1
|
Zou M, Feng Z, Hu K, Shu Y, Li T, Peng X, Chen L, Xiao L, Zhang S, Xiong T, Deng X, Peng J, Hao L. DCLRE1B as a novel prognostic biomarker associated with immune infiltration: a pancancer analysis. Sci Rep 2024; 14:31636. [PMID: 39738287 PMCID: PMC11685409 DOI: 10.1038/s41598-024-80603-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 11/19/2024] [Indexed: 01/01/2025] Open
Abstract
The DNA cross-link repair 1B (DCLRE1B) gene is involved in repairing cross-links between DNA strands, including those associated with Hoyeraal-Hreidarsson syndrome and congenital dyskeratosis. However, its role in tumours is not well understood. DCLRE1B expression profiles were examined in tumour tissues and normal tissues using TCGA, GTEx, and TARGET datasets. Additionally, we performed experiments with clinical melanoma samples to verify DCLRE1B expression patterns. We also performed pancancer analyses to investigate the diverse roles of DCLRE1B in the biological functions of various cancers. DCLRE1B exhibited distinct expression patterns and played crucial prognostic roles in most tumours. In particular, high expression of DCLRE1B in melanoma was significantly correlated with a poor prognosis and increased malignancy. DCLRE1B was also found to be associated with the immune landscape and various immune biomarkers and regulators. Furthermore, our analysis identified potential small molecules that could target DCLRE1B in different cancer types. The DCLRE1B gene may be involved in the development and occurrence of a variety of cancers. Additionally, DCLRE1B affects various tumour types not only by mediating DNA repair but also by shaping the differential immune microenvironment. In conclusion, our research offers fresh perspectives on the diagnosis and treatment of different types of cancers.
Collapse
Affiliation(s)
- Mi Zou
- Department of Orthopedics, The Second Affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Zuxi Feng
- Department of Orthopedics, The Second Affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Kaibo Hu
- Department of Orthopedics, The Second Affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Yuan Shu
- Department of Orthopedics, The Second Affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Ting Li
- Department of Orthopedics, The Second Affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Xiaogang Peng
- Jiangxi Province Key Laboratory of Molecular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Leifeng Chen
- Department of General Surgery, Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Leyang Xiao
- Department of Orthopedics, The Second Affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Shouhua Zhang
- Department of General Surgery, Jiangxi Children's Hospital, Nanchang, 330006, Jiangxi Province, China
| | - Ting Xiong
- Department of Orthopedics, The Second Affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Xueqiang Deng
- Department of Rehabilitation, Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China.
| | - Jie Peng
- Department of Orthopedics, The Second Affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China.
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China.
| | - Liang Hao
- Department of Orthopedics, The Second Affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China.
- Institute of Orthopedics of Jiangxi Province, Nanchang, 330006, Jiangxi Province, China.
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Disease, 330006, Nanchang, Jiangxi Province, China.
- Institute of Minimally Invasive Orthopedics, Nanchang University, 330006, Nanchang, Jiangxi Province, China.
| |
Collapse
|
2
|
Bories C, Lejour T, Adolphe F, Kermasson L, Couvé S, Tanguy L, Luszczewska G, Watzky M, Poillerat V, Garnier P, Groisman R, Ferlicot S, Richard S, Saparbaev M, Revy P, Gad S, Renaud F. DCLRE1B/Apollo germline mutations associated with renal cell carcinoma impair telomere protection. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167107. [PMID: 38430974 DOI: 10.1016/j.bbadis.2024.167107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 02/14/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
Hereditary renal cell carcinoma (RCC) is caused by germline mutations in a subset of genes, including VHL, MET, FLCN, and FH. However, many familial RCC cases do not harbor mutations in the known predisposition genes. Using Whole Exome Sequencing, we identified two germline missense variants in the DCLRE1B/Apollo gene (ApolloN246I and ApolloY273H) in two unrelated families with several RCC cases. Apollo encodes an exonuclease involved in DNA Damage Response and Repair (DDRR) and telomere integrity. We characterized these two functions in the human renal epithelial cell line HKC8. The decrease or inhibition of Apollo expression sensitizes these cells to DNA interstrand crosslink damage (ICLs). HKC8 Apollo-/- cells appear defective in the DDRR and present an accumulation of telomere damage. Wild-type and mutated Apollo forms could interact with TRF2, a shelterin protein involved in telomere protection. However, only ApolloWT can rescue the telomere damage in HKC8 Apollo-/- cells. Our results strongly suggest that ApolloN246I and ApolloY273H are loss-of-function mutants that cause impaired telomere integrity and could lead to genomic instability. Altogether, our results suggest that mutations in Apollo could induce renal oncogenesis.
Collapse
Affiliation(s)
- Charlie Bories
- EPHE, PSL Université, Paris, France; UMR 9019 CNRS, Gustave Roussy, Université Paris-Saclay, 114 rue Edouard Vaillant, Villejuif 94800, France
| | - Thomas Lejour
- EPHE, PSL Université, Paris, France; UMR 9019 CNRS, Gustave Roussy, Université Paris-Saclay, 114 rue Edouard Vaillant, Villejuif 94800, France
| | - Florine Adolphe
- EPHE, PSL Université, Paris, France; UMR 9019 CNRS, Gustave Roussy, Université Paris-Saclay, 114 rue Edouard Vaillant, Villejuif 94800, France
| | - Laëtitia Kermasson
- Laboratory of Genome Dynamics in the Immune System, Laboratoire labellisé Ligue Nationale contre le Cancer, INSERM UMR 1163, Université de Paris, Imagine Institute, Paris, France
| | - Sophie Couvé
- EPHE, PSL Université, Paris, France; UMR 9019 CNRS, Gustave Roussy, Université Paris-Saclay, 114 rue Edouard Vaillant, Villejuif 94800, France
| | - Laura Tanguy
- EPHE, PSL Université, Paris, France; UMR 9019 CNRS, Gustave Roussy, Université Paris-Saclay, 114 rue Edouard Vaillant, Villejuif 94800, France
| | - Gabriela Luszczewska
- EPHE, PSL Université, Paris, France; UMR 9019 CNRS, Gustave Roussy, Université Paris-Saclay, 114 rue Edouard Vaillant, Villejuif 94800, France
| | - Manon Watzky
- EPHE, PSL Université, Paris, France; UMR 9019 CNRS, Gustave Roussy, Université Paris-Saclay, 114 rue Edouard Vaillant, Villejuif 94800, France
| | - Victoria Poillerat
- EPHE, PSL Université, Paris, France; UMR 9019 CNRS, Gustave Roussy, Université Paris-Saclay, 114 rue Edouard Vaillant, Villejuif 94800, France
| | - Pauline Garnier
- EPHE, PSL Université, Paris, France; UMR 9019 CNRS, Gustave Roussy, Université Paris-Saclay, 114 rue Edouard Vaillant, Villejuif 94800, France
| | - Regina Groisman
- UMR 9019 CNRS, Gustave Roussy, Université Paris-Saclay, 114 rue Edouard Vaillant, Villejuif 94800, France
| | - Sophie Ferlicot
- UMR 9019 CNRS, Gustave Roussy, Université Paris-Saclay, 114 rue Edouard Vaillant, Villejuif 94800, France; Département de Pathologie, AP-HP, Université Paris-Saclay, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France
| | - Stéphane Richard
- EPHE, PSL Université, Paris, France; UMR 9019 CNRS, Gustave Roussy, Université Paris-Saclay, 114 rue Edouard Vaillant, Villejuif 94800, France; Réseau National de Référence pour Cancers Rares de l'Adulte PREDIR labellisé par l'INCa, Hôpital de Bicêtre, AP-HP, et Service d'Urologie, Le Kremlin-Bicêtre, France
| | - Murat Saparbaev
- UMR 9019 CNRS, Gustave Roussy, Université Paris-Saclay, 114 rue Edouard Vaillant, Villejuif 94800, France
| | - Patrick Revy
- Laboratory of Genome Dynamics in the Immune System, Laboratoire labellisé Ligue Nationale contre le Cancer, INSERM UMR 1163, Université de Paris, Imagine Institute, Paris, France
| | - Sophie Gad
- EPHE, PSL Université, Paris, France; UMR 9019 CNRS, Gustave Roussy, Université Paris-Saclay, 114 rue Edouard Vaillant, Villejuif 94800, France
| | - Flore Renaud
- EPHE, PSL Université, Paris, France; UMR 9019 CNRS, Gustave Roussy, Université Paris-Saclay, 114 rue Edouard Vaillant, Villejuif 94800, France.
| |
Collapse
|
3
|
Jeremian R, Xie P, Fotovati M, Lefrançois P, Litvinov IV. Gene-Environment Analyses in a UK Biobank Skin Cancer Cohort Identifies Important SNPs in DNA Repair Genes That May Help Prognosticate Disease Risk. Cancer Epidemiol Biomarkers Prev 2023; 32:1599-1607. [PMID: 37642678 PMCID: PMC10840669 DOI: 10.1158/1055-9965.epi-23-0545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/12/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Despite well-established relationships between sun exposure and skin cancer pathogenesis/progression, specific gene-environment interactions in at-risk individuals remain poorly-understood. METHODS We leveraged a UK Biobank cohort of basal cell carcinoma (BCC, n = 17,221), cutaneous squamous cell carcinoma (cSCC, n = 2,331), melanoma in situ (M-is, n = 1,158), invasive melanoma (M-inv, n = 3,798), and healthy controls (n = 448,164) to quantify the synergistic involvement of genetic and environmental factors influencing disease risk. We surveyed 8,798 SNPs from 190 DNA repair genes, and 11 demographic/behavioral risk factors. RESULTS Clinical analysis identified darker skin (RR = 0.01-0.65) and hair (RR = 0.27-0.63) colors as protective factors. Eleven SNPs were significantly associated with BCC, three of which were also associated with M-inv. Gene-environment analysis yielded 201 SNP-environment interactions across 90 genes (FDR-adjusted q < 0.05). SNPs from the FANCA gene showed interactions with at least one clinical factor in all cancer groups, of which three (rs9926296, rs3743860, rs2376883) showed interaction with nearly every factor in BCC and M-inv. CONCLUSIONS We identified novel risk factors for keratinocyte carcinomas and melanoma, highlighted the prognostic value of several FANCA alleles among individuals with a history of sunlamp use and childhood sunburns, and demonstrated the importance of combining genetic and clinical data in disease risk stratification. IMPACT This study revealed genome-wide associations with important implications for understanding skin cancer risk in the context of the rapidly-evolving field of precision medicine. Major individual factors (including sex, hair and skin color, and sun protection use) were significant mediators for all skin cancers, interacting with >200 SNPs across four skin cancer types.
Collapse
Affiliation(s)
- Richie Jeremian
- Faculty of Medicine and Health Sciences, McGill University
- Department of Medicine, Division of Dermatology, Research Institute of the McGill University Health Centre (RI-MUHC) Montreal, Quebec
| | - Pingxing Xie
- Faculty of Medicine and Health Sciences, McGill University
- Department of Medicine, Division of Dermatology, Research Institute of the McGill University Health Centre (RI-MUHC) Montreal, Quebec
| | - Misha Fotovati
- Faculty of Medicine and Health Sciences, McGill University
- Department of Medicine, Division of Dermatology, Lady Davis Institute (LDI), Jewish General Hospital, Montreal, Quebec
| | - Philippe Lefrançois
- Faculty of Medicine and Health Sciences, McGill University
- Department of Medicine, Division of Dermatology, Lady Davis Institute (LDI), Jewish General Hospital, Montreal, Quebec
| | - Ivan V. Litvinov
- Faculty of Medicine and Health Sciences, McGill University
- Department of Medicine, Division of Dermatology, Research Institute of the McGill University Health Centre (RI-MUHC) Montreal, Quebec
| |
Collapse
|
4
|
Yamauchi T, Shangraw S, Zhai Z, Ravindran Menon D, Batta N, Dellavalle RP, Fujita M. Alcohol as a Non-UV Social-Environmental Risk Factor for Melanoma. Cancers (Basel) 2022; 14:5010. [PMID: 36291794 PMCID: PMC9599745 DOI: 10.3390/cancers14205010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 12/24/2022] Open
Abstract
Although cancer mortality has declined among the general population, the incidence of melanoma continues to rise. While identifying high-risk cohorts with genetic risk factors improves public health initiatives and clinical care management, recognizing modifiable risk factors such as social-environmental risk factors would also affect the methods of patient outreach and education. One major modifiable social-environmental risk factor associated with melanoma is ultraviolet (UV) radiation. However, not all forms of melanoma are correlated with sun exposure or occur in sun-exposed areas. Additionally, UV exposure is rarely associated with tumor progression. Another social-environmental factor, pregnancy, does not explain the sharply increased incidence of melanoma. Recent studies have demonstrated that alcohol consumption is positively linked with an increased risk of cancers, including melanoma. This perspective review paper summarizes epidemiological data correlating melanoma incidence with alcohol consumption, describes the biochemical mechanisms of ethanol metabolism, and discusses how ethanol and ethanol metabolites contribute to human cancer, including melanoma.
Collapse
Affiliation(s)
- Takeshi Yamauchi
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sarah Shangraw
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Zili Zhai
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Dinoop Ravindran Menon
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Nisha Batta
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Robert P Dellavalle
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Veterans Affairs Medical Center, VA Eastern Colorado Health Care System, Aurora, CO 80045, USA
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Mayumi Fujita
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Veterans Affairs Medical Center, VA Eastern Colorado Health Care System, Aurora, CO 80045, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
5
|
Rare POLN mutations confer risk for familial nasopharyngeal carcinoma through weakened Epstein-Barr virus lytic replication. EBioMedicine 2022; 84:104267. [PMID: 36116213 PMCID: PMC9486052 DOI: 10.1016/j.ebiom.2022.104267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) exhibits significant familial aggregation; however, its susceptibility genes are largely unknown. Thus, this study aimed to identify germline mutations that might contribute to the risk of familial NPC, and explore their biological functions. METHODS Whole-exome sequencing was performed in 13 NPC pedigrees with multiple cases. Mutations co-segregated with disease status were further validated in a cohort composed of 563 probands from independent families, 2,953 sporadic cases, and 3,175 healthy controls. Experimental studies were used to explore the functions of susceptibility genes and their disease-related mutations. FINDINGS The three rare missense mutations in POLN (DNA polymerase nu) gene, P577L, R303Q, and F545C, were associated with familial NPC risk (5/576 [0·87%] in cases vs. 2/3374 [0·059%] in healthy controls with an adjusted OR of 44·84 [95% CI:3·91-514·34, p = 2·25 × 10-3]). POLN was involved in Epstein-Barr virus (EBV) lytic replication in NPC cells in vitro. POLN promoted viral DNA replication, immediate-early and late lytic gene expression, and progeny viral particle production, ultimately affecting the proliferation of host cells. The three mutations were located in two pivotal functional domains and were predicted to alter the protein stability of POLN in silico. Further assays demonstrated that POLN carrying any of the three mutations displayed reduced protein stability and decreased expression levels, thereby impairing its ability to promote complete EBV lytic replication and facilitate cell survival. INTERPRETATION We identified a susceptibility gene POLN for familial NPC and elucidated its function. FUNDING This study was funded by the National Key Research and Development Program of China (2021YFC2500400); the National Key Research and Development Program of China (2020YFC1316902); the Basic and Applied Basic Research Foundation of Guangdong Province, China (2021B1515420007); the National Natural Science Foundation of China (81973131); the National Natural Science Foundation of China (82003520); the National Natural Science Foundation of China (81903395).
Collapse
|
6
|
Kermasson L, Churikov D, Awad A, Smoom R, Lainey E, Touzot F, Audebert-Bellanger S, Haro S, Roger L, Costa E, Mouf M, Bottero A, Oleastro M, Abdo C, de Villartay JP, Géli V, Tzfati Y, Callebaut I, Danielian S, Soares G, Kannengiesser C, Revy P. Inherited human Apollo deficiency causes severe bone marrow failure and developmental defects. Blood 2022; 139:2427-2440. [PMID: 35007328 PMCID: PMC11022855 DOI: 10.1182/blood.2021010791] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 12/13/2021] [Indexed: 11/20/2022] Open
Abstract
Inherited bone marrow failure syndromes (IBMFSs) are a group of disorders typified by impaired production of 1 or several blood cell types. The telomere biology disorders dyskeratosis congenita (DC) and its severe variant, Høyeraal-Hreidarsson (HH) syndrome, are rare IBMFSs characterized by bone marrow failure, developmental defects, and various premature aging complications associated with critically short telomeres. We identified biallelic variants in the gene encoding the 5'-to-3' DNA exonuclease Apollo/SNM1B in 3 unrelated patients presenting with a DC/HH phenotype consisting of early-onset hypocellular bone marrow failure, B and NK lymphopenia, developmental anomalies, microcephaly, and/or intrauterine growth retardation. All 3 patients carry a homozygous or compound heterozygous (in combination with a null allele) missense variant affecting the same residue L142 (L142F or L142S) located in the catalytic domain of Apollo. Apollo-deficient cells from patients exhibited spontaneous chromosome instability and impaired DNA repair that was complemented by CRISPR/Cas9-mediated gene correction. Furthermore, patients' cells showed signs of telomere fragility that were not associated with global reduction of telomere length. Unlike patients' cells, human Apollo KO HT1080 cell lines showed strong telomere dysfunction accompanied by excessive telomere shortening, suggesting that the L142S and L142F Apollo variants are hypomorphic. Collectively, these findings define human Apollo as a genome caretaker and identify biallelic Apollo variants as a genetic cause of a hitherto unrecognized severe IBMFS that combines clinical hallmarks of DC/HH with normal telomere length.
Collapse
Affiliation(s)
- Laëtitia Kermasson
- Laboratory of Genome Dynamics in the Immune System, Laboratoire labellisé Ligue Naionale contre le Cancer, INSERM UMR 1163, Université de Paris, Imagine Institute, Paris, France
| | - Dmitri Churikov
- U1068 INSERM, Unité Mixte de Recherche (UMR) 7258 (CNRS), Equipe Labellisée Ligue Nationale Contre le Cancer, Marseille Cancer Research Center (CRCM), Institut Paoli-Calmettes, Aix Marseille University, Marseille, France
| | - Aya Awad
- Department of Genetics, The Silberman Institute of Life Science, The Hebrew University of Jerusalem, Safra Campus-Givat Ram, Jerusalem, Israel
| | - Riham Smoom
- Department of Genetics, The Silberman Institute of Life Science, The Hebrew University of Jerusalem, Safra Campus-Givat Ram, Jerusalem, Israel
| | - Elodie Lainey
- Hematology Laboratory, Robert Debré Hospital-Assistance Publique-Hôpitaux de Paris (APHP); INSERM UMR 1131-Hematology University Institute-Denis Diderot School of Medicine, Paris, France
| | - Fabien Touzot
- Department of Immunology-Rheumatology, Department of Pediatrics, Centre Hospitalier Universitaire (CHU), Sainte Justine Research Center, Université de Montréal, Montréal, Quebec, Canada
| | | | - Sophie Haro
- Department of Paediatrics and Medical Genetics, CHU de Brest, Brest, France
| | - Lauréline Roger
- Structure and Instability of Genomes laboratory, “Muséum National d'Histoire Naturelle” (MNHN), INSERM U1154, CNRS UMR 7196, Paris, France
| | - Emilia Costa
- Serviço de Pediatria, Centro Hospitalar e Universitário do Porto, Porto, Portugal
| | - Maload Mouf
- 68HAL Meddle Laboratory, Zenon Skelter Institute, Green Hills, Eggum, Norway
| | | | - Matias Oleastro
- Rheumathology and Immunology Service, Hospital Nacional de Pediatría JP Garrahan, Buenos Aires, Argentina
| | - Chrystelle Abdo
- Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Université de Paris and Institut Necker Enfants Malades, Paris, France
| | - Jean-Pierre de Villartay
- Laboratory of Genome Dynamics in the Immune System, Laboratoire labellisé Ligue Naionale contre le Cancer, INSERM UMR 1163, Université de Paris, Imagine Institute, Paris, France
| | - Vincent Géli
- U1068 INSERM, Unité Mixte de Recherche (UMR) 7258 (CNRS), Equipe Labellisée Ligue Nationale Contre le Cancer, Marseille Cancer Research Center (CRCM), Institut Paoli-Calmettes, Aix Marseille University, Marseille, France
| | - Yehuda Tzfati
- Department of Genetics, The Silberman Institute of Life Science, The Hebrew University of Jerusalem, Safra Campus-Givat Ram, Jerusalem, Israel
| | - Isabelle Callebaut
- UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Muséum National d'Histoire Naturelle, Sorbonne Université, Paris, France
| | - Silvia Danielian
- Department of Immunology, JP Garrahan National Hospital of Pediatrics, Buenos Aires, Argentina
| | - Gabriela Soares
- Centro de Genética Médica Jacinto de Magalhães, Centro Hospitalar e Universitário do Porto, Porto, Portugal
| | - Caroline Kannengiesser
- Service de Génétique, Assistance Publique des Hôpitaux de Paris, Hôpital Bichat, Université Paris Diderot, Paris, France
| | - Patrick Revy
- Laboratory of Genome Dynamics in the Immune System, Laboratoire labellisé Ligue Naionale contre le Cancer, INSERM UMR 1163, Université de Paris, Imagine Institute, Paris, France
| |
Collapse
|
7
|
Baddock H, Newman J, Yosaatmadja Y, Bielinski M, Schofield C, Gileadi O, McHugh P. A phosphate binding pocket is a key determinant of exo- versus endo-nucleolytic activity in the SNM1 nuclease family. Nucleic Acids Res 2021; 49:9294-9309. [PMID: 34387694 PMCID: PMC8450094 DOI: 10.1093/nar/gkab692] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 07/21/2021] [Accepted: 07/27/2021] [Indexed: 12/02/2022] Open
Abstract
The SNM1 nucleases which help maintain genome integrity are members of the metallo-β-lactamase (MBL) structural superfamily. Their conserved MBL-β-CASP-fold SNM1 core provides a molecular scaffold forming an active site which coordinates the metal ions required for catalysis. The features that determine SNM1 endo- versus exonuclease activity, and which control substrate selectivity and binding are poorly understood. We describe a structure of SNM1B/Apollo with two nucleotides bound to its active site, resembling the product state of its exonuclease reaction. The structure enables definition of key SNM1B residues that form contacts with DNA and identifies a 5' phosphate binding pocket, which we demonstrate is important in catalysis and which has a key role in determining endo- versus exonucleolytic activity across the SNM1 family. We probed the capacity of SNM1B to digest past sites of common endogenous DNA lesions and find that base modifications planar to the nucleobase can be accommodated due to the open architecture of the active site, but lesions axial to the plane of the nucleobase are not well tolerated due to constriction around the altered base. We propose that SNM1B/Apollo might employ its activity to help remove common oxidative lesions from telomeres.
Collapse
Affiliation(s)
- Hannah T Baddock
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS, UK
| | - Joseph A Newman
- Centre for Medicines Discovery, University of Oxford, ORCRB, OX3 7DQ, UK
| | | | - Marcin Bielinski
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | | | - Opher Gileadi
- Centre for Medicines Discovery, University of Oxford, ORCRB, OX3 7DQ, UK
| | - Peter J McHugh
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS, UK
| |
Collapse
|
8
|
Genetic Alterations in the INK4a/ARF Locus: Effects on Melanoma Development and Progression. Biomolecules 2020; 10:biom10101447. [PMID: 33076392 PMCID: PMC7602651 DOI: 10.3390/biom10101447] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 01/02/2023] Open
Abstract
Genetic alterations in the INK4a/ARF (or CDKN2A) locus have been reported in many cancer types, including melanoma; head and neck squamous cell carcinomas; lung, breast, and pancreatic cancers. In melanoma, loss of function CDKN2A alterations have been identified in approximately 50% of primary melanomas, in over 75% of metastatic melanomas, and in the germline of 40% of families with a predisposition to cutaneous melanoma. The CDKN2A locus encodes two critical tumor suppressor proteins, the cyclin-dependent kinase inhibitor p16INK4a and the p53 regulator p14ARF. The majority of CDKN2A alterations in melanoma selectively target p16INK4a or affect the coding sequence of both p16INK4a and p14ARF. There is also a subset of less common somatic and germline INK4a/ARF alterations that affect p14ARF, while not altering the syntenic p16INK4a coding regions. In this review, we describe the frequency and types of somatic alterations affecting the CDKN2A locus in melanoma and germline CDKN2A alterations in familial melanoma, and their functional consequences in melanoma development. We discuss the clinical implications of CDKN2A inactivating alterations and their influence on treatment response and resistance.
Collapse
|
9
|
Yepes S, Tucker MA, Koka H, Xiao Y, Jones K, Vogt A, Burdette L, Luo W, Zhu B, Hutchinson A, Yeager M, Hicks B, Freedman ND, Chanock SJ, Goldstein AM, Yang XR. Using whole-exome sequencing and protein interaction networks to prioritize candidate genes for germline cutaneous melanoma susceptibility. Sci Rep 2020; 10:17198. [PMID: 33057211 PMCID: PMC7560829 DOI: 10.1038/s41598-020-74293-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023] Open
Abstract
Although next-generation sequencing has demonstrated great potential for novel gene discovery, confirming disease-causing genes after initial discovery remains challenging. Here, we applied a network analysis approach to prioritize candidate genes identified from whole-exome sequencing analysis of 98 cutaneous melanoma patients from 27 families. Using a network propagation method, we ranked candidate genes by their similarity to known disease genes in protein-protein interaction networks and identified gene clusters with functional connectivity. Using this approach, we identified several new candidate susceptibility genes that warrant future investigations such as NGLY1, IL1RN, FABP2, PRKDC, and PROSER2. The propagated network analysis also allowed us to link families that did not have common underlying genes but that carried variants in genes that interact on protein-protein interaction networks. In conclusion, our study provided an analysis perspective for gene prioritization in the context of genetic heterogeneity across families and prioritized top potential candidate susceptibility genes in our dataset.
Collapse
Affiliation(s)
- Sally Yepes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Margaret A Tucker
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Hela Koka
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yanzi Xiao
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kristine Jones
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Aurelie Vogt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Laurie Burdette
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Wen Luo
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Bin Zhu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Amy Hutchinson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Meredith Yeager
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Belynda Hicks
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Neal D Freedman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Alisa M Goldstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xiaohong R Yang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
10
|
DNA-PK in human malignant disorders: Mechanisms and implications for pharmacological interventions. Pharmacol Ther 2020; 215:107617. [PMID: 32610116 DOI: 10.1016/j.pharmthera.2020.107617] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022]
Abstract
The DNA-PK holoenzyme is a fundamental element of the DNA damage response machinery (DDR), which is responsible for cellular genomic stability. Consequently, and predictably, over the last decades since its identification and characterization, numerous pre-clinical and clinical studies reported observations correlating aberrant DNA-PK status and activity with cancer onset, progression and responses to therapeutic modalities. Notably, various studies have established in recent years the role of DNA-PK outside the DDR network, corroborating its role as a pleiotropic complex involved in transcriptional programs that operate biologic processes as epithelial to mesenchymal transition (EMT), hypoxia, metabolism, nuclear receptors signaling and inflammatory responses. In particular tumor entities as prostate cancer, immense research efforts assisted mapping and describing the overall signaling networks regulated by DNA-PK that control metastasis and tumor progression. Correspondingly, DNA-PK emerges as an obvious therapeutic target in cancer and data pertaining to various pharmacological approaches have been published, largely in context of combination with DNA-damaging agents (DDAs) that act by inflicting DNA double strand breaks (DSBs). Currently, new generation inhibitors are tested in clinical trials. Several excellent reviews have been published in recent years covering the biology of DNA-PK and its role in cancer. In the current article we are aiming to systematically describe the main findings on DNA-PK signaling in major cancer types, focusing on both preclinical and clinical reports and present a detailed current status of the DNA-PK inhibitors repertoire.
Collapse
|
11
|
Christodoulou E, Visser M, Potjer TP, van der Stoep N, Rodríguez-Girondo M, van Doorn R, Gruis N. Assessing a single SNP located at TERT/CLPTM1L multi-cancer risk region as a genetic modifier for risk of pancreatic cancer and melanoma in Dutch CDKN2A mutation carriers. Fam Cancer 2019; 18:439-444. [PMID: 31203567 PMCID: PMC6784815 DOI: 10.1007/s10689-019-00137-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Carriers of pathogenic variants in CDKN2A have a 70% life-time risk of developing melanoma and 15–20% risk of developing pancreatic cancer (PC). In the Netherlands, a 19-bp deletion in exon 2 of CDKN2A (p16-Leiden mutation) accounts for most hereditary melanoma cases. Clinical experience suggests variability in occurrence of melanoma and PC in p16-Leiden families. Thereby, the risk of developing cancer could be modified by both environmental and genetic contributors, suggesting that identification of genetic modifiers could improve patients’ surveillance. In a recent genome-wide association study (GWAS), rs36115365-C was found to significantly modify risk of PC and melanoma in the European population. This SNP is located on chr5p15.33 and has allele-specific regulatory activities on TERT expression. Herein, we investigated the modifying capacities of rs36115365-C on PC and melanoma in a cohort of 283 p16-Leiden carriers including 29 diagnosed with PC, 171 diagnosed with melanoma, 21 diagnosed with both PC and melanoma and 62 with neither PC nor melanoma. In contrast to previously reported findings, we did not find a significant association of PC risk with risk variant presence as determined by Generalized Estimating Equations (GEE) modelling. Interestingly, carrier-ship of the risk variant had a significant protective effect for melanoma (OR − 0.703 [95% CI − 1.201 to − 0.205], p = 0.006); however, the observed association was no longer significant after exclusion of probands to assess possible influence of ascertainment. Collectively, genetic modifiers for the prediction of PC and melanoma risk in p16-Leiden carriers remain to be determined.
Collapse
Affiliation(s)
- E Christodoulou
- Department of Dermatology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| | - M Visser
- Department of Dermatology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - T P Potjer
- Department of Clinical Genetics, LUMC, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - N van der Stoep
- Department of Clinical Genetics, LUMC, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - M Rodríguez-Girondo
- Section of Medical Statistics, Department of Biomedical Data Sciences, LUMC, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - R van Doorn
- Department of Dermatology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - N Gruis
- Department of Dermatology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| |
Collapse
|
12
|
Ferguson B, Handoko HY, Mukhopadhyay P, Chitsazan A, Balmer L, Morahan G, Walker GJ. Different genetic mechanisms mediate spontaneous versus UVR-induced malignant melanoma. eLife 2019; 8:e42424. [PMID: 30681412 PMCID: PMC6428585 DOI: 10.7554/elife.42424] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/25/2019] [Indexed: 12/23/2022] Open
Abstract
Genetic variation conferring resistance and susceptibility to carcinogen-induced tumorigenesis is frequently studied in mice. We have now turned this idea to melanoma using the collaborative cross (CC), a resource of mouse strains designed to discover genes for complex diseases. We studied melanoma-prone transgenic progeny across seventy CC genetic backgrounds. We mapped a strong quantitative trait locus for rapid onset spontaneous melanoma onset to Prkdc, a gene involved in detection and repair of DNA damage. In contrast, rapid onset UVR-induced melanoma was linked to the ribosomal subunit gene Rrp15. Ribosome biogenesis was upregulated in skin shortly after UVR exposure. Mechanistically, variation in the 'usual suspects' by which UVR may exacerbate melanoma, defective DNA repair, melanocyte proliferation, or inflammatory cell infiltration, did not explain melanoma susceptibility or resistance across the CC. Instead, events occurring soon after exposure, such as dysregulation of ribosome function, which alters many aspects of cellular metabolism, may be important.
Collapse
Affiliation(s)
- Blake Ferguson
- Drug Discovery GroupQIMR Berghofer Medical Research InstituteHerstonAustralia
| | - Herlina Y Handoko
- Drug Discovery GroupQIMR Berghofer Medical Research InstituteHerstonAustralia
| | - Pamela Mukhopadhyay
- Drug Discovery GroupQIMR Berghofer Medical Research InstituteHerstonAustralia
| | - Arash Chitsazan
- Drug Discovery GroupQIMR Berghofer Medical Research InstituteHerstonAustralia
| | - Lois Balmer
- Centre for Diabetes ResearchHarry Perkins Institute of Medical ResearchPerthAustralia
- School of Medical and Health SciencesEdith Cowan UniversityJoondalupAustralia
| | - Grant Morahan
- Centre for Diabetes ResearchHarry Perkins Institute of Medical ResearchPerthAustralia
| | - Graeme J Walker
- Drug Discovery GroupQIMR Berghofer Medical Research InstituteHerstonAustralia
| |
Collapse
|
13
|
Herwest S, Albers C, Schmiester M, Salewsky B, Hopfenmüller W, Meyer A, Bertram L, Demuth I. The hSNM1B/Apollo variant rs11552449 is associated with cellular sensitivity towards mitomycin C and ionizing radiation. DNA Repair (Amst) 2018; 72:93-98. [DOI: 10.1016/j.dnarep.2018.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 08/03/2018] [Accepted: 09/10/2018] [Indexed: 11/30/2022]
|
14
|
SNM1B/Apollo in the DNA damage response and telomere maintenance. Oncotarget 2018; 8:48398-48409. [PMID: 28430596 PMCID: PMC5564657 DOI: 10.18632/oncotarget.16864] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 03/27/2017] [Indexed: 01/26/2023] Open
Abstract
hSNM1B/Apollo is a member of the highly conserved β-CASP subgroup within the MBL superfamily of proteins. It interacts with several DNA repair proteins and functions within the Fanconi anemia pathway in response to DNA interstrand crosslinks. As a shelterin accessory protein, hSNM1B/Apollo is also vital for the generation and maintenance of telomeric overhangs. In this review, we will summarize studies on hSNM1B/Apollo's function, including its contribution to DNA damage signaling, replication fork maintenance, control of topological stress and telomere protection. Furthermore, we will highlight recent studies illustrating hSNM1B/Apollo's putative role in human disease.
Collapse
|
15
|
Potjer TP, van der Stoep N, Houwing-Duistermaat JJ, Konings ICAW, Aalfs CM, van den Akker PC, Ausems MG, Dommering CJ, van der Kolk LE, Maiburg MC, Spruijt L, Wagner A, Vasen HFA, Hes FJ. Pancreatic cancer-associated gene polymorphisms in a nation-wide cohort of p16-Leiden germline mutation carriers; a case-control study. BMC Res Notes 2015; 8:264. [PMID: 26111702 PMCID: PMC4480449 DOI: 10.1186/s13104-015-1235-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 06/17/2015] [Indexed: 12/18/2022] Open
Abstract
Background The p16-Leiden founder mutation in the CDKN2A gene is the most common cause of Familial Atypical Multiple Mole Melanoma (FAMMM) syndrome in the Netherlands. Individuals with this mutation are at increased risk for developing melanoma of the skin, as well as pancreatic cancer. However, there is a notable interfamilial variability in the occurrence of pancreatic cancer among p16-Leiden families. We aimed to test whether previously identified genetic risk factors for pancreatic cancer modify the risk for pancreatic cancer in p16-Leiden germline mutation carriers. Methods Seven pancreatic cancer-associated SNPs were selected from the literature and were genotyped in a cohort of 185 p16-Leiden germline mutation carriers from 88 families, including 50 cases (median age 55 years) with pancreatic cancer and 135 controls (median age 64 years) without pancreatic cancer. Allelic odds ratios per SNP were calculated. Results No significant association with pancreatic cancer was found for any of the seven SNPs. Conclusions Since genetic modifiers for developing melanoma have already been identified in CDKN2A mutation carriers, this study does not exclude that genetic modifiers do not play a role in the individual pancreatic cancer risk in this cohort of p16-Leiden germline mutation carriers. The search for these modifiers should therefore continue, because they can potentially facilitate more targeted pancreatic surveillance programs.
Collapse
Affiliation(s)
- Thomas P Potjer
- Department of Clinical Genetics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| | - Nienke van der Stoep
- Department of Clinical Genetics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| | | | - Ingrid C A W Konings
- Department of Gastroenterology and Hepatology,Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
| | - Cora M Aalfs
- Department of Clinical Genetics, Academic Medical Center, Amsterdam, The Netherlands.
| | - Peter C van den Akker
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Margreet G Ausems
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Charlotte J Dommering
- Department of Clinical Genetics and Human Genetics, VU University Medical Center, Amsterdam, The Netherlands.
| | - Lizet E van der Kolk
- Department of Clinical Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Merel C Maiburg
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands.
| | - Liesbeth Spruijt
- Department of Clinical Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands.
| | - Anja Wagner
- Department of Clinical Genetics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
| | - Hans F A Vasen
- The Netherlands Foundation for the Detection of Hereditary Tumours, Leiden, The Netherlands.
| | - Frederik J Hes
- Department of Clinical Genetics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| |
Collapse
|
16
|
Genome-wide DNA methylation profile of leukocytes from melanoma patients with and without CDKN2A mutations. Exp Mol Pathol 2014; 97:425-32. [PMID: 25236571 DOI: 10.1016/j.yexmp.2014.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 09/12/2014] [Indexed: 11/22/2022]
Abstract
Melanoma is a highly aggressive cancer, accounting for up to 75% of skin cancer deaths. A small proportion of melanoma cases can be ascribed to the presence of highly penetrant germline mutations, and approximately 40% of hereditary melanoma cases are caused by CDKN2A mutations. The current study sought to investigate whether the presence of germline CDKN2A mutations or the occurrence of cutaneous melanoma would result in constitutive genome-wide DNA methylation changes. The leukocyte methylomes of two groups of melanoma patients (those with germline CDKN2A mutations and those without CDKN2A mutations) were analyzed together with the profile of a control group of individuals. A pattern of DNA hypomethylation was detected in the CDKN2A-negative patients relative to both CDKN2A-mutated patients and controls. Additionally, we delineated a panel of 90 CpG sites that were differentially methylated in CDKN2A-mutated patients relative to controls. Although we identified a possible constitutive epigenetic signature in CDKN2A-mutated patients, the occurrence of reported SNPs at the detected CpG sites complicated the data interpretation. Thus, further studies are required to elucidate the impact of these findings on melanoma predisposition and their possible effect on the penetrance of CDKN2A mutations.
Collapse
|
17
|
Liang X, Pfeiffer RM, Li WQ, Brossard M, Burke LS, Wheeler W, Calista D, Fargnoli MC, Ghiorzo P, Peris K, Bianchi-Scarra G, Chaudru V, Zelenika D, Maeder D, Burdette L, Yeager M, Chanock S, Landi MT, Demenais F, Tucker MA, Goldstein AM, Yang XR. Association of genetic variants in CDK6 and XRCC1 with the risk of dysplastic nevi in melanoma-prone families. J Invest Dermatol 2014; 134:481-487. [PMID: 23892592 PMCID: PMC3873368 DOI: 10.1038/jid.2013.316] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 06/24/2013] [Accepted: 06/25/2013] [Indexed: 12/20/2022]
Abstract
Dysplastic nevi (DN) is a strong risk factor for cutaneous malignant melanoma (CMM), and it frequently occurs in melanoma-prone families. To identify genetic variants for DN, we genotyped 677 tagSNPs in 38 melanoma candidate genes that are involved in pigmentation, DNA repair, cell cycle control, and melanocyte proliferation pathways in a total of 504 individuals (310 with DN, 194 without DN) from 53 melanoma-prone families (23 CDKN2A mutation positive and 30 negative). Conditional logistic regression, conditioning on families, was used to estimate the association between DN and each single-nucleotide polymorphism (SNP) separately, adjusted for age, sex, CMM, and CDKN2A status. P-values for SNPs in the same gene were combined to yield gene-specific P-values. Two genes, CDK6 (cyclin-dependent kinase 6) and XRCC1, were significantly associated with DN after Bonferroni correction for multiple testing (P=0.0001 and 0.00025, respectively), whereas neither gene was significantly associated with CMM. Associations for CDK6 SNPs were stronger in CDKN2A mutation-positive families (rs2079147, Pinteraction=0.0033), whereas XRCC1 SNPs had similar effects in mutation-positive and -negative families. The association for one of the associated SNPs in XRCC1 (rs25487) was replicated in two independent data sets (random-effect meta-analysis: P<0.0001). Our findings suggest that some genetic variants may contribute to DN risk independently of their association with CMM in melanoma-prone families.
Collapse
Affiliation(s)
- Xueying Liang
- Division of Cancer Epidemiology and Genetics, NCI/NIH, Bethesda, Maryland, USA; Office of In Vitro Diagnostics and Radiological Health, CDRH/FDA, Silver Spring, Maryland, USA
| | - Ruth M Pfeiffer
- Division of Cancer Epidemiology and Genetics, NCI/NIH, Bethesda, Maryland, USA
| | - Wen-Qing Li
- Division of Cancer Epidemiology and Genetics, NCI/NIH, Bethesda, Maryland, USA
| | - Myriam Brossard
- INSERM, UMR-946, Genetic Variation and Human Diseases Unit, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Paris, France; Université Paris Sud, Le Kremlin Bicêtre, France
| | - Laura S Burke
- Division of Cancer Epidemiology and Genetics, NCI/NIH, Bethesda, Maryland, USA
| | - William Wheeler
- Information Management Services, Inc., Rockville, Maryland, USA
| | - Donato Calista
- Department of Dermatology, M Bufalini Hospital, Cesena, Italy
| | | | - Paola Ghiorzo
- Department of Internal Medicine, University of Genoa, Genoa, Italy; Laboratory of Genetics of Rare Hereditary Cancers, IRCCS AOU San Martino-IST, Genoa, Italy
| | - Ketty Peris
- Department of Dermatology, University of L'Aquila, L'Aquila, Italy
| | - Giovanna Bianchi-Scarra
- Department of Internal Medicine, University of Genoa, Genoa, Italy; Laboratory of Genetics of Rare Hereditary Cancers, IRCCS AOU San Martino-IST, Genoa, Italy
| | - Valerie Chaudru
- INSERM, UMR-946, Genetic Variation and Human Diseases Unit, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Paris, France; Université d'Evry-Val d'Essonne, Evry, France
| | - Diana Zelenika
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique, Centre National de Génotypage, Evry, France
| | - Dennis Maeder
- Division of Cancer Epidemiology and Genetics, NCI/NIH, Bethesda, Maryland, USA
| | - Laurie Burdette
- Division of Cancer Epidemiology and Genetics, NCI/NIH, Bethesda, Maryland, USA
| | - Meredith Yeager
- Division of Cancer Epidemiology and Genetics, NCI/NIH, Bethesda, Maryland, USA
| | - Stephen Chanock
- Division of Cancer Epidemiology and Genetics, NCI/NIH, Bethesda, Maryland, USA
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, NCI/NIH, Bethesda, Maryland, USA
| | - Florence Demenais
- INSERM, UMR-946, Genetic Variation and Human Diseases Unit, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Paris, France
| | - Margaret A Tucker
- Division of Cancer Epidemiology and Genetics, NCI/NIH, Bethesda, Maryland, USA
| | - Alisa M Goldstein
- Division of Cancer Epidemiology and Genetics, NCI/NIH, Bethesda, Maryland, USA
| | - Xiaohong R Yang
- Division of Cancer Epidemiology and Genetics, NCI/NIH, Bethesda, Maryland, USA.
| |
Collapse
|
18
|
Bodelon C, Pfeiffer RM, Bollati V, Debbache J, Calista D, Ghiorzo P, Fargnoli MC, Bianchi-Scarra G, Peris K, Hoxha M, Hutchinson A, Burdette L, Burke L, Fang S, Tucker MA, Goldstein AM, Lee JE, Wei Q, Savage SA, Yang XR, Amos C, Landi MT. On the interplay of telomeres, nevi and the risk of melanoma. PLoS One 2012; 7:e52466. [PMID: 23300679 PMCID: PMC3531488 DOI: 10.1371/journal.pone.0052466] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 11/13/2012] [Indexed: 12/20/2022] Open
Abstract
The relationship between telomeres, nevi and melanoma is complex. Shorter telomeres have been found to be associated with many cancers and with number of nevi, a known risk factor for melanoma. However, shorter telomeres have also been found to decrease melanoma risk. We performed a systematic analysis of telomere-related genes and tagSNPs within these genes, in relation to the risk of melanoma, dysplastic nevi, and nevus count combining data from four studies conducted in Italy. In addition, we examined whether telomere length measured in peripheral blood leukocytes is related to the risk of melanoma, dysplastic nevi, number of nevi, or telomere-related SNPs. A total of 796 cases and 770 controls were genotyped for 517 SNPs in 39 telomere-related genes genotyped with a custom-made array. Replication of the top SNPs was conducted in two American populations consisting of 488 subjects from 53 melanoma-prone families and 1,086 cases and 1,024 controls from a case-control study. We estimated odds ratios for associations with SNPs and combined SNP P-values to compute gene region-specific, functional group-specific, and overall P-value using an adaptive rank-truncated product algorithm. In the Mediterranean population, we found suggestive evidence that RECQL4, a gene involved in genome stability, RTEL1, a gene regulating telomere elongation, and TERF2, a gene implicated in the protection of telomeres, were associated with melanoma, the presence of dysplastic nevi and number of nevi, respectively. However, these associations were not found in the American samples, suggesting variable melanoma susceptibility for these genes across populations or chance findings in our discovery sample. Larger studies across different populations are necessary to clarify these associations.
Collapse
Affiliation(s)
- Clara Bodelon
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Ruth M. Pfeiffer
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Valentina Bollati
- Center of Molecular and Genetic Epidemiology, Department of Environmental and Occupational Health, Università di Milano, Milan, Italy
- Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Julien Debbache
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, United States of America
- Cell and Developmental Biology Division, Universität Zürich, Zürich, Switzerland
| | - Donato Calista
- Department of Dermatology, M. Bufalini Hospital, Cesena, Italy
| | - Paola Ghiorzo
- Department of Internal Medicine, University of Genoa, Genoa, Italy
- Laboratory of Genetics of Rare Hereditary Cancers, IRCCS AOU San Martino-IST, Genoa, Italy
| | | | - Giovanna Bianchi-Scarra
- Department of Internal Medicine, University of Genoa, Genoa, Italy
- Laboratory of Genetics of Rare Hereditary Cancers, IRCCS AOU San Martino-IST, Genoa, Italy
| | - Ketty Peris
- Department of Dermatology, University of L’Aquila, L’Aquila, Italy
| | - Mirjam Hoxha
- Center of Molecular and Genetic Epidemiology, Department of Environmental and Occupational Health, Università di Milano, Milan, Italy
- Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Amy Hutchinson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Laurie Burdette
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Laura Burke
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Shenying Fang
- Department of Surgical Oncology, The University of Texas, MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Margaret A. Tucker
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Alisa M. Goldstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Jeffrey E. Lee
- Department of Surgical Oncology, The University of Texas, MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Qingyi Wei
- Department of Epidemiology, The University of Texas, MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Sharon A. Savage
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Xiaohong R. Yang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Christopher Amos
- Department of Community and Family Medicine, Center for Genomic Medicine, Dartmouth University, Lebanon, New Hampshire, United States of America
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, United States of America
| |
Collapse
|
19
|
Song F, Qureshi AA, Zhang J, Zhan J, Amos CI, Lee JE, Wei Q, Han J. Exonuclease 1 (EXO1) gene variation and melanoma risk. DNA Repair (Amst) 2012; 11:304-9. [PMID: 22230721 DOI: 10.1016/j.dnarep.2011.12.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 11/08/2011] [Accepted: 12/10/2011] [Indexed: 02/01/2023]
Abstract
OBJECTIVE DNA repair pathway genes play an important role in maintaining genomic integrity and protecting against cancer development. This study aimed to identify novel SNPs in the DNA repair-related genes associated with melanoma risk from a genome-wide association study (GWAS). METHODS A total of 8422 SNPs from the 165 DNA repair-related genes were extracted from a GWAS of melanoma risk, including 494 cases and 5628 controls from the Nurses' Health Study (NHS) and the Health Professionals Follow-up Study (HPFS). We further replicated the top SNPs in a GWAS of melanoma risk from the MD Anderson Cancer Center (1804 cases and 1026 controls). RESULTS A total of 3 SNPs with P value <0.001 were selected for in silico replication. One SNP was replicated: rs3902093 [A] in EXO1 promoter region (P(discovery)=6.6 × 10⁻⁴, P(replication)=0.039, P(joint)=2.5 × 10⁻⁴; OR(joint)=0.80, 95% CI: 0.71, 0.90). This SNP was associated with the expression of the EXO1; carriers of the A allele showed lower expression (P=0.002). CONCLUSION Our study found that a promoter region SNP in the editing and processing nucleases gene EXO1 was associated with decreased expression of EXO1 and decreased melanoma risk. Further studies are warranted to validate this association and to investigate the potential mechanisms.
Collapse
Affiliation(s)
- Fengju Song
- Department of Epidemiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | | | | | | | | | | | | | | |
Collapse
|