1
|
Huang CY, Tan KT, Huang SF, Lu YJ, Wang YH, Chen SJ, Tse KP. Study of sex-biased differences in genomic profiles in East Asian hepatocellular carcinoma. Discov Oncol 2024; 15:276. [PMID: 38981878 PMCID: PMC11233483 DOI: 10.1007/s12672-024-01131-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 06/27/2024] [Indexed: 07/11/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is characterized by a notable sex disparity in incidence and tumor aggressiveness. Revealing differences in genetic landscapes between male and female HCCs may expand the understanding of sexual disparities mechanisms and assist the development of precision medicine. Although reports on the sex disparity of HCC are accumulated, studies focusing on sex-related biomarkers among Asian populations remain limited. Here, we conducted a comprehensive genomic profiling analysis to explore differences between male and female patients within a cohort of 195 Taiwanese HCC patients. We did not detect any sex-biased genomic alterations. However, when our investigation extended to the TCGA dataset, we found higher frequencies of gene copy gains in CCNE2 and mutations in CTNNB1 and TP53 among male patients. Besides, we further evaluated the associations between genomic alterations and patients' prognosis by sex. The results showed that female patients harboring tumors with STAT3 gain and alterations in the JAK-STAT pathway displayed a poor prognosis. These two factors remained independently associated with unfavorable prognosis even after adjusting for the patient's age and stage characteristics (Hazard ratio = 10.434, 95% CI 3.331-32.677, P < 0.001; Hazard ratio = 2.547, 95% CI 1.195-5.432, P = 0.016, respectively). In summary, this study provides valuable insights into understanding sex disparity in HCC in the East Asian population. Validation through larger cohorts and extensive sequencing efforts is warranted.
Collapse
Affiliation(s)
| | - Kien-Thiam Tan
- ACT Genomics Co., Ltd., Taipei, Taiwan
- Anbogen Therapeutics, Inc., Taipei, Taiwan
| | - Shiu-Feng Huang
- Core Pathology Lab, Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | | | - Yeh-Han Wang
- ACT Genomics Co., Ltd., Taipei, Taiwan
- Department of Pathology, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | | | - Ka-Po Tse
- ACT Genomics Co., Ltd., Taipei, Taiwan.
| |
Collapse
|
2
|
Peruhova M, Banova-Chakarova S, Miteva DG, Velikova T. Genetic screening of liver cancer: State of the art. World J Hepatol 2024; 16:716-730. [PMID: 38818292 PMCID: PMC11135278 DOI: 10.4254/wjh.v16.i5.716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/14/2024] [Accepted: 04/09/2024] [Indexed: 05/22/2024] Open
Abstract
Liver cancer, primarily hepatocellular carcinoma, remains a global health challenge with rising incidence and limited therapeutic options. Genetic factors play a pivotal role in the development and progression of liver cancer. This state-of-the-art paper provides a comprehensive review of the current landscape of genetic screening strategies for liver cancer. We discuss the genetic underpinnings of liver cancer, emphasizing the critical role of risk-associated genetic variants, somatic mutations, and epigenetic alterations. We also explore the intricate interplay between environmental factors and genetics, highlighting how genetic screening can aid in risk stratification and early detection via using liquid biopsy, and advancements in high-throughput sequencing technologies. By synthesizing the latest research findings, we aim to provide a comprehensive overview of the state-of-the-art genetic screening methods for liver cancer, shedding light on their potential to revolutionize early detection, risk assessment, and targeted therapies in the fight against this devastating disease.
Collapse
Affiliation(s)
- Milena Peruhova
- Department of Gastroenterology, University Hospital "Heart and Brain", Burgas 8000, Bulgaria
| | - Sonya Banova-Chakarova
- Department of Gastroenterology, University Hospital "Heart and Brain", Burgas 8000, Bulgaria.
| | - Dimitrina Georgieva Miteva
- Department of Genetics, Faculty of Biology, Sofia University" St. Kliment Ohridski, Sofia 1164, Bulgaria
| | - Tsvetelina Velikova
- Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
| |
Collapse
|
3
|
Zhou X, Li Z, Chen H, Jiao M, Zhou C, Li H. Relevance Analysis of TPM2 and Clinicopathological Characteristics in Breast Cancer. Int J Gen Med 2024; 17:59-74. [PMID: 38221941 PMCID: PMC10788065 DOI: 10.2147/ijgm.s442004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/28/2023] [Indexed: 01/16/2024] Open
Abstract
Background The function of tropomyosin 2 (TPM2) in breast cancer is still far understudied. In this study, we aim to explore the roles of TPM2 in breast cancer progression. Methods This research included 155 breast cancer tissues. The expression of TPM2 was analyzed by immunohistochemical staining and grading. The mRNA expression of TPM2 in pan-cancer was analyzed with The Cancer Genome Atlas (TCGA) data plate form. The differential expression of TPM2 protein and the differential promoter methylation level of TPM2 between breast cancer tissues and normal breast tissues were analyzed by the UALCAN online database. The relationship between TPM2 and signaling pathways was interpreted by Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) pathway enrichment analyses. The survival curve of TPM2 was analyzed across the Kaplan-Meier plotter online database. Furthermore, the relationship between TPM2 expression and infiltrating macrophages was validated through in vitro co-culture experiments. Results TPM2 expression was significantly down-regulated in breast cancer samples. In addition, TPM2 expression was correlated with lymph node metastasis and high-grade histopathological morphology. The receiver operating characteristic (ROC) curve indicated that TPM2 expression could well distinguish between normal breast tissue and breast cancer tissue. TPM2 may have potential value in breast cancer diagnosis. Bioinformatics analysis illustrated that TPM2 was mainly involved in extracellular matrix organization, collagen fibril organization, cell junction assembly, focal adhesion, cAMP signaling pathway, estrogen signaling pathway, Wnt signaling pathway, and adaptive immune system. TPM2 expression was correlated with immune infiltrating cells and immune checkpoint molecules. Our in vitro co-culture experiments showed that the M2 macrophages could upregulate the expression of TPM2. Conclusion TPM2 may play key roles in breast cancer occurrence and development, especially in cancer metastasis. TPM2 may be a potential biomarker for breast cancer diagnosis.
Collapse
Affiliation(s)
- Xingchen Zhou
- Department of Pathology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
| | - Zhishuang Li
- Department of Pathology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
| | - Huan Chen
- Department of Pathology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
| | - Meng Jiao
- Department of Pathology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
| | - Chengjun Zhou
- Department of Pathology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
| | - Hui Li
- Department of Pathology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
| |
Collapse
|
4
|
Kim HR, Seo CW, Kim J. The value of CDC42 effector protein 2 as a novel prognostic biomarker in liver hepatocellular carcinoma: a comprehensive data analysis. Osong Public Health Res Perspect 2023; 14:451-467. [PMID: 38204425 PMCID: PMC10788419 DOI: 10.24171/j.phrp.2023.0229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/18/2023] [Accepted: 11/14/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND The prognostic significance of CDC42 effector protein 2 (CDC42EP2) and its association with tumor-infiltrating immune cells (TIICs) have not been explored in liver hepatocellular carcinoma (LIHC). This study aims to assess the potential prognostic value of CDC42EP2 by conducting a comprehensive analysis of online databases pertaining to LIHC. METHODS We evaluated the potential of CDC42EP2 as a prognostic biomarker by utilizing online databases such as TIMER, GEPIA2, KM, OSlihc, HPA, and LinkedOmics. RESULTS In LIHC, we observed that the mRNA and protein expression of CDC42EP2 were upregulated compared to normal tissues. Upregulated CDC42EP2 expression was associated with a worse prognosis based on the clinicopathological characteristics of patients with LIHC. Furthermore, CDC42EP2 was positively associated with TIICs. In the co-expression and functional enrichment analyses of CDC42EP2, 11,416 genes showed positive associations with CDC42EP2 while 8,008 genes showed negative associations. CDC42EP2-related co-expression genes were involved in protein localization to the endoplasmic reticulum, translational initiation, and RNA catabolic processes in gene set enrichment analysis-Gene Ontology (GSEAGO), and regulated the ribosome, spliceosome, and primary immune deficiency in the GSEAKyoto Encyclopedia of Genes and Genomes (KEGG) pathway. In a survival map, 23 and 17 genes that exhibited positive associations with CDC42EP2 showed a significant hazard ratio (HR) for overall survival and disease-free survival, respectively. CONCLUSION Our findings demonstrated that CDC42EP2 is a novel prognostic biomarker and a potential tumor immune therapeutic target in patients with LIHC.
Collapse
Affiliation(s)
- Hye-Ran Kim
- Department of Biomedical Laboratory Science, Dong-Eui Institute of Technology, Busan, Republic of Korea
| | - Choong Won Seo
- Department of Biomedical Laboratory Science, Dong-Eui Institute of Technology, Busan, Republic of Korea
| | - Jongwan Kim
- Department of Biomedical Laboratory Science, Dong-Eui Institute of Technology, Busan, Republic of Korea
| |
Collapse
|
5
|
Liu F, Liao Z, Qin L, Zhang Z, Zhang Q, Han S, Zeng W, Zhang H, Liu Y, Song J, Chen W, Zhu H, Liang H, Chen X, Zhang B, Zhang Z. Targeting VPS72 inhibits ACTL6A/MYC axis activity in HCC progression. Hepatology 2023; 78:1384-1401. [PMID: 36631007 PMCID: PMC10581431 DOI: 10.1097/hep.0000000000000268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/22/2022] [Indexed: 01/13/2023]
Abstract
BACKGROUND AND AIMS HCC is a highly heterogeneous disease that is caused largely by genomic copy number variations. Herein, the mechanistic and therapeutically targeted role of vacuolar protein sorting 72 homologue (VPS72), a novel copy number variation cis-driven gained gene identified by genome-wide copy number variation and transcriptome analyses in HCC, is not well understood. APPROACH AND RESULTS First, overexpression of VPS72 enhanced the initiation and progression of HCC in vitro and in vivo . Mechanistically, VPS72 interacted with the oncoproteins MYC and actin-like 6A (ACTL6A) and promoted the formation of the ACTL6A/MYC complex. Furthermore, ACTL6A regulated VPS72 protein stability by weakening the interaction between tripartite motif containing 21 (TRIM21) and VPS72. Thus, the interaction between VPS72 and ACTL6A enhanced the affinity of MYC for its target gene promoters and promoted their transcription, thereby contributing to HCC progression, which was inhibited by adeno-associated virus serotype 8 (AAV8)-mediated short hairpin RNA (shRNA) against VPS72. CONCLUSIONS This study reveals the molecular mechanism of ACTL6A/VPS72/MYC in HCC, providing a theoretical basis and therapeutic target for this malignancy.
Collapse
Affiliation(s)
- Furong Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Zhibin Liao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Lu Qin
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ze Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Qiaofeng Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Shenqi Han
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Weifeng Zeng
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Hongwei Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Yachong Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Jia Song
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Wei Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - He Zhu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| | - Zhanguo Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
| |
Collapse
|
6
|
Zhao YC, Wang TJ, Qu GH, She LZ, Cui J, Zhang RF, Qu HD. TPM3: a novel prognostic biomarker of cervical cancer that correlates with immune infiltration and promotes malignant behavior in vivo and in vitro. Am J Cancer Res 2023; 13:3123-3139. [PMID: 37559998 PMCID: PMC10408471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/19/2023] [Indexed: 08/11/2023] Open
Abstract
Cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) has become increasingly prevalent in younger women. Tropomyosin 3 (TPM3), a thin filament actin-binding protein, has been implicated in various malignancies. In this study, TPM3 expression was evaluated using RNA-seq data from The Cancer Genome Atlas (TCGA), and its relationship with CESC prognosis was examined with receiver operating characteristic (ROC) curves. The effects of TPM3 on cellular proliferation and migration were examined in CESC cell lines using Cell Counting Kit-8 (CCK-8), colony formation, and Transwell assays, while in vivo effects were assessed in mouse xenograft models. Furthermore, differentially expressed genes (DEGs) associated with TPM3 were investigated to determine their tumorigenic functions. Associations between TPM3, chemosensitivity, and immune infiltration were analyzed, as were links between mutations, methylation, and prognosis using the cBioPortal and MethSurv databases. Upregulation of TMP3 mRNA and protein levels was observed in CESC samples, with elevated mRNA levels associated with reduced overall survival. TPM3 showed an area under the curve (AUC) of 0.946 for CESC diagnosis and was found to regulate tumor proliferation and metastasis in vitro and in vivo. Overall, 3099 DEGs were identified and found to be enriched in key CESC progression-related signaling pathways. TPM3 expression was also correlated with intratumoral immune cell infiltration and immune checkpoint activity. Patients with higher TPM3 expression showed distinctive chemosensitivity profiles, and TPM3 gene methylation was linked to poorer CESC patient prognostic outcomes. In conclusion, TPM3 is a key regulator of CESC progression, prognosis, and the tumor immune microenvironment, suggesting its potential as a diagnostic or prognostic biomarker and target for CESC immunotherapy.
Collapse
Affiliation(s)
- Yue-Chen Zhao
- Department of Radiation Oncology, The Second Hospital of Jilin UniversityChangchun 130041, Jilin, P. R. China
| | - Tie-Jun Wang
- Department of Radiation Oncology, The Second Hospital of Jilin UniversityChangchun 130041, Jilin, P. R. China
| | - Geng-Hui Qu
- Department of Radiology, Dongliao County People’s HospitalLiaoyuan 136299, Jilin, P. R. China
| | - Li-Zhen She
- Department of Radiation Oncology, The Second Hospital of Jilin UniversityChangchun 130041, Jilin, P. R. China
| | - Jie Cui
- Department of Radiation Oncology, The Second Hospital of Jilin UniversityChangchun 130041, Jilin, P. R. China
| | - Rui-Feng Zhang
- Department of Radiation Oncology, The Second Hospital of Jilin UniversityChangchun 130041, Jilin, P. R. China
- Department of Internal Medicin-1, Jilin Cancer HospitalChangchun 130103, Jilin, P. R. China
| | - Hong-Dao Qu
- Department of Radiation Oncology, The Second Hospital of Jilin UniversityChangchun 130041, Jilin, P. R. China
| |
Collapse
|
7
|
Identification of Prognostic Biomarkers for Suppressing Tumorigenesis and Metastasis of Hepatocellular Carcinoma through Transcriptome Analysis. Diagnostics (Basel) 2023; 13:diagnostics13050965. [PMID: 36900109 PMCID: PMC10001411 DOI: 10.3390/diagnostics13050965] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
Cancer is one of the deadliest diseases developed through tumorigenesis and could be fatal if it reaches the metastatic phase. The novelty of the present investigation is to explore the prognostic biomarkers in hepatocellular carcinoma (HCC) that could develop glioblastoma multiforme (GBM) due to metastasis. The analysis was conducted using RNA-seq datasets for both HCC (PRJNA494560 and PRJNA347513) and GBM (PRJNA494560 and PRJNA414787) from Gene Expression Omnibus (GEO). This study identified 13 hub genes found to be overexpressed in both GBM and HCC. A promoter methylation study showed these genes to be hypomethylated. Validation through genetic alteration and missense mutations resulted in chromosomal instability, leading to improper chromosome segregation, causing aneuploidy. A 13-gene predictive model was obtained and validated using a KM plot. These hub genes could be prognostic biomarkers and potential therapeutic targets, inhibition of which could suppress tumorigenesis and metastasis.
Collapse
|
8
|
Abbas EAER, Barakat AB, Hassany M, Youssef SS. The role of BCL9 genetic variation as a biomarker for hepatitis C-related hepatocellular carcinoma in Egyptian patients. J Genet Eng Biotechnol 2022; 20:4. [PMID: 34978646 PMCID: PMC8724383 DOI: 10.1186/s43141-021-00282-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 12/06/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is considered one of the most common cancers related to mortality around the world, and susceptibility is related with genetic, lifestyle, and environmental factors. Copy number variation of the Bcell CLL/lymphoma 9 (BCL9) gene is a type of structural variation which can influence gene expression and can be related with specific phenotypes and diseases and has a role in hepatocarcinogenesis. Our aims were to assess the copy number variation (CNV) in the BCL9 gene and explore its role in HCV-related HCC Egyptian patients. A total of 50 HCV-related HCC patients were enrolled in the study (including 25 early HCC and 25 late HCC cases); the copy number of the BCL9 gene was detected using quantitative polymerase reaction. RESULTS There was a highly statistically significant difference between the two groups (early and late HCC patients) in gender, bilharziasis, performance status, child score class, child grade, focal lesion size, portal vein, and ascites. CNV was detected and represented by the gain in the BCL9 gene in 14% of patients, and all of them were males. Also, it was noticed that the ratio of gain in BCL9 copy number in late individuals was about 1.5 times than that in early HCC individuals. Moreover, our results showed that the distribution of performance status > 1, average and enlarged liver, focal lesion size, thrombosed portal vein, and AFP was higher in patients with BCL9 copy number gain. CONCLUSION We detected about 14% gain in BCL9 copy number in Egyptian HCC patients. But the variation in copy number of the BCL9 gene did not affect HCC development in our patients' cohort.
Collapse
Affiliation(s)
- Eman Abd El Razek Abbas
- Microbial Biotechnology Department, National Research Centre, 33 El-Buhouth St., Dokki, Giza, Cairo 12622 Egypt
| | | | - Mohamed Hassany
- Tropical Medicine Department, National Hepatology and Tropical Medicine Research Institute, Cairo, Egypt
| | - Samar Samir Youssef
- Microbial Biotechnology Department, National Research Centre, 33 El-Buhouth St., Dokki, Giza, Cairo 12622 Egypt
| |
Collapse
|
9
|
Tian Z, Zhao J, Wang Y. The prognostic value of TPM1-4 in hepatocellular carcinoma. Cancer Med 2021; 11:433-446. [PMID: 34850589 PMCID: PMC8729055 DOI: 10.1002/cam4.4453] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/30/2021] [Accepted: 11/03/2021] [Indexed: 12/11/2022] Open
Abstract
Background Despite advances in multiple disciplinary diagnoses and treatments, the prognosis of hepatocellular carcinoma (HCC) remains poor. Some evidence has identified that the aberrant expression of tropomyosins (TPMs) is involved with some cancers development. However, prognostic values of TPMs in HCC have not been thoroughly investigated. Methods Original TPM1–4 mRNA expression of TCGA HCC data and GTEx was downloaded from UCSC XENA. Oncomine database and GSE46408 were used for verification. Clinical stages and survival analysis of TPM1–4 in HCC were performed by GEPIA2. cBioPortal was utilized to assess TPM1–4 gene alteration in HCC. TIMER2.0 was used for investigating the relevance of TPM1–4 to tumor‐infiltrating immune cells in HCC. Additionally, we constructed a TPM1–4 prognostic model to explore the value of TPM1–4 for prognostic evaluation in HCC. LinkedOmics was applied to elucidate TPM3 co‐expression networks in HCC. Results This present study showed that TPM1–4 was upregulated in all HCC tissues, and TPM3 overexpression was correlated with poor survival outcomes in patients with HCC. Besides, TPM3 amplification was the main altered type in TPM1–4 genetic alteration, which affected the prognosis of HCC patients. The risk model revealed that TPM1, TPM2, and TPM3 were applied to risk assessment of HCC prognosis, among which TPM3 expression was significantly higher in the high‐risk group than that in the low‐risk group. Univariate and multivariate cox regression analyses indicated that TPM3 may be an independent prognostic factor of HCC prognosis. In addition, TPM3 co‐expression genes mainly participated in the cell cycle by maintaining microtubule cytoskeleton in HCC progression. TPM1–4 was associated with some tumor‐infiltrating immune cells in HCC. Conclusion Our study detected that the expression level of TPM1–4 was all remarkably elevated in HCC, suggesting that TPM1–4 may serve an important role in HCC development. High TPM3 expression was found to be correlated with poor overall survival, and TPM3 may be an independent prognostic factor for HCC.
Collapse
Affiliation(s)
- Zhihui Tian
- Gastroenterology Ward One, Shanxi Province Cancer Hospital, Taiyuan, Shanxi, China
| | - Jian Zhao
- Gastroenterology Ward One, Shanxi Province Cancer Hospital, Taiyuan, Shanxi, China
| | - Yusheng Wang
- Gastroenterology Ward One, Shanxi Province Cancer Hospital, Taiyuan, Shanxi, China
| |
Collapse
|
10
|
Nguyen L, Jager M, Lieshout R, de Ruiter PE, Locati MD, Besselink N, van der Roest B, Janssen R, Boymans S, de Jonge J, IJzermans JNM, Doukas M, Verstegen MMA, van Boxtel R, van der Laan LJW, Cuppen E, Kuijk E. Precancerous liver diseases do not cause increased mutagenesis in liver stem cells. Commun Biol 2021; 4:1301. [PMID: 34795391 PMCID: PMC8602268 DOI: 10.1038/s42003-021-02839-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/30/2021] [Indexed: 12/18/2022] Open
Abstract
Inflammatory liver disease increases the risk of developing primary liver cancer. The mechanism through which liver disease induces tumorigenesis remains unclear, but is thought to occur via increased mutagenesis. Here, we performed whole-genome sequencing on clonally expanded single liver stem cells cultured as intrahepatic cholangiocyte organoids (ICOs) from patients with alcoholic cirrhosis, non-alcoholic steatohepatitis (NASH), and primary sclerosing cholangitis (PSC). Surprisingly, we find that these precancerous liver disease conditions do not result in a detectable increased accumulation of mutations, nor altered mutation types in individual liver stem cells. This finding contrasts with the mutational load and typical mutational signatures reported for liver tumors, and argues against the hypothesis that liver disease drives tumorigenesis via a direct mechanism of induced mutagenesis. Disease conditions in the liver may thus act through indirect mechanisms to drive the transition from healthy to cancerous cells, such as changes to the microenvironment that favor the outgrowth of precancerous cells.
Collapse
Affiliation(s)
- Luan Nguyen
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Myrthe Jager
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | - Mauro D Locati
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Nicolle Besselink
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bastiaan van der Roest
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Roel Janssen
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sander Boymans
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | - Edwin Cuppen
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht, The Netherlands.
- Hartwig Medical Foundation, Amsterdam, The Netherlands.
| | - Ewart Kuijk
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
11
|
Wang Y, Zhou K, Wang X, Liu Y, Guo D, Bian Z, Su L, Liu K, Gu X, Guo X, Wang L, Zhang H, Tao K, Xing J. Multiple-level copy number variations in cell-free DNA for prognostic prediction of HCC with radical treatments. Cancer Sci 2021; 112:4772-4784. [PMID: 34490703 PMCID: PMC8586684 DOI: 10.1111/cas.15128] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 02/06/2023] Open
Abstract
Copy number variations (CNVs) in cell-free DNA (cfDNA) are emerging as noninvasive biomarkers for various cancers. However, multiple-level analysis of cfDNA CNVs for hepatocellular carcinoma (HCC) patients with radical treatments remains uninvestigated. Here, CNVs at genome-wide, chromosomal-arm, and bin levels were analyzed in cfDNA from 117 HCC patients receiving radical treatments. Then, the relationship between cfDNA CNVs and clinical outcomes was explored. Our results showed that a concordant profile of CNVs was observed between cfDNA and tumor tissue DNA. Three genome-wide CNV indicators including tumor fraction (TFx), prediction score (P-score), and stability score (S-score) were calculated and demonstrated to exhibit significant correlation with poorer overall survival (OS) and recurrence-free survival (RFS). Furthermore, the high-frequency cfDNA CNVs at chromosomal-arm level including the loss of 4q, 17p, and 19p and the gain of 8q and 1q clearly predicted HCC prognosis. Finally, a bin-level risk score was constructed to improve the ability of CNVs in predicting prognosis. Altogether, our study indicates that the multiple-level cfDNA CNVs are significantly associated with OS and RFS in HCC patients with radical treatments, suggesting that cfDNA CNVs detected by low-coverage whole-genome sequencing (WGS) may be used as potential prognostic biomarkers of HCC patients.
Collapse
Affiliation(s)
- Yang Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Kaixiang Zhou
- Department of Physiology and Pathophysiology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China
| | - Xiangxu Wang
- Department of Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yang Liu
- Department of Physiology and Pathophysiology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China
| | - Dongnan Guo
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Zhenyuan Bian
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Liping Su
- Department of Physiology and Pathophysiology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China
| | - Kun Liu
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiwen Gu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Xu Guo
- Department of Physiology and Pathophysiology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China
| | - Lin Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hongmei Zhang
- Department of Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Kaishan Tao
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jinliang Xing
- Department of Physiology and Pathophysiology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
12
|
Targeting the actin/tropomyosin cytoskeleton in epithelial ovarian cancer reveals multiple mechanisms of synergy with anti-microtubule agents. Br J Cancer 2021; 125:265-276. [PMID: 33981016 PMCID: PMC8292367 DOI: 10.1038/s41416-021-01420-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 04/12/2021] [Accepted: 04/22/2021] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Anti-microtubule agents are widely used to treat ovarian cancers, but the efficacy is often compromised by drug resistance. We investigated co-targeting the actin/tropomyosin cytoskeleton and microtubules to increase treatment efficacy in ovarian cancers and potentially overcome resistance. METHODS The presence of tropomyosin-3.1 (Tpm3.1) was examined in clinical specimens from ovarian cancer patients using immunohistochemistry. Combinatorial effects of an anti-Tpm3.1 compound, ATM-3507, with vinorelbine and paclitaxel were evaluated in ovarian cancer cells via MTS and apoptosis assays. The mechanisms of action were established using live- and fixed-cell imaging and protein analysis. RESULTS Tpm3.1 is overexpressed in 97% of tumour tissues (558 of 577) representing all histotypes of epithelial ovarian cancer. ATM-3507 displayed synergy with both anti-microtubule agents to reduce cell viability. Only vinorelbine synergised with ATM-3507 in causing apoptosis. ATM-3507 significantly prolonged vinorelbine-induced mitotic arrest with elevated activity of the spindle assembly checkpoint and mitotic cell death; however, ATM-3507 showed minor impact on paclitaxel-induced mitotic defects. Both combinations substantially increased post-mitotic G1 arrest with cyclin D1 and E1 downregulation and an increase of p21Cip and p27Kip. CONCLUSION Combined targeting of Tpm3.1/actin and microtubules is a promising treatment strategy for ovarian cancer that should be further tested in clinical settings.
Collapse
|
13
|
Shahrisa A, Tahmasebi-Birgani M, Ansari H, Mohammadi Z, Carloni V, Mohammadi Asl J. The pattern of gene copy number alteration (CNAs) in hepatocellular carcinoma: an in silico analysis. Mol Cytogenet 2021; 14:33. [PMID: 34215297 PMCID: PMC8254242 DOI: 10.1186/s13039-021-00553-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/19/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the most common type of liver cancer that occurs predominantly in patients with previous liver conditions. In the absence of an ideal screening modality, HCC is usually diagnosed at an advanced stage. Recent studies show that loss or gain of genomic materials can activate the oncogenes or inactivate the tumor suppressor genes to predispose cells toward carcinogenesis. Here, we evaluated both the copy number alteration (CNA) and RNA sequencing data of 361 HCC samples in order to locate the frequently altered chromosomal regions and identify the affected genes. RESULTS Our data show that the chr1q and chr8p are two hotspot regions for genomic amplifications and deletions respectively. Among the amplified genes, YY1AP1 (chr1q22) possessed the largest correlation between CNA and gene expression. Moreover, it showed a positive correlation between CNA and tumor grade. Regarding deleted genes, CHMP7 (chr8p21.3) possessed the largest correlation between CNA and gene expression. Protein products of both genes interact with other cellular proteins to carry out various functional roles. These include ASH1L, ZNF496, YY1, ZMYM4, CHMP4A, CHMP5, CHMP2A and CHMP3, some of which are well-known cancer-related genes. CONCLUSIONS Our in-silico analysis demonstrates the importance of copy number alterations in the pathology of HCC. These findings open a door for future studies that evaluate our results by performing additional experiments.
Collapse
Affiliation(s)
- Arman Shahrisa
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Tahmasebi-Birgani
- Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Hossein Ansari
- Department of Biotechnology, Islamic Azad University, Ahvaz Branch, Ahvaz, Iran
| | - Zahra Mohammadi
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vinicio Carloni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Javad Mohammadi Asl
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
14
|
Jacobs NR, Norton PA. Role of chromosome 1q copy number variation in hepatocellular carcinoma. World J Hepatol 2021; 13:662-672. [PMID: 34239701 PMCID: PMC8239492 DOI: 10.4254/wjh.v13.i6.662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/13/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
Chromosome 1q often has been observed to be amplified in hepatocellular carcinoma. This review summarizes literature reports of multiple genes that have been proposed as possible 1q amplification drivers. These largely fall within 1q21-1q23. In addition, publicly available copy number alteration data from The Cancer Genome Atlas project were used to identify additional candidate genes involved in carcinogenesis. The most frequent location for gene amplification was 1q22, consistent with the results of the literature search. The genes TPM3 and NUF2 were found to be candidates whose amplification and/or mRNA up-regulation was most highly associated with poorer hepatocellular carcinoma outcomes.
Collapse
Affiliation(s)
- Nathan R Jacobs
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, United States
| | - Pamela A Norton
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, United States
| |
Collapse
|
15
|
MDM4 inhibition: a novel therapeutic strategy to reactivate p53 in hepatoblastoma. Sci Rep 2021; 11:2967. [PMID: 33536467 PMCID: PMC7859402 DOI: 10.1038/s41598-021-82542-4] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 01/06/2021] [Indexed: 12/14/2022] Open
Abstract
Hepatoblastoma (HB) is the most common pediatric liver malignancy. High-risk patients have poor survival, and current chemotherapies are associated with significant toxicities. Targeted therapies are needed to improve outcomes and patient quality of life. Most HB cases are TP53 wild-type; therefore, we hypothesized that targeting the p53 regulator Murine double minute 4 (MDM4) to reactivate p53 signaling may show efficacy. MDM4 expression was elevated in HB patient samples, and increased expression was strongly correlated with decreased expression of p53 target genes. Treatment with NSC207895 (XI-006), which inhibits MDM4 expression, or ATSP-7041, a stapled peptide dual inhibitor of MDM2 and MDM4, showed significant cytotoxic and antiproliferative effects in HB cells. Similar phenotypes were seen with short hairpin RNA (shRNA)-mediated inhibition of MDM4. Both NSC207895 and ATSP-7041 caused significant upregulation of p53 targets in HB cells. Knocking-down TP53 with shRNA or overexpressing MDM4 led to resistance to NSC207895-mediated cytotoxicity, suggesting that this phenotype is dependent on the MDM4-p53 axis. MDM4 inhibition also showed efficacy in a murine model of HB with significantly decreased tumor weight and increased apoptosis observed in the treatment group. This study demonstrates that inhibition of MDM4 is efficacious in HB by upregulating p53 tumor suppressor signaling.
Collapse
|
16
|
Yang C, Cimera RS, Aryeequaye R, Jayakumaran G, Sarungbam J, Al-Ahmadie HA, Gopalan A, Sirintrapun SJ, Fine SW, Tickoo SK, Epstein JI, Reuter VE, Zhang Y, Chen YB. Adverse histology, homozygous loss of CDKN2A/B, and complex genomic alterations in locally advanced/metastatic renal mucinous tubular and spindle cell carcinoma. Mod Pathol 2021; 34:445-456. [PMID: 32879414 PMCID: PMC7855055 DOI: 10.1038/s41379-020-00667-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 12/29/2022]
Abstract
Mucinous tubular and spindle cell carcinoma (MTSCC) is a rare subtype of renal cell carcinoma with characteristic histologic features and chromosomal alterations. Although typically indolent, a small subset of cases has been reported to exhibit aggressive clinical behavior. We retrospectively identified 33 patients with MTSCC, consisting of 10 cases of locally advanced/metastatic MTSCC (pT3 or N1 or M1) and 23 kidney-confined MTSCC (pT1/T2) without disease recurrence or progression. Utilizing a single-nucleotide polymorphism array and a targeted next-generation sequencing platform, we examined genome-wide molecular alterations in 24 cases, including 11 available samples from 8 patients with locally advanced/metastatic MTSCC. Ten patients with locally advanced/metastatic MTSCC were 8 females (80%) and 2 males (20%). At nephrectomy, 7 of these 10 cases (70%) were pT3 or pN1 while the remaining 3 (30%) were pT1/T2. Eight patients (80%) developed metastases and common sites included lymph node (4, 40%), bone (4, 40%), and retroperitoneum (3, 30%). Four patients died of disease (40%) during follow-up. Locally advanced/metastatic MTSCCs shared typical MTSCC genomic profiles with loss of chromosomes 1, 4, 6, 8, 9, 13, 14, 15, and 22, while some exhibited additional complex genomic alterations, most frequently a relative gain of 1q (7/8). Homozygous loss of CDKN2A/B was observed in 3 (38%) locally advanced/metastatic MTSCCs. Tumor necrosis, solid nested/sheet pattern, irregular trabecular/single-file infiltration in a desmoplastic stroma, lymphovascular space invasion, and increased mitotic activity were associated with locally advanced/metastatic MTSCCs (all p < 0.05). Our findings reveal that MTSCCs with aggressive clinical behavior have progressed through clonal evolution; CDKN2A/B deletion and additional complex genomic abnormalities may contribute to this process. Recognizing the morphologic presentation of high-grade MTSCC and evaluating adverse histologic features seen in these tumors can help establish a definitive diagnosis and stratify patients for treatment and prognostication.
Collapse
Affiliation(s)
- Chen Yang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Robert S Cimera
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Ruth Aryeequaye
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Gowtham Jayakumaran
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Judy Sarungbam
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Hikmat A Al-Ahmadie
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Anuradha Gopalan
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - S Joseph Sirintrapun
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Samson W Fine
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Satish K Tickoo
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Jonathan I Epstein
- Departments of Pathology, Urology, and Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Victor E Reuter
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Yanming Zhang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Ying-Bei Chen
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
17
|
Xu HK, Wang XD, Wang DG, Wei DD, Liang L, Liu CH. miR-340 Exerts Suppressive Effect on Retinoblastoma Progression by Targeting KIF14. Curr Eye Res 2020; 46:232-238. [PMID: 32757684 DOI: 10.1080/02713683.2020.1795202] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Purpose: This work aimed to investigate the influences of microRNA-340 (miR-340) on proliferation and apoptosis of retinoblastoma (RB) cells and explore its regulatory mechanism. MATERIALS AND METHODS miR-340 mimic and inhibitor were applied for up-regulating or inhibiting the expression of miR-340 in RB cell lines. Then, CCK-8 and AnnexinV-FITC/PI staining were used to measure cell proliferation and apoptosis, respectively. After that, luciferase assay was performed to affirm the direct targets of miR-340. Furthermore, qRT-PCR and western blotting assay were carried out to detect the levels of miR-340 and KIF14. RESULTS Our results indicated that the miR-340 was lowly expressed in RB cell lines, and up-regulation of miR-340 can decrease the proliferation and induce the apoptosis of RB cells. Moreover, we verified that miR-340 controls KIF14 expression, either directly or through a subsequent molecular cascade, and inversely related to its expression. The results obtained from the rescue assays presented that over-expression of KIF14 reversed the miR-340-mediated inhibition on malignant phenotype of RB cells. CONCLUSIONS Overall, we proved that miR-340 can decrease the proliferation and increase the apoptosis of RB cells, and its function in RB cells was at least partially achieved via down-regulation of KIF14, prompting that miR-340 was expected to supply a new direction for clinical therapy of RB in the future.
Collapse
Affiliation(s)
- Hong-Kun Xu
- Department of Ophthalmology, Maternity&Child Care Center of Dezhou , Dezhou, Shandong, P.R. China
| | - Xiao-Dong Wang
- Department of Ophthalmology, Yucheng Hospital of Traditional Chinese Medicine , Dezhou, Shandong, P.R. China
| | - De-Gong Wang
- Department of Ophthalmology , Dezhou, Shandong, P.R. China
| | - Dong-Dong Wei
- Department of Ophthalmology , Dezhou, Shandong, P.R. China
| | - Ling Liang
- Department of Ophthalmology , Dezhou, Shandong, P.R. China
| | - Chang-Hui Liu
- Department of Ophthalmology , Dezhou, Shandong, P.R. China
| |
Collapse
|
18
|
Hou S, Chen X, Li M, Huang X, Liao H, Tian B. Higher expression of cell division cycle-associated protein 5 predicts poorer survival outcomes in hepatocellular carcinoma. Aging (Albany NY) 2020; 12:14542-14555. [PMID: 32694239 PMCID: PMC7425481 DOI: 10.18632/aging.103501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/04/2020] [Indexed: 02/05/2023]
Abstract
The upregulation of cell division cycle associated protein 5 (CDCA5) has been observed in various cancer types. However, the prognostic value of CDCA5 and its underlying mechanism contributing to tumorigenesis in hepatocellular carcinoma (HCC) remain poorly understood. We used tissue microarray (TMA) to evaluate the prognosis of 304 HCC samples based on their CDCA5 expression, and analyzed the genomic features correlated with CDCA5 by using dataset from The Cancer Genome Atlas (TCGA). Compared with adjacent normal tissues, increased expression of CDCA5 was found in HCC tissues. Moreover, higher expression of CDCA5 was associated with inferior OS and DFS outcomes in HCC patients. The enrichment plots showed that the gene signatures in cell cycle, DNA replication and p53 pathways were enriched in patients with higher CDCA5 expression. Meanwhile, statistically higher mutations burdens in TP53 could also be observed in CDCA5-high patients. Integrative analysis based on miRNAseq and methylation data demonstrated a potential association between CDCA5 expression and epigenetic changes. In conclusion, our study provided the evidence of CDCA5 as an oncogenic promoter in HCC and the potential function of CDCA5 in affecting tumor microenvironment.
Collapse
Affiliation(s)
- Shengzhong Hou
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xing Chen
- Department of Liver Surgery and Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Mao Li
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xing Huang
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haotian Liao
- Department of Liver Surgery and Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Bole Tian
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
19
|
CpG promoter hypo-methylation and up-regulation of microRNA-190b in hormone receptor-positive breast cancer. Oncotarget 2019; 10:4664-4678. [PMID: 31384394 PMCID: PMC6659800 DOI: 10.18632/oncotarget.27083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 06/29/2019] [Indexed: 12/23/2022] Open
Abstract
Estrogen receptor-positive breast cancer is subdivided into subtypes LuminalA and LuminalB, based on different expression patterns. MicroRNA-190b has been reported to be up-regulated in estrogen receptor-positive breast cancers. In this study we aimed to investigate the role of CpG promoter methylation in regulating miR-190b expression and its impact on clinical presentation and prognosis. DNA methylation analysis for the promotor of microRNA-190b was performed by pyrosequencing 549 primary breast tumors, of which 62 were carriers of the BRCA2 999del5 founder mutation, 71 proximal normal breast samples and 16 breast derived cell lines. MicroRNA-190b expression was analysed in 67 primary breast tumors, 14 paired normal breast samples and 16 breast derived cell lines. Tissue microarrays (TMAs) were available for ER (n = 436), PR (n = 436), HER-2 (N = 258) and Ki67 (n = 248). MiR-190b had reduced promoter methylation in estrogen receptor-positive breast cancers (P = 1.02e-12, Median values: ER+ 24.3, ER- 38.26) and miR-190b's expression was up-regulated in a correlative manner (P = 1.83e-06, Spearman's rho -0.62). Through breast cancer specific survival analysis, we demonstrated that LuminalA patients exhibiting miR-190b hypo-methylation had better survival than other patients (P = 0.034, HR = 0.29, 95% CI 0.09-0.91). We, furthermore, demonstrated that miR-190b hypo-methylation occurs less frequently in ER+ tumors from BRCA2 999del5 mutation carriers than in non-mutated individuals (P = 0.038, Χ 2 = 4.32, n = 335). Our results suggest that upregulation of miR-190b may occur through loss of promoter DNA methylation during the development of estrogen-receptor (ER) positive breast cancers, and that miR-190b hypo-methylation leads to increased breast cancer specific survival within the LuminalA- subtype but not LuminalB.
Collapse
|
20
|
Jang SH, Jiang Y, Shin S, Jung SH, Jung CK, Chung YJ. Potential Oncogenic Role of the Papillary Renal Cell Carcinoma Gene in Non-Small Cell Lung Cancers. Yonsei Med J 2019; 60:326-335. [PMID: 30900418 PMCID: PMC6433567 DOI: 10.3349/ymj.2019.60.4.326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 02/05/2019] [Accepted: 02/24/2019] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Papillary renal cell carcinoma (PRCC) gene, which located in 1q23.1, is recurrently amplified in non-small cell lung cancer (NSCLC). However, it is unknown whether PRCC is overexpressed in primary NSCLCs and whether PRCC overexpression contributes to lung tumorigenesis. In this study, we aimed to identify the profiles of PRCC expression in Korean NSCLC patients and to elucidate the role of PRCC overexpression on lung tumorigenesis. MATERIALS AND METHODS We performed immunohistochemistry analysis with a tissue array containing 161 primary NSCLCs. Small interfering RNA targeting PRCC (siPRCC) was transfected into two lung cancer cell lines (NCI-H358 and A549), after which tumor growth, migration, and invasion were observed. Expressions of cell proliferation-, cell cycle-, and metastasis-related molecules were examined by Western blot analysis. We also explored the in vivo effect of PRCC silencing. RESULTS PRCC overexpression was recurrently observed in NSCLCs (95/161, 59%). After siPRCC treatment, tumor cell proliferation, colony formation, and anchorage independent growth were significantly reduced (p<0.001 for all three effects). Migration and invasiveness were also significantly repressed (p<0.001 for both effects). Reflecting cell proliferation, cell cycle, and metastasis, the expressions of Ki67, cyclin D1, AKT-1, pAKT, NF-kB p65, vimentin and CXCL-12 were found to be downregulated. Through mouse xenograft analysis, we confirmed that PRCC silencing significantly repressed a xenograft tumor mass in vivo (p<0.001). CONCLUSION The present data provide evidence that PRCC overexpression is involved in the tumorigenesis and progression of lung cancer.
Collapse
Affiliation(s)
- Sun Hee Jang
- Molecular Cell Biology, Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Korea
- Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Integrated Research Center for Genome Polymorphism, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yuzhu Jiang
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Immunology, Medicine & Pharmacy Research Center, Binzhou Medical University, Yantai, China
| | - Sun Shin
- Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Integrated Research Center for Genome Polymorphism, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seung Hyun Jung
- Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Integrated Research Center for Genome Polymorphism, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Cancer Evolution Research Center, The Catholic University of Korea, Seoul, Korea
| | - Chan Kwon Jung
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yeun Jun Chung
- Molecular Cell Biology, Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Korea
- Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Integrated Research Center for Genome Polymorphism, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| |
Collapse
|
21
|
Observations on spontaneous tumor formation in mice overexpressing mitotic kinesin Kif14. Sci Rep 2018; 8:16152. [PMID: 30385851 PMCID: PMC6212535 DOI: 10.1038/s41598-018-34603-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 10/09/2018] [Indexed: 02/06/2023] Open
Abstract
The KIF14 locus is gained and overexpressed in various malignancies, with prognostic relevance. Its protein product, a mitotic kinesin, accelerates growth of normal mammary epithelial cells in vitro and retinoblastoma tumours in a mouse model, while KIF14 knockdown blocks growth of brain, liver, ovarian, breast, prostate, and other tumour cells and xenografts. However, the tumour-initiating effects of Kif14 overexpression have not been studied. We aged a cohort of Kif14-overexpressing transgenic mice and wild-type littermates and documented survival, cause of death, and tumour burden. The Kif14 transgene was expressed in all tissues examined, and was associated with increased proliferation marker expression. Neither mouse weights nor overall survival differed between genotypes. However, Kif14 transgenic mice showed a higher incidence of fatal lymphomas (73 vs. 50%, p = 0.03, Fisher’s exact test), primarily follicular and diffuse B-cell lymphomas. Non-tumour findings included a bilateral ballooning degeneration of lens in 12% of Kif14 transgenic mice but no wild-type mice (p = 0.02). Overall, this work reveals a novel association of Kif14 overexpression with lymphoma but suggests that Kif14 does not have as prominent a role in initiating cancer in other cell types as it does in accelerating tumour development in response to other oncogenic insults.
Collapse
|
22
|
Singh AK, Kumar R, Pandey AK. Hepatocellular Carcinoma: Causes, Mechanism of Progression and Biomarkers. Curr Chem Genom Transl Med 2018; 12:9-26. [PMID: 30069430 PMCID: PMC6047212 DOI: 10.2174/2213988501812010009] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/15/2018] [Accepted: 05/20/2018] [Indexed: 01/18/2023] Open
Abstract
Hepatocellular Carcinoma (HCC) is one of the most common malignant tumours in the world. It is a heterogeneous group of a tumour that vary in risk factor and genetic and epigenetic alteration event. Mortality due to HCC in last fifteen years has increased. Multiple factors including viruses, chemicals, and inborn and acquired metabolic diseases are responsible for its development. HCC is closely associated with hepatitis B virus, and at least in some regions of the world with hepatitis C virus. Liver injury caused by viral factor affects many cellular processes such as cell signalling, apoptosis, transcription, DNA repair which in turn induce important effects on cell survival, growth, transformation and maintenance. Molecular mechanisms of hepatocellular carcinogenesis may vary depending on different factors and this is probably why a large set of mechanisms have been associated with these tumours. Various biomarkers including α-fetoprotein, des-γ-carboxyprothrombin, glypican-3, golgi protein-73, squamous cell carcinoma antigen, circulating miRNAs and altered DNA methylation pattern have shown diagnostic significance. This review article covers up key molecular pathway alterations, biomarkers for diagnosis of HCC, anti-HCC drugs and relevance of key molecule/pathway/receptor as a drug target.
Collapse
Affiliation(s)
| | | | - Abhay K. Pandey
- Department of Biochemistry, University of Allahabad, Allahabad 211002, India
| |
Collapse
|
23
|
Sun W, Zhang Y, Wong KC, Liu K, Yang Y, Wu B, Tong JH, Chan AW, Chan HL, Yu J. Increased expression of GATA zinc finger domain containing 1 through gene amplification promotes liver cancer by directly inducing phosphatase of regenerating liver 3. Hepatology 2018; 67:2302-2319. [PMID: 29266303 PMCID: PMC6001784 DOI: 10.1002/hep.29750] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 12/13/2017] [Accepted: 12/17/2017] [Indexed: 12/15/2022]
Abstract
UNLABELLED We identified that GATA zinc finger domain containing 1 (GATAD1), a transcriptional factor, was significantly up-regulated in hepatocellular carcinoma (HCC) through gene amplification. We demonstrated the critical role, molecular mechanisms, and clinical implications of GATAD1 as a novel oncogenic factor in HCC. We found that GATAD1 protein was expressed in 76.6% of primary HCCs (85/111) but silenced in normal liver tissues. Gene amplification of GATAD1 was positively correlated with its overexpression in primary HCCs (R = 0.629, P < 0.0001). GATAD1 significantly increased cell proliferation, G1 -S cell cycle transition, and migration/invasion but suppressed apoptosis in liver cell lines and promoted tumor growth and lung metastasis in both xenograft and orthotopic mouse models. Mechanistically, GATAD1 induced the transcriptional expression of phosphatase of regenerating liver 3 (PRL3) by binding to its promoter identified by RNA sequencing and chromatin immunoprecipitation-PCR analyses. PRL3 played an oncogenic role in HCC. Knockdown of PRL3 blunted the tumorigenic effect of GATAD1. In addition, GATAD1 activated Akt signaling, evidenced by increased phosphorylation levels of total Akt, Akt1, Akt2, and Akt target glycogen synthase kinase 3β, while knockdown of PRL3 abolished this effect of GATAD1. We further unveiled that PRL3 activated Akt signaling by dephosphorylating phosphatase and tensin homolog at tyrosine residue, thus reducing phosphatase and tensin homolog protein. The PRL3 inhibitor 5-[[5-bromo-2-[(2-bromophenyl)methoxy]phenyl]methylene]-2-thioxo-4-thiazolidinone significantly suppressed HCC growth by inhibiting Akt activation. Moreover, high GATAD1 nuclear protein expression was associated with poor survival of HCC patients as an independent prognostic factor. CONCLUSION GATAD1 plays a pivotal oncogenic role in HCC by directly inducing PRL3 transcription to activate the Akt signaling pathway. GATAD1 may serve as an independent poor prognostic factor for HCC patients. (Hepatology 2018;67:2302-2319).
Collapse
Affiliation(s)
- Wei Sun
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong
| | - Yanquan Zhang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong,CUHK‐Shenzhen Research InstituteShenzhenChina
| | - Ka Chun Wong
- Department of Computer ScienceCity University of Hong KongHong Kong
| | - Ken Liu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong,Faculty of MedicineThe University of SydneySydneyNSWAustralia
| | - Yidong Yang
- Department of GastroenterologyThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouGuangdong ProvinceChina
| | - Bin Wu
- Department of GastroenterologyThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouGuangdong ProvinceChina
| | - Joanna H.M. Tong
- Department of Anatomical and Cellular PathologyThe Chinese University of Hong KongHong Kong
| | - Anthony W.H. Chan
- Department of Anatomical and Cellular PathologyThe Chinese University of Hong KongHong Kong
| | - Henry L.Y. Chan
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong,CUHK‐Shenzhen Research InstituteShenzhenChina
| |
Collapse
|
24
|
Li SL, Sui Y, Sun J, Jiang TQ, Dong G. Identification of tumor suppressive role of microRNA-132 and its target gene in tumorigenesis of prostate cancer. Int J Mol Med 2018; 41:2429-2433. [PMID: 29393367 DOI: 10.3892/ijmm.2018.3421] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 01/15/2018] [Indexed: 11/05/2022] Open
Abstract
Previous literature exists on the role of microRNA (miR)-132 in initiation and progression of various malignancies. In this study, we aimed at understanding the relationship of miR-132 of prostate tumorigenesis. We collected 32 prostate cancer tissues and adjacent non-cancerous controls, and detected the expression level of miR-132. Then the miRNA database was searched online and luciferase assay perform to understand the regulatory relationship between miR-132 and E2F5. Moreover, we also conducted real-time PCR and western blot analysis to study the mRNA and protein expression level of E2F5 among different groups (cancerous tissue, n=32; non-cancerous tissue, n=32) or cells treated with scramble control, miR-132 mimics, E2F5 siRNA and miR-132 inhibitors. miR-132 was upregulated in cancerous tissues of prostate cancer patients. E2F5 was the target of miR-132, and negative regulatory relationship between miR-132 and E2F5 was also confirmed by luciferase assay. The mRNA and protein expression level of E2F5 increased in cancerous tissue group. miR-132 decreased the expression of E2F5 in prostate cancer cells, and introduction of miR-132 reduced the viability and E2F5 and promoted the viability of prostate cancer cells. miR-132 inhibited apoptosis and E2F5 accelerated apoptosis. In conclusion, miR-132 was upregulated in cancerous tissue of prostate cancer. E2F5 was a direct target of miR-132, and downregulation of E2F5 caused by upregulation of miR-132 may contribute to the tumorigenesis of prostate cancer.
Collapse
Affiliation(s)
- Shun-Lai Li
- Department of Urology, The Fifth People's Hospital of Jinan, Jinan, Shandong 250012, P.R. China
| | - Ying Sui
- Department of Urology, The Fifth People's Hospital of Jinan, Jinan, Shandong 250012, P.R. China
| | - Jie Sun
- Tianqiao Hospital in Jinan of Shandong, Jinan, Shandong 250022, P.R. China
| | - Ting-Qi Jiang
- Department of Urology, The Fifth People's Hospital of Jinan, Jinan, Shandong 250012, P.R. China
| | - Gang Dong
- Department of Urology, The Fifth People's Hospital of Jinan, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
25
|
Bettermann K, Mehta AK, Hofer EM, Wohlrab C, Golob-Schwarzl N, Svendova V, Schimek MG, Stumptner C, Thüringer A, Speicher MR, Lackner C, Zatloukal K, Denk H, Haybaeck J. Keratin 18-deficiency results in steatohepatitis and liver tumors in old mice: A model of steatohepatitis-associated liver carcinogenesis. Oncotarget 2016; 7:73309-73322. [PMID: 27689336 PMCID: PMC5341981 DOI: 10.18632/oncotarget.12325] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 09/19/2016] [Indexed: 02/06/2023] Open
Abstract
Backround: Steatohepatitis (SH)-associated liver carcinogenesis is an increasingly important issue in clinical medicine. SH is morphologically characterized by steatosis, hepatocyte injury, ballooning, hepatocytic cytoplasmic inclusions termed Mallory-Denk bodies (MDBs), inflammation and fibrosis. RESULTS 17-20-months-old Krt18-/- and Krt18+/- mice in contrast to wt mice spontaneously developed liver lesions closely resembling the morphological spectrum of human SH as well as liver tumors. The pathologic alterations were more pronounced in Krt18-/- than in Krt18+/- mice. The frequency of liver tumors with male predominance was significantly higher in Krt18-/- compared to age-matched Krt18+/- and wt mice. Krt18-deficient tumors in contrast to wt animals displayed SH features and often pleomorphic morphology. aCGH analysis of tumors revealed chromosomal aberrations in Krt18-/- liver tumors, affecting loci of oncogenes and tumor suppressor genes. MATERIALS AND METHODS Livers of 3-, 6-, 12- and 17-20-months-old aged wild type (wt), Krt18+/- and Krt18-/- (129P2/OlaHsd background) mice were analyzed by light and immunofluorescence microscopy as well as immunohistochemistry. Liver tumors arising in aged mice were analyzed by array comparative genomic hybridization (aCGH). CONCLUSIONS Our findings show that K18 deficiency of hepatocytes leads to steatosis, increasing with age, and finally to SH. K18 deficiency and age promote liver tumor development in mice, frequently on the basis of chromosomal instability, resembling human HCC with stemness features.
Collapse
Affiliation(s)
- Kira Bettermann
- Institute of Pathology, Medical University of Graz, Graz 8036, Austria
| | | | - Eva M. Hofer
- Institute of Pathology, Medical University of Graz, Graz 8036, Austria
| | - Christina Wohlrab
- Institute of Pathology, Medical University of Graz, Graz 8036, Austria
| | | | - Vendula Svendova
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz 8036, Austria
| | - Michael G. Schimek
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz 8036, Austria
| | | | - Andrea Thüringer
- Institute of Pathology, Medical University of Graz, Graz 8036, Austria
| | | | - Carolin Lackner
- Institute of Pathology, Medical University of Graz, Graz 8036, Austria
| | - Kurt Zatloukal
- Institute of Pathology, Medical University of Graz, Graz 8036, Austria
| | - Helmut Denk
- Institute of Pathology, Medical University of Graz, Graz 8036, Austria
| | - Johannes Haybaeck
- Institute of Pathology, Medical University of Graz, Graz 8036, Austria
| |
Collapse
|
26
|
Ali A, Ullah F, Ali IS, Faraz A, Khan M, Shah STA, Ali N, Saeed M. Aberrant Promoter Methylation at CpG Cytosines Induce the Upregulation of the E2F5 Gene in Breast Cancer. J Breast Cancer 2016; 19:133-41. [PMID: 27382388 PMCID: PMC4929253 DOI: 10.4048/jbc.2016.19.2.133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 04/27/2016] [Indexed: 02/06/2023] Open
Abstract
Purpose The promoter methylation status of cell cycle regulatory genes plays a crucial role in the regulation of the eukaryotic cell cycle. CpG cytosines are actively subjected to methylation during tumorigenesis, resulting in gain/loss of function. E2F5 gene has growth repressive activities; various studies suggest its involvement in tumorigenesis. This study aims to investigate the epigenetic regulation of E2F5 in breast cancer to better understand tumor biology. Methods The promoter methylation status of 50 breast tumor tissues and adjacent normal control tissues was analyzed. mRNA expression was determined using SYBR® green quantitative polymerase chain reaction (PCR), and methylation-specific PCR was performed for bisulfite-modified genomic DNA using E2F5-specific primers to assess promoter methylation. Data was statistically analyzed. Results Significant (p<0.001) upregulation was observed in E2F5 expression among tumor tissues, relative to the control group. These samples were hypo-methylated at the E2F5 promoter region in the tumor tissues, compared to the control. Change in the methylation status (Δmeth) was significantly lower (p=0.022) in the tumor samples, indicating possible involvement in tumorigenesis. Patients at the postmenopausal stage showed higher methylation (75%) than those at the premenopausal stage (23.1%). Interestingly, methylation levels gradually increased from the early to the advanced stages of the disease (p<0.001), which suggests a putative role of E2F5 methylation in disease progression that can significantly modulate tumor biology at more advanced stage and at postmenopausal age (Pearson's r=0.99 and 0.86, respectively). Among tissues with different histological status, methylation frequency was higher in invasive lobular carcinoma (80.0%), followed by invasive ductal carcinoma (46.7%) and ductal carcinoma in situ (20.0%). Conclusion Methylation is an important epigenetic factor that might be involved in the upregulation of E2F5 gene in tumor tissues, which can be used as a prognostic marker for breast cancer.
Collapse
Affiliation(s)
- Arshad Ali
- Cancer Genetics and Epigenetics Lab, Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan.; Department of Biotechnology & Genetic Engineering, Kohat University of Science & Technology, Kohat, Pakistan
| | - Farman Ullah
- Cancer Genetics and Epigenetics Lab, Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan.; Department of Biotechnology & Genetic Engineering, Kohat University of Science & Technology, Kohat, Pakistan
| | - Irum Sabir Ali
- Department of Surgical C Unit, Post Graduate Medical Institution, Lady Reading Hospital, Peshawar, Pakistan
| | - Ahmad Faraz
- Department of Surgical C Unit, Post Graduate Medical Institution, Lady Reading Hospital, Peshawar, Pakistan
| | - Mumtaz Khan
- Department of Surgical C Unit, Post Graduate Medical Institution, Lady Reading Hospital, Peshawar, Pakistan
| | | | - Nawab Ali
- Department of Biotechnology & Genetic Engineering, Kohat University of Science & Technology, Kohat, Pakistan
| | - Muhammad Saeed
- Cancer Genetics and Epigenetics Lab, Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| |
Collapse
|
27
|
Mohanty P, Korgaonkar S, Shanmukhaiah C, Ghosh K, Vundinti BR. Cytogenetic abnormalities and genomic copy number variations in EPO (7q22) and SEC-61(7p11) genes in primary myelodysplastic syndromes. Blood Cells Mol Dis 2016; 59:52-7. [PMID: 27282568 DOI: 10.1016/j.bcmd.2016.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 04/11/2016] [Indexed: 10/21/2022]
Abstract
Myelodysplastic syndromes (MDSs) are heterogeneous clonal haematopoeitic stem cell disorders characterized by ineffective haematopoeisis, cytopenias and risk of progression to AML. We studied 150 MDS patients for cytogenetic aberrations and 60 patients with normal karyotype and 40 patients harboring cytogenetic abnormalities for copy number variations (CNVs). Cytogenetic abnormalities were detected in 46% of patients with a majority of patients harboring abnormalities of chromosome 7 and del (20q) at frequencies of 16% and 12% respectively. We explored the potential of quantitative multiplex PCR assay of short fluorescent fragments (QMPSF) to identify CNVs and correlated the findings with cytogenetic data and disease prognosis. CNVs (n=31) were detected in 28.3% of karyotypically normal and 23% patients with abnormal karyotype. Genetic losses or deletions (n=26) were more frequent than duplications (n=5). EPO (7q22) and SEC-61(7p11) emerged as new candidate genes susceptible to genetic losses with 57.7% deletions identified in regions on chromosome 7. The CNVs correlated with International Prognostic Scoring System (IPSS) intermediate disease risk group. Our integrative cytogenetic and copy number variation study suggests that abnormalities of chromosome 7 are predominant in Indian population and that they may play a secondary role in disease progression and should be evaluated further for asserting their clinical significance and influence on disease prognosis.
Collapse
Affiliation(s)
- Purvi Mohanty
- Department of Cytogenetics, National Institute of Immunohaematology, 13th Floor, New Multistoried Building, KEM Hospital Campus, Parel, Mumbai 400012, India
| | - Seema Korgaonkar
- Department of Cytogenetics, National Institute of Immunohaematology, 13th Floor, New Multistoried Building, KEM Hospital Campus, Parel, Mumbai 400012, India
| | - Chandrakala Shanmukhaiah
- Department of Haematology, 10th Floor, New Multistoried Building, KEM Hospital, Parel, Mumbai 400012, India
| | - Kanjaksha Ghosh
- Department of Cytogenetics, National Institute of Immunohaematology, 13th Floor, New Multistoried Building, KEM Hospital Campus, Parel, Mumbai 400012, India
| | - Babu Rao Vundinti
- Department of Cytogenetics, National Institute of Immunohaematology, 13th Floor, New Multistoried Building, KEM Hospital Campus, Parel, Mumbai 400012, India.
| |
Collapse
|
28
|
Up-regulation of KIF14 is a predictor of poor survival and a novel prognostic biomarker of chemoresistance to paclitaxel treatment in cervical cancer. Biosci Rep 2016; 36:BSR20150314. [PMID: 27128470 PMCID: PMC4820787 DOI: 10.1042/bsr20150314] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 01/26/2016] [Indexed: 01/10/2023] Open
Abstract
KIF14 may serve as a predictor of poor survival and a novel prognostic biomarker of chemoresistance to paclitaxel treatment in cervical cancer. Kinesin family member 14 (KIF14) is a member of kinesin family proteins which have been found to be dysregulated in various cancer types. However, the expression of KIF14 and its potential prognostic significance have not been investigated in cervical cancer. Real-time PCR was performed to assess the expression levels of KIF14 in 47 pairs of cervical cancer tissues and their matched normal tissues from patients who had not been exposed to chemotherapy as well as tissue samples from 57 cervical cancer patients who are sensitive to paclitaxel treatment and 53 patients who are resistant. The association between KIF14 expression levels in tissue and clinicopathological features or chemosensitivity was examined. Kaplan–Meier analysis and Cox proportional hazards model were applied to assess the correlation between KIF14 expression levels and overall survival (OS) of cervical cancer patients. KIF14 expression levels were significantly increased in cervical cancer tissues compared with matched non-cancerous tissues and it was higher in tissues of patients who are chemoresistant compared with those who are chemosensitive. KIF14 expression was positively associated with high tumour stage (P=0.0044), lymph node metastasis (P=0.0034) and chemoresistance (P<0.0001). Kaplan–Meier analysis showed that high KIF14 expression levels predicted poor survival in patients with (P=0.0024) or without (P=0.0028) paclitaxel treatment. Multivariate analysis revealed that KIF14 was an independent prognostic factor for OS. Our study suggests that KIF14 may serve as a predictor of poor survival and a novel prognostic biomarker of chemoresistance to paclitaxel treatment in cervical cancer.
Collapse
|
29
|
Harryman WL, Pond E, Singh P, Little AS, Eschbacher JM, Nagle RB, Cress AE. Laminin-binding integrin gene copy number alterations in distinct epithelial-type cancers. Am J Transl Res 2016; 8:940-954. [PMID: 27158381 PMCID: PMC4846938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/29/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND The laminin-binding integrin (LBI) family are cell adhesion molecules that are essential for invasion and metastasis of human epithelial cancers and cell adhesion mediated drug resistance. We investigated whether copy number alteration (CNA) or mutations of a five-gene signature (ITGB4, ITGA3, LAMB3, PLEC, and SYNE3), representing essential genes for LBI adhesion, would correlate with patient outcomes within human epithelial-type tumor data sets currently available in an open access format. METHODS We investigated the relative alteration frequency of an LBI signature panel (integrin β4 (ITGB4), integrin α3 (ITGA3), laminin β3 chain (LAMB3), plectin (PLEC), and nesprin 3 (SYNE3)), independent of the epithelial cancer type, within publically available and published data using cBioPortal and Oncomine software. We rank ordered the results using a 20% alteration frequency cut-off and limited the analysis to studies containing at least 100 samples. Kaplan-Meier survival curves were analyzed to determine if alterations in the LBI signature correlated with patient survival. The Oncomine data mining tool was used to compare the heat map expression of the LBI signature without SYNE3 (as this was not included in the Oncomine database) to drug resistance patterns. RESULTS Twelve different cancer types, representing 5,647 samples, contained at least a 20% alteration frequency of the five-gene LBI signature. The frequency of alteration ranged from 38.3% to 19.8%. Within the LBI signature, PLEC was the most commonly altered followed by LAMB3, ITGB4, ITGA3, and SYNE3 across all twelve cancer types. Within cancer types, there was little overlap of the individual amplified genes from each sample, suggesting different specific amplicons may alter the LBI adhesion structures. Of the twelve cancer types, overall survival was altered by CNA presence in bladder urothelial carcinoma (p=0.0143*) and cervical squamous cell carcinoma and endocervical adenocarcinoma (p=0.0432*). Querying the in vitro drug resistance profiles with the LBI signature demonstrated a positive correlation with cells resistant to inhibitors of HDAC (Vorinostat, Panobinostat) and topoisomerase II (Irinotecan). No correlation was found with the following agents: Bleomycin, Doxorubicin, Methotrexate, Gemcitabine, Docetaxel, Bortezomib, and Shikonen. CONCLUSIONS Our work has identified epithelial-types of human cancer that have significant CNA in our selected five-gene signature, which was based on the essential and genetically-defined functions of the protein product networks (in this case, the LBI axis). CNA of the gene signature not only predicted overall survival in bladder, cervical, and endocervical adenocarcinoma but also response to chemotherapy. This work suggests that future studies designed to optimize the gene signature are warranted. GENERAL SIGNIFICANCE The copy number alteration of structural components of the LBI axis in epithelial-type tumors may be promising biomarkers and rational targets for personalized therapy in preventing or arresting metastatic spread.
Collapse
Affiliation(s)
- William L Harryman
- The University of Arizona Cancer Center1515 N. Campbell Ave., Tucson, Arizona, United States
| | - Erika Pond
- The University of Arizona Cancer Center1515 N. Campbell Ave., Tucson, Arizona, United States
| | - Parminder Singh
- The University of Arizona Cancer Center1515 N. Campbell Ave., Tucson, Arizona, United States
| | - Andrew S Little
- Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center350 W. Thomas Rd., Phoenix, Arizona, United States
| | - Jennifer M Eschbacher
- Department of Pathology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center350 W. Thomas Rd., Phoenix, Arizona, United States
| | - Raymond B Nagle
- The University of Arizona Cancer Center1515 N. Campbell Ave., Tucson, Arizona, United States
| | - Anne E Cress
- The University of Arizona Cancer Center1515 N. Campbell Ave., Tucson, Arizona, United States
| |
Collapse
|
30
|
Miyamoto I, Kasamatsu A, Yamatoji M, Nakashima D, Saito K, Higo M, Endo-Sakamoto Y, Shiiba M, Tanzawa H, Uzawa K. Kinesin family member 14 in human oral cancer: A potential biomarker for tumoral growth. Biochem Biophys Rep 2015; 3:26-31. [PMID: 29124166 PMCID: PMC5668670 DOI: 10.1016/j.bbrep.2015.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 07/10/2015] [Accepted: 07/14/2015] [Indexed: 12/13/2022] Open
Abstract
Kinesin family member 14 (KIF14), a microtubule-based motor protein, plays an important role in chromosomal segregation, congression, and alignment. Considerable evidence indicates that KIF14 is involved in cytokinesis, although little is known about its role in oral squamous cell carcinomas (OSCCs). In the current study, we functionally and clinically investigated KIF14 expression in patients with OSCC. Quantitative reverse transcriptase–polymerase chain reaction and immunoblotting analyses were used to assess the KIF14 regulatory mechanism in OSCC. Immunohistochemistry (IHC) was performed to analyze the correlation between KIF14 expression and clinical behavior in 104 patients with OSCC. A KIF14 knockdown model of OSCC cells (shKIF14 cells) was used for functional experiments. KIF14 expression was up-regulated significantly (P<0.05) in OSCCs compared with normal counterparts in vitro and in vivo. In addition, shKIF14 cells inhibited cellular proliferation compared with control cells by cell-cycle arrest at the G2/M phase through up-regulation of G2 arrest-related proteins (p-Cdc2 and cyclin B1). As expected, IHC data from primary OSCCs showed that KIF14-positive patients exhibited significantly (P<0.05) more larger tumors compared with KIF14-negative patients. The current results suggest for the first time that KIF14 is an indicator of tumoral size in OSCCs and that KIF14 might be a potential therapeutic target for development of new treatments for OSCCs.
Collapse
Affiliation(s)
- Isao Miyamoto
- Department of Oral Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Atsushi Kasamatsu
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Masanobu Yamatoji
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Dai Nakashima
- Department of Oral Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Kengo Saito
- Department of Oral Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Morihiro Higo
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Yosuke Endo-Sakamoto
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Masashi Shiiba
- Department of Clinical Oncology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Hideki Tanzawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.,Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Katsuhiro Uzawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.,Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| |
Collapse
|
31
|
ZHAO ZHANG, CHEN GUANGYONG, LONG JIANG, LI HAI, HUANG JIAN. Genomic losses at 5q13.2 and 8p23.1 in dysplastic hepatocytes are common events in hepatitis B virus-related hepatocellular carcinoma. Oncol Lett 2015; 9:2839-2846. [PMID: 26137157 PMCID: PMC4473700 DOI: 10.3892/ol.2015.3140] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 03/24/2015] [Indexed: 12/30/2022] Open
Abstract
Chromosomal loci with genomic imbalances are frequently identified in hepatocellular carcinoma (HCC). Greater than two-thirds of hepatitis B virus (HBV)-related HCCs originate from liver cirrhosis following a duration of up to two decades. However, it is unclear whether these genomic imbalances occur and accumulate in dysplastic hepatocytes of the cirrhotic liver during the progression from regenerated nodules to preneoplastic lesions, including dysplastic nodules (DN). In the present study, high-grade DNs (HGDNs) of HBV-related liver cirrhosis were screened to identify loci with genomic imbalances, and the frequency of the identified loci in a group of HCCs was analyzed in order to determine whether there may be a genetic link between liver cirrhosis and HCC. Genomic DNA was extracted from six HGDNs of two cases of HBV-related liver cirrhosis and subjected to array comparative genomic hybridization (CGH) analysis with a NimbleGen 720K microarray. Loci with the most frequently observed genomic imbalances in DNs were further analyzed in 83 cases of HCC by differential polymerase chain reaction (PCR) and quantitative PCR. The array CGH analysis revealed that the majority of genomic imbalances in the HGDNs were genomic losses of small segments, with loss of heterozygosity (LOH) at 5q13.2 and 8p23.1 identified most frequently. Of the 83 HCC cases, 30 (36.1%) cases were identified with LOH at 5q13.2, where known tumor-associated genes are located, including general transcription factor IIH subunit 2 (GTF2H2), baculoviral IAP repeat-containing protein 1 (BIRC1) and occludin (OCLN). LOH frequency at 8p23.1 in HCC was 61.29% (D8S1130) and 68.4% (D8S503) respectively, similar to the results obtained in previous studies. In conclusion, the results of the present study provided evidence that genomic losses at 5q13.2 and 8p23.1 identified in dysplastic hepatocytes of the cirrhotic liver are common events in HCC. HCC-associated chromosomal abnormalities may occur and accumulate in preneoplastic lesions of liver cirrhosis.
Collapse
Affiliation(s)
- ZHANG ZHAO
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - GUANG-YONG CHEN
- Department of Pathology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - JIANG LONG
- Minimally Invasive Hepatobiliary Cancer Center, Beijing You-An Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - HAI LI
- Department of Hepatopancreatobiliary and Splenic Medicine, Affiliated Hospital of Medical College of Chinese People's Armed Police Force, Tianjin 300192, P.R. China
| | - JIAN HUANG
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
- Beijing Key Laboratory of Traditional Medicine in Liver Cirrhosis, National Clinical Research Center of Digestive Disease, Beijing 100050, P.R. China
| |
Collapse
|
32
|
Lengthening and shortening of plasma DNA in hepatocellular carcinoma patients. Proc Natl Acad Sci U S A 2015; 112:E1317-25. [PMID: 25646427 DOI: 10.1073/pnas.1500076112] [Citation(s) in RCA: 505] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The analysis of tumor-derived circulating cell-free DNA opens up new possibilities for performing liquid biopsies for the assessment of solid tumors. Although its clinical potential has been increasingly recognized, many aspects of the biological characteristics of tumor-derived cell-free DNA remain unclear. With respect to the size profile of such plasma DNA molecules, a number of studies reported the finding of increased integrity of tumor-derived plasma DNA, whereas others found evidence to suggest that plasma DNA molecules released by tumors might be shorter. Here, we performed a detailed analysis of the size profiles of plasma DNA in 90 patients with hepatocellular carcinoma, 67 with chronic hepatitis B, 36 with hepatitis B-associated cirrhosis, and 32 healthy controls. We used massively parallel sequencing to achieve plasma DNA size measurement at single-base resolution and in a genome-wide manner. Tumor-derived plasma DNA molecules were further identified with the use of chromosome arm-level z-score analysis (CAZA), which facilitated the studying of their specific size profiles. We showed that populations of aberrantly short and long DNA molecules existed in the plasma of patients with hepatocellular carcinoma. The short ones preferentially carried the tumor-associated copy number aberrations. We further showed that there were elevated amounts of plasma mitochondrial DNA in the plasma of hepatocellular carcinoma patients. Such molecules were much shorter than the nuclear DNA in plasma. These results have improved our understanding of the size profile of tumor-derived circulating cell-free DNA and might further enhance our ability to use plasma DNA as a molecular diagnostic tool.
Collapse
|
33
|
Thériault BL, Cybulska P, Shaw PA, Gallie BL, Bernardini MQ. The role of KIF14 in patient-derived primary cultures of high-grade serous ovarian cancer cells. J Ovarian Res 2014; 7:123. [PMID: 25528264 PMCID: PMC4302703 DOI: 10.1186/s13048-014-0123-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 12/12/2014] [Indexed: 02/07/2023] Open
Abstract
Objective Previously, it has been shown that KIF14 mRNA is overexpressed in ovarian cancer (OvCa), regardless of histological subtype. KIF14 levels are independently predictive of poor outcome and increased rates of recurrence in serous OvCa patients. Furthermore, it has been shown that KIF14 also controls the in vivo tumorigenicity of OvCa cell lines. In this study, we evaluate the potential of KIF14 as a therapeutic target through selective inhibition of KIF14 in primary high-grade serous patient-derived OvCa cells. Methods To assess the dependence of primary serous OvCa cultures on KIF14, protein levels in 11 prospective high grade serous ovarian cancer samples were increased (KIF14 overexpression by transfection) or decreased (anti-KIF14 shRNA) in vitro, and proliferative capacity, anchorage independence and xenograft growth were assessed. Results Seven of eleven samples demonstrated increased/decreased in vitro proliferation in response to KIF14 overexpression/knockdown, respectively. When examining in vitro tumorigenicity (colony formation) and in vivo growth (subcutaneous xenografts) in response to KIF14 manipulation, none of the samples demonstrated growth in soft agar (11 samples), or xenograft growth (4 samples). Conclusions Although primary high-grade serous OvCa cells may depend on KIF14 for in vitro proliferation we were unable to demonstrate a role for KIF14 on tumorigenicity or develop an in vivo model for assessment. We have, however developed an effective in vitro method to evaluate the effect of target gene manipulation on the proliferative capacity of primary OvCa cultures. Electronic supplementary material The online version of this article (doi:10.1186/s13048-014-0123-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Brigitte L Thériault
- Campbell Family Cancer Research Institute, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada.
| | - Paulina Cybulska
- Campbell Family Cancer Research Institute, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada. .,Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, Canada. .,Division of Gynecological Oncology, University Health Network, Toronto, ON, Canada.
| | - Patricia A Shaw
- Department of Pathology, University Health Network, Toronto, ON, Canada. .,Princess Margaret Hospital, University Health Network Tissue Bank, Toronto, ON, Canada.
| | - Brenda L Gallie
- Campbell Family Cancer Research Institute, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada. .,Division of Visual Science, Toronto Western Hospital Research Institute, Toronto, ON, Canada. .,Departments of Medical Biophysics, Molecular Genetics, and Ophthalmology, University of Toronto, Toronto, ON, Canada.
| | - Marcus Q Bernardini
- Campbell Family Cancer Research Institute, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada. .,Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, Canada. .,Division of Gynecological Oncology, University Health Network, Toronto, ON, Canada. .,Princess Margaret Cancer Centre, Rm M700, 610 University Ave, Toronto, Ontario, M5G 2M9, Canada.
| |
Collapse
|
34
|
Liu M, Jiang L, Guan XY. The genetic and epigenetic alterations in human hepatocellular carcinoma: a recent update. Protein Cell 2014; 5:673-91. [PMID: 24916440 PMCID: PMC4145080 DOI: 10.1007/s13238-014-0065-9] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 04/13/2014] [Indexed: 01/18/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most frequent human malignancies worldwide with very poor prognosis. It is generally accepted that the progression of HCC is a long-term process with accumulation of multiple genetic and epigenetic alterations, which further lead to the activation of critical oncogenes or inactivation of tumor suppressor genes. HCC is characterized with multiple cancer hallmarks including their ability to proliferate, anti-apoptosis, invade, metastasis, as well as the emerging features such as stem cell properties and energy metabolic switch. The irreversible alterations at genetic level could be detected as early as in the pre-neoplastic stages and accumulate during cancer progression. Thus, they might account for the cancer initiating steps and further malignant transformation. In addition to genetic alterations, epigenetic alterations can affect the cancer transcriptome more extensively. Alterations in DNA methylation, histone modification, miRNAs, RNA editing, and lncRNAs might result in disrupted gene regulation networks and substantially contribute to HCC progression. In this review, the genetic and epigenetic alterations which significantly contribute to the malignant capabilities of HCC will be updated and summarized in detail. Further characterization of those critical molecular events might better elucidate the pathogenesis of HCC and provide novel therapeutic targets for treatment of this deadly disease.
Collapse
Affiliation(s)
- Ming Liu
- Department of Clinical Oncology, University of Hong Kong, Hong Kong, China
| | - Lingxi Jiang
- Department of Clinical Oncology, University of Hong Kong, Hong Kong, China
| | - Xin-Yuan Guan
- Department of Clinical Oncology, University of Hong Kong, Hong Kong, China
| |
Collapse
|
35
|
Yang T, Li XN, Li L, Wu QM, Gao PZ, Wang HL, Zhao W. Sox17 inhibits hepatocellular carcinoma progression by downregulation of KIF14 expression. Tumour Biol 2014; 35:11199-207. [PMID: 25106407 DOI: 10.1007/s13277-014-2398-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 07/23/2014] [Indexed: 01/17/2023] Open
Abstract
Sox17, an antagonist of canonical Wnt/β-catenin signaling, inhibits several malignant carcinogenesis and progression. However, little is known about Sox17 in hepatocellular carcinoma (HCC). Here, we found that Sox17 is downregulated in HCC tissue. Furthermore, Sox17 inhibits cell proliferation and migration in HCC. KIF14, a member of kinesin superfamily protein (KIFs), is an oncogene in a variety of malignant tumors including HCC. We demonstrated that Sox17 is negatively related to KIF14 expression in HCC tissue and Sox17 inhibits HCC cell proliferation and migration by transcriptional downregulation of KIF14 expression. Our results may provide a strategy for blocking HCC carcinogenesis and progression.
Collapse
Affiliation(s)
- Tao Yang
- Department of Hepatobiliary Surgery, The First Hospital of Shijiazhuang City, Shijiazhuang, China
| | | | | | | | | | | | | |
Collapse
|
36
|
Zhang H, Tian Y, Shen J, Wang Y, Xu Y, Wang Y, Han Z, Li X. Upregulation of the putative oncogene COTE1 contributes to human hepatocarcinogenesis through modulation of WWOX signaling. Int J Oncol 2014; 45:719-731. [PMID: 24899407 DOI: 10.3892/ijo.2014.2482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 03/14/2014] [Indexed: 11/05/2022] Open
Abstract
Family with sequence similarity 189, also known as COTE1, has been found to be significantly upregulated in hepatocellular carcinoma (HCC) specimens and cell lines and is associated with tumor size and differentiation. Furthermore, COTE1 contributes to hepatocellular carcinogenesis. The overexpression of COTE1 enhanced in vitro cell viability and colony formation in soft agar, and in vivo tumorigenicity of HCC-derived Focus and Huh7 cells. In contrast, COTE1 knockdown via RNAi markedly suppressed these phenotypes in YY-8103 and WRL-68 HCC cell lines. Mechanistic analyses indicated that COTE1 physically associated with WW domain-containing oxidoreductase (WWOX) and modulated WWOX tyrosine phosphorylation. The ectopic overexpression of COTE1 inhibited the WWOX-p53 signaling pathway by reducing the phosphorylation of WWOX at the Tyr33 residue in Focus cells. Conversely, COTE1 silencing activated tyrosine 33 phosphorylation of WWOX and induced WWOX-p53 mediated mitochondrial apoptosis in WRL-68 cells. In addition, COTE1 upregulation in Huh7 cells blocked the WWOX-cyclin D1 pathway via dephosphorylation of WWOX Tyr287, stimulating cell cycle progression whereas phosphorylation of Tyr287 of WWOX induced by COTE1 silencing resulted in activation of WWOX-cyclin D1 signaling, leading to cell cycle arrest in YY-8103 cells. Together, our findings suggest that the cytoplasmic protein COTE1 contributes to HCC tumorigenesis by regulating cell proliferation through the modulation of WWOX signaling.
Collapse
Affiliation(s)
- Hai Zhang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, P.R. China
| | - Yuan Tian
- Liver Transplantation Center, First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health, Nanjing 210029, P.R. China
| | - Jian Shen
- Liver Transplantation Center, First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health, Nanjing 210029, P.R. China
| | - Yun Wang
- Liver Transplantation Center, First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health, Nanjing 210029, P.R. China
| | - Yonghua Xu
- Liver Transplantation Center, First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health, Nanjing 210029, P.R. China
| | - Yuping Wang
- Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai 201203, P.R. China
| | - Zeguang Han
- Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai 201203, P.R. China
| | - Xiangcheng Li
- Liver Transplantation Center, First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health, Nanjing 210029, P.R. China
| |
Collapse
|
37
|
Arora K, Talje L, Asenjo AB, Andersen P, Atchia K, Joshi M, Sosa H, Allingham JS, Kwok BH. KIF14 binds tightly to microtubules and adopts a rigor-like conformation. J Mol Biol 2014; 426:2997-3015. [PMID: 24949858 DOI: 10.1016/j.jmb.2014.05.030] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 05/28/2014] [Accepted: 05/29/2014] [Indexed: 12/30/2022]
Abstract
The mitotic kinesin motor protein KIF14 is essential for cytokinesis during cell division and has been implicated in cerebral development and a variety of human cancers. Here we show that the mouse KIF14 motor domain binds tightly to microtubules and does not display typical nucleotide-dependent changes in this affinity. It also has robust ATPase activity but very slow motility. A crystal structure of the ADP-bound form of the KIF14 motor domain reveals a dramatically opened ATP-binding pocket, as if ready to exchange its bound ADP for Mg·ATP. In this state, the central β-sheet is twisted ~10° beyond the maximal amount observed in other kinesins. This configuration has only been seen in the nucleotide-free states of myosins-known as the "rigor-like" state. Fitting of this atomic model to electron density maps from cryo-electron microscopy indicates a distinct binding configuration of the motor domain to microtubules. We postulate that these properties of KIF14 are well suited for stabilizing midbody microtubules during cytokinesis.
Collapse
Affiliation(s)
- Kritica Arora
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart St., Rm. 652, Kingston, ON K7L 3 N6, Canada
| | - Lama Talje
- Institute for Research in Immunology and Cancer, Département de Médecine, Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montréal, QC H3C 3 J7, Canada
| | - Ana B Asenjo
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Parker Andersen
- Institute for Research in Immunology and Cancer, Département de Médecine, Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montréal, QC H3C 3 J7, Canada
| | - Kaleem Atchia
- Institute for Research in Immunology and Cancer, Département de Médecine, Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montréal, QC H3C 3 J7, Canada
| | - Monika Joshi
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart St., Rm. 652, Kingston, ON K7L 3 N6, Canada
| | - Hernando Sosa
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - John S Allingham
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart St., Rm. 652, Kingston, ON K7L 3 N6, Canada.
| | - Benjamin H Kwok
- Institute for Research in Immunology and Cancer, Département de Médecine, Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montréal, QC H3C 3 J7, Canada.
| |
Collapse
|
38
|
Liu M, Jiang L, Guan XY. The genetic and epigenetic alterations in human hepatocellular carcinoma: a recent update. Protein Cell 2014. [PMID: 24916440 DOI: 10.1007/s13238- 014-0065-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most frequent human malignancies worldwide with very poor prognosis. It is generally accepted that the progression of HCC is a long-term process with accumulation of multiple genetic and epigenetic alterations, which further lead to the activation of critical oncogenes or inactivation of tumor suppressor genes. HCC is characterized with multiple cancer hallmarks including their ability to proliferate, anti-apoptosis, invade, metastasis, as well as the emerging features such as stem cell properties and energy metabolic switch. The irreversible alterations at genetic level could be detected as early as in the pre-neoplastic stages and accumulate during cancer progression. Thus, they might account for the cancer initiating steps and further malignant transformation. In addition to genetic alterations, epigenetic alterations can affect the cancer transcriptome more extensively. Alterations in DNA methylation, histone modification, miRNAs, RNA editing, and lncRNAs might result in disrupted gene regulation networks and substantially contribute to HCC progression. In this review, the genetic and epigenetic alterations which significantly contribute to the malignant capabilities of HCC will be updated and summarized in detail. Further characterization of those critical molecular events might better elucidate the pathogenesis of HCC and provide novel therapeutic targets for treatment of this deadly disease.
Collapse
Affiliation(s)
- Ming Liu
- Department of Clinical Oncology, University of Hong Kong, Hong Kong, China
| | | | | |
Collapse
|
39
|
Tao T, Shi Y, Han D, Luan W, Qian J, Zhang J, Wang Y, You Y. TPM3, a strong prognosis predictor, is involved in malignant progression through MMP family members and EMT-like activators in gliomas. Tumour Biol 2014; 35:9053-9. [PMID: 24913705 DOI: 10.1007/s13277-014-1974-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 04/15/2014] [Indexed: 10/25/2022] Open
Abstract
Recent studies have shown that many molecular mechanisms, such as the EGFR, AKT, STAT3, and beta-catenin pathways, are involved in glioma. However, the prognosis of the disease remains poor. Explorations of the underlying mechanisms of glioma and identification of effective markers for early diagnosis and accurate prognostication remain important today. In this study, we employed survival analysis to determine that TPM3 overexpression was significantly associated with high-grade gliomas and higher mortality. Using microarray combined with Pearson correlation analysis, we found that TPM3 was positively correlated with the expression of MMP family members and EMT-like activators. Reduction of TPM3 (via TPM3-siRNA) inhibited cellular invasion and migration and decreased MMP-9 and SNAI1 levels in glioma cells. To the best of our knowledge, our work is the first to show that TPM3 plays a critical role in the progression of gliomas and provides novel insights into the key roles of MMP family members and EMT-like activators that mediate TPM3 functional signaling for glioma regulation.
Collapse
Affiliation(s)
- Tao Tao
- Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Silencing of KIF14 interferes with cell cycle progression and cytokinesis by blocking the p27(Kip1) ubiquitination pathway in hepatocellular carcinoma. Exp Mol Med 2014; 46:e97. [PMID: 24854087 PMCID: PMC4044675 DOI: 10.1038/emm.2014.23] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Revised: 11/26/2013] [Accepted: 12/06/2013] [Indexed: 01/19/2023] Open
Abstract
Although it has been suggested that kinesin family member 14 (KIF14) has oncogenic potential in various cancers, including hepatocellular carcinoma (HCC), the molecular mechanism of this potential remains unknown. We aimed to elucidate the role of KIF14 in hepatocarcinogenesis by knocking down KIF14 in HCC cells that overexpressed KIF14. After KIF14 knockdown, changes in tumor cell growth, cell cycle and cytokinesis were examined. We also examined cell cycle regulatory molecules and upstream Skp1/Cul1/F-box (SCF) complex molecules. Knockdown of KIF14 resulted in suppression of cell proliferation and failure of cytokinesis, whereas KIF14 overexpression increased cell proliferation. In KIF14-silenced cells, the levels of cyclins E1, D1 and B1 were profoundly decreased compared with control cells. Of the cyclin-dependent kinase inhibitors, the p27Kip1 protein level specifically increased after KIF14 knockdown. The increase in p27Kip1 was not due to elevation of its mRNA level, but was due to inhibition of the proteasome-dependent degradation pathway. To explore the pathway upstream of this event, we measured the levels of SCF complex molecules, including Skp1, Skp2, Cul1, Roc1 and Cks1. The levels of Skp2 and its cofactor Cks1 decreased in the KIF14 knockdown cells where p27Kip1 accumulated. Overexpression of Skp2 in the KIF14 knockdown cells attenuated the failure of cytokinesis. On the basis of these results, we postulate that KIF14 knockdown downregulates the expression of Skp2 and Cks1, which target p27Kip1 for degradation by the 26S proteasome, leading to accumulation of p27Kip1. The downregulation of Skp2 and Cks1 also resulted in cytokinesis failure, which may inhibit tumor growth. To the best of our knowledge, this is the first report that has identified the molecular target and oncogenic effect of KIF14 in HCC.
Collapse
|
41
|
Thériault BL, Basavarajappa HD, Lim H, Pajovic S, Gallie BL, Corson TW. Transcriptional and epigenetic regulation of KIF14 overexpression in ovarian cancer. PLoS One 2014; 9:e91540. [PMID: 24626475 PMCID: PMC3953446 DOI: 10.1371/journal.pone.0091540] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 02/13/2014] [Indexed: 02/06/2023] Open
Abstract
KIF14 (kinesin family member 14) is a mitotic kinesin and an important oncogene in several cancers. Tumor KIF14 expression levels are independently predictive of poor outcome, and in cancer cells KIF14 can modulate metastatic behavior by maintaining appropriate levels of cell adhesion and migration proteins at the cell membrane. Thus KIF14 is an exciting potential therapeutic target. Understanding KIF14's regulation in cancer cells is crucial to the development of effective and selective therapies to block its tumorigenic function(s). We previously determined that close to 30% of serous ovarian cancers (OvCa tumors) exhibit low-level genomic gain, indicating one mechanism of KIF14 overexpression in tumors. We now report on transcriptional and epigenetic regulation of KIF14. Through promoter deletion analyses, we identified one cis-regulatory region containing binding sites for Sp1, HSF1 and YY1. siRNA-mediated knockdown of these transcription factors demonstrated endogenous regulation of KIF14 overexpression by Sp1 and YY1, but not HSF1. ChIP experiments confirmed an enrichment of both Sp1 and YY1 binding to the endogenous KIF14 promoter in OvCa cell lines with high KIF14 expression. A strong correlation was seen in primary serous OvCa tumors between Sp1, YY1 and KIF14 expression, further evidence that these transcription factors are important players in KIF14 overexpression. Hypomethylation patterns were observed in primary serous OvCa tumors, suggesting a minor role for promoter methylation in the control of KIF14 gene expression. miRNA expression analysis determined that miR-93, miR-144 and miR-382 had significantly lower levels of expression in primary serous OvCa tumors than normal tissues; treatment of an OvCa cell line with miRNA mimics and inhibitors specifically modulated KIF14 mRNA levels, pointing to potential novel mechanisms of KIF14 overexpression in primary tumors. Our findings reveal multiple mechanisms of KIF14 upregulation in cancer cells, offering new targets for therapeutic interventions to reduce KIF14 in tumors, aiming at improved prognosis.
Collapse
Affiliation(s)
- Brigitte L. Thériault
- Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Halesha D. Basavarajappa
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, and Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Harvey Lim
- Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Sanja Pajovic
- Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Brenda L. Gallie
- Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Division of Visual Science, Toronto Western Hospital Research Institute, Toronto, Ontario, Canada
- Departments of Molecular Genetics and Ophthalmology, University of Toronto, Toronto, Ontario, Canada
| | - Timothy W. Corson
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, and Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, Indiana, United States of America
| |
Collapse
|
42
|
Wei L, Lian B, Zhang Y, Li W, Gu J, He X, Xie L. Application of microRNA and mRNA expression profiling on prognostic biomarker discovery for hepatocellular carcinoma. BMC Genomics 2014; 15 Suppl 1:S13. [PMID: 24564407 PMCID: PMC4046763 DOI: 10.1186/1471-2164-15-s1-s13] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most highly malignant and lethal cancers of the world. Its pathogenesis has been reported to be multi-factorial, and the molecular carcinogenesis of HCC can not be attributed to just a few individual genes. Based on the microRNA and mRNA expression profiling of normal liver tissues, pericancerous hepatocellular tissues and hepatocellular carcinoma tissues, we attempted to find prognosis related gene sets for HCC patients. Results We identified differentially expressed genes (DEG) from three comparisons: Cancer/Normal, Cancer/Pericancerous and Pericancerous/Normal. GSEA (gene set enrichment analysis) were performed. Based on the enriched gene sets of GO terms, pathways and transcription factor targets, it was found that the genome instability and cell proliferation increased while the metabolism and differentiation decreased in HCC tissues. The expression profile of DEGs in each enriched gene set was used to correlate to the postoperative survival time of HCC patients. Nine gene sets were found to prognostic correlation. Furthermore, after substituting DEG-targeting-microRNA for DEG members of each gene set, two gene sets with the microRNA expression profiles were obtained that had prognostic potential. Conclusions The malignancy of HCC could be represented by gene sets, and pericancerous liver exhibits important characteristics of liver cancer. The expression level of gene sets not only in HCC but also in the pericancerous liver showed potential for prognosis implying an option for HCC prognosis at an early stage. Additionally, the gene-targeting-microRNA expression profiles also showed prognostic potential, demonstrating that the multi-factorial molecular pathogenesis of HCC is contributed by various genes and microRNAs. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-S1-S13) contains supplementary material, which is available to authorized users.
Collapse
|
43
|
Zeng X, Yin F, Liu X, Xu J, Xu Y, Huang J, Nan Y, Qiu X. Upregulation of E2F transcription factor 3 is associated with poor prognosis in hepatocellular carcinoma. Oncol Rep 2014; 31:1139-46. [PMID: 24402082 DOI: 10.3892/or.2014.2968] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 11/18/2013] [Indexed: 11/06/2022] Open
Abstract
E2F transcription factor 3 (E2F3), a member of the E2F transcription factor family and a member of the genes involved in the regulation of cell cycle, is an oncogene with strong proliferative potential. E2F3 is involved in many processes and plays important roles in the development of several types of cancer, while its relationship with prognosis in hepatocellular carcinoma (HCC) has yet to be reported. In the present study, based on 4 independent microarray data sets which covered 385 cases of HCC and 327 cases of normal livers retrieved from the Oncomine database, we demonstrated that E2F3 was upregulated at least 1.5-fold and on average 2.3-fold in HCC when compared with normal controls. Comprehensive bioinformatics analysis consisting of protein-protein interaction, gene co-occurrence, microRNA-mRNA interaction and biological process annotation indicated that E2F3 interacted with a large number of genes, proteins and microRNAs which were all associated with poor prognosis in patients with HCC and other types of cancer, suggesting that E2F3 may also serve as a biomarker for poor prognosis. Taken together, for the first time, we show that the overexpression of E2F3 may be associated with unfavorable prognosis in HCC.
Collapse
Affiliation(s)
- Xiaoyun Zeng
- Medical Scientific Research Centre, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Fuqiang Yin
- Medical Scientific Research Centre, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xia Liu
- Centre for Translational Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jianwen Xu
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi 530021, P.R. China
| | - Yang Xu
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jinmei Huang
- Guangxi Zhuang Autonomous Region Centre for Disease Prevention and Control, Nanning, Guangxi 530021, P.R. China
| | - Yueli Nan
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xiaoqiang Qiu
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
44
|
Vagnarelli P. Repo-man at the intersection of chromatin remodelling, DNA repair, nuclear envelope organization, and cancer progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 773:401-14. [PMID: 24563358 DOI: 10.1007/978-1-4899-8032-8_18] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Nuclear structure and chromatin changes are very useful biomarkers in cancer diagnosis. Despite this, their biological significance and relevance to cancer progression are still not well understood. The identification of new proteins that link the nuclear envelope to chromatin organization and the understanding of the molecular mechanisms underlying these connections have begun to provide some important clues. This review discusses the role of the nuclear protein Repo-Man (CDCA2) in the maintenance of genome stability. Repo-Man (CDCA2) is a targeting subunit for the protein phosphatase 1 involved in the dephosphorylation of histone H3 during mitotic exit. In this role, it is important for the chromatin organization in post-mitotic nuclei. Repo-Man (CDCA2) is also essential for proper nuclear envelope reformation and the regulation of DNA damage responses. The relevance of this complex for cancer biology is also corroborated by emerging evidence that provides a correlation between Repo-Man (CDCA2) expression levels and cancer progression; several studies now suggest that Repo-Man (CDCA2) represents a very strong prognostic marker for poor patient survival.
Collapse
|
45
|
Qi LN, Li LQ, Chen YY, Chen ZH, Bai T, Xiang BD, Qin X, Xiao KY, Peng MH, Liu ZM, Liu TW, Qin X, Li S, Han ZG, Mo ZN, Santella RM, Winkler CA, O’Brien SJ, Peng T. Genome-wide and differential proteomic analysis of hepatitis B virus and aflatoxin B1 related hepatocellular carcinoma in Guangxi, China. PLoS One 2013; 8:e83465. [PMID: 24391771 PMCID: PMC3877066 DOI: 10.1371/journal.pone.0083465] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 11/04/2013] [Indexed: 02/06/2023] Open
Abstract
Both hepatitis B virus (HBV) and aflatoxin B1 (AFB1) exposure can cause liver damage as well as increase the probability of hepatocellular carcinoma (HCC). To investigate the underlying genetic changes that may influence development of HCC associated with HBV infection and AFB1 exposure, HCC patients were subdivided into 4 groups depending upon HBV and AFB1 exposure status: (HBV(+)/AFB1(+), HBV(+)/AFB1(-), HBV(-)/AFB1(+), HBV(-)/AFB1(-)). Genetic abnormalities and protein expression profiles were analyzed by array-based comparative genomic hybridization and isobaric tagging for quantitation. A total of 573 chromosomal aberrations (CNAs) including 184 increased and 389 decreased were detected in our study population. Twenty-five recurrently altered regions (RARs; chromosomal alterations observed in ≥10 patients) in chromosomes were identified. Loss of 4q13.3-q35.2, 13q12.1-q21.2 and gain of 7q11.2-q35 were observed with a higher frequency in the HBV(+)/AFB1(+), HBV(+)/AFB1(-) and HBV(-)/AFB1(+) groups compared to the HBV(-)/AFB(-) group. Loss of 8p12-p23.2 was associated with high TNM stage tumors (P = 0.038) and was an unfavorable prognostic factor for tumor-free survival (P =0.045). A total of 133 differentially expressed proteins were identified in iTRAQ proteomics analysis, 69 (51.8%) of which mapped within identified RARs. The most common biological processes affected by HBV and AFB1 status in HCC tumorigenesis were detoxification and drug metabolism pathways, antigen processing and anti-apoptosis pathways. Expression of AKR1B10 was increased significantly in the HBV(+)/AFB1(+) and HBV(-)/AFB1(+) groups. A significant correlation between the expression of AKR1B10 mRNA and protein levels as well as AKR1B10 copy number was observered, which suggest that AKR1B10 may play a role in AFB1-related hepatocarcinogenesis. In summary, a number of genetic and gene expression alterations were found to be associated with HBV and AFB1- related HCC. The possible synergistic effects of HBV and AFB1 in hepatocarcinogenesis warrant further investigations.
Collapse
Affiliation(s)
- Lu-Nan Qi
- Department of Hepatobiliary Surgery, Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Le-Qun Li
- Department of Hepatobiliary Surgery, Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Yuan-Yuan Chen
- Department of Ultrasound, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Zhao-Hong Chen
- Department of Hepatobiliary Surgery, Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Tao Bai
- Department of Hepatobiliary Surgery, Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Bang-De Xiang
- Department of Hepatobiliary Surgery, Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Xiao Qin
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Kai-Yin Xiao
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Min-Hao Peng
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Zhi-Ming Liu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Tang-Wei Liu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Xue Qin
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Shan Li
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Ze-Guang Han
- China National Human Genome Center at Shanghai, Shanghai, China
| | - Zeng-Nan Mo
- Department of Urology and Nephrology Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Regina M. Santella
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Cheryl A. Winkler
- Laboratory of Genomic Diversity, National Cancer Institute, NIH, Frederick, Maryland, United States of America
| | - Stephen J. O’Brien
- Laboratory of Genomic Diversity, National Cancer Institute, NIH, Frederick, Maryland, United States of America
| | - Tao Peng
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
- Laboratory of Genomic Diversity, National Cancer Institute, NIH, Frederick, Maryland, United States of America
- * E-mail:
| |
Collapse
|
46
|
Lee M, Nam ES, Jung SH, Kim SY, Lee SJ, Yoon JH, Lee NW, Jeon S, Choi JS, Cho CH, Moon Y, Chung YJ, Kwon Y. 1p36.22 region containing PGD gene is frequently gained in human cervical cancer. J Obstet Gynaecol Res 2013; 40:545-53. [PMID: 24125036 DOI: 10.1111/jog.12193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 05/23/2013] [Indexed: 11/30/2022]
Abstract
AIM To identify commonly occurring DNA copy number alterations in Korean cervical cancers. METHODS DNA copy number alteration was screened by whole-genome array comparative genomic hybridization (CGH) analysis. For the array CGH discovery, genomic DNA from five cervical cancers and 10 normal cervical tissues were examined. For the independent validation of the most significant chromosomal alteration (1p36.22, PGD gene), 40 formalin-fixed paraffin-embedded cervical tissue samples were collected; 10 of them were used for quantitative polymerase chain reaction and the other 30 samples were used for immunohistochemical analysis. Chromosomal segments differently distributed between cancers and normal controls were determined to be recurrently altered regions (RAR). RESULTS A total of 13 RAR (11 RAR losses and two RAR gains) were defined in this study. Of the 13 cervical cancer-specific RAR, RAR gain in the 1p36.22 locus where the PGD gene is located was the most commonly detected in cancers (P = 0.004). In the quantitative polymerase chain reaction replication, copy number gain of the PGD gene was consistently identified in cervical cancers but not in the normal tissues (P = 0.02). In immunohistochemical analysis, PGD expression was significantly higher in cervical cancers than normal tissues (P = 0.02). CONCLUSION Our results will be helpful to understand cervical carcinogenesis, and the PGD gene can be a useful biomarker of cervical cancer.
Collapse
Affiliation(s)
- Maria Lee
- Department of Obstetrics and Gynecology, Kangdong Sacred Heart Hospital, Hallym University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Joo YH, Park SW, Jung SH, Lee YS, Nam IC, Cho KJ, Park JO, Chung YJ, Kim MS. Recurrent loss of the FHIT gene and its impact on lymphatic metastasis in early oral squamous cell carcinoma. Acta Otolaryngol 2013; 133:992-9. [PMID: 23944951 DOI: 10.3109/00016489.2013.795289] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONCLUSION Our findings show that copy number loss of FHIT is associated with lymph node metastasis (LNM) and suggest that the down-regulation of Fhit indicates poor prognosis in early oral squamous cell carcinoma (OSCC). OBJECTIVES The purpose of this study was to identify alterations in genetic markers related to LNM in early OSCC. METHODS Genome-wide copy number alterations were analyzed in 14 early OSCCs with (n = 7) or without (n = 7) cervical LNM using 180K array-comparative genomic hybridization. To explore the prognostic implications of the most significantly associated genetic alteration with cervical LNM, immunohistochemical analysis was conducted in 30 OSCCs. RESULTS A total of 11 recurrently altered regions (RARs) were identified in the 14 OSCC cases. Six RARs on chromosomes 3p26-3p14, 5q22, and 9p21 were found to be significantly more common in early OSCC with LNM (p < 0.05). Among these, loss of 3p14.2 (where the FHIT gene is located) was the most frequent (five of seven patients with LNM, and none of seven without LNM), and most significantly associated with cervical LNM (p = 0.005). Fhit immunohistochemical staining of 30 OSCCs showed that Fhit negativity was associated with cervical LNM (p = 0.032) and poor disease-specific survival (p = 0.045).
Collapse
Affiliation(s)
- Young-Hoon Joo
- Department of Otorhinolaryngology, Head and Neck Surgery, College of Medicine, Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Personeni N, Rimassa L, Pressiani T, Destro A, Ligorio C, Tronconi MC, Bozzarelli S, Carnaghi C, Di Tommaso L, Giordano L, Roncalli M, Santoro A. Molecular determinants of outcome in sorafenib-treated patients with hepatocellular carcinoma. J Cancer Res Clin Oncol 2013; 139:1179-87. [PMID: 23568548 DOI: 10.1007/s00432-013-1429-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 03/25/2013] [Indexed: 12/15/2022]
Abstract
PURPOSE Preclinical studies show that sorafenib, a multitarget kinase inhibitor, displays anti-proliferative, anti-angiogenic, and pro-apoptotic properties in hepatocellular carcinoma (HCC). However, the determinants of sorafenib sensitivity in vivo remain largely unknown. METHODS We assessed the expression of Mcl-1, activated/phosphorylated extracellular signal-regulated kinase (pERK) 1/2, and activated/phosphorylated AKT (pAKT) in pretreatment tumor specimens from 44 patients with advanced HCC who received sorafenib. Furthermore, we assessed MYC and MET gene copy numbers (GCN) by fluorescence in situ hybridization. RESULTS Poorer overall survival (OS) times were correlated with pERK expression [hazard ratio (HR) 1.013; 95 % CI 1.003-1.035] and Mcl-1 expression (HR 1.016; 95 % CI 1.002-1.030) in pretreatment tumor samples. Expression levels of pERK and Mcl-1, however, were not correlated with time to tumor progression (TTP). Increased pERK expression was positively associated with higher Cancer of Liver Italian Program scores (P = 0.012) and was prognostic in patients with scores 2-6 but not in those with scores 0-1. pERK expression was significantly less frequent in specimens sourced from previous surgical procedures compared to biopsy samples (9.6 vs. 92.3 %, respectively; P < 0.0001). Analysis of pAKT expression, MET and MYC GCN, did not indicate any prognostic nor predictive values for these biomarkers in terms of survival. CONCLUSIONS Expression levels of Mcl-1 and pERK are associated with reduced OS in HCC patients treated with sorafenib and might be useful markers for risk stratification. However, in contrast to previous findings, pERK expression levels, as well as other biomarkers tested, did not affect TTP.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Antineoplastic Agents/therapeutic use
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/mortality
- Disease-Free Survival
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Female
- Gene Dosage
- Genes, myc
- Humans
- In Situ Hybridization, Fluorescence
- Kaplan-Meier Estimate
- Liver Neoplasms/drug therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/mortality
- Male
- Middle Aged
- Myeloid Cell Leukemia Sequence 1 Protein
- Niacinamide/analogs & derivatives
- Niacinamide/therapeutic use
- Phenylurea Compounds/therapeutic use
- Phosphorylation
- Protein Processing, Post-Translational
- Proto-Oncogene Proteins c-akt/metabolism
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Proto-Oncogene Proteins c-met/genetics
- Retrospective Studies
- Sorafenib
- Treatment Outcome
Collapse
Affiliation(s)
- Nicola Personeni
- Department of Oncology-Hematology, Humanitas Clinical and Research Center, Via Manzoni 56, 20089 Rozzano, Mi, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Yang ZY, Jiang H, Qu Y, Wei M, Yan M, Zhu ZG, Liu BY, Chen GQ, Wu YL, Gu QL. Metallopanstimulin-1 regulates invasion and migration of gastric cancer cells partially through integrin β4. Carcinogenesis 2013; 34:2851-60. [PMID: 23803695 DOI: 10.1093/carcin/bgt226] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
MPS-1 (metallopanstimulin-1), also known as ribosomal protein S27, was overexpressed in gastric cancer cells. However, how MPS-1 contributes to gastric carcinogenesis has not been well characterized. Here, we show that high expression of MPS-1 was observed in gastric cancer tissues and associated with gastric cancer cell metastasis. Alteration of MPS-1 expression regulates invasion and migration of gastric cancer cells both in vitro and in vivo. Furthermore, by using Signal-Net and cluster analyses of microarray data we identified integrin β4 (ITGB4) as a downstream target of MPS-1 that mediates its effects on cell metastasis. Knockdown of MPS-1 expression in gastric cancer cells led to significant reduction of ITGB4 expression at both the RNA and protein levels. Mechanically, we found that overexpression of ITGB4 in MPS-1 knockdown cells largely recovers the ability of invasion and migration. Conversely, knockdown of ITGB4 partially reduced cell invading/migrating ability induced by MPS-1 overexpression. Moreover, MPS-1 and ITGB4 expressions are positively correlated in gastric cancer cell lines and tissues. Finally, the survival analyses show that the expression of MPS-1 and ITGB4 is associated with poor outcomes in gastric cancer patients. Collectively, our findings suggest that MPS-1 regulates cell invasiveness and migration partially through ITGB4 and that MPS-1/ITGB4 signaling axis may serve as therapeutic targets in the treatment of gastric cancer.
Collapse
Affiliation(s)
- Zhong-Yin Yang
- Department of General Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Hyeon J, Ahn S, Lee JJ, Song DH, Park CK. Prognostic Significance of BCL9 Expression in Hepatocellular Carcinoma. KOREAN JOURNAL OF PATHOLOGY 2013; 47:130-6. [PMID: 23667372 PMCID: PMC3647125 DOI: 10.4132/koreanjpathol.2013.47.2.130] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 02/05/2013] [Accepted: 02/20/2013] [Indexed: 12/13/2022]
Abstract
Background BCL9 enhances β-catenin-mediated transcriptional activity regardless of the mutational status of the Wnt signaling components and increases the cell proliferation, migration, invasion, and metastatic potential of tumor cells. The goal of this study was to elucidate the prognostic significance of BCL9 protein expression in hepatocellular carcinoma (HCC) patients. Methods We evaluated BCL9 protein expression by immunohistochemistry in tumor tissue from 288 primary HCC patients who underwent curative hepatectomy. The impact of BCL9 expression on the survival of the patients was analyzed. The median follow-up period was 97.1 months. Results Nuclear BCL9 protein expression was observed in 74 (25.7%) of the 288 HCCs. BCL9 expression was significantly associated with younger age (p=0.038), higher Edmondson grade (p=0.001), microvascular invasion (p=0.013), and intrahepatic metastasis (p=0.017). Based on univariate analyses, BCL9 expression showed an unfavorable influence on both disease-free survival (DFS, p=0.012) and disease-specific survival (DSS, p=0.032). Multivariate analyses revealed that higher Barcelona Clinic Liver Cancer stage was an independent predictor of both shorter DFS (p<0.001) and shorter DSS (p<0.001). BCL9 expression tended to be an independent predictor of shorter DFS (p=0.078). Conclusions BCL9 protein expression might be a marker of shorter DFS in HCC patients after curative hepatectomy.
Collapse
Affiliation(s)
- Jiyeon Hyeon
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | | | | | | |
Collapse
|