1
|
Thomas SC, Madaan T, Kamble NS, Siddiqui NA, Pauletti GM, Kotagiri N. Engineered Bacteria Enhance Immunotherapy and Targeted Therapy through Stromal Remodeling of Tumors. Adv Healthc Mater 2022; 11:e2101487. [PMID: 34738725 PMCID: PMC8770579 DOI: 10.1002/adhm.202101487] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/28/2021] [Indexed: 01/03/2023]
Abstract
Desmoplastic solid tumors are characterized by the rapid build-up of extracellular matrix (ECM) macromolecules, such as hyaluronic acid (HA). The resulting physiological barrier prevents the infiltration of immune cells and also impedes the delivery of anticancer agents. The development of a hypervesiculating Escherichia coli Nissle (ΔECHy) based tumor targeting bacterial system capable of distributing a fusion peptide, cytolysin A (ClyA)-hyaluronidase (Hy) via outer membrane vesicles (OMVs) is reported. The capability of targeting hypoxic tumors, manufacturing recombinant proteins in situ and the added advantage of an on-site OMV based distribution system makes the engineered bacterial vector a unique candidate for peptide delivery. The HA degrading potential of Hy for stromal modulation is combined with the cytolytic activity of ClyA followed by testing it within syngeneic cancer models. ΔECHy is combined with immune checkpoint antibodies and tyrosine kinase inhibitors (TKIs) to demonstrate that remodeling the tumor stroma results in the improvement of immunotherapy outcomes and enhancing the efficacy of biological signaling inhibitors. The biocompatibility of ΔECHy is also investigated to show that the engineered bacteria are effectively cleared, elicit minimal inflammatory and immune responses, and therefore could be a reliable candidate as a live biotherapeutic.
Collapse
Affiliation(s)
- Shindu C. Thomas
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | - Tushar Madaan
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | - Nitin S. Kamble
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | - Nabil A. Siddiqui
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | - Giovanni M. Pauletti
- Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy in St. Louis, 1 Pharmacy Place, St. Louis, MO 63110, USA
| | - Nalinikanth Kotagiri
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| |
Collapse
|
2
|
Osada T, Hartman ZC, Wei J, Lei G, Hobeika AC, Gwin WR, Diniz MA, Spector N, Clay TM, Chen W, Morse MA, Lyerly HK. Polyfunctional anti-human epidermal growth factor receptor 3 (anti-HER3) antibodies induced by HER3 vaccines have multiple mechanisms of antitumor activity against therapy resistant and triple negative breast cancers. Breast Cancer Res 2018; 20:90. [PMID: 30092835 PMCID: PMC6085609 DOI: 10.1186/s13058-018-1023-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 07/18/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Upregulation of human epidermal growth factor receptor 3 (HER3) is a major mechanism of acquired resistance to therapies targeting its heterodimerization partners epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2), but also exposes HER3 as a target for immune attack. We generated an adenovirus encoding full length human HER3 (Ad-HER3) to serve as a cancer vaccine. Previously we reported the anti-tumor efficacy and function of the T cell response to this vaccine. We now provide a detailed assessment of the antitumor efficacy and functional mechanisms of the HER3 vaccine-induced antibodies (HER3-VIAs) in serum from mice immunized with Ad-HER3. METHODS Serum containing HER3-VIA was tested in complement-dependent cytotoxicity (CDC) and antibody-dependent cellular cytotoxicity (ADCC) assays and for its effect on HER3 internalization and degradation, downstream signaling of HER3 heterodimers and growth of metastatic HER2+ (BT474M1), HER2 therapy-resistant (rBT474), and triple negative (MDA-MB-468) breast cancers. RESULTS HER3-VIAs mediated CDC and ADCC, HER3 internalization, interruption of HER3 heterodimer-driven tumor signaling pathways, and anti-proliferative effects against HER2+ tumor cells in vitro and significant antitumor effects against metastatic HER2+ BT474M1, treatment refractory HER2+ rBT474 and triple negative MDA-MB-468 in vivo. CONCLUSIONS In addition to the T cell anti-tumor response induced by Ad-HER3, the HER3-VIAs provide additional functions to eliminate tumors in which HER3 signaling mediates aggressive behavior or acquired resistance to HER2-targeted therapy. These data support clinical studies of vaccination against HER3 prior to or concomitantly with other therapies to prevent outgrowth of therapy-resistant HER2+ and triple negative clones.
Collapse
Affiliation(s)
- Takuya Osada
- Division of Surgical Sciences, Department of Surgery, Duke University Medical Center, MSRB Research Drive, Box 2714, Durham, NC, 27710, USA
| | - Zachary C Hartman
- Division of Surgical Sciences, Department of Surgery, Duke University Medical Center, MSRB Research Drive, Box 2714, Durham, NC, 27710, USA
| | - Junping Wei
- Division of Surgical Sciences, Department of Surgery, Duke University Medical Center, MSRB Research Drive, Box 2714, Durham, NC, 27710, USA
| | - Gangjun Lei
- Division of Surgical Sciences, Department of Surgery, Duke University Medical Center, MSRB Research Drive, Box 2714, Durham, NC, 27710, USA
| | - Amy C Hobeika
- Division of Surgical Sciences, Department of Surgery, Duke University Medical Center, MSRB Research Drive, Box 2714, Durham, NC, 27710, USA
| | - William R Gwin
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Marcio A Diniz
- Biostatistics and Bioinformatics Research Center, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Neil Spector
- Division of Medical Oncology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Timothy M Clay
- Cell and Gene Therapy Discovery Research, PTS, GlaxoSmithKline, Collegeville, PA, USA
- Division of General Surgery, Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Wei Chen
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Michael A Morse
- Division of Medical Oncology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - H Kim Lyerly
- Division of Surgical Sciences, Department of Surgery, Duke University Medical Center, MSRB Research Drive, Box 2714, Durham, NC, 27710, USA.
| |
Collapse
|
3
|
Oldham M, Yoon P, Fathi Z, Beyer WF, Adamson J, Liu L, Alcorta D, Xia W, Osada T, Liu C, Yang XY, Dodd RD, Herndon JE, Meng B, Kirsch DG, Lyerly HK, Dewhirst MW, Fecci P, Walder H, Spector NL. X-Ray Psoralen Activated Cancer Therapy (X-PACT). PLoS One 2016; 11:e0162078. [PMID: 27583569 PMCID: PMC5008763 DOI: 10.1371/journal.pone.0162078] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 08/17/2016] [Indexed: 11/18/2022] Open
Abstract
This work investigates X-PACT (X-ray Psoralen Activated Cancer Therapy): a new approach for the treatment of solid cancer. X-PACT utilizes psoralen, a potent anti-cancer therapeutic with current application to proliferative disease and extracorporeal photopheresis (ECP) of cutaneous T Cell Lymphoma. An immunogenic role for light-activated psoralen has been reported, contributing to long-term clinical responses. Psoralen therapies have to-date been limited to superficial or extracorporeal scenarios due to the requirement for psoralen activation by UVA light, which has limited penetration in tissue. X-PACT solves this challenge by activating psoralen with UV light emitted from novel non-tethered phosphors (co-incubated with psoralen) that absorb x-rays and re-radiate (phosphoresce) at UV wavelengths. The efficacy of X-PACT was evaluated in both in-vitro and in-vivo settings. In-vitro studies utilized breast (4T1), glioma (CT2A) and sarcoma (KP-B) cell lines. Cells were exposed to X-PACT treatments where the concentrations of drug (psoralen and phosphor) and radiation parameters (energy, dose, and dose rate) were varied. Efficacy was evaluated primarily using flow cell cytometry in combination with complimentary assays, and the in-vivo mouse study. In an in-vitro study, we show that X-PACT induces significant tumor cell apoptosis and cytotoxicity, unlike psoralen or phosphor alone (p<0.0001). We also show that apoptosis increases as doses of phosphor, psoralen, or radiation increase. Finally, in an in-vivo pilot study of BALBc mice with syngeneic 4T1 tumors, we show that the rate of tumor growth is slower with X-PACT than with saline or AMT + X-ray (p<0.0001). Overall these studies demonstrate a potential therapeutic effect for X-PACT, and provide a foundation and rationale for future studies. In summary, X-PACT represents a novel treatment approach in which well-tolerated low doses of x-ray radiation are delivered to a specific tumor site to generate UVA light which in-turn unleashes both short- and potentially long-term antitumor activity of photo-active therapeutics like psoralen.
Collapse
Affiliation(s)
- Mark Oldham
- Dept. of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| | - Paul Yoon
- Dept. of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Zak Fathi
- Immunolight LLC, Detroit, Michigan, United States of America
| | - Wayne F. Beyer
- QNS Group, LLC, Bahama, North Carolina, United States of America
| | - Justus Adamson
- Dept. of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Leihua Liu
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - David Alcorta
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Wenle Xia
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Takuya Osada
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Congxiao Liu
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Xiao Y. Yang
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Rebecca D. Dodd
- Dept. of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - James E. Herndon
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Boyu Meng
- Dept. of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - David G. Kirsch
- Dept. of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - H. Kim Lyerly
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Mark W. Dewhirst
- Dept. of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Peter Fecci
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Harold Walder
- Dept. of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Neil L. Spector
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|
4
|
Improving Multi-Epitope Long Peptide Vaccine Potency by Using a Strategy that Enhances CD4+ T Help in BALB/c Mice. PLoS One 2015; 10:e0142563. [PMID: 26556756 PMCID: PMC4640540 DOI: 10.1371/journal.pone.0142563] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 10/25/2015] [Indexed: 11/19/2022] Open
Abstract
Peptide-based vaccines are attractive approaches for cancer immunotherapy; but the success of these vaccines in clinical trials have been limited. Our goal is to improve immune responses and anti-tumor effects against a synthetic, multi-epitope, long peptide from rat Her2/neu (rHer2/neu) using the help of CD4+ T cells and appropriate adjuvant in a mouse tumor model. Female BALB/c mice were vaccinated with P5+435 multi-epitope long peptide that presents epitopes for cytotoxic T lymphocytes (CTL) in combination with a universal Pan DR epitope (PADRE) or CpG-oligodeoxynucleotides (CpG-ODNs) as a Toll-like receptor agonist adjuvant. The results show that vaccination with the multi-epitope long peptide in combination with the PADRE peptide and CpG-ODN induced expansion of subpopulations of CD4+ and CD8+ cells producing IFN-γ, the average tumor size in the vaccinated mice was less than that of the other groups, and tumor growth was inhibited in 40% of the mice in the vaccinated group. The mean survival time was 82.6 ± 1.25 days in mice vaccinated with P5+435 + CpG+ PADRE. Our results demonstrate that inclusion of PADRE and CpG with the peptide vaccine enhanced significant tumor specific-immune responses in vaccinated mice.
Collapse
|
5
|
Liu W, Zhang L, Shi J, Liu Y, Zhou L, Hou K, Qu X, Teng Y. Clinical significance of pAkt and pErk1/2 expression in early-stage breast cancer patients treated with anthracycline-based adjuvant chemotherapy. Oncol Lett 2015; 9:1707-1714. [PMID: 25789027 PMCID: PMC4356398 DOI: 10.3892/ol.2015.2965] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 01/08/2015] [Indexed: 11/10/2022] Open
Abstract
The expression of phosphorylated Akt (pAkt) and phosphorylated extracellular-regulated kinase 1/2 (pErk1/2) proteins may result in breast cancer progression and drug resistance in vitro, however, compelling evidence regarding the clinical significance of pAkt and pErk1/2 in early-stage breast cancer is currently lacking. Thus, the aim of the present study was to determine the prognostic value of pAkt and pErk1/2 expression in early-stage breast cancer patients treated with anthracycline-based adjuvant chemotherapy. Tumor specimens were obtained from 256 patients with early-stage breast cancer who had been treated with anthracycline-based adjuvant chemotherapy, and pAkt and pErk1/2 protein expression was immunohistochemically determined. The interactions between pAkt, pErk1/2 and clinical characteristics were assessed by performing χ2 tests, and survival functions were estimated using the Kaplan-Meier method. It was identified that pAkt and pErk1/2 were expressed in 38.7 and 33.6% of patients, respectively, and that pAkt protein expression was correlated with pErk1/2 protein expression (P<0.001). In addition, after a median follow-up period of 52.5 months, the patients with pAkt- and pErk1/2-negative tumors experienced a significantly longer disease-free survival (DFS) time compared with pAkt- or pErk1/2-positive patients (P=0.028). pErk1/2 expression was associated with the decreased DFS time of the patients (P=0.049), and pAkt and pErk1/2 expression were associated with the decreased DFS time in human epidermal growth factor receptor (HER2)-positive patients (P=0.002). pErk1/2 expression was associated with chemotherapy resistance (P=0.016). Thus, the coexpression of pAkt and pErk1/2 was an independent factor for a poor prognosis in early-stage and HER2-positive breast cancer patients. By contrast, pErk1/2 expression alone may be a poor predictor for determining the efficacy of anthracycline-based chemotherapy.
Collapse
Affiliation(s)
- Wenjuan Liu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Lingyun Zhang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Jing Shi
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yunpeng Liu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Lizhong Zhou
- Department of Medical Oncology, The Tumor Hospital of Anshan City, Anshan, Liaoning 114034, P.R. China
| | - Kezuo Hou
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xiujuan Qu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yuee Teng
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
6
|
Hanks BA, Holtzhausen A, Evans KS, Jamieson R, Gimpel P, Campbell OM, Hector-Greene M, Sun L, Tewari A, George A, Starr M, Nixon A, Augustine C, Beasley G, Tyler DS, Osada T, Morse MA, Ling L, Lyerly HK, Blobe GC. Type III TGF-β receptor downregulation generates an immunotolerant tumor microenvironment. J Clin Invest 2013; 123:3925-40. [PMID: 23925295 PMCID: PMC3754240 DOI: 10.1172/jci65745] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 06/13/2013] [Indexed: 01/02/2023] Open
Abstract
Cancers subvert the host immune system to facilitate disease progression. These evolved immunosuppressive mechanisms are also implicated in circumventing immunotherapeutic strategies. Emerging data indicate that local tumor-associated DC populations exhibit tolerogenic features by promoting Treg development; however, the mechanisms by which tumors manipulate DC and Treg function in the tumor microenvironment remain unclear. Type III TGF-β receptor (TGFBR3) and its shed extracellular domain (sTGFBR3) regulate TGF-β signaling and maintain epithelial homeostasis, with loss of TGFBR3 expression promoting progression early in breast cancer development. Using murine models of breast cancer and melanoma, we elucidated a tumor immunoevasion mechanism whereby loss of tumor-expressed TGFBR3/sTGFBR3 enhanced TGF-β signaling within locoregional DC populations and upregulated both the immunoregulatory enzyme indoleamine 2,3-dioxygenase (IDO) in plasmacytoid DCs and the CCL22 chemokine in myeloid DCs. Alterations in these DC populations mediated Treg infiltration and the suppression of antitumor immunity. Our findings provide mechanistic support for using TGF-β inhibitors to enhance the efficacy of tumor immunotherapy, indicate that sTGFBR3 levels could serve as a predictive immunotherapy biomarker, and expand the mechanisms by which TGFBR3 suppresses cancer progression to include effects on the tumor immune microenvironment.
Collapse
MESH Headings
- Animals
- Cell Line, Tumor
- Chemokine CCL22/metabolism
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Down-Regulation
- Female
- Humans
- Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
- Mammary Neoplasms, Experimental/immunology
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/pathology
- Melanoma, Experimental/immunology
- Melanoma, Experimental/metabolism
- Melanoma, Experimental/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Transgenic
- Neoplasm Transplantation
- Proteoglycans/genetics
- Proteoglycans/metabolism
- Receptors, Transforming Growth Factor beta/genetics
- Receptors, Transforming Growth Factor beta/metabolism
- Transforming Growth Factor beta/metabolism
- Tumor Escape
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Brent A. Hanks
- Department of Medicine and
Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA.
Freie Universität Berlin, Institut für Chemie und Biochemie, Berlin, Germany.
Medical Scientist Training Program, Duke University Medical Center, Durham, North Carolina, USA.
Biogen Idec Inc., Cambridge, Massachusetts, USA.
Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Alisha Holtzhausen
- Department of Medicine and
Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA.
Freie Universität Berlin, Institut für Chemie und Biochemie, Berlin, Germany.
Medical Scientist Training Program, Duke University Medical Center, Durham, North Carolina, USA.
Biogen Idec Inc., Cambridge, Massachusetts, USA.
Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Katherine S. Evans
- Department of Medicine and
Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA.
Freie Universität Berlin, Institut für Chemie und Biochemie, Berlin, Germany.
Medical Scientist Training Program, Duke University Medical Center, Durham, North Carolina, USA.
Biogen Idec Inc., Cambridge, Massachusetts, USA.
Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Rebekah Jamieson
- Department of Medicine and
Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA.
Freie Universität Berlin, Institut für Chemie und Biochemie, Berlin, Germany.
Medical Scientist Training Program, Duke University Medical Center, Durham, North Carolina, USA.
Biogen Idec Inc., Cambridge, Massachusetts, USA.
Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Petra Gimpel
- Department of Medicine and
Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA.
Freie Universität Berlin, Institut für Chemie und Biochemie, Berlin, Germany.
Medical Scientist Training Program, Duke University Medical Center, Durham, North Carolina, USA.
Biogen Idec Inc., Cambridge, Massachusetts, USA.
Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Olivia M. Campbell
- Department of Medicine and
Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA.
Freie Universität Berlin, Institut für Chemie und Biochemie, Berlin, Germany.
Medical Scientist Training Program, Duke University Medical Center, Durham, North Carolina, USA.
Biogen Idec Inc., Cambridge, Massachusetts, USA.
Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Melissa Hector-Greene
- Department of Medicine and
Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA.
Freie Universität Berlin, Institut für Chemie und Biochemie, Berlin, Germany.
Medical Scientist Training Program, Duke University Medical Center, Durham, North Carolina, USA.
Biogen Idec Inc., Cambridge, Massachusetts, USA.
Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Lihong Sun
- Department of Medicine and
Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA.
Freie Universität Berlin, Institut für Chemie und Biochemie, Berlin, Germany.
Medical Scientist Training Program, Duke University Medical Center, Durham, North Carolina, USA.
Biogen Idec Inc., Cambridge, Massachusetts, USA.
Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Alok Tewari
- Department of Medicine and
Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA.
Freie Universität Berlin, Institut für Chemie und Biochemie, Berlin, Germany.
Medical Scientist Training Program, Duke University Medical Center, Durham, North Carolina, USA.
Biogen Idec Inc., Cambridge, Massachusetts, USA.
Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Amanda George
- Department of Medicine and
Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA.
Freie Universität Berlin, Institut für Chemie und Biochemie, Berlin, Germany.
Medical Scientist Training Program, Duke University Medical Center, Durham, North Carolina, USA.
Biogen Idec Inc., Cambridge, Massachusetts, USA.
Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Mark Starr
- Department of Medicine and
Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA.
Freie Universität Berlin, Institut für Chemie und Biochemie, Berlin, Germany.
Medical Scientist Training Program, Duke University Medical Center, Durham, North Carolina, USA.
Biogen Idec Inc., Cambridge, Massachusetts, USA.
Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Andrew Nixon
- Department of Medicine and
Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA.
Freie Universität Berlin, Institut für Chemie und Biochemie, Berlin, Germany.
Medical Scientist Training Program, Duke University Medical Center, Durham, North Carolina, USA.
Biogen Idec Inc., Cambridge, Massachusetts, USA.
Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Christi Augustine
- Department of Medicine and
Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA.
Freie Universität Berlin, Institut für Chemie und Biochemie, Berlin, Germany.
Medical Scientist Training Program, Duke University Medical Center, Durham, North Carolina, USA.
Biogen Idec Inc., Cambridge, Massachusetts, USA.
Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Georgia Beasley
- Department of Medicine and
Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA.
Freie Universität Berlin, Institut für Chemie und Biochemie, Berlin, Germany.
Medical Scientist Training Program, Duke University Medical Center, Durham, North Carolina, USA.
Biogen Idec Inc., Cambridge, Massachusetts, USA.
Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Douglas S. Tyler
- Department of Medicine and
Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA.
Freie Universität Berlin, Institut für Chemie und Biochemie, Berlin, Germany.
Medical Scientist Training Program, Duke University Medical Center, Durham, North Carolina, USA.
Biogen Idec Inc., Cambridge, Massachusetts, USA.
Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Takayu Osada
- Department of Medicine and
Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA.
Freie Universität Berlin, Institut für Chemie und Biochemie, Berlin, Germany.
Medical Scientist Training Program, Duke University Medical Center, Durham, North Carolina, USA.
Biogen Idec Inc., Cambridge, Massachusetts, USA.
Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Michael A. Morse
- Department of Medicine and
Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA.
Freie Universität Berlin, Institut für Chemie und Biochemie, Berlin, Germany.
Medical Scientist Training Program, Duke University Medical Center, Durham, North Carolina, USA.
Biogen Idec Inc., Cambridge, Massachusetts, USA.
Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Leona Ling
- Department of Medicine and
Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA.
Freie Universität Berlin, Institut für Chemie und Biochemie, Berlin, Germany.
Medical Scientist Training Program, Duke University Medical Center, Durham, North Carolina, USA.
Biogen Idec Inc., Cambridge, Massachusetts, USA.
Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - H. Kim Lyerly
- Department of Medicine and
Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA.
Freie Universität Berlin, Institut für Chemie und Biochemie, Berlin, Germany.
Medical Scientist Training Program, Duke University Medical Center, Durham, North Carolina, USA.
Biogen Idec Inc., Cambridge, Massachusetts, USA.
Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Gerard C. Blobe
- Department of Medicine and
Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA.
Freie Universität Berlin, Institut für Chemie und Biochemie, Berlin, Germany.
Medical Scientist Training Program, Duke University Medical Center, Durham, North Carolina, USA.
Biogen Idec Inc., Cambridge, Massachusetts, USA.
Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
7
|
Ren XR, Wei J, Lei G, Wang J, Lu J, Xia W, Spector N, Barak LS, Clay TM, Osada T, Hamilton E, Blackwell K, Hobeika AC, Morse MA, Lyerly HK, Chen W. Polyclonal HER2-specific antibodies induced by vaccination mediate receptor internalization and degradation in tumor cells. Breast Cancer Res 2012; 14:R89. [PMID: 22676470 PMCID: PMC3446352 DOI: 10.1186/bcr3204] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 05/10/2012] [Accepted: 06/07/2012] [Indexed: 01/18/2023] Open
Abstract
Introduction Sustained HER2 signaling at the cell surface is an oncogenic mechanism in a significant proportion of breast cancers. While clinically effective therapies targeting HER2 such as mAbs and tyrosine kinase inhibitors exist, tumors overexpressing HER2 eventually progress despite treatment. Thus, abrogation of persistent HER2 expression at the plasma membrane to synergize with current approaches may represent a novel therapeutic strategy. Methods We generated polyclonal anti-HER2 antibodies (HER2-VIA) by vaccinating mice with an adenovirus expressing human HER2, and assessed their signaling effects in vitro and anti-tumor effects in a xenograft model. In addition, we studied the signaling effects of human HER2-specific antibodies induced by vaccinating breast cancer patients with a HER2 protein vaccine. Results HER2-VIA bound HER2 at the plasma membrane, initially activating the downstream kinases extracellular signal-regulated protein kinase 1/2 and Akt, but subsequently inducing receptor internalization in clathrin-coated pits in a HER2 kinase-independent manner, followed by ubiquitination and degradation of HER2 into a 130 kDa fragment phosphorylated at tyrosine residues 1,221/1,222 and 1,248. Following vaccination of breast cancer patients with the HER2 protein vaccine, HER2-specific antibodies were detectable and these antibodies bound to cell surface-expressed HER2 and inhibited HER2 signaling through blocking tyrosine 877 phosphorylation of HER2. In contrast to the murine antibodies, human anti-HER2 antibodies induced by protein vaccination did not mediate receptor internalization and degradation. Conclusion These data provide new insight into HER2 trafficking at the plasma membrane and the changes induced by polyclonal HER2-specific antibodies. The reduction of HER2 membrane expression and HER2 signaling by polyclonal antibodies induced by adenoviral HER2 vaccines supports human clinical trials with this strategy for those breast cancer patients with HER2 therapy-resistant disease.
Collapse
Affiliation(s)
- Xiu-Rong Ren
- Department of Medicine, Duke University Medical Center, 595 Lasalle Street, Durham, NC 27710, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Hamilton E, Blackwell K, Hobeika AC, Clay TM, Broadwater G, Ren XR, Chen W, Castro H, Lehmann F, Spector N, Wei J, Osada T, Lyerly HK. Phase 1 clinical trial of HER2-specific immunotherapy with concomitant HER2 kinase inhibition [corrected]. J Transl Med 2012; 10:28. [PMID: 22325452 PMCID: PMC3306270 DOI: 10.1186/1479-5876-10-28] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 01/23/2012] [Accepted: 02/10/2012] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Patients with HER2-overexpressing metastatic breast cancer, despite initially benefiting from the monoclonal antibody trastuzumab and the EGFR/HER2 tyrosine kinase inhibitor lapatinib, will eventually have progressive disease. HER2-based vaccines induce polyclonal antibody responses against HER2 that demonstrate enhanced anti-tumor activity when combined with lapatinib in murine models. We wished to test the clinical safety, immunogenicity, and activity of a HER2-based cancer vaccine, when combined with lapatinib. METHODS We immunized women (n = 12) with metastatic, trastuzumab-refractory, HER2-overexpressing breast cancer with dHER2, a recombinant protein consisting of extracellular domain (ECD) and a portion of the intracellular domain (ICD) of HER2 combined with the adjuvant AS15, containing MPL, QS21, CpG and liposome. Lapatinib (1250 mg/day) was administered concurrently. Peripheral blood antibody and T cell responses were measured. RESULTS This regimen was well tolerated, with no cardiotoxicity. Anti-HER2-specific antibody was induced in all patients whereas HER2-specific T cells were detected in one patient. Preliminary analyses of patient serum demonstrated downstream signaling inhibition in HER2 expressing tumor cells. The median time to progression was 55 days, with the majority of patients progressing prior to induction of peak anti-HER2 immune responses; however, 300-day overall survival was 92% (95% CI: 77-100%). CONCLUSIONS dHER2 combined with lapatinib was safe and immunogenic with promising long term survival in those with HER2-overexpressing breast cancers refractory to trastuzumab. Further studies to define the anticancer activity of the antibodies induced by HER2 vaccines along with lapatinib are underway. TRIAL REGISTRY ClinicalTrials.gov NCT00952692.
Collapse
Affiliation(s)
- Erika Hamilton
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, NC, USA
| | - Kimberly Blackwell
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, NC, USA
| | - Amy C Hobeika
- Department of Surgery, Division of General Surgery, Duke University Medical Center, Durham, NC, USA
| | | | | | - Xiu-Rong Ren
- Department of Medicine, Division of Gastroenterology, Duke University Medical Center, Durham, NC, USA
| | - Wei Chen
- Department of Medicine, Division of Gastroenterology, Duke University Medical Center, Durham, NC, USA
| | | | | | - Neil Spector
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, NC, USA
| | - Junping Wei
- Department of Surgery, Division of Surgical Sciences, Duke University Medical Center, Durham, NC, USA
| | - Takuya Osada
- Department of Surgery, Division of Surgical Sciences, Duke University Medical Center, Durham, NC, USA
| | - H Kim Lyerly
- Department of Surgery, Division of General Surgery, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
9
|
Clay TM, Osada T, Hartman ZC, Hobeika A, Devi G, Morse MA, Lyerly HK. Polyclonal immune responses to antigens associated with cancer signaling pathways and new strategies to enhance cancer vaccines. Immunol Res 2011; 49:235-47. [PMID: 21136201 PMCID: PMC3774015 DOI: 10.1007/s12026-010-8186-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Aberrant signaling pathways are a hallmark of cancer. A variety of strategies for inhibiting signaling pathways have been developed, but monoclonal antibodies against receptor tyrosine kinases have been among the most successful. A challenge for these therapies is therapeutic unresponsiveness and acquired resistance due to mutations in the receptors, upregulation of alternate growth and survival pathways, or inadequate function of the monoclonal antibodies. Vaccines are able to induce polyclonal responses that can have a multitude of affects against the target molecule. We began to explore therapeutic vaccine development to antigens associated with these signaling pathways. We provide an illustrative example in developing therapeutic cancer vaccines inducing polyclonal adaptive immune responses targeting the ErbB family member HER2. Further, we will discuss new strategies to augment the clinical efficacy of cancer vaccines by enhancing vaccine immunogenicity and reversing the immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
- Timothy M Clay
- Duke Comprehensive Cancer Center, Department of Surgery, Duke University Medical Center, 2424 Erwin Road, Suite 601, Durham, NC 27710, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Ladjemi MZ, Jacot W, Chardès T, Pèlegrin A, Navarro-Teulon I. Anti-HER2 vaccines: new prospects for breast cancer therapy. Cancer Immunol Immunother 2010; 59:1295-312. [PMID: 20532501 DOI: 10.1007/s00262-010-0869-2] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Accepted: 05/11/2010] [Indexed: 12/24/2022]
Abstract
Each year, breast cancer accounts for more than 400,000 new cancer cases and more than 130,000 cancer deaths in Europe. Prognosis of nonmetastatic breast cancer patients is directly related to the extent of the disease, mainly nodal spreading and tumor size, and to the molecular profile, particularly HER2 over-expression. In patients with HER2-over-expressing tumors, different studies have shown cellular and/or humoral immune responses against HER2 associated with a lower tumor development at early stages of the disease. These findings have led to the hypothesis that the generation of an anti-HER2 immune response should protect patients from HER2-over-expressing tumor growth. Taken together with the clinical efficiency of trastuzumab-based anti-HER2 passive immunotherapy, these observations allowed to envisage various vaccine strategies against HER2. The induction of a stable and strong immunity by cancer vaccines is expected to lead to establishment of immune memory, thereby preventing tumor recurrence. However, an immunological tolerance against HER2 antigen exists representing a barrier to effective vaccination against this oncoprotein. As a consequence, the current challenge for vaccines is to find the best conditions to break this immunological tolerance. In this review, we will discuss the different anti-HER2 vaccine strategies currently developed; considering the strategies having reached the clinical phases as well as those still in preclinical development. The used antigen can be either composed of tumoral allogenic cells or autologous cells, or specific to HER2. It can be delivered by dendritic cells or in a DNA, peptidic or proteic form. Another area of research concerns the use of anti-idiotypic antibodies mimicking HER2.
Collapse
Affiliation(s)
- Maha Zohra Ladjemi
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U896, Université Montpellier1, Montpellier, France
| | | | | | | | | |
Collapse
|
11
|
Sierra JR, Cepero V, Giordano S. Molecular mechanisms of acquired resistance to tyrosine kinase targeted therapy. Mol Cancer 2010; 9:75. [PMID: 20385023 PMCID: PMC2864216 DOI: 10.1186/1476-4598-9-75] [Citation(s) in RCA: 172] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 04/12/2010] [Indexed: 02/07/2023] Open
Abstract
In recent years, tyrosine kinases (TKs) have been recognized as central players and regulators of cancer cell proliferation, apoptosis, and angiogenesis, and are therefore considered suitable potential targets for anti-cancer therapies. Several strategies for targeting TKs have been developed, the most successful being monoclonal antibodies and small molecule tyrosine kinase inhibitors. However, increasing evidence of acquired resistance to these drugs has been documented, and extensive preclinical studies are ongoing to try to understand the molecular mechanisms by which cancer cells are able to bypass their inhibitory activity.This review intends to present the most recently identified molecular mechanisms that mediate acquired resistance to tyrosine kinase inhibitors, identified through the use of in vitro models or the analysis of patient samples. The knowledge obtained from these studies will help to design better therapies that prevent and overcome resistance to treatment in cancer patients.
Collapse
Affiliation(s)
- J Rafael Sierra
- Institute for Cancer Research and Treatment, University of Torino Medical School, 10060 Candiolo (Torino), Italy
| | | | | |
Collapse
|