1
|
Do LNH, Delgado E, Lim CG, Bkhache M, Peluzzo AM, Hua Y, Oza M, Mohsin S, Chen H, Autieri MV, Kim S, Liu X. A neuro-lymphatic communication guides lymphatic development by CXCL12 and CXCR4 signaling. Development 2024; 151:dev202901. [PMID: 39470100 PMCID: PMC11634036 DOI: 10.1242/dev.202901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/11/2024] [Indexed: 10/30/2024]
Abstract
Lymphatic vessels grow through active sprouting and mature into a vascular complex that includes lymphatic capillaries and collecting vessels that ensure fluid transport. However, the signaling cues that direct lymphatic sprouting and patterning remain unclear. In this study, we demonstrate that chemokine signaling, specifically through CXCL12 and CXCR4, plays crucial roles in regulating lymphatic development. We show that LEC-specific Cxcr4-deficient mouse embryos and CXCL12 mutant embryos exhibit severe defects in lymphatic sprouting, migration and lymphatic valve formation. We also discovered that CXCL12, originating from peripheral nerves, directs the migration of dermal lymphatic vessels to align with nerves in developing skin. Deletion of Cxcr4 or blockage of CXCL12 and CXCR4 activity results in reduced VEGFR3 levels on the LEC surface. This, in turn, impairs VEGFC-mediated VEGFR3 signaling and downstream PI3K and AKT activities. Taken together, these data identify previously unknown chemokine signaling originating from peripheral nerves that guides dermal lymphatic sprouting and patterning. Our work identifies for the first time a neuro-lymphatics communication during mouse development and reveals a previously unreported mechanism by which CXCR4 modulates VEGFC, VEGFR3 and AKT signaling.
Collapse
Affiliation(s)
- Long Nguyen Hoang Do
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Esteban Delgado
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Casey G. Lim
- Center for Neural Development and Repair, Department of Neural Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Meriem Bkhache
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Amanda M. Peluzzo
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Yiming Hua
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Manisha Oza
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Sadia Mohsin
- Aging+Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Hong Chen
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Michael V. Autieri
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Seonhee Kim
- Center for Neural Development and Repair, Department of Neural Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Xiaolei Liu
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| |
Collapse
|
2
|
Wang J, Ouyang X, Zhu W, Yi Q, Zhong J. The Role of CXCL11 and its Receptors in Cancer: Prospective but Challenging Clinical Targets. Cancer Control 2024; 31:10732748241241162. [PMID: 38533911 DOI: 10.1177/10732748241241162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024] Open
Abstract
Chemokine ligand 11 is a member of the CXC chemokine family and exerts its biological function mainly through binding to CXCR3 and CXCR7. The CXCL11 gene is ubiquitously overexpressed in various human malignant tumors; however, its specific mechanisms vary among different cancer types. Recent studies have found that CXCL11 is involved in the activation of multiple oncogenic signaling pathways and is closely related to tumorigenesis, progression, chemotherapy tolerance, immunotherapy efficacy, and poor prognosis. Depending on the specific expression of its receptor subtype, CXCL11 also has a complex 2-fold role in tumours; therefore, directly targeting the structure-function of CXCL11 and its receptors may be a challenging task. In this review, we summarize the biological functions of CXCL11 and its receptors and their roles in various types of malignant tumors and point out the directions for clinical applications.
Collapse
Affiliation(s)
- Jiaqi Wang
- The First Clinical Medical College, Gannan Medical University, Ganzhou, China
| | - Xinting Ouyang
- The First Clinical Medical College, Gannan Medical University, Ganzhou, China
| | - Weijian Zhu
- The First Clinical Medical College, Gannan Medical University, Ganzhou, China
| | - Qiang Yi
- The First Clinical Medical College, Gannan Medical University, Ganzhou, China
| | - Jinghua Zhong
- The First Clinical Medical College, Gannan Medical University, Ganzhou, China
| |
Collapse
|
3
|
Goïta AA, Guenot D. Colorectal Cancer: The Contribution of CXCL12 and Its Receptors CXCR4 and CXCR7. Cancers (Basel) 2022; 14:1810. [PMID: 35406582 PMCID: PMC8997717 DOI: 10.3390/cancers14071810] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/22/2022] [Accepted: 03/29/2022] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer is one of the most common cancers, and diagnosis at late metastatic stages is the main cause of death related to this cancer. This progression to metastasis is complex and involves different molecules such as the chemokine CXCL12 and its two receptors CXCR4 and CXCR7. The high expression of receptors in CRC is often associated with a poor prognosis and aggressiveness of the tumor. The interaction of CXCL12 and its receptors activates signaling pathways that induce chemotaxis, proliferation, migration, and cell invasion. To this end, receptor inhibitors were developed, and their use in preclinical and clinical studies is ongoing. This review provides an overview of studies involving CXCR4 and CXCR7 in CRC with an update on their targeting in anti-cancer therapies.
Collapse
Affiliation(s)
| | - Dominique Guenot
- INSERM U1113/Unistra, IRFAC—Interface de Recherche Fondamentale et Appliquée en Cancérologie, 67200 Strasbourg, France;
| |
Collapse
|
4
|
Khare T, Bissonnette M, Khare S. CXCL12-CXCR4/CXCR7 Axis in Colorectal Cancer: Therapeutic Target in Preclinical and Clinical Studies. Int J Mol Sci 2021; 22:7371. [PMID: 34298991 PMCID: PMC8305488 DOI: 10.3390/ijms22147371] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/24/2022] Open
Abstract
Chemokines are chemotactic cytokines that promote cancer growth, metastasis, and regulate resistance to chemotherapy. Stromal cell-derived factor 1 (SDF1) also known as C-X-C motif chemokine 12 (CXCL12), a prognostic factor, is an extracellular homeostatic chemokine that is the natural ligand for chemokine receptors C-X-C chemokine receptor type 4 (CXCR4), also known as fusin or cluster of differentiation 184 (CD184) and chemokine receptor type 7 (CXCR7). CXCR4 is the most widely expressed rhodopsin-like G protein coupled chemokine receptor (GPCR). The CXCL12-CXCR4 axis is involved in tumor growth, invasion, angiogenesis, and metastasis in colorectal cancer (CRC). CXCR7, recently termed as atypical chemokine receptor 3 (ACKR3), is amongst the G protein coupled cell surface receptor family that is also commonly expressed in a large variety of cancer cells. CXCR7, like CXCR4, regulates immunity, angiogenesis, stem cell trafficking, cell growth and organ-specific metastases. CXCR4 and CXCR7 are expressed individually or together, depending on the tumor type. When expressed together, CXCR4 and CXCR7 can form homo- or hetero-dimers. Homo- and hetero-dimerization of CXCL12 and its receptors CXCR4 and CXCR7 alter their signaling activity. Only few drugs have been approved for clinical use targeting CXCL12-CXCR4/CXCR7 axis. Several CXCR4 inhibitors are in clinical trials for solid tumor treatment with limited success whereas CXCR7-specific inhibitors are still in preclinical studies for CRC. This review focuses on current knowledge of chemokine CXCL12 and its receptors CXCR4 and CXCR7, with emphasis on targeting the CXCL12-CXCR4/CXCR7 axis as a treatment strategy for CRC.
Collapse
Affiliation(s)
- Tripti Khare
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Missouri, Columbia, MO 65212, USA;
| | - Marc Bissonnette
- Section of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Chicago, Chicago, IL 60637, USA;
| | - Sharad Khare
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Missouri, Columbia, MO 65212, USA;
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65201, USA
| |
Collapse
|
5
|
López-Gil JC, Martin-Hijano L, Hermann PC, Sainz B. The CXCL12 Crossroads in Cancer Stem Cells and Their Niche. Cancers (Basel) 2021; 13:cancers13030469. [PMID: 33530455 PMCID: PMC7866198 DOI: 10.3390/cancers13030469] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/17/2021] [Accepted: 01/19/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary CXCL12 and its receptors have been extensively studied in cancer, including their influence on cancer stem cells (CSCs) and their niche. This intensive research has led to a better understanding of the crosstalk between CXCL12 and CSCs, which has aided in designing several drugs that are currently being tested in clinical trials. However, a comprehensive review has not been published to date. The aim of this review is to provide an overview on how CXCL12 axes are involved in the regulation and maintenance of CSCs, their presence and influence at different cellular levels within the CSC niche, and the current state-of-the-art of therapeutic approaches aimed to target the CXCL12 crossroads. Abstract Cancer stem cells (CSCs) are defined as a subpopulation of “stem”-like cells within the tumor with unique characteristics that allow them to maintain tumor growth, escape standard anti-tumor therapies and drive subsequent repopulation of the tumor. This is the result of their intrinsic “stem”-like features and the strong driving influence of the CSC niche, a subcompartment within the tumor microenvironment that includes a diverse group of cells focused on maintaining and supporting the CSC. CXCL12 is a chemokine that plays a crucial role in hematopoietic stem cell support and has been extensively reported to be involved in several cancer-related processes. In this review, we will provide the latest evidence about the interactions between CSC niche-derived CXCL12 and its receptors—CXCR4 and CXCR7—present on CSC populations across different tumor entities. The interactions facilitated by CXCL12/CXCR4/CXCR7 axes seem to be strongly linked to CSC “stem”-like features, tumor progression, and metastasis promotion. Altogether, this suggests a role for CXCL12 and its receptors in the maintenance of CSCs and the components of their niche. Moreover, we will also provide an update of the therapeutic options being currently tested to disrupt the CXCL12 axes in order to target, directly or indirectly, the CSC subpopulation.
Collapse
Affiliation(s)
- Juan Carlos López-Gil
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas “Alberto Sols” (IIBM), CSIC-UAM, 28029 Madrid, Spain; (J.C.L.-G.); (L.M.-H.)
- Department of Biochemistry, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
- Chronic Diseases and Cancer, Area 3-Instituto Ramon y Cajal de Investigación Sanitaria (IRYCIS), 28029 Madrid, Spain
| | - Laura Martin-Hijano
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas “Alberto Sols” (IIBM), CSIC-UAM, 28029 Madrid, Spain; (J.C.L.-G.); (L.M.-H.)
- Department of Biochemistry, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
- Chronic Diseases and Cancer, Area 3-Instituto Ramon y Cajal de Investigación Sanitaria (IRYCIS), 28029 Madrid, Spain
| | - Patrick C. Hermann
- Department of Internal Medicine I, Ulm University, 89081 Ulm, Germany
- Correspondence: (P.C.H.); (B.S.J.)
| | - Bruno Sainz
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas “Alberto Sols” (IIBM), CSIC-UAM, 28029 Madrid, Spain; (J.C.L.-G.); (L.M.-H.)
- Department of Biochemistry, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
- Chronic Diseases and Cancer, Area 3-Instituto Ramon y Cajal de Investigación Sanitaria (IRYCIS), 28029 Madrid, Spain
- Correspondence: (P.C.H.); (B.S.J.)
| |
Collapse
|
6
|
Xin Q, Sun Q, Zhang CS, Zhang Q, Li CJ. Functions and mechanisms of chemokine receptor 7 in tumors of the digestive system. World J Clin Cases 2020; 8:2448-2463. [PMID: 32607322 PMCID: PMC7322425 DOI: 10.12998/wjcc.v8.i12.2448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 05/12/2020] [Accepted: 06/02/2020] [Indexed: 02/05/2023] Open
Abstract
Chemokine (C-X-C motif) receptor 7 (CXCR7), recently termed ACKR3, belongs to the G protein-coupled cell surface receptor family, binds to stromal cell-derived factor-1 [SDF-1, or chemokine (C-X-C motif) ligand 12] or chemokine (C-X-C motif) ligand 11, and is the most common chemokine receptor expressed in a variety of cancer cells. SDF-1 binds to its receptor chemokine (C-X-C motif) receptor 4 (CXCR4) and regulates cell proliferation, survival, angiogenesis and migration. In recent years, another new receptor for SDF-1, CXCR7, has been discovered, and CXCR7 has also been found to be expressed in a variety of tumor cells and tumor-related vascular endothelial cells. Many studies have shown that CXCR7 can promote the growth and metastasis of a variety of malignant tumor cells. Unlike CXCR4, CXCR7 exhibits a slight modification in the DRYLAIV motif and does not induce intracellular Ca2+ release following ligand binding, which is essential for recruiting and activating G proteins. CXCR7 is generally thought to work in three ways: (1) Recruiting β-arrestin 2; (2) Heterodimerizing with CXCR4; and (3) Acting as a “scavenger” of SDF-1, thus lowering the level of SDF-1 to weaken the activity of CXCR4. In the present review, the expression and role of CXCR7, as well as its prognosis in cancers of the digestive system, were investigated.
Collapse
Affiliation(s)
- Qi Xin
- Department of Pathology, Tianjin Third Central Hospital, The Third Central Clinical College of Tianjin Medical University, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin 300170, China
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Quan Sun
- Department of Hepatobiliary Surgery, Tianjin Third Central Hospital, The Third Central Clinical College of Tianjin Medical University, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin 300170, China
| | - Chuan-Shan Zhang
- Department of Pathology, Tianjin Third Central Hospital, The Third Central Clinical College of Tianjin Medical University, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin 300170, China
| | - Qin Zhang
- Department of Pathology, Tianjin Third Central Hospital, The Third Central Clinical College of Tianjin Medical University, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin 300170, China
| | - Chun-Jun Li
- Department of Endocrinology, Health Management Center, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin 300121, China
| |
Collapse
|
7
|
Li X, Wang X, Li Z, Liu Y, Sang L, Zhang Z, Zhang Y. Expression and regulation effects of chemokine receptor 7 in colon cancer cells. Oncol Lett 2020; 20:226-234. [PMID: 32565949 PMCID: PMC7285870 DOI: 10.3892/ol.2020.11561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 12/20/2019] [Indexed: 02/07/2023] Open
Abstract
In China the incidence and mortality rates of colon cancer have been increasing annually. Studies have revealed that CXCR7 is expressed in many tumors. The aim of the present study was to investigate the function of CXCR7 in colon cancer. The expression level of chemokine receptor 7 (CXCR7) in Caco-2 and HCT116 cells was investigated to elucidate the effect of CXCR7 on cell biological behavior. Reverse transcription-quantitative PCR and western blot analysis were used to detect the expression level of CXCR7 in Caco-2 and HCT116 cells after transfection with small interfering (si)RNA. To analyze the in vitro biological function of CXCR7, cell proliferation was measured using a Cell Counting Kit-8 assay, and cell invasion and migration were measured using Matrigel, and Transwell and wound healing assays. siRNAs were successfully transfected into Caco-2 and HCT116 cells and resulted in a decrease in CXCR7 protein and mRNA expression. Downregulation of CXCR7 inhibited Caco-2 and HCT116 cell proliferation, invasion, and migration. Regulation of CXCR7 expression may affect the biological behavior of Caco-2 and HCT116 cells, suggesting that CXCR7 has a potential role in molecular therapy in colon cancer.
Collapse
Affiliation(s)
- Xiang Li
- Department of Ultrasonic Diagnosis, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xuemei Wang
- Department of Ultrasonic Diagnosis, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Zitao Li
- Department of Orthopedic Surgery, Hongqi Hospital, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Yanjun Liu
- Department of Ultrasonic Diagnosis, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Liang Sang
- Department of Ultrasonic Diagnosis, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Zhen Zhang
- Department of Ultrasonic Diagnosis, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yixia Zhang
- Department of Ultrasonic Diagnosis, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
8
|
Fan X, He L, Dai Q, He J, Chen X, Dai X, Zhang C, Sun D, Meng X, Sun S, Huang J, Chen J, Lin L, Chen L, Tan Y, Yan X. Interleukin-1β augments the angiogenesis of endothelial progenitor cells in an NF-κB/CXCR7-dependent manner. J Cell Mol Med 2020; 24:5605-5614. [PMID: 32239650 PMCID: PMC7214148 DOI: 10.1111/jcmm.15220] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 09/01/2019] [Accepted: 09/11/2019] [Indexed: 12/25/2022] Open
Abstract
Endothelial progenitor cells (EPCs) are able to trigger angiogenesis, and pro‐inflammatory cytokines have beneficial effects on angiogenesis under physiological and pathological conditions. C‐X‐C chemokine receptor type 7 (CXCR‐7), receptor for stromal cell‐derived factor‐1, plays a critical role in enhancing EPC angiogenic function. Here, we examined whether CXCR7 mediates the pro‐angiogenic effects of the inflammatory cytokine interleukin‐1β (IL‐1β) in EPCs. EPCs were isolated by density gradient centrifugation and angiogenic capability was evaluated in vitro by Matrigel capillary formation assay and fibrin gel bead assay. IL‐1β elevated CXCR7 expression at both the transcriptional and translational levels in a dose‐ and time‐dependent manner, and blockade of the nuclear translocation of NF‐κB dramatically attenuated the IL‐1β‐mediated up‐regulation of CXCR7 expression. IL‐1β stimulation significantly promoted EPCs tube formation and this effect was largely impaired by CXCR7‐siRNA transfection. IL‐1β treatment stimulated extracellular signal‐regulated kinase 1/2 (Erk1/2) phosphorylation, and inhibition of Erk1/2 phosphorylation partially impaired IL‐1β‐induced tube formation of EPCs but without significant effects on CXCR7 expression. Moreover, blocking NF‐κB had no significant effects on IL‐1β‐stimulated Erk1/2 phosphorylation. These findings indicate that CXCR7 plays an important role in the IL‐1β‐enhanced angiogenic capability of EPCs and antagonizing CXCR7 is a potential strategy for inhibiting angiogenesis under inflammatory conditions.
Collapse
Affiliation(s)
- Xia Fan
- Department of Pharmacy, Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China.,Department of Endocrinology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Luqing He
- Department of Pharmacy, Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China
| | - Qiaoxia Dai
- Department of Pharmacy, Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China
| | - Junhong He
- Department of Pharmacy, Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China
| | - Xiangjuan Chen
- Department of Obstetrics and Gynecology, The first affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaozhen Dai
- School of Biomedicine, Chengdu Medical College, Chengdu, China
| | - Chi Zhang
- Department of Pharmacy, Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China.,Department of Endocrinology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Da Sun
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Xue Meng
- Department of Pharmacy, Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China
| | - Shiyue Sun
- Department of Pharmacy, Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China
| | - Jiameng Huang
- Department of Pharmacy, Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China
| | - Jun Chen
- Department of Pharmacy, Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China.,School of Nursing, Wenzhou Medical University, Wenzhou, China
| | - Lin Lin
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liangmiao Chen
- Department of Endocrinology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yi Tan
- Department of Pharmacy, Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China
| | - Xiaoqing Yan
- Department of Pharmacy, Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
9
|
Heo JI, Kim KI, Woo SK, Kim JS, Choi KJ, Lee HJ, Kim KS. Stromal Cell-Derived Factor 1 Protects Brain Vascular Endothelial Cells from Radiation-Induced Brain Damage. Cells 2019; 8:cells8101230. [PMID: 31658727 PMCID: PMC6830118 DOI: 10.3390/cells8101230] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/08/2019] [Accepted: 10/08/2019] [Indexed: 02/03/2023] Open
Abstract
Stromal cell-derived factor 1 (SDF-1) and its main receptor, CXC chemokine receptor 4 (CXCR4), play a critical role in endothelial cell function regulation during cardiogenesis, angiogenesis, and reendothelialization after injury. The expression of CXCR4 and SDF-1 in brain endothelial cells decreases due to ionizing radiation treatment and aging. SDF-1 protein treatment in the senescent and radiation-damaged cells reduced several senescence phenotypes, such as decreased cell proliferation, upregulated p53 and p21 expression, and increased senescence-associated beta-galactosidase (SA-β-gal) activity, through CXCR4-dependent signaling. By inhibiting extracellular signal-regulated kinase (ERK) and signal transducer and activator of transcription protein 3 (STAT3), we confirmed that activation of both is important in recovery by SDF-1-related mechanisms. A CXCR4 agonist, ATI2341, protected brain endothelial cells from radiation-induced damage. In irradiation-damaged tissue, ATI2341 treatment inhibited cell death in the villi of the small intestine and decreased SA-β-gal activity in arterial tissue. An ischemic injury experiment revealed no decrease in blood flow by irradiation in ATI2341-administrated mice. ATI2341 treatment specifically affected CXCR4 action in mouse brain vessels and partially restored normal cognitive ability in irradiated mice. These results demonstrate that SDF-1 and ATI2341 may offer potential therapeutic approaches to recover tissues damaged during chemotherapy or radiotherapy, particularly by protecting vascular endothelial cells.
Collapse
Affiliation(s)
- Jong-Ik Heo
- Divisions of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea.
- School of Radiological and Medico-Oncological Sciences, University of Science and Technology, Daejeon 34054, Korea.
| | - Kwang Il Kim
- Divisions of Radio-Isotope Applied Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea.
| | - Sang-Keun Woo
- Divisions of Radio-Isotope Applied Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea.
| | - Joong Sun Kim
- K-herb Research Center, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.
| | - Kyu Jin Choi
- Divisions of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea.
| | - Hae-June Lee
- Divisions of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea.
| | - Kwang Seok Kim
- Divisions of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea.
- School of Radiological and Medico-Oncological Sciences, University of Science and Technology, Daejeon 34054, Korea.
| |
Collapse
|
10
|
Li X, Wang X, Li Z, Zhang Z, Zhang Y. Chemokine receptor 7 targets the vascular endothelial growth factor via the AKT/ERK pathway to regulate angiogenesis in colon cancer. Cancer Med 2019; 8:5327-5340. [PMID: 31348616 PMCID: PMC6718596 DOI: 10.1002/cam4.2426] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/15/2019] [Accepted: 07/05/2019] [Indexed: 12/25/2022] Open
Abstract
Background Studies have shown that CXCR7 is expressed in many tumors. The aim of the present study was to investigate the function of CXCR7 in colon cancer. Although evidence indicates that CXCR7 promotes angiogenesis in colon cancer, the mechanism involved in this process remains unclear. Methods The expression of CXCR7 in colon cancer was evaluated by quantitative reverse‐transcription polymerase chain reaction and western blotting. After transfection, cell proliferation, migration, and lumen formation were measured in vitro. Immunohistochemistry and western blotting were used to identify the functional target of CXCR7 in vivo and in vitro. Results In this study, CXCR7 was differentially expressed in four colon cancer cell lines. The proliferation and migration experiments showed that overexpression of CXCR7 enhanced cell growth and migration. Moreover, the tube formation assays showed that co‐culture of colon cancer cells overexpressing CXCR7 with human umbilical vein endothelial cells significantly promoted tube formation in the latter cells. Conversely, the stable knockdown of CXCR7 significantly reduced this malignant activity. In addition, we found that CXCR7 activates the AKT and ERK pathways in colon cancer cells. The phosphorylation of AKT and ERK, as well as the expression of the vascular endothelial growth factor, can be inhibited using the LY294002 and U0126 inhibitors. Furthermore, the angiogenic ability of CXCR7‐induced colon cancer cells was eliminated. Conclusion Expression of CXCR7 contributes to colon cancer growth and angiogenesis, by activating the AKT and ERK pathways. CXCR7 provides a potential therapeutic target against colon cancer.
Collapse
Affiliation(s)
- Xiang Li
- Department of Ultrasonic Diagnosis, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning, PR China
| | - Xuemei Wang
- Department of Ultrasonic Diagnosis, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning, PR China
| | - Zitao Li
- Department of Orthopedic Surgery, Hongqi Hospital, Mudanjiang Medical University, Mudanjiang, Heilongjiang, PR China
| | - Zhen Zhang
- Department of Ultrasonic Diagnosis, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning, PR China
| | - Yixia Zhang
- Department of Ultrasonic Diagnosis, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning, PR China
| |
Collapse
|
11
|
Antimetastasis Effect of Astragalus membranaceus- Curcuma zedoaria via β-Catenin Mediated CXCR4 and EMT Signaling Pathway in HCT116. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:9692350. [PMID: 31275425 PMCID: PMC6582911 DOI: 10.1155/2019/9692350] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/21/2019] [Accepted: 05/12/2019] [Indexed: 12/19/2022]
Abstract
Astragalus membranaceus and Curcuma zedoaria, two traditional Chinese medicines, are widely used together in colorectal cancer adjuvant treatment. Many different mechanisms should be involved in the benefit effect of Astragalus membranaceus and Curcuma zedoaria. In this study, we established that the combined extract from Astragalus membranaceus and Curcuma zedoaria (HQEZ) decreased the metastasis ability in colorectal cancer cells (HCT116, a cell line of colorectal carcinoma established from Homo sapiens) in vitro, and the treatment induced the downregulation of EMT signal and decreased CXCR4 expression and the level of β-catenin. Overexpression of CXCR4 and the administration of the agonist and inhibitor to β-catenin signal pathway were used to explore the mechanism of Astragalus membranaceus and Curcuma zedoaria in colorectal cancer treatment. The data demonstrated that HQEZ increased the phosphorylation of β-catenin which related to the degradation of β-catenin, and it induced the downregulation of EMT signal and CXCR4. It meant that the influence of β-catenin should be a key event in the antimetastasis effects of Astragalus membranaceus-Curcuma zedoaria in colorectal cancer model. These findings revealed the potential effect and mechanism of Astragalus membranaceus-Curcuma zedoaria in colorectal cancer treatment and provided insight for optimization of the usage.
Collapse
|
12
|
Yang M, Zeng C, Li P, Qian L, Ding B, Huang L, Li G, Jiang H, Gong N, Wu W. Impact of CXCR4 and CXCR7 knockout by CRISPR/Cas9 on the function of triple-negative breast cancer cells. Onco Targets Ther 2019; 12:3849-3858. [PMID: 31190884 PMCID: PMC6527053 DOI: 10.2147/ott.s195661] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Background Breast cancer is one of the most common malignancies threatening women's health. Triple-negative breast cancer (TNBC) is a special type of breast cancer with high invasion and metastasis. CXCL12 and its receptors CXCR4 and CXCR7 play a crucial role in the progress of breast cancer. The aim of this study was to investigate the effect of CXCR4 and CXCR7 on the function of TNBC. Materials and methods We used the CRISPR/Cas9 technique to carry out a single knockout of the CXCR4 or CXCR7 gene and co-knockout of CXCR4 and CXCR7 genes in the TNBC cell line (MDA-MB-231). The single knockout and co-knockout cells were screened and verified by PCR sequencing and Western blot assay, the effect of single knockout and co-knockout on the proliferation of TNBC cells was examined using the Cell Counting Kit-8 and colony formation assays, the migration and invasion of TNBC cells were examined by the transwell and wound-healing assays, the changes in the cell cycle distribution after knockout were detected by flow cytometry, and the difference in the migration and invasion of single knockout and co-knockout induced by CXCL12 was observed by adding CXCL12 in the experimental group. Results The single knockout of the CXCR4 or CXCR7 gene significantly reduced the cell proliferation, growth, migration, and invasion and delayed the conversion of the G1/S cycle, while the co-knockout inhibited these biological abilities more significantly. In both the knockout and control groups, the migration and invasion of CXCL12-added cells were significantly stronger than those of the non-CXCL12-added cells, and CXCL12 induced lesser migration and invasion in the CXCR4 and CXCR7 co-knockout group than in the single knockout groups. Conclusion The knockout of the CXCR4 and CXCR7 genes affects the binding capacity and functions of CXCL12, inhibits the malignant progression of TNBC cells significantly, and may become a potential target for the treatment of TNBC.
Collapse
Affiliation(s)
- Meng Yang
- Department of Breast Thyroid Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, People's Republic of China,
| | - Chen Zeng
- Department of Breast Thyroid Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, People's Republic of China,
| | - Peiting Li
- Department of Breast Thyroid Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, People's Republic of China,
| | - Liyuan Qian
- Department of Breast Thyroid Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, People's Republic of China,
| | - Boni Ding
- Department of Breast Thyroid Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, People's Republic of China,
| | - Lihua Huang
- Central Laboratory, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Gang Li
- Department of Breast Thyroid Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, People's Republic of China,
| | - Han Jiang
- Department of Breast Thyroid Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, People's Republic of China,
| | - Ni Gong
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan Province, People's Republic of China,
| | - Wei Wu
- Department of Breast Thyroid Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, People's Republic of China,
| |
Collapse
|
13
|
Tang Q, Su YW, Fan CM, Chung R, Hassanshahi M, Peymanfar Y, Xian CJ. Release of CXCL12 From Apoptotic Skeletal Cells Contributes to Bone Growth Defects Following Dexamethasone Therapy in Rats. J Bone Miner Res 2019; 34:310-326. [PMID: 30395366 DOI: 10.1002/jbmr.3597] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/31/2018] [Accepted: 09/23/2018] [Indexed: 12/17/2022]
Abstract
Dexamethasone (Dex) is known to cause significant bone growth impairment in childhood. Although previous studies have suggested roles of osteocyte apoptosis in the enhanced osteoclastic recruitment and local bone loss, whether it is so in the growing bone following Dex treatment requires to be established. The current study addressed the potential roles of chemokine CXCL12 in chondroclast/osteoclast recruitment and bone defects following Dex treatment. Significant apoptosis was observed in cultured mature ATDC5 chondrocytes and IDG-SW3 osteocytes after 48 hours of 10-6 M Dex treatment, and CXCL12 was identified to exhibit the most prominent induction in Dex-treated cells. Conditioned medium from the treated chondrocytes/osteocytes enhanced migration of RAW264.7 osteoclast precursor cells, which was significantly inhibited by the presence of the anti-CXCL12 neutralizing antibody. To investigate the roles of the induced CXCL12 in bone defects caused by Dex treatment, young rats were orally gavaged daily with saline or Dex at 1 mg/kg/day for 2 weeks, and received an intraperitoneal injection of anti-CXCL12 antibody or control IgG (1 mg/kg, three times per week). Aside from oxidative stress induction systemically, Dex treatment caused reductions in growth plate thickness, primary spongiosa height, and metaphysis trabecular bone volume, which are associated with induced chondrocyte/osteocyte apoptosis and enhanced chondroclast/osteoclast recruitment and osteoclastogenic differentiation potential. CXCL12 was induced in apoptotic growth plate chondrocytes and metaphyseal bone osteocytes. Anti-CXCL12 antibody supplementation considerably attenuated Dex-induced chondroclast/osteoclast recruitment and loss of growth plate cartilage and trabecular bone. CXCL12 neutralization did not affect bone marrow osteogenic potential, adiposity, and microvasculature. Thus, CXCL12 was identified as a potential molecular linker between Dex-induced skeletal cell apoptosis and chondroclastic/osteoclastic recruitment, as well as growth plate cartilage/bone loss, revealing a therapeutic potential of CXCL12 functional blockade in preventing bone growth defects during/after Dex treatment. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Qian Tang
- School of Pharmacy and Medical Sciences, and University of South Australia Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
| | - Yu-Wen Su
- School of Pharmacy and Medical Sciences, and University of South Australia Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
| | - Chia-Ming Fan
- School of Pharmacy and Medical Sciences, and University of South Australia Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
| | - Rosa Chung
- School of Pharmacy and Medical Sciences, and University of South Australia Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
| | - Mohammadhossein Hassanshahi
- School of Pharmacy and Medical Sciences, and University of South Australia Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
| | - Yaser Peymanfar
- School of Pharmacy and Medical Sciences, and University of South Australia Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
| | - Cory J Xian
- School of Pharmacy and Medical Sciences, and University of South Australia Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia.,Ningbo No. 6 Hospital, Ningbo, 315040, China
| |
Collapse
|
14
|
Qian T, Liu Y, Dong Y, Zhang L, Dong Y, Sun Y, Sun D. CXCR7 regulates breast tumor metastasis and angiogenesis in vivo and in vitro. Mol Med Rep 2017; 17:3633-3639. [PMID: 29257351 PMCID: PMC5802168 DOI: 10.3892/mmr.2017.8286] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 03/03/2017] [Indexed: 12/16/2022] Open
Abstract
The chemokine receptor CXCR7 is regarded as a scavenger receptor for CXCL12, and induces numerous key steps in tumor growth and metastasis. However, the exact molecular mechanism of CXCR7 regulation in breast tumor angiogenesis remains unknown. In the present study, the function of CXCR7 in breast tumors was investigated in vitro and in vivo. The breast cancer MDA-MB-231 cell line was used. Pharmacological inhibition of CXCR7 by CCX771 reduced breast tumor invasion, adhesion and metastasis. Furthermore, CXCR7 was essential for the tube formation of HUVECs in vitro, and for blood vessel formation in a Matrigel plug assay in vivo. In addition, vascular endothelial growth factor expression was also decreased in CCX771-treated MDA-MB-231 cells, indicating that CCX771 regulates tumor angiogenesis. The present results indicated that CXCR7 regulated breast cancer metastasis at multiple stages; additional understanding of CXCR7 in tumor environments may develop anti-metastatic therapy.
Collapse
Affiliation(s)
- Tingting Qian
- Laboratory Animal Centre, Bengbu Medical College, Bengbu, Anhui 233000, P.R. China
| | - Yancheng Liu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, P.R. China
| | - Yan Dong
- College of Biology and Food Engineering, Chuzhou University, Chuzhou, Anhui 239000, P.R. China
| | - Lei Zhang
- College of Biology and Food Engineering, Chuzhou University, Chuzhou, Anhui 239000, P.R. China
| | - Yining Dong
- College of Biology and Food Engineering, Chuzhou University, Chuzhou, Anhui 239000, P.R. China
| | - Yanhui Sun
- College of Biology and Food Engineering, Chuzhou University, Chuzhou, Anhui 239000, P.R. China
| | - Dongmei Sun
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, P.R. China
| |
Collapse
|
15
|
Senger S, Sperling J, Oberkircher B, Schilling MK, Kollmar O, Menger MD, Ziemann C. Portal branch ligation does not counteract the inhibiting effect of temsirolimus on extrahepatic colorectal metastatic growth. Clin Exp Metastasis 2017. [PMID: 28631253 DOI: 10.1007/s10585-017-9852-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The mTor-inhibitor temsirolimus (TEM) has potent anti-tumor activities on extrahepatic colorectal metastases. Treatment of patients with advanced disease may require portal branch ligation (PBL). While PBL can induce intrahepatic tumor growth, the effect of PBL on extrahepatic metastases under TEM treatment is unknown. Therefore, we analyzed the effects of TEM treatment on extrahepatic metastases during PBL-associated liver regeneration. GFP-transfected CT26.WT colorectal cancer cells were implanted into the dorsal skinfold chamber of BALB/c-mice. Mice were randomized to four groups (n = 8). One was treated daily with TEM (1.5 mg/kg), PBS-treated animals served as controls. Another group underwent PBL of the left liver lobe and received daily TEM treatment. Animals with PBL and PBS treatment served as controls. Tumor vascularization and growth as well as tumor cell migration, proliferation and apoptosis were studied over 14 days. In non-PBL animals TEM treatment inhibited tumor cell proliferation as well as vascularization and growth of the extrahepatic metastases. PBL did not influence tumor cell engraftment, vascularization and metastatic growth. Of interest, TEM treatment significantly reduced tumor cell engraftment, neovascularization and metastatic groth also after PBL. PBL does not counteract the inhibiting effect of TEM on extrahepatic colorectal metastatic growth.
Collapse
Affiliation(s)
- Sebastian Senger
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
- Department of Neurosurgery, Saarland University, Homburg/Saar, Germany
| | - Jens Sperling
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Barbara Oberkircher
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Martin K Schilling
- Department of General, Visceral, Vascular and Pediatric Surgery, Saarland University, Homburg/Saar, Germany
- Klinik St. Anna Ärztehaus Lützelmatt, Lucerne, Switzerland
| | - Otto Kollmar
- Department of General, Visceral, Vascular and Pediatric Surgery, Saarland University, Homburg/Saar, Germany
- Department of General and Visceral Surgery, Dr. Horst Schmidt Kliniken, Wiesbaden, Germany
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Christian Ziemann
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany.
- Department of General, Visceral, Vascular and Pediatric Surgery, Saarland University, Homburg/Saar, Germany.
- Department of Cardiovascular Surgery, University Heart Center, University Medical Center, University of Freiburg, Freiburg, Germany.
- Department of General, Visceral, Vascular and Pediatric Surgery and Institute for Clinical and Experimental Surgery, Saarland Medical School, Saarland University, Kirrberger Straße 1, 66424, Homburg/Saar, Germany.
| |
Collapse
|
16
|
Senger S, Kollmar O, Menger MD, Rupertus K. Darbepoetin-α Promotes Cell Proliferation in Established Extrahepatic Colorectal Tumors after Major Hepatectomy. Eur Surg Res 2015; 56:49-60. [PMID: 26678394 DOI: 10.1159/000442384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 11/11/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND The glycoprotein hormone erythropoietin and its analogue darbepoetin-α (DPO) have been shown to reduce the risk of acute liver failure after major hepatectomy. However, previous experimental studies have also shown that DPO significantly enhances neovascularization and tumor cell proliferation in established colorectal liver metastasis in hepatectomized and nonhepatectomized mice. The present study now analyzes whether DPO influences cell proliferation and migration as well as vascularization and growth of established colorectal metastasis at extrahepatic sites after major hepatectomy. METHODS GFP-transfected CT26.WT colorectal cancer cells were implanted into dorsal skinfold chambers of syngeneic BALB/c mice. Five days after tumor cell implantation, the animals received a single dose of DPO (10 µg/kg body weight) or phosphate-buffered saline solution (PBS) intravenously. Additional animals received a 70% hepatectomy and DPO or PBS treatment. Tumor vascularization and growth as well as tumor cell migration, proliferation and apoptosis were studied repetitively over 14 days using intravital fluorescence microscopy, histology and immunohistochemistry. RESULTS DPO did not influence tumor cell migration and apoptosis. In addition, DPO did not stimulate tumor cell infiltration or vascularization; however, significantly increased tumor cell proliferation was detected in hepatectomized animals. CONCLUSION DPO increases cell proliferation in established extrahepatic colorectal metastases after major hepatectomy. Thus, DPO may not be recommended to stimulate regeneration of the remnant liver after major hepatectomy for colorectal liver metastasis.
Collapse
Affiliation(s)
- Sebastian Senger
- Institute for Clinical and Experimental Surgery, Homburg/Saar, Germany
| | | | | | | |
Collapse
|
17
|
Zhang H, Yang L, Teng X, Liu Z, Liu C, Zhang L, Liu Z. The chemokine receptor CXCR7 is a critical regulator for the tumorigenesis and development of papillary thyroid carcinoma by inducing angiogenesis in vitro and in vivo. Tumour Biol 2015; 37:2415-23. [PMID: 26383519 DOI: 10.1007/s13277-015-4051-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/02/2015] [Indexed: 01/20/2023] Open
Abstract
Papillary thyroid carcinoma (PTC) is a well-differentiated neoplasm, but it can transfer early to cervical lymph nodes. Accumulating evidences have confirmed the important roles of CXCR7 in tumor cell proliferation, invasion, metastasis, and angiogenesis. Our previous study demonstrated CXCR7 modulated proliferation, apoptosis, and invasion of PTC cells. In this study, we evaluated the effect of expression of CXCR7 in PTC cells on angiogenesis and whether its expression had an influence on the tumor growth of PTC in vivo. We evaluated the effect of CXCR7 on interleukin-8 (IL-8) and vascular endothelial growth factor (VEGF) secretion, angiogenesis, and tumor growth by ELISA, endothelial tube formation assay, and a xenograft tumor model in nude mice. Immunohistochemistry was used to assess expression of CD34 in tumor of mice. In vitro and in vivo studies in PTC cells suggested that the alteration of CXCR7 expression was correlated with angiogenesis and tumor growth. Moreover, CXCR7 mediated the expression of IL-8 and VEGF, which might be involved in the regulation of tumor angiogenesis. These findings suggest that CXCR7 affects the growth of PTC cells and participates in the tumorigenesis of PTC, probably through regulating angiogenesis by the proangiogenic VEGF or IL-8.
Collapse
Affiliation(s)
- Hengwei Zhang
- Department of General Surgery, Shengjing Hospital, China Medical University, No. 36 Sanhao Street, Shenyang, 110004, China
| | - Lei Yang
- Department of General Surgery, First Affiliated Hospital, China Medical University, Shenyang, 110001, China
| | - Xuyong Teng
- Department of General Surgery, Shengjing Hospital, China Medical University, No. 36 Sanhao Street, Shenyang, 110004, China
| | - Zhangyi Liu
- Department of General Surgery, Shengjing Hospital, China Medical University, No. 36 Sanhao Street, Shenyang, 110004, China
| | - Chenxi Liu
- Department of General Surgery, Shengjing Hospital, China Medical University, No. 36 Sanhao Street, Shenyang, 110004, China
| | - Lei Zhang
- Department of General Surgery, Shengjing Hospital, China Medical University, No. 36 Sanhao Street, Shenyang, 110004, China
| | - Zhen Liu
- Department of General Surgery, Shengjing Hospital, China Medical University, No. 36 Sanhao Street, Shenyang, 110004, China.
| |
Collapse
|
18
|
Chen HY, Clayman ES, Ma WF. Phenotypic Knockout of CXCR4 Expression by a Novel Intrakine Mutant hSDF-1α/54/KDEL Inhibits Breast Cancer Metastasis. J Interferon Cytokine Res 2015; 35:771-8. [PMID: 25978539 DOI: 10.1089/jir.2014.0141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Many malignant tumors express high levels of the chemokine receptor CXCR4, and the interaction between CXCR4 and its ligand, SDF-1, promotes migration, invasion, and metastasis of breast cancer cells. Therefore, blocking the interaction between CXCR4 and SDF-1 could alter the tumor's metastatic phenotype and control the development and progression of cancers. We used a cellular phenotypic knockout strategy and developed a novel recombinant gene, AdSDF-1α/54/KDEL, which contains an adenovirus vector, a mutant form of SDF-1 that lacks a C-terminal α-helix, and a KDEL tetrapeptide sequence that promotes retention at the endoplasmic reticulum (ER). We hypothesized that SDF-1α/54/KDEL could efficiently block metastasis of breast cancer cells with less inflammatory side effects than SDF-1α/KDEL. Using the MCF-7 cell line, which expresses a stable, high level of CXCR4, we found that SDF-1α/54/KDEL efficiently becomes localized at the ER of tumor cells, where it specifically binds to newly synthesized CXCR4 and prevents it from reaching the cell surface. Chemotaxis and invasion assays revealed that the cells treated with SDF-1α/54/KDEL failed to migrate toward SDF-1. We also found that SDF-1α/54/KDEL impaired lung metastasis of metastatic breast cancer by decreasing CXCR4 on the cell surface. The novel recombinant gene, SDF-1α/54/KDEL, played an instrumental role in blocking SDF-1/CXCR4-mediated cell migration, and we found that this gene-based strategy for targeting the SDF-1/CXCR4 axis offers a very effective alternative method for preventing metastasis of breast cancer and other cancers expressing high levels of CXCR4.
Collapse
Affiliation(s)
- Hong-Yuan Chen
- 1 Department of Pathogen Biology and Immunology, School of Basic Courses, Guangdong Pharmaceutical University , Guangzhou, People's Republic of China
| | - Eric S Clayman
- 2 Transplantation Biology Research Center, Massachusetts General Hospital and Harvard Medical School , Boston, Massachusetts
| | - Wei-Feng Ma
- 3 Department of Microbiology, School of Public Health and Tropical Medicine, Southern Medical University , Guangzhou, People's Republic of China
| |
Collapse
|
19
|
Mühlethaler-Mottet A, Liberman J, Ascenção K, Flahaut M, Balmas Bourloud K, Yan P, Jauquier N, Gross N, Joseph JM. The CXCR4/CXCR7/CXCL12 Axis Is Involved in a Secondary but Complex Control of Neuroblastoma Metastatic Cell Homing. PLoS One 2015; 10:e0125616. [PMID: 25955316 PMCID: PMC4425663 DOI: 10.1371/journal.pone.0125616] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/24/2015] [Indexed: 12/16/2022] Open
Abstract
Neuroblastoma (NB) is one of the most deadly solid tumors of the young child, for which new efficient and targeted therapies are strongly needed. The CXCR4/CXCR7/CXCL12 chemokine axis has been involved in the progression and organ-specific dissemination of various cancers. In NB, CXCR4 expression was shown to be associated to highly aggressive undifferentiated tumors, while CXCR7 expression was detected in more differentiated and mature neuroblastic tumors. As investigated in vivo, using an orthotopic model of tumor cell implantation of chemokine receptor-overexpressing NB cells (IGR-NB8), the CXCR4/CXCR7/CXCL12 axis was shown to regulate NB primary and secondary growth, although without any apparent influence on organ selective metastasis. In the present study, we addressed the selective role of CXCR4 and CXCR7 receptors in the homing phase of metastatic dissemination using an intravenous model of tumor cell implantation. Tail vein injection into NOD-scid-gamma mice of transduced IGR-NB8 cells overexpressing CXCR4, CXCR7, or both receptors revealed that all transduced cell variants preferentially invaded the adrenal gland and typical NB metastatic target organs, such as the liver and the bone marrow. However, CXCR4 expression favored NB cell dissemination to the liver and the lungs, while CXCR7 was able to strongly promote NB cell homing to the adrenal gland and the liver. Finally, coexpression of CXCR4 and CXCR7 receptors significantly and selectively increased NB dissemination toward the bone marrow. In conclusion, CXCR4 and CXCR7 receptors may be involved in a complex and organ-dependent control of NB growth and selective homing, making these receptors and their inhibitors potential new therapeutic targets.
Collapse
Affiliation(s)
- Annick Mühlethaler-Mottet
- Department of Pediatrics, University Hospital CHUV, University of Lausanne, Lausanne, Switzerland
- * E-mail:
| | - Julie Liberman
- Department of Pediatrics, University Hospital CHUV, University of Lausanne, Lausanne, Switzerland
| | - Kelly Ascenção
- Department of Pediatrics, University Hospital CHUV, University of Lausanne, Lausanne, Switzerland
| | - Marjorie Flahaut
- Department of Pediatrics, University Hospital CHUV, University of Lausanne, Lausanne, Switzerland
| | - Katia Balmas Bourloud
- Department of Pediatrics, University Hospital CHUV, University of Lausanne, Lausanne, Switzerland
| | - Pu Yan
- Department of Pathology, University Hospital CHUV, University of Lausanne, Lausanne, Switzerland
| | - Nicolas Jauquier
- Department of Pediatrics, University Hospital CHUV, University of Lausanne, Lausanne, Switzerland
| | - Nicole Gross
- Department of Pediatrics, University Hospital CHUV, University of Lausanne, Lausanne, Switzerland
| | - Jean-Marc Joseph
- Department of Pediatrics, University Hospital CHUV, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
20
|
Zhou J, Xiang Y, Yoshimura T, Chen K, Gong W, Huang J, Zhou Y, Yao X, Bian X, Wang JM. The role of chemoattractant receptors in shaping the tumor microenvironment. BIOMED RESEARCH INTERNATIONAL 2014; 2014:751392. [PMID: 25110692 PMCID: PMC4119707 DOI: 10.1155/2014/751392] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/17/2014] [Indexed: 12/13/2022]
Abstract
Chemoattractant receptors are a family of seven transmembrane G protein coupled receptors (GPCRs) initially found to mediate the chemotaxis and activation of immune cells. During the past decades, the functions of these GPCRs have been discovered to not only regulate leukocyte trafficking and promote immune responses, but also play important roles in homeostasis, development, angiogenesis, and tumor progression. Accumulating evidence indicates that chemoattractant GPCRs and their ligands promote the progression of malignant tumors based on their capacity to orchestrate the infiltration of the tumor microenvironment by immune cells, endothelial cells, fibroblasts, and mesenchymal cells. This facilitates the interaction of tumor cells with host cells, tumor cells with tumor cells, and host cells with host cells to provide a basis for the expansion of established tumors and development of distant metastasis. In addition, many malignant tumors of the nonhematopoietic origin express multiple chemoattractant GPCRs that increase the invasiveness and metastasis of tumor cells. Therefore, GPCRs and their ligands constitute targets for the development of novel antitumor therapeutics.
Collapse
Affiliation(s)
- Jiamin Zhou
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
- Endoscopic Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yi Xiang
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
- Department of Pulmonary Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Teizo Yoshimura
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Keqiang Chen
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Wanghua Gong
- Basic Research Program, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Jian Huang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Ye Zhou
- Department of Gastric Cancer and Soft Tissue Surgery, Fudan University Cancer Center, Shanghai 200032, China
| | - Xiaohong Yao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Xiuwu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Ji Ming Wang
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
21
|
Senger S, Kollmar O, Menger MD, Schilling MK, Rupertus K. Darbepoetin-α Accelerates Neovascularization and Engraftment of Extrahepatic Colorectal Metastases. Eur Surg Res 2014; 53:25-36. [DOI: 10.1159/000364944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 05/28/2014] [Indexed: 11/19/2022]
|
22
|
Rupertus K, Sinistra J, Scheuer C, Nickels RM, Schilling MK, Menger MD, Kollmar O. Interaction of the chemokines I-TAC (CXCL11) and SDF-1 (CXCL12) in the regulation of tumor angiogenesis of colorectal cancer. Clin Exp Metastasis 2014; 31:447-59. [PMID: 24493023 DOI: 10.1007/s10585-014-9639-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 01/21/2014] [Indexed: 12/15/2022]
Abstract
The chemokine CXCL12 has a decisive role in tumor progression by mediating pro-angiogenic and pro-metastatic effects through its receptor CXCR4. The CXCL12 pathway is connected with another chemokine, CXCL11, through its second receptor CXCR7. CXCL11 also binds to the CXCR3 receptor. CXCL11 function in tumor angiogenesis is likely receptor dependent because CXCR3 predominantly mediates angiostatic signals whereas CXCR7 mediated signaling is rather angiogenic. We therefore studied the interaction of CXCL12 and CXCL11 in an in vivo model of colorectal cancer metastasis. GFP-transfected CT26.WT colorectal cancer cells were implanted into the dorsal skinfold chamber of syngeneic BALB/c mice. The animals received either peritumoral application of CXCL11 or intraperitoneal injections with neutralizing antibodies against CXCL11, CXCL12 or both. Tumor growth characteristics, angiogenesis, cell migration, invasive tumor growth, tumor cell proliferation and apoptosis were studied by intravital fluorescence microscopy and immunohistochemistry during an observation period of 14 days. Local exposure to CXCL11 significantly stimulated tumor growth compared to controls and enhanced invasive growth characteristics without affecting tumor angiogenesis and tumor cell migration. Neither CXCL11 nor CXCL12-blockade had a significant impact on tumor growth and angiogenesis, whereas the combined neutralization of CXCL11 and CXCL12 almost completely abrogated tumor vessel formation. As a consequence, tumor growth and invasive growth characteristics were reduced compared to the other groups. The results of the present study underline the interaction of CXCL12 and CXCL11 during tumor angiogenesis. The combined blockade of both signaling pathways may provide an interesting anti-angiogenic approach for anti-tumor therapy.
Collapse
Affiliation(s)
- Kathrin Rupertus
- Department of General, Visceral, Vascular and Pediatric Surgery, University of Saarland, Homburg/Saar, Germany.,Department of Medical Oncology, Hematology, Immunology, Rheumatology and Pulmology, University Hospital of Tübingen, Tübingen, Germany
| | - Janine Sinistra
- Institute for Clinical and Experimental Surgery, University of Saarland, Homburg/Saar, Germany
| | - Claudia Scheuer
- Institute for Clinical and Experimental Surgery, University of Saarland, Homburg/Saar, Germany
| | - Ruth M Nickels
- Institute for Clinical and Experimental Surgery, University of Saarland, Homburg/Saar, Germany
| | - Martin K Schilling
- Department of General, Visceral, Vascular and Pediatric Surgery, University of Saarland, Homburg/Saar, Germany.,Klinik St. Anna Ärztehaus Lützelmatt, Luzern, Switzerland
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, University of Saarland, Homburg/Saar, Germany
| | - Otto Kollmar
- Department of General, Visceral, Vascular and Pediatric Surgery, University of Saarland, Homburg/Saar, Germany. .,Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany.
| |
Collapse
|
23
|
Antitumor mechanisms of amino Acid hydroxyurea derivatives in the metastatic colon cancer model. Int J Mol Sci 2013; 14:23654-71. [PMID: 24304540 PMCID: PMC3876069 DOI: 10.3390/ijms141223654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 10/15/2013] [Accepted: 10/31/2013] [Indexed: 11/16/2022] Open
Abstract
The paper presents a detailed study of the biological effects of two amino acid hydroxyurea derivatives that showed selective antiproliferative effects in vitro on the growth of human tumor cell line SW620. Tested compounds induced cell cycle perturbations and apoptosis. Proteins were identified by proteomics analyses using two-dimensional gel electrophoresis coupled to mass spectrometry, which provided a complete insight into the most probable mechanism of action on the protein level. Molecular targets for tested compounds were analyzed by cheminformatics tools. Zinc-dependent histone deacetylases were identified as potential targets responsible for the observed antiproliferative effect.
Collapse
|
24
|
Maussang D, Mujić-Delić A, Descamps FJ, Stortelers C, Vanlandschoot P, Stigter-van Walsum M, Vischer HF, van Roy M, Vosjan M, Gonzalez-Pajuelo M, van Dongen GAMS, Merchiers P, van Rompaey P, Smit MJ. Llama-derived single variable domains (nanobodies) directed against chemokine receptor CXCR7 reduce head and neck cancer cell growth in vivo. J Biol Chem 2013; 288:29562-72. [PMID: 23979133 PMCID: PMC3795254 DOI: 10.1074/jbc.m113.498436] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/23/2013] [Indexed: 12/22/2022] Open
Abstract
The chemokine receptor CXCR7, belonging to the membrane-bound G protein-coupled receptor superfamily, is expressed in several tumor types. Inhibition of CXCR7 with either small molecules or small interference (si)RNA has shown promising therapeutic benefits in several tumor models. With the increased interest and effectiveness of biologicals inhibiting membrane-bound receptors we made use of the "Nanobody platform" to target CXCR7. Previously we showed that Nanobodies, i.e. immunoglobulin single variable domains derived from naturally occurring heavy chain-only camelids antibodies, represent new biological tools to efficiently tackle difficult drug targets such as G protein-coupled receptors. In this study we developed and characterized highly selective and potent Nanobodies against CXCR7. Interestingly, the CXCR7-targeting Nanobodies displayed antagonistic properties in contrast with previously reported CXCR7-targeting agents. Several high affinity CXCR7-specific Nanobodies potently inhibited CXCL12-induced β-arrestin2 recruitment in vitro. A wide variety of tumor biopsies was profiled, showing for the first time high expression of CXCR7 in head and neck cancer. Using a patient-derived CXCR7-expressing head and neck cancer xenograft model in nude mice, tumor growth was inhibited by CXCR7-targeting Nanobody therapy. Mechanistically, CXCR7-targeting Nanobodies did not inhibit cell cycle progression but instead reduced secretion of the angiogenic chemokine CXCL1 from head and neck cancer cells in vitro, thus acting here as inverse agonists, and subsequent angiogenesis in vivo. Hence, with this novel class of CXCR7 inhibitors, we further substantiate the therapeutic relevance of targeting CXCR7 in head and neck cancer.
Collapse
Affiliation(s)
- David Maussang
- From the Amsterdam Institute for Molecules Medicines and Systems, Division of Medicinal Chemistry, Faculty of Sciences, VU University Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Azra Mujić-Delić
- From the Amsterdam Institute for Molecules Medicines and Systems, Division of Medicinal Chemistry, Faculty of Sciences, VU University Amsterdam, 1081 HV Amsterdam, The Netherlands
| | | | | | | | - Marijke Stigter-van Walsum
- the Department of Otolaryngology/Head and Neck Surgery, VU University Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Henry F. Vischer
- From the Amsterdam Institute for Molecules Medicines and Systems, Division of Medicinal Chemistry, Faculty of Sciences, VU University Amsterdam, 1081 HV Amsterdam, The Netherlands
| | | | - Maria Vosjan
- the Department of Otolaryngology/Head and Neck Surgery, VU University Medical Center, 1081 HV Amsterdam, The Netherlands
| | | | - Guus A. M. S. van Dongen
- the Department of Otolaryngology/Head and Neck Surgery, VU University Medical Center, 1081 HV Amsterdam, The Netherlands
| | | | | | - Martine J. Smit
- From the Amsterdam Institute for Molecules Medicines and Systems, Division of Medicinal Chemistry, Faculty of Sciences, VU University Amsterdam, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
25
|
Zhu B, Xu T, Yuan J, Guo X, Liu D. Transcriptome sequencing reveals differences between primary and secondary hair follicle-derived dermal papilla cells of the Cashmere goat (Capra hircus). PLoS One 2013; 8:e76282. [PMID: 24069460 PMCID: PMC3777969 DOI: 10.1371/journal.pone.0076282] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 08/22/2013] [Indexed: 12/30/2022] Open
Abstract
The dermal papilla is thought to establish the character and control the size of hair follicles. Inner Mongolia Cashmere goats (Capra hircus) have a double coat comprising the primary and secondary hair follicles, which have dramatically different sizes and textures. The Cashmere goat is rapidly becoming a potent model for hair follicle morphogenesis research. In this study, we established two dermal papilla cell lines during the anagen phase of the hair growth cycle from the primary and secondary hair follicles and clarified the similarities and differences in their morphology and growth characteristics. High-throughput transcriptome sequencing was used to identify gene expression differences between the two dermal papilla cell lines. Many of the differentially expressed genes are involved in vascularization, ECM-receptor interaction and Wnt/β-catenin/Lef1 signaling pathways, which intimately associated with hair follicle morphogenesis. These findings provide valuable information for research on postnatal morphogenesis of hair follicles.
Collapse
Affiliation(s)
- Bing Zhu
- The Key Laboratory of Mammalian Reproductive Biology and Biotechnology of the Ministry of Education, Inner Mongolia University, Hohhot, China
| | - Teng Xu
- The Key Laboratory of Mammalian Reproductive Biology and Biotechnology of the Ministry of Education, Inner Mongolia University, Hohhot, China
| | - Jianlong Yuan
- The Key Laboratory of Mammalian Reproductive Biology and Biotechnology of the Ministry of Education, Inner Mongolia University, Hohhot, China
| | - Xudong Guo
- The Key Laboratory of Mammalian Reproductive Biology and Biotechnology of the Ministry of Education, Inner Mongolia University, Hohhot, China
- * E-mail: (XG); (DL)
| | - Dongjun Liu
- The Key Laboratory of Mammalian Reproductive Biology and Biotechnology of the Ministry of Education, Inner Mongolia University, Hohhot, China
- * E-mail: (XG); (DL)
| |
Collapse
|
26
|
Choi YH, Burdick MD, Strieter BA, Mehrad B, Strieter RM. CXCR4, but not CXCR7, discriminates metastatic behavior in non-small cell lung cancer cells. Mol Cancer Res 2013; 12:38-47. [PMID: 24025971 DOI: 10.1158/1541-7786.mcr-12-0334] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
UNLABELLED Chemokines have been implicated as key contributors of non-small cell lung cancer (NSCLC) metastasis. However, the role of CXCR7, a recently discovered receptor for CXCL12 ligand, in the pathogenesis of NSCLC is unknown. To define the relative contribution of chemokine receptors to migration and metastasis, we generated human lung A549 and H157 cell lines with stable knockdown of CXCR4, CXCR7, or both. Cancer cells exhibited chemotaxis to CXCL12 that was enhanced under hypoxic conditions, associated with a parallel induction of CXCR4, but not CXCR7. Interestingly, neither knockdown cell line differed in the rate of proliferation, apoptosis, or cell adherence; however, in both cell lines, CXCL12-induced migration was abolished when CXCR4 signaling was abrogated. In contrast, inhibition of CXCR7 signaling did not alter cellular migration to CXCL12. In an in vivo heterotropic xenograft model using A549 cells, expression of CXCR4, but not CXCR7, on cancer cells was necessary for the development of metastases. In addition, cancer cells knocked down for CXCR4 (or both CXCR4 and CXCR7) produced larger and more vascular tumors as compared with wild-type or CXCR7 knockdown tumors, an effect that was attributable to cancer cell-derived CXCR4 out competing endothelial cells for available CXCL12 in the tumor microenvironment. These results indicate that CXCR4, not CXCR7, expression engages CXCL12 to mediate NSCLC metastatic behavior. IMPLICATIONS Targeting CXCR4-mediated migration and metastasis may be a viable therapeutic option in NSCLC.
Collapse
Affiliation(s)
- Young H Choi
- Division of Pulmonary and Critical Care, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908.
| | | | | | | | | |
Collapse
|
27
|
CXCR7-mediated progression of osteosarcoma in the lungs. Br J Cancer 2013; 109:1579-85. [PMID: 24002596 PMCID: PMC3776992 DOI: 10.1038/bjc.2013.482] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/27/2013] [Accepted: 07/29/2013] [Indexed: 12/21/2022] Open
Abstract
Background: Osteosarcoma (OS) is the most frequent primary malignant bone tumour in children and adolescents with a high propensity for lung metastasis. Chemokines and chemokine receptors have been described to have an important role in many malignancies including OS. The aim of this study was to investigate the expression of CXCR7 receptor in OS tissues and its role in the progression of the disease in the lungs. Methods: Immunohistochemistry was used to study CXCR7 expression in primary tumours and metastatic tissues from patients with OS. Its contribution to tumour expansion in the lungs has been also assessed using animal models and synthetic-specific CXCR7 ligands. Results: CXCR7 was expressed on human primary bone tumours and on lung metastases. Its expression was predominantly located on tumour-associated blood vessels. Mice challenged with OS cells and systematically treated with synthetic CXCR7 ligands presented a significant reduction of lung nodules compared with untreated mice. Conclusion: This study shows that CXCR7 has a critical role in OS progression in the lungs, where are expressed CXCR7 ligands, especially CXCL12. Moreover, we highlight that synthetic CXCR7 ligands could represent a powerful therapeutic tool to impede lung OS progression.
Collapse
|
28
|
Kheirelseid EAH, Miller N, Chang KH, Nugent M, Kerin MJ. Clinical applications of gene expression in colorectal cancer. J Gastrointest Oncol 2013; 4:144-57. [PMID: 23730510 DOI: 10.3978/j.issn.2078-6891.2013.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 02/27/2013] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Despite developments in diagnosis and treatment, 20% of colorectal cancer (CRC) patients present with metastatic disease and 30% of cases recur after curative surgery. Furthermore, the molecular factors involved in prognosis and response to therapy in CRC is poorly understood. The aims of this study were to quantitatively examine the expression of target genes in colorectal cancer and to correlate their expression levels with clinico-pathological variables. METHODS A detailed analysis of published CRC microarray data was performed to identify the most prominent genes. The selected genes were validated in fifty-two pairs of fresh colorectal tumour and associated normal tissue specimens by RQ-PCR using TaqMan(®) assays. Statistical analysis and correlation with clinicopathological data was performed using SPSS software. RESULTS Expression levels of CXCL12 (P=0.000), CDH17 (P=0.026), MUC2 (P=0.000), L-FABP (P=0.000) and PDCD4 (P=0.000) were down regulated and IL8 (P=0.000) was upregulated in tumours compared to normal colorectal tissues. No significant differences were noted in expression of CEACAM5, CXCR4, CXCR7, TGFB1, TGFBR1 and TGFBR2. Furthermore, we found significant associations of gene expression levels and clinicopathological variables such as tumour size, grade, invasion and lymph node status. CONCLUSIONS We identified a comprehensive list of genes with highly differential expression patterns in colorectal cancer that could serve as molecular markers to complement existing histopathological factors in diagnosis, follow up and therapeutic strategies for individualised care of patients.
Collapse
|
29
|
Virgintino D, Errede M, Rizzi M, Girolamo F, Strippoli M, Wälchli T, Robertson D, Frei K, Roncali L. The CXCL12/CXCR4/CXCR7 ligand-receptor system regulates neuro-glio-vascular interactions and vessel growth during human brain development. J Inherit Metab Dis 2013; 36:455-66. [PMID: 23344887 DOI: 10.1007/s10545-012-9574-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 11/29/2012] [Accepted: 12/03/2012] [Indexed: 12/30/2022]
Abstract
This study investigates glio-vascular interactions in human fetal brain at midgestation, specifically examining the expression and immunolocalization of the CXCL12/CXCR4/CXCR7 ligand-receptor axis and its possible role in the vascular patterning of the developing brain. At midgestation, the telencephalic vesicles are characterized by well developed radial glia cells (RGCs), the first differentiated astrocytes and a basic vascular network mainly built of radial vessels. RGCs have been recognized to contribute to cerebral cortex neuro-vascular architecture and have also been demonstrated to act as a significant source of neural cells (Rakic, Brain Res 33:471-476, 1971; Malatesta et al, Development 127:5253-5263, 2000). According to our hypothesis CXCL12, a potent migration and differentiation chemokine released by RGCs, may act as a linking factor coordinating neuroblast migration with vessel growth and patterning through the activation of different ligand/receptor axes. The obtained results support this hypothesis showing that together with CXCR4/CXCR7-reactive neuroblasts, which migrate in close association with CXCL12 RGCs, layer-specific subsets of CXCL12 RGCs and astrocytes specifically contact the microvessel wall. Moreover, the CXCL12/CXCR4/CXCR7 system appears to be directly involved in microvessel growth, its members being differentially expressed in angiogenically activated microvessels and vascular sprouts.
Collapse
Affiliation(s)
- Daniela Virgintino
- Department of Basic Medical Sciences, Neurosciences, Sensory Organs-Human Anatomy and Histology Unit, University of Bari School of Medicine, Bari, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Guillemot E, Karimdjee-Soilihi B, Pradelli E, Benchetrit M, Goguet-Surmenian E, Millet MA, Larbret F, Michiels JF, Birnbaum D, Alemanno P, Schmid-Antomarchi H, Schmid-Alliana A. CXCR7 receptors facilitate the progression of colon carcinoma within lung not within liver. Br J Cancer 2012; 107:1944-9. [PMID: 23169289 PMCID: PMC3516689 DOI: 10.1038/bjc.2012.503] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background: Liver and lung metastases are the predominant cause of colorectal cancer (CRC)-related mortality. Chemokine-receptor pairs have a critical role in determining the metastatic progression of tumours. Our hypothesis was that disruption of CXCR7/CXCR7 ligands axis could lead to a decrease in CRC metastases. Methods: Primary tumours and metastatic tissues from patients with CRC were tested for the expression of CXCR7 and its ligands. Relevance of CXCR7/CXCR7 ligands for CRC metastasis was then investigated in mice using small pharmacological CXCR7 antagonists and CRC cell lines of human and murine origins, which – injected into mice – enable the development of lung and liver metastases. Results: Following injection of CRC cells, mice treated daily with CXCR7 antagonists exhibited a significant reduction in lung metastases. However, CXCR7 antagonists failed to reduce the extent of liver metastasis. Moreover, there were subtle differences in the expression of CXCR7 and its ligands between lung and liver metastases. Conclusion: Our study suggests that the activation of CXCR7 on tumour blood vessels by its ligands may facilitate the progression of CRC within lung but not within liver. Moreover, we provide evidence that targeting the CXCR7 axis may be beneficial to limit metastasis from colon cancer within the lungs.
Collapse
Affiliation(s)
- E Guillemot
- Université de Nice Sophia-Antipolis, UFR Sciences, Nice 06108, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Involvement of the CXCR7/CXCR4/CXCL12 axis in the malignant progression of human neuroblastoma. PLoS One 2012; 7:e43665. [PMID: 22916293 PMCID: PMC3423387 DOI: 10.1371/journal.pone.0043665] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 07/23/2012] [Indexed: 12/30/2022] Open
Abstract
Neuroblastoma (NB) is a typical childhood and heterogeneous neoplasm for which efficient targeted therapies for high-risk tumors are not yet identified. The chemokine CXCL12, and its receptors CXCR4 and CXCR7 have been involved in tumor progression and dissemination. While CXCR4 expression is associated to undifferentiated tumors and poor prognosis, the role of CXCR7, the recently identified second CXCL12 receptor, has not yet been elucidated in NB. In this report, CXCR7 and CXCL12 expressions were evaluated using a tissue micro-array including 156 primary and 56 metastatic NB tissues. CXCL12 was found to be highly associated to NB vascular and stromal structures. In contrast to CXCR4, CXCR7 expression was low in undifferentiated tumors, while its expression was stronger in matured tissues and specifically associated to differentiated neural tumor cells. As determined by RT-PCR, CXCR7 expression was mainly detected in N-and S-type NB cell lines, and was slightly induced upon NB cell differentiation in vitro. The relative roles of the two CXCL12 receptors were further assessed by overexpressing CXCR7 or CXCR4 receptor alone, or in combination, in the IGR-NB8 and the SH-SY5Y NB cell lines. In vitro functional analyses indicated that, in response to their common ligand, both receptors induced activation of ERK1/2 cascade, but not Akt pathway. CXCR7 strongly reduced in vitro growth, in contrast to CXCR4, and impaired CXCR4/CXCL12-mediated chemotaxis. Subcutaneous implantation of CXCR7-expressing NB cells showed that CXCR7 also significantly reduced in vivo growth. Moreover, CXCR7 affected CXCR4-mediated orthotopic growth in a CXCL12-producing environment. In such model, CXCR7, in association with CXCR4, did not induce NB cell metastatic dissemination. In conclusion, the CXCR7 and CXCR4 receptors revealed specific expression patterns and distinct functional roles in NB. Our data suggest that CXCR7 elicits anti-tumorigenic functions, and may act as a regulator of CXCR4/CXCL12-mediated signaling in NB.
Collapse
|
32
|
Yates TJ, Knapp J, Gosalbez M, Lokeshwar SD, Gomez CS, Benitez A, Ekwenna OO, Young EE, Manoharan M, Lokeshwar VB. C-X-C chemokine receptor 7: a functionally associated molecular marker for bladder cancer. Cancer 2012; 119:61-71. [PMID: 22736438 DOI: 10.1002/cncr.27661] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Revised: 04/11/2012] [Accepted: 04/16/2012] [Indexed: 11/06/2022]
Abstract
BACKGROUND C-X-C chemokine receptor 4 (CXCR4) and CXCR7 are 7-transmembrane chemokine receptors of the stroma-derived factor (SDF-1). CXCR4, but not CXCR7, has been examined in bladder cancer (BCa). This study examined the functional and clinical significance of CXCR7 in BCa. METHODS CXCR4 and CXCR7 levels were measured in BCa cell lines, tissues (normal = 25; BCa = 44), and urine specimens (n = 186) by quantitative polymerase chain reaction and/or immunohistochemistry. CXCR7 function in BCa cells were examined by transient transfections using a CXCR7 expression vector or small interfering RNA. RESULTS In BCa cell lines, CXCR7 messenger RNA levels were 5- to 37-fold higher than those for CXCR4. Transient overexpression of CXCR7 in BCa cell lines promoted growth and chemotactic motility. CXCR7 colocalized and formed a functional complex with epidermal growth factor receptor, phosphoinositide 3-kinase/Akt, Erk, and src and induced their phosphorylation. CXCR7 also induced up-regulation of cyclin-D1 and bcl-2. Suppression of CXCR7 expression reversed these effects and induced apoptosis. CXCR7 messenger RNA levels and CXCR7 staining scores were significantly (5- to 10-fold) higher in BCa tissues than in normal tissues (P < .001). CXCR7 expression independently associated with metastasis (P = .019) and disease-specific mortality (P = .03). CXCR7 was highly expressed in endothelial cells in high-grade BCa tissues when compared to low-grade BCa and normal bladder. CXCR7 levels were elevated in exfoliated urothelial cells from high-grade BCa patients (P = .0001; 90% sensitivity; 75% specificity); CXCR4 levels were unaltered. CONCLUSIONS CXCR7 promotes BCa cell proliferation and motility plausibly through epidermal growth factor receptor receptor and Akt signaling. CXCR7 expression is elevated in BCa tissues and exfoliated cells and is associated with high-grade and metastasis.
Collapse
Affiliation(s)
- Travis J Yates
- Sheila and David Fuente Graduate Program in Cancer Biology, Sylvester Comprehensive Cancer Center, University of Miami School of Medicine, Florida, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Van Landeghem L, Santoro MA, Krebs AE, Mah AT, Dehmer JJ, Gracz AD, Scull BP, McNaughton K, Magness ST, Lund PK. Activation of two distinct Sox9-EGFP-expressing intestinal stem cell populations during crypt regeneration after irradiation. Am J Physiol Gastrointest Liver Physiol 2012; 302:G1111-32. [PMID: 22361729 PMCID: PMC3362093 DOI: 10.1152/ajpgi.00519.2011] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Recent identification of intestinal epithelial stem cell (ISC) markers and development of ISC reporter mice permit visualization and isolation of regenerating ISCs after radiation to define their functional and molecular phenotypes. Previous studies in uninjured intestine of Sox9-EGFP reporter mice demonstrate that ISCs express low levels of Sox9-EGFP (Sox9-EGFP Low), whereas enteroendocrine cells (EEC) express high levels of Sox9-EGFP (Sox9-EGFP High). We hypothesized that Sox9-EGFP Low ISCs would expand after radiation, exhibit enhanced proliferative capacities, and adopt a distinct gene expression profile associated with rapid proliferation. Sox9-EGFP mice were given 14 Gy abdominal radiation and studied between days 3 and 9 postradiation. Radiation-induced changes in number, growth, and transcriptome of the different Sox9-EGFP cell populations were determined by histology, flow cytometry, in vitro culture assays, and microarray. Microarray confirmed that nonirradiated Sox9-EGFP Low cells are enriched for Lgr5 mRNA and mRNAs enriched in Lgr5-ISCs and identified additional putative ISC markers. Sox9-EGFP High cells were enriched for EEC markers, as well as Bmi1 and Hopx, which are putative markers of quiescent ISCs. Irradiation caused complete crypt loss, followed by expansion and hyperproliferation of Sox9-EGFP Low cells. From nonirradiated intestine, only Sox9-EGFP Low cells exhibited ISC characteristics of forming organoids in culture, whereas during regeneration both Sox9-EGFP Low and High cells formed organoids. Microarray demonstrated that regenerating Sox9-EGFP High cells exhibited transcriptomic changes linked to p53-signaling and ISC-like functions including DNA repair and reduced oxidative metabolism. These findings support a model in which Sox9-EGFP Low cells represent active ISCs, Sox9-EGFP High cells contain radiation-activatable cells with ISC characteristics, and both participate in crypt regeneration.
Collapse
Affiliation(s)
| | | | | | | | | | - Adam D. Gracz
- Departments of 1Cellular and Molecular Physiology, ,4Medicine, University of North Carolina, Chapel Hill, North Carolina
| | | | | | - Scott T. Magness
- 4Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - P. Kay Lund
- Departments of 1Cellular and Molecular Physiology,
| |
Collapse
|
34
|
Hernandez L, Magalhaes MAO, Coniglio SJ, Condeelis JS, Segall JE. Opposing roles of CXCR4 and CXCR7 in breast cancer metastasis. Breast Cancer Res 2011; 13:R128. [PMID: 22152016 PMCID: PMC3326570 DOI: 10.1186/bcr3074] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2010] [Revised: 09/20/2011] [Accepted: 12/09/2011] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION CXCL12-CXCR4 signaling has been shown to play a role in breast cancer progression by enhancing tumor growth, angiogenesis, triggering cancer cell invasion in vitro, and guiding cancer cells to their sites of metastasis. However, CXCR7 also binds to CXCL12 and has been recently found to enhance lung and breast primary tumor growth, as well as metastasis formation. Our goal was to dissect the contributions of CXCR4 and CXCR7 to the different steps of metastasis - in vivo invasion, intravasation and metastasis formation. METHODS We overexpressed CXCR4, CXCR7 or both in the rat mammary adenocarcinoma cell line MTLn3. Stable expressors were used to form tumors in severe combined immunodeficiency (SCID) mice, and in vivo invasiveness, intravital motility, intravasation, and metastasis were measured. RESULTS We found that CXCR4 overexpression increased the chemotactic and invasive behavior of MTLn3 cells to CXCL12, both in vitro and in vivo, as well as in vivo motility and intravasation. CXCR7 overexpression enhanced primary tumor growth and angiogenesis (as indicated by microvessel density and VEGFA expression), but decreased in vivo invasion, intravasation, and metastasis formation. In vitro, expression of CXCR7 alone had no effect in chemotaxis or invasion to CXCL12. However, in the context of increased CXCR4 expression, CXCR7 enhanced chemotaxis to CXCL12 but decreased invasion in response to CXCL12 in vitro and in vivo and impaired CXCL12 stimulated matrix degradation. The changes in matrix degradation correlated with expression of matrix metalloproteinase 12 (MMP12). CONCLUSIONS We find that CXCR4 and CXCR7 play different roles in metastasis, with CXCR4 mediating breast cancer invasion and CXCR7 impairing invasion but enhancing primary tumor growth through angiogenesis.
Collapse
Affiliation(s)
- Lorena Hernandez
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|
35
|
Kollmar O, Menger MD, Schilling MK. Role of CXC Chemokines and Receptors in Liver Metastasis – Impact on Liver Resection-Induced Engraftment and Tumor Growth. CANCER METASTASIS - BIOLOGY AND TREATMENT 2011:129-154. [DOI: 10.1007/978-94-007-0292-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
36
|
Ruiz A, Salvo VA, Ruiz LA, Báez P, García M, Flores I. Basal and steroid hormone-regulated expression of CXCR4 in human endometrium and endometriosis. Reprod Sci 2010; 17:894-903. [PMID: 20720261 PMCID: PMC4495731 DOI: 10.1177/1933719110379920] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Endometriosis is associated with activation of local and systemic inflammatory mechanisms, including increased levels of chemokines and other proinflammatory cytokines. We have previously reported increased gene expression of chemokine receptor 4 (CXCR4), the receptor for CXCL12, in lesions of the rat model of endometriosis. The CXCR4-CXCL12 axis has been shown to have both immune (HIV infection, lymphocyte chemotaxis) and nonimmune functions, including roles in tissue repair, angiogenesis, invasion, and migration. There is evidence indicating that these mechanisms are also at play in endometriosis; therefore, we hypothesized that activation of the CXCR4-CXCL12 axis could be responsible, at least in part, for the survival and establishment of endometrial cells ectopically. Immunohistochemistry (IHC) showed that CXCR4 protein levels were significantly higher in endometriotic lesions compared to the endometrium of controls. Next, we determined basal gene and protein expression of CXCR4 and CXCL12 and regulation by estradiol (E2) and/or progesterone (P4) in endometrial cell lines using quantitative polymerase chain reaction (qPCR), and Western blots. Basal CXCR4 gene expression levels were higher in epithelial versus stromal cells; conversely, CXCL12 was expressed at higher levels in stromal vs epithelial cells. CXCR4 gene expression was significantly downregulated by ovarian steroid hormones in endometrial epithelial. These data suggest that steroid modulation of CXCR4 is defective in endometriosis, although the specific mechanism involved remains to be elucidated. These findings have implications for future therapeutic strategies specifically targeting the inflammatory component in endometriosis.
Collapse
Affiliation(s)
- Abigail Ruiz
- Department of Microbiology, Ponce School of Medicine, Ponce, PR, USA
| | - Virgilio A. Salvo
- Department of Physiology, Pharmacology and Toxicology, Ponce School of Medicine, Ponce, PR, USA
| | - Lynnette A. Ruiz
- Department of Microbiology, Ponce School of Medicine, Ponce, PR, USA
| | - Perla Báez
- Department of Microbiology, Ponce School of Medicine, Ponce, PR, USA
| | - Miosotis García
- Department of Pathology, Ponce School of Medicine, Ponce, PR, USA
| | - Idhaliz Flores
- Department of Microbiology, Ponce School of Medicine, Ponce, PR, USA
| |
Collapse
|