italy
| | - Chiara Focaccetti
- Dipartimento di Medicina Interna e Specialità Mediche, "Sapienza" Università di Roma, Rome, Italy
| | - Daniela Gallerano
- Dipartimento di Medicina Interna e Specialità Mediche, "Sapienza" Università di Roma, Rome, Italy
| | - Mariangela Panetta
- Unità di Immunologia e Immunoterapia dei Tumori, Istituto Nazionale Tumori Regina Elena, Rome, Italy
| | - Sheila Spada
- Unità di Immunologia e Immunoterapia dei Tumori, Istituto Nazionale Tumori Regina Elena, Rome, Italy
| | - Enzo Gallo
- Unità di Anatomia Patologica, Istituto Nazionale Tumori Regina Elena, Rome, Italy
| | - Paolo Visca
- Unità di Anatomia Patologica, Istituto Nazionale Tumori Regina Elena, Rome, Italy
| | - Federico Venuta
- Dipartimento di Chirurgia Generale e Specialità Chirurgiche Paride Stefanini, Chirurgia Toracica, "Sapienza" Università di Roma, Rome, Italy
| | - Daniele Diso
- Dipartimento di Chirurgia Generale e Specialità Chirurgiche Paride Stefanini, Chirurgia Toracica, "Sapienza" Università di Roma, Rome, Italy
| | - Arsela Prelaj
- Dipartimento di Medicina Molecolare Oncologica, "Sapienza" Università di Roma, Rome, Italy
| | - Flavia Longo
- Dipartimento di Medicina Molecolare Oncologica, "Sapienza" Università di Roma, Rome, Italy
| | - Francesco Facciolo
- Unità di Chirurgia Toracica, Istituto Nazionale Tumori Regina Elena, Rome, Italy
| | - Paola Nisticò
- Unità di Immunologia e Immunoterapia dei Tumori, Istituto Nazionale Tumori Regina Elena, Rome, Italy
| | - Vincenzo Barnaba
- Dipartimento di Medicina Interna e Specialità Mediche, "Sapienza" Università di Roma, Rome, Italy.,Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Rome, Italy.,Istituto Italiano di Tecnologia, CLNS@sapienza, Rome, Italy
| |
Collapse
|
11
|
Jia Y, Zang A, Jiao S, Chen S, Yan F. The interleukin-18 gene promoter -607 A/C polymorphism contributes to non-small-cell lung cancer risk in a Chinese population. Onco Targets Ther 2016; 9:1715-9. [PMID: 27051306 PMCID: PMC4807946 DOI: 10.2147/ott.s99581] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The purpose of the present study was to determine the relationship between interleukin-18 (IL-18) -607 A/C polymorphism and the risk of non-small-cell lung cancer (NSCLC) and its impact on the serum IL-18 level. The genotyping of IL-18 -607 A/C polymorphism was detected by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). The results showed that the AA/AC genotype distribution in NSCLC patients was significantly higher than that of healthy controls (P=0.02). However, no significant differences were found between the two subgroups when stratified by clinical characteristics. Furthermore, serum IL-18 levels were found to be significantly higher in the NSCLC patients than in the controls (P=0.01) as detected by enzyme-linked immunosorbent assay analysis. There was no correlation between serum IL-18 levels and different genotypes. In conclusion, these findings suggest that IL-18 -607 A/C polymorphism increases the risk of NSCLC in the Chinese population, and this polymorphism could not functionally affect the IL-18 levels.
Collapse
Affiliation(s)
- Youchao Jia
- Department of Medical Oncology, General Hospital of Chinese PLA, Beijing, People's Republic of China; Department of Oncology, Affiliated Hospital of Hebei University, Hebei, People's Republic of China
| | - Aimin Zang
- Department of Oncology, Affiliated Hospital of Hebei University, Hebei, People's Republic of China
| | - Shunchang Jiao
- Department of Medical Oncology, General Hospital of Chinese PLA, Beijing, People's Republic of China
| | - Sumei Chen
- Department of Medical Oncology, General Hospital of Chinese PLA, Beijing, People's Republic of China
| | - Fu Yan
- Department of Medical Oncology, General Hospital of Chinese PLA, Beijing, People's Republic of China
| |
Collapse
|
12
|
Guerville F, Daburon S, Marlin R, Lartigue L, Loizon S, Pitard V, Couzi L, Moreau JF, Déchanet-Merville J, Faustin B. TCR-dependent sensitization of human γδ T cells to non-myeloid IL-18 in cytomegalovirus and tumor stress surveillance. Oncoimmunology 2015; 4:e1003011. [PMID: 26155394 PMCID: PMC4485801 DOI: 10.1080/2162402x.2014.1003011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 12/23/2014] [Accepted: 12/23/2014] [Indexed: 11/25/2022] Open
Abstract
Human γδ T cells contribute to tissue homeostasis under normal conditions and participate in lymphoid stress surveillance against infection and tumors. However, the molecular mechanisms underlying the recognition of complex cell stress signatures by γδ T cells are still unclear. Tumor cells and human cytomegalovirus (HCMV)-infected cells are known targets of γδ T cells. We show here that many tumor and CMV-infected cells express caspase-1 inflammasomes and release interleukin (IL)-18. Engagement of the T-cell receptor (TCR) on Vδ2neg γδ T cells controlled the direct innate immune sensing of IL-18 that enhanced cytotoxicity and interferon gamma (IFNγ) production. This TCR-dependent sensitization to IL-18 was mediated by the upregulation of the innate IL-18 receptor β chain (IL-18Rβ) expression. These findings shed light on inflammasomes as a unified stress signal of tumor and infected cells to alert γδ T cells. Moreover, uncovering the TCR-mediated sensitization of γδ T cells to inflammatory mediators establishes a molecular link between the innate and adaptive immune functions of γδ T cells that could fine tune the commitment of antigen-experienced γδ T cells to inflammatory responses.
Collapse
Affiliation(s)
- Florent Guerville
- Bordeaux University; CIRID ; Bordeaux, France ; CNRS , UMR 5164 , Bordeaux, France ; Nephrology and Renal Transplantation Department; Bordeaux University Hospital ; Bordeaux, France
| | - Sophie Daburon
- Bordeaux University; CIRID ; Bordeaux, France ; CNRS , UMR 5164 , Bordeaux, France
| | - Romain Marlin
- Bordeaux University; CIRID ; Bordeaux, France ; CNRS , UMR 5164 , Bordeaux, France
| | - Lydia Lartigue
- INSERM U916 VINCO , Institut Bergonié , Bordeaux, France
| | - Severine Loizon
- Bordeaux University; CIRID ; Bordeaux, France ; CNRS , UMR 5164 , Bordeaux, France
| | - Vincent Pitard
- Bordeaux University; CIRID ; Bordeaux, France ; CNRS , UMR 5164 , Bordeaux, France
| | - Lionel Couzi
- Bordeaux University; CIRID ; Bordeaux, France ; CNRS , UMR 5164 , Bordeaux, France ; Nephrology and Renal Transplantation Department; Bordeaux University Hospital ; Bordeaux, France
| | - Jean-François Moreau
- Bordeaux University; CIRID ; Bordeaux, France ; CNRS , UMR 5164 , Bordeaux, France ; Immunology and Immunogenetics Laboratory, Bordeaux University Hospital , Bordeaux, France
| | | | - Benjamin Faustin
- Bordeaux University; CIRID ; Bordeaux, France ; CNRS , UMR 5164 , Bordeaux, France
| |
Collapse
|
13
|
Singh PK, Ahmad MK, Kumar V, Hussain SR, Gupta R, Jain A, Mahdi AA, Bogra J, Chandra G. Effects of interleukin-18 promoter (C607A and G137C) gene polymorphisms and their association with oral squamous cell carcinoma (OSCC) in northern India. Tumour Biol 2014; 35:12275-84. [DOI: 10.1007/s13277-014-2538-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 08/20/2014] [Indexed: 12/12/2022] Open
|
14
|
Role of inflammasomes and their regulators in prostate cancer initiation, progression and metastasis. Cell Mol Biol Lett 2013; 18:355-67. [PMID: 23793845 PMCID: PMC6275599 DOI: 10.2478/s11658-013-0095-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 06/13/2013] [Indexed: 11/22/2022] Open
Abstract
Prostate cancer is one of the main cancers that affect men, especially older men. Though there has been considerable progress in understanding the progression of prostate cancer, the drivers of its development need to be studied more comprehensively. The emergence of resistant forms has also increased the clinical challenges involved in the treatment of prostate cancer. Recent evidence has suggested that inflammation might play an important role at various stages of cancer development. This review focuses on inflammasome research that is relevant to prostate cancer and indicates future avenues of study into its effective prevention and treatment through inflammasome regulation. With regard to prostate cancer, such research is still in its early stages. Further study is certainly necessary to gain a broader understanding of prostate cancer development and to create successful therapy solutions.
Collapse
|
15
|
Liu JM, Liu JN, Wei MT, He YZ, Zhou Y, Song XB, Ying BW, Huang J. Effect of IL-18 gene promoter polymorphisms on prostate cancer occurrence and prognosis in Han Chinese population. GENETICS AND MOLECULAR RESEARCH 2013; 12:820-9. [PMID: 23546966 DOI: 10.4238/2013.march.15.2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Interleukin-18 (IL-18) has been implicated in a wide variety of cellular functions that affect the biological response to tumors. However, there is insufficient evidence to prove that IL-18 gene variants are associated with risk of prostate cancer. We examined a possible association between two promoter polymorphisms, -137G/C (rs187238) and -607C/A (rs1946518), in the IL-18 gene and prostate cancer occurrence and prognosis in Han Chinese. We used a high-resolution melting method to genotype these two polymorphisms in 375 Chinese Han patients with prostate cancer and in 400 age-matched healthy controls. A hundred and eighty-one prostate cancer patients who had been receiving androgen deprivation therapy, including operational and medical castration, were enrolled to follow-up in this study. Carriers of the GG genotype of the -137G/ C polymorphism had a 2.165-times higher risk of prostate cancer progression than carriers of GC [95% confidence interval (CI) = 1.270-3.687]. Patients with the GG genotype at clinical stages III and IV also had significantly lower rates of progression-free survival (relative risk = 2.174, 95%CI = 1.211-3.906). However, we found no significant association of genotype or allele distributions of these two polymorphisms with occurrence of prostate cancer. We conclude that there is evidence that the IL-18 gene promoter polymorphism -137G/ C influences the prognosis of prostate cancer patients in androgen deprivation therapy, although neither of the two SNPs contributes to prostate cancer development.
Collapse
Affiliation(s)
- J M Liu
- Department of Urology Surgery, West China School of Medicine, West China Hospital, Sichuan University, Sichuan Province, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Tse BWC, Russell PJ, Lochner M, Förster I, Power CA. IL-18 inhibits growth of murine orthotopic prostate carcinomas via both adaptive and innate immune mechanisms. PLoS One 2011; 6:e24241. [PMID: 21935389 PMCID: PMC3174151 DOI: 10.1371/journal.pone.0024241] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 08/03/2011] [Indexed: 01/22/2023] Open
Abstract
Interleukin(IL)-18 is a pleiotrophic cytokine with functions in immune modulation, angiogenesis and bone metabolism. In this study, the potential of IL-18 as an immunotherapy for prostate cancer (PCa) was examined using the murine model of prostate carcinoma, RM1 and a bone metastatic variant RM1(BM)/B4H7-luc. RM1 and RM1(BM)/B4H7-luc cells were stably transfected to express bioactive IL-18. These cells were implanted into syngeneic immunocompetent mice, with or without an IL-18-neutralising antibody (αIL-18, SK113AE4). IL-18 significantly inhibited the growth of both subcutaneous and orthotopic RM1 tumors and the IL-18 neutralizing antibody abrogated the tumor growth-inhibition. In vivo neutralization of interferon-gamma (IFN-γ) completely eliminated the anti-tumor effects of IL-18 confirming an essential role of IFN-γ as a down-stream mediator of the anti-tumor activity of IL-18. Tumors from mice in which IL-18 and/or IFN-γ was neutralized contained significantly fewer CD4+ and CD8+ T cells than those with functional IL-18. The essential role of adaptive immunity was demonstrated as tumors grew more rapidly in RAG1−/− mice or in mice depleted of CD4+ and/or CD8+ cells than in normal mice. The tumors in RAG1−/− mice were also significantly smaller when IL-18 was present, indicating that innate immune mechanisms are involved. IL-18 also induced an increase in tumor infiltration of macrophages and neutrophils but not NK cells. In other experiments, direct injection of recombinant IL-18 into established tumors also inhibited tumor growth, which was associated with an increase in intratumoral macrophages, but not T cells. These results suggest that local IL-18 in the tumor environment can significantly potentiate anti-tumor immunity in the prostate and clearly demonstrate that this effect is mediated by innate and adaptive immune mechanisms.
Collapse
Affiliation(s)
- Brian Wan-Chi Tse
- Lowy Cancer Research Centre, University of New South Wales, Sydney, New South Wales, Australia
- Prince of Wales Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Pamela Joan Russell
- Australian Prostate Cancer Research Centre, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Matthias Lochner
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Irmgard Förster
- Institut fuer Umweltmedizinische Forschung, University of Düsseldorf, Düsseldorf, Germany
| | - Carl Andrew Power
- Prince of Wales Clinical School, University of New South Wales, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
17
|
González-Reyes S, Fernández JM, González LO, Aguirre A, Suárez A, González JM, Escaff S, Vizoso FJ. Study of TLR3, TLR4, and TLR9 in prostate carcinomas and their association with biochemical recurrence. Cancer Immunol Immunother 2011; 60:217-26. [PMID: 20978888 PMCID: PMC11028925 DOI: 10.1007/s00262-010-0931-0] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 10/07/2010] [Indexed: 12/12/2022]
Abstract
BACKGROUND Toll-like receptors (TLRs) have garnered an extraordinary amount of interest in cancer research due to their role in tumor progression. By activating the production of several biological factors, TLRs induce type I interferons and other cytokines, which drive an inflammatory response and activate the adaptive immune system. The aim of this study was to investigate the expression and clinical relevance of TLR3, 4, and 9 in prostate cancer. METHODS The expression levels of TLR3, TLR4, and TLR9 were analyzed on tumors from 133 patients with prostate cancer. The analyses were performed by immunohistochemistry on tissue arrays and real time-PCR. RESULTS Cancerous cells showed high expression levels of TLRs compared with controls. Samples of carcinomas with recurrence exhibited a significant increase in the mRNA levels of TLR3, TLR4, and TLR9. In addition, the tumors that showed high TLR3 or TLR9 expression levels were significantly associated with higher probability of biochemical recurrence. CONCLUSION TLR expression is associated with prostate cancer with recurrence and the role of TLR receptors in the biology of malignancy merits study. Therapeutic strategies to boost or block TLRs may be of interest.
Collapse
|
18
|
Fujita K, Ewing CM, Isaacs WB, Pavlovich CP. Immunomodulatory IL-18 binding protein is produced by prostate cancer cells and its levels in urine and serum correlate with tumor status. Int J Cancer 2010; 129:424-32. [PMID: 20878981 DOI: 10.1002/ijc.25705] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2010] [Accepted: 09/13/2010] [Indexed: 11/07/2022]
Abstract
Cytokines may play a role in the initiation and progression of prostate cancer. A cytokine antibody array was previously applied to prostatic fluid obtained from patients with prostate cancer, and interleukin 18 binding protein (IL-18BP), a potent inhibitor of interleukin 18, was noted to be significantly upregulated in cases with large volume disease. We sought to further characterize the association of IL-18BP with prostate cancer and determine whether IL-18BP levels in patient serum and urine samples had clinical relevance. IL-18BP was expressed and secreted by the prostate cancer cell lines DU145 and PC3 but not by LNCaP and CWR22, upon interferon-γ (IFN-γ) stimulation. IFN-γ-induced secretion of IL-18BP was enhanced by added TNF-α, IFN-α and IFN-β. The IL-18BP secreted from DU145 and PC3 functionally inhibited IL-18. Immunohistochemical analyses showed positive IL-18BP staining in prostate cancer cells as well as in macrophages in radical prostatectomy specimens. Significant differences in urinary IL-18BP levels (normalized by total protein) collected post-DRE were found between cases with and without cancer on biopsy (p = 0.02) and serum IL-18BP levels correlated with Gleason score (p = 0.03). Our finding of elevated IL-18BP secretion from prostate cancer cells suggests an attempt by cancer to escape immune surveillance. IL-18BP merits further study as a marker of aggressive prostate cancer and as a therapeutic target.
Collapse
Affiliation(s)
- Kazutoshi Fujita
- Brady Urological Institute, Johns Hopkins Medical Institutions, Baltimore, MD 21224, USA
| | | | | | | |
Collapse
|
19
|
Khamis ZI, Iczkowski KA, Sahab ZJ, Sang QXA. Protein profiling of isolated leukocytes, myofibroblasts, epithelial, Basal, and endothelial cells from normal, hyperplastic, cancerous, and inflammatory human prostate tissues. J Cancer 2010; 1:70-9. [PMID: 20842227 PMCID: PMC2938068 DOI: 10.7150/jca.1.70] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
In situ neoplastic prostate cells are not lethal unless they become invasive and metastatic. For cells to become invasive, the prostate gland must undergo degradation of the basement membrane and disruption of the basal cell layer underneath the luminal epithelia. Although the roles of proteinases in breaking down the basement membrane have been well-studied, little is known about the factors that induce basal cell layer disruption, degeneration, and its eventual disappearance in invasive cancer. It is hypothesized that microenvironmental factors may affect the degradation of the basal cell layer, which if protected may prevent tumor progression and invasion. In this study, we have revealed differential protein expression patterns between epithelial and stromal cells isolated from different prostate pathologies and identified several important epithelial and stromal proteins that may contribute to inflammation and malignant transformation of human benign prostate tissues to cancerous tissues using matrix-assisted laser desorption ionization time-of-flight mass spectrometry and proteomics methods. Cellular retinoic acid-binding protein 2 was downregulated in basal cells of benign prostate. Caspase-1 and interleukin-18 receptor 1 were highly expressed in leukocytes of prostate cancer. Proto-oncogene Wnt-3 was downregulated in endothelial cells of prostatitis tissue and tyrosine phosphatase non receptor type 1 was only found in normal and benign endothelial cells. Poly ADP-ribose polymerase 14 was downregulated in myofibroblasts of prostatitis tissue. Interestingly, integrin alpha-6 was upregulated in epithelial cells but not detected in myofibroblasts of prostate cancer. Further validation of these proteins may generate new strategies for the prevention of basal cell layer disruption and subsequent cancer invasion.
Collapse
Affiliation(s)
- Zahraa I. Khamis
- 1. Department of Chemistry and Biochemistry and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Kenneth A. Iczkowski
- 2. Department of Pathology, University of Colorado Health Science Center, Aurora, CO 80045, USA
| | - Ziad J. Sahab
- 1. Department of Chemistry and Biochemistry and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Qing-Xiang Amy Sang
- 1. Department of Chemistry and Biochemistry and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
20
|
IL-18 Paradox in Pancreatic Carcinoma: Elevated Serum Levels of Free IL-18 are Correlated With Poor Survival. J Immunother 2009; 32:920-31. [DOI: 10.1097/cji.0b013e3181b29168] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
21
|
Nong LG, Luo B, Zhang L, Nong HB. Interleukin-18 gene promoter polymorphism and the risk of nasopharyngeal carcinoma in a Chinese population. DNA Cell Biol 2009; 28:507-13. [PMID: 19622039 DOI: 10.1089/dna.2009.0912] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is one of the most common cancers in southern China. In addition to environmental factors such as Epstein-Barr virus infection and chemical carcinogen exposure, genetic susceptibility has been reported to play a key role in the development of this disease. Interleukin-18 (IL-18) is a multifunctional cytokine that induces interferon-gamma secretion and plays an important role in antitumor immunity. Variations in the DNA sequence of the IL-18 gene promoter may lead to altered IL-18 production and/or activity, so this can modulate an individual's susceptibility to NPC. To test this hypothesis, we analyzed two single-nucleotide polymorphisms of IL-18 gene promoter, -137 G/C and -607 C/A, in 250 patients with NPC and 270 age- and sex-matched controls, using polymerase chain reaction-restriction fragment length polymorphism. Two polymorphisms, -137 G/C and -607 C/A, were in strong linkage disequilibrium. There were significant differences in the genotype and allele distribution of -137 G/C polymorphism of the IL-18 gene among cases and controls. The -137 GC and CC genotypes were associated with a significantly increased risk of NPC as compared with the -137 GG genotypes (odds ratio [OR] = 1.697; 95% confidence interval [CI], 1.158-2.488; p = 0.007, and OR = 2.700; 95% CI, 1.268-5.751; p = 0.008, respectively). Consistent with the results of the genotyping analyses, the -137 C/-607 A haplotype was associated with a significantly increased risk of NPC as compared with the -137 G/-607 C haplotype (OR = 1.721; 95% CI, 1.262-2.349; p = 0.001).
Collapse
Affiliation(s)
- Le-Gen Nong
- Department of Medical Laboratory, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China.
| | | | | | | |
Collapse
|
22
|
Nong SJ, Wen DG, Fan CB, Ouyang J. Relationship of serum interleukin-18 and interleukin-12 levels with clinicopathology in renal cell carcinoma. Chin J Cancer Res 2007. [DOI: 10.1007/s11670-007-0304-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
23
|
Liu Y, Lin N, Huang L, Xu Q, Pang G. Genetic Polymorphisms of the Interleukin-18 Gene and Risk of Prostate Cancer. DNA Cell Biol 2007; 26:613-8. [PMID: 17688413 DOI: 10.1089/dna.2007.0600] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Genetic factors are known to be important in the development of prostate cancer. Interleukin-18 (IL-18) is a multifunctional cytokine that induces interferon-gamma secretion and plays an important role in antitumor immunity. Variations in the DNA sequence in the IL-18 gene promoter may lead to altered IL-18 production and/or activity, and so this can modulate an individual's susceptibility to prostate cancer. To test this hypothesis, we investigated the relationship of IL-18 gene promoter -137 G/C and -607 C/A polymorphisms and their haplotypes with the risk of prostate cancer. We analyzed two single nucleotide polymorphisms of IL-18 gene promoter -137 G/C and -607 C/A in 265 patients with prostate cancer and 280 age- and sex-matched controls, using sequence-specific primers-polymerase chain reaction strategy. There were significant differences in the genotype and allele distribution of -137 G/C polymorphism of the IL-18 gene among cases and controls. The -137 GC and CC genotypes were associated with a significantly increased risk of prostate cancer as compared with the -137 GG genotypes [odds ratio (OR) = 1.721; 95% confidence interval (CI): 1.187-2.496; p = 0.004, and OR = 2.181; 95% CI: 1.034-4.603; p = 0.037, for GC and CC, respectively]. Consistent with the results of the genotyping analyses, the -137C/-607A haplotype was associated with a significantly increased risk of prostate cancer as compared with the -137G/-607C haplotype (OR = 1.544; 95% CI, 1.137-2.096; p = 0.005). This study shows for the first time an association between IL-18 gene promoter -137 G/C polymorphism and prostate cancer in a Chinese population.
Collapse
Affiliation(s)
- Yunguang Liu
- Department of Scientific Research, Youjiang Medical College for Nationalities, Baise, Guangxi, People's Republic of China.
| | | | | | | | | |
Collapse
|
24
|
Vidal-Vanaclocha F, Mendoza L, Telleria N, Salado C, Valcárcel M, Gallot N, Carrascal T, Egilegor E, Beaskoetxea J, Dinarello CA. Clinical and experimental approaches to the pathophysiology of interleukin-18 in cancer progression. Cancer Metastasis Rev 2007; 25:417-34. [PMID: 17001512 DOI: 10.1007/s10555-006-9013-3] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Interleukin-18 (IL-18, interferon [IFN]-gamma-inducing factor) is a proinflammatory cytokine converted to a biologically active molecule by interleukin (IL)-1beta converting enzyme (caspase-1). A wide range of normal and cancer cell types can produce and respond to IL-18 through a specific receptor (IL-18R) belonging to the toll-like receptor family. The activity of IL-18 is regulated by IL-18-binding protein (IL-18bp), a secreted protein possessing the ability to neutralize IL-18 and whose blood level is affected by renal function and is induced by IFNgamma. IL-18 plays a central role in inflammation and immune response, contributing to the pathogenesis and pathophysiology of infectious and inflammatory diseases. Because immune-stimulating effects of IL-18 have antineoplastic properties, IL-18 has been proposed as a novel adjuvant therapy against cancer. However, IL-18 increases in the blood of the majority of cancer patients and has been associated with disease progression and, in some cancer types, with metastatic recurrence risk and poor clinical outcome and survival. Under experimental conditions, cancer cells can also escape immune recognition, increase their adherence to the microvascular wall and even induce production of angiogenic and tumor growth-stimulating factors via IL-18-dependent mechanism. This is particularly visible in melanoma cells. Thus, the role of IL-18 in cancer progression and metastasis remains controversial. This review examines the clinical correlations and biological effects of IL-18 during cancer development and highlights recent experimental insights into prometastatic and proangiogenic effects of IL-18 and the use of IL-18bp against cancer progression.
Collapse
Affiliation(s)
- Fernando Vidal-Vanaclocha
- Department of Cell Biology and Histology, Basque Country University School of Medicine and Dentistry, Leioa, Bizkaia 48940, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Bellone G, Smirne C, Mauri FA, Tonel E, Carbone A, Buffolino A, Dughera L, Robecchi A, Pirisi M, Emanuelli G. Cytokine expression profile in human pancreatic carcinoma cells and in surgical specimens: implications for survival. Cancer Immunol Immunother 2006; 55:684-98. [PMID: 16094523 PMCID: PMC11031060 DOI: 10.1007/s00262-005-0047-0] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Accepted: 06/14/2005] [Indexed: 12/13/2022]
Abstract
Cytokine shedding by tumor cells into the local microenvironment modulates host immune response, tumor growth, and metastasis. The study aimed to verify the hypothesis that the immunological microenvironment of pancreatic carcinoma exists in a prevalently immunosuppressive state, influencing survival. We analyzed expression profiles of pro-inflammatory (IL-1beta, IL-2, IL-6, IL-8, IL-12 p40, IL-18 and IFN-gamma) and anti-inflammatory (IL-10, IL-11, IL-13 and TGF-beta isoforms) cytokines. The study was performed both in vitro, in five pancreatic carcinoma cell lines (real time RT-PCR), and in specimens from 65 patients, comparing tumoral versus non-tumoral pancreatic tissues (real time RT-PCR and immunohistochemistry). Furthermore, cytokines were measured in supernatants and sera (from patients and controls) by ELISA. All cell lines expressed IL-8, IL-18, TGF-beta1, TGF-beta2 and TGF-beta3, but not IFN-gamma and IL-2 transcripts. Expression of IL-1beta, IL-6, IL-10, IL-11, IL-13 and IL-12 mRNA was variable. All the above cytokines were detected as soluble proteins in supernatants, except IL-13. Tumor tissues overexpressed IL-1beta, IL-6, IL-8, IL-10, IL-11, IL-12 p40, IL-18, IFN-gamma, TGF-beta1, TGF-beta2 and TGF-beta3 at the mRNA level and IL-1beta, IL-18, TGF-beta2 and TGF-beta3 also at the protein level. Conversely, non-tumor tissues had stronger RNA and protein expression of IL-13. Survival was significantly longer in patients with high IL-1beta and IL-11 and moderate IL-12 expression. Serum IL-8, IL-10, IL-12, IL-18, TGF-beta1 and TGF-beta2 were higher in patients than in controls, as opposed to IL-1beta and IL-13. Patients with low circulating levels of IL-6, IL-18 and TGF-beta2 survived longer. Pancreatic cancer is characterized by peculiar cytokine expression patterns, associated with different survival probabilities.
Collapse
Affiliation(s)
- Graziella Bellone
- Department of Clinical Physiopathology, Università di Torino, Via Genova, 3, 10126 Torino, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Desai KV, Michalowska AM, Kondaiah P, Ward JM, Shih JH, Green JE. Gene expression profiling identifies a unique androgen-mediated inflammatory/immune signature and a PTEN (phosphatase and tensin homolog deleted on chromosome 10)-mediated apoptotic response specific to the rat ventral prostate. Mol Endocrinol 2004; 18:2895-907. [PMID: 15358834 DOI: 10.1210/me.2004-0033] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Understanding androgen regulation of gene expression is critical for deciphering mechanisms responsible for the transition from androgen-responsive (AR) to androgen-independent (AI) prostate cancer (PCa). To identify genes differentially regulated by androgens in each prostate lobe, the rat castration model was used. Microarray analysis was performed to compare dorsolateral (DLP) and ventral prostate (VP) samples from sham-castrated, castrated, and testosterone-replenished castrated rats. Our data demonstrate that, after castration, the VP and the DLP differed in the number of genes with altered expression (1496 in VP vs. 256 in DLP) and the nature of pathways modulated. Gene signatures related to apoptosis and immune response specific to the ventral prostate were identified. Microarray and RT-PCR analyses demonstrated the androgen repression of IGF binding protein-3 and -5, CCAAT-enhancer binding protein-delta, and phosphatase and tensin homolog deleted on chromosome 10 (PTEN) genes, previously implicated in apoptosis. We show that PTEN protein was increased only in the luminal epithelial cells of the VP, suggesting that it may be a key mediator of VP apoptosis in the absence of androgens. The castration-induced immune/inflammatory gene cluster observed specifically in the VP included IL-15 and IL-18. Immunostaining of the VP, but not the DLP, showed an influx of T cells, macrophages, and mast cells, suggesting that these cells may be the source of the immune signature genes. Interestingly, IL-18 was localized mainly to the basal epithelial cells and the infiltrating macrophages in the regressing VP, whereas IL-15 was induced in the luminal epithelium. The VP castration model exhibits immune cell infiltration and loss of PTEN that is often observed in progressive PCa, thereby making this model useful for further delineation of androgen-regulated gene expression with relevance to PCa.
Collapse
Affiliation(s)
- Kartiki V Desai
- Laboratory of Cell Regulation and Carcinogenesis, 41 Medlar's Drive, Room C619, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|