1
|
Fines C, McCarthy H, Buckley N. The search for a TNBC vaccine: the guardian vaccine. Cancer Biol Ther 2025; 26:2472432. [PMID: 40089851 PMCID: PMC11913391 DOI: 10.1080/15384047.2025.2472432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 03/17/2025] Open
Abstract
Nearly 20 million people are diagnosed with cancer each year with breast cancer being the most common among women. Triple negative breast cancer (TNBC), defined by its no/low expression of ER and PR and lack of amplification of HER2, makes up 15-20% of all breast cancer cases. While patients overall have a higher response to chemotherapy, this subgroup is associated with the lowest survival rate indicating significant clinical and molecular heterogeneity demanding alternate treatment options. Therefore, new therapies have been explored, with a large focus on utilizing the immune system. A whole host of immunotherapies have been studied including immune checkpoint inhibitors, now standard of care for eligible patients, and possibly the most exciting and promising is that of a TNBC vaccine. While currently there are no approved TNBC vaccines, this review highlights many promising studies and points to an antigen, p53, which we believe is highly relevant for TNBC.
Collapse
Affiliation(s)
- Cory Fines
- School of Pharmacy, Queen's University Belfast, Belfast, UK
| | - Helen McCarthy
- School of Pharmacy, Queen's University Belfast, Belfast, UK
| | - Niamh Buckley
- School of Pharmacy, Queen's University Belfast, Belfast, UK
| |
Collapse
|
2
|
Baharom F, Hermans D, Delamarre L, Seder RA. Vax-Innate: improving therapeutic cancer vaccines by modulating T cells and the tumour microenvironment. Nat Rev Immunol 2025; 25:195-211. [PMID: 39433884 DOI: 10.1038/s41577-024-01091-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2024] [Indexed: 10/23/2024]
Abstract
T cells have a critical role in mediating antitumour immunity. The success of immune checkpoint inhibitors (ICIs) for cancer treatment highlights how enhancing endogenous T cell responses can mediate tumour regression. However, mortality remains high for many cancers, especially in the metastatic setting. Based on advances in the genetic characterization of tumours and identification of tumour-specific antigens, individualized therapeutic cancer vaccines targeting mutated tumour antigens (neoantigens) are being developed to generate tumour-specific T cells for improved therapeutic responses. Early clinical trials using individualized neoantigen vaccines for patients with advanced disease had limited clinical efficacy despite demonstrated induction of T cell responses. Therefore, enhancing T cell activity by improving the magnitude, quality and breadth of T cell responses following vaccination is one current goal for improving outcome against metastatic tumours. Another major consideration is how T cells can be further optimized to function within the tumour microenvironment (TME). In this Perspective, we focus on neoantigen vaccines and propose a new approach, termed Vax-Innate, in which vaccination through intravenous delivery or in combination with tumour-targeting immune modulators may improve antitumour efficacy by simultaneously increasing the magnitude, quality and breadth of T cells while transforming the TME into a largely immunostimulatory environment for T cells.
Collapse
Affiliation(s)
| | - Dalton Hermans
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | | | - Robert A Seder
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
3
|
Wang M, Yu F, Zhang Y. Present and future of cancer nano-immunotherapy: opportunities, obstacles and challenges. Mol Cancer 2025; 24:26. [PMID: 39827147 PMCID: PMC11748575 DOI: 10.1186/s12943-024-02214-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/25/2024] [Indexed: 01/22/2025] Open
Abstract
Clinically, multimodal therapies are adopted worldwide for the management of cancer, which continues to be a leading cause of death. In recent years, immunotherapy has firmly established itself as a new paradigm in cancer care that activates the body's immune defense to cope with cancer. Immunotherapy has resulted in significant breakthroughs in the treatment of stubborn tumors, dramatically improving the clinical outcome of cancer patients. Multiple forms of cancer immunotherapy, including immune checkpoint inhibitors (ICIs), adoptive cell therapy and cancer vaccines, have become widely available. However, the effectiveness of these immunotherapies is not much satisfying. Many cancer patients do not respond to immunotherapy, and disease recurrence appears to be unavoidable because of the rapidly evolving resistance. Moreover, immunotherapies can give rise to severe off-target immune-related adverse events. Strategies to remove these hindrances mainly focus on the development of combinatorial therapies or the exploitation of novel immunotherapeutic mediations. Nanomaterials carrying anticancer agents to the target site are considered as practical approaches for cancer treatment. Nanomedicine combined with immunotherapies offers the possibility to potentiate systemic antitumor immunity and to facilitate selective cytotoxicity against cancer cells in an effective and safe manner. A myriad of nano-enabled cancer immunotherapies are currently under clinical investigation. Owing to gaps between preclinical and clinical studies, nano-immunotherapy faces multiple challenges, including the biosafety of nanomaterials and clinical trial design. In this review, we provide an overview of cancer immunotherapy and summarize the evidence indicating how nanomedicine-based approaches increase the efficacy of immunotherapies. We also discuss the key challenges that have emerged in the era of nanotechnology-based cancer immunotherapy. Taken together, combination nano-immunotherapy is drawing increasing attention, and it is anticipated that the combined treatment will achieve the desired success in clinical cancer therapy.
Collapse
Affiliation(s)
- Man Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 38 Dengzhou Road, Qingdao, 266021, China.
| | - Fei Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 38 Dengzhou Road, Qingdao, 266021, China
| | - Yuan Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 38 Dengzhou Road, Qingdao, 266021, China
| |
Collapse
|
4
|
Chai D, Wang X, Fan C, Wang J, Lim JM, Yu X, Young KH, Li Y. Vaccines targeting p53 mutants elicit anti-tumor immunity. Cancer Lett 2024; 611:217421. [PMID: 39740750 DOI: 10.1016/j.canlet.2024.217421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/09/2024] [Accepted: 12/22/2024] [Indexed: 01/02/2025]
Abstract
The p53 tumor suppressor is commonly mutated in cancer; however, there are no effective treatments targeting p53 mutants. A DNA vaccine gWIZ-S237G targeting the p53 S237G mutant, which is highly expressed in A20 murine tumor cells, was developed and administered intramuscularly via electroporation, either alone or in combination with PD-1 blockade. The anti-p53-S237G immunization elicited a robust protective response against subcutaneous A20 tumors and facilitated the infiltration of immune cells including CD8+ T cells, NK cells, and DCs. The vaccine enhanced the induction and maturation of CD11c+, CD103+CD11c+, and CD8+CD11c+ cells, which in turn promoted tumor-specific antibody production, as well as Th1 and CD8+ T cell-mediated immune responses. Several antigenic epitopes of p53-S237G effectively stimulated multifunctional CD8+ T cells to secrete IFN-γ and TNF-α. The vaccine showed long-term anti-tumor effects that were dependent on memory CD8+ T cells. Furthermore, the anti-p53-S237G vaccine exhibited significant protective efficacy in the A20 liver metastasis models. When combined with PD-1 inhibition, the vaccine showed superior inhibition of tumor growth and liver metastasis. Targeting p53 mutants by vaccination represents a potential precision medicine strategy against cancers harboring p53 mutations.
Collapse
Affiliation(s)
- Dafei Chai
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Xu Wang
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Chunmei Fan
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Junhao Wang
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jing Ming Lim
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Xinfang Yu
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ken H Young
- Department of Pathology, Division of Hematopathology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Yong Li
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
5
|
Duan Z, Yang D, Yuan P, Dai X, Chen G, Wu D. Advances, opportunities and challenges in developing therapeutic cancer vaccines. Crit Rev Oncol Hematol 2024; 193:104198. [PMID: 37949152 DOI: 10.1016/j.critrevonc.2023.104198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023] Open
Abstract
Therapeutic cancer vaccines have shown promising efficacy in helping immunotherapy for cancer patients, but the systematic characterization of the clinical application and the method for improving efficacy is lacking. Here, we mainly summarize the classification of therapeutic cancer vaccines, including protein vaccines, nucleic acid vaccines, cellular vaccines and anti-idiotypic antibody vaccines, and subdivide the above vaccines according to different types and delivery forms. Additionally, we outline the clinical efficacy and safety of vaccines, as well as the combination strategies of therapeutic cancer vaccines with other therapies. This review will provide a detailed overview and rationale for the future clinical application and development of therapeutic cancer vaccines.
Collapse
Affiliation(s)
- Zhihui Duan
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Dandan Yang
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Ping Yuan
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiaoming Dai
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Guodong Chen
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Daichao Wu
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
6
|
Bright RK. Preclinical support for tumor protein D52 as a cancer vaccine antigen. Hum Vaccin Immunother 2023; 19:2273699. [PMID: 37904517 PMCID: PMC10760363 DOI: 10.1080/21645515.2023.2273699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/18/2023] [Indexed: 11/01/2023] Open
Abstract
Overexpressed tumor-associated antigens (TAAs) are a large group that includes proteins found at increased levels in tumors compared to healthy cells. Universal tumor expression can be defined as overexpression in all cancers examined as has been shown for Tumor Protein D52. TPD52 is an over expressed TAA actively involved in transformation, leading to increased proliferation and metastasis. TPD52 overexpression has been demonstrated in many human adult and pediatric malignancies. The murine orthologue of TPD52 (mD52) parallels normal tissue expression patterns and known functions of human TPD52 (hD52). Here in we present our preclinical studies over the past 15 years which have demonstrated that vaccine induced immunity against mD52 is effective against multiple cancers in murine models, without inducing autoimmunity against healthy tissues and cells.
Collapse
Affiliation(s)
- Robert K. Bright
- Department of Immunology and Molecular Microbiology, School of Medicine and Cancer Center, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
7
|
Gosens KCM, van der Burg SH, Welters MJP, Boekestijn S, Loof NM, Quint WGV, van Noesel CJM, van der Wal AC, Richel O, Krebber WJTA, Melief CJM, de Vries HJC, Prins JM. Therapeutic Vaccination against Human Papillomavirus Type 16 for the Treatment of High-Grade Anal Intraepithelial Neoplasia in HIV+ Men. Clin Cancer Res 2023; 29:4109-4117. [PMID: 37540563 DOI: 10.1158/1078-0432.ccr-22-3361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/12/2023] [Accepted: 08/02/2023] [Indexed: 08/06/2023]
Abstract
PURPOSE Anal cancer is increasing in HIV+ men who have sex with men (MSM). Treatment options for its precursor, high-grade anal intraepithelial neoplasia (HGAIN), are suboptimal. In this phase I to II dose-finding study, we assessed the safety and efficacy of the human papillomavirus type 16 (HPV16) synthetic long peptide vaccine (SLP-HPV-01) in HIV+ MSM with HPV16-positive HGAIN. PATIENTS AND METHODS Four dosage schedules (1-5-10; 5-10-20; 10-20-40; and 40-40-40-40 μg) of SLP-HPV-01 were administered intradermally with a 3-week interval in 10 patients per dose level (DL). In each dose group, 5 patients also received 1 μg/kg pegylated IFNα-2b subcutaneously. Primary endpoints were safety and regression of HGAIN at 3, 6, and 12 months. RESULTS Eighty-one of 134 screened patients (60%) had HPV16-negative HGAIN lesions, leaving 53 eligible patients. Thirteen patients were excluded, leaving 40 men. The vaccine was well tolerated. One patient developed a generalized rash. The highest dosage level induced the strongest immune responses. There was no indication for stronger reactivity in the IFNα groups. Up to 18 months of follow-up, 8/38 intention-to-treat patients had a complete clinical and histologic response and one had a partial response (in total 9/38, 23.7%). At the highest dosage level, the clinical response was 4/10 (40%). Stronger immune responses were detected among clinical responders. CONCLUSIONS The highest DL is safe, immunogenic, and associated with clinical responses to HPV16-induced lesions. However, as the majority of HGAIN is caused by the other HPV types, further studies should aim at pan-HPV vaccination to prevent or treat HGAIN.
Collapse
Affiliation(s)
- Karien C M Gosens
- Amsterdam UMC, University of Amsterdam, Department of Internal Medicine, Division of Infectious Diseases, Amsterdam, the Netherlands
- Amsterdam UMC, University of Amsterdam, Department of Dermatology, Amsterdam Institute for Infection and Immunity (AI&II), Amsterdam, the Netherlands
| | - Sjoerd H van der Burg
- Leiden University Medical Center, Department of Medical Oncology, Oncode Institute, Leiden, the Netherlands
| | - Marij J P Welters
- Leiden University Medical Center, Department of Medical Oncology, Oncode Institute, Leiden, the Netherlands
| | - Sanne Boekestijn
- Leiden University Medical Center, Department of Medical Oncology, Oncode Institute, Leiden, the Netherlands
| | - Nikki M Loof
- Leiden University Medical Center, Department of Medical Oncology, Oncode Institute, Leiden, the Netherlands
| | - Wim G V Quint
- DDL Diagnostic Laboratory, Rijswijk, the Netherlands
| | - Carel J M van Noesel
- Amsterdam UMC, University of Amsterdam, Department of Pathology, Amsterdam, the Netherlands
| | - Allard C van der Wal
- Amsterdam UMC, University of Amsterdam, Department of Pathology, Amsterdam, the Netherlands
| | - Olivier Richel
- Amsterdam UMC, University of Amsterdam, Department of Internal Medicine, Division of Infectious Diseases, Amsterdam, the Netherlands
- Radboud University Medical Center, Department of Internal Medicine, Nijmegen, the Netherlands
| | | | | | - Henry J C de Vries
- Amsterdam UMC, University of Amsterdam, Department of Dermatology, Amsterdam Institute for Infection and Immunity (AI&II), Amsterdam, the Netherlands
- STI outpatient clinic, Department of Infectious Diseases, Public Health Service of Amsterdam (GGD Amsterdam), Amsterdam, the Netherlands
| | - Jan M Prins
- Amsterdam UMC, University of Amsterdam, Department of Internal Medicine, Division of Infectious Diseases, Amsterdam, the Netherlands
| |
Collapse
|
8
|
Jiang C, Li J, Zhang W, Zhuang Z, Liu G, Hong W, Li B, Zhang X, Chao CC. Potential association factors for developing effective peptide-based cancer vaccines. Front Immunol 2022; 13:931612. [PMID: 35967400 PMCID: PMC9364268 DOI: 10.3389/fimmu.2022.931612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/29/2022] [Indexed: 11/26/2022] Open
Abstract
Peptide-based cancer vaccines have been shown to boost immune systems to kill tumor cells in cancer patients. However, designing an effective T cell epitope peptide-based cancer vaccine still remains a challenge and is a major hurdle for the application of cancer vaccines. In this study, we constructed for the first time a library of peptide-based cancer vaccines and their clinical attributes, named CancerVaccine (https://peptidecancervaccine.weebly.com/). To investigate the association factors that influence the effectiveness of cancer vaccines, these peptide-based cancer vaccines were classified into high (HCR) and low (LCR) clinical responses based on their clinical efficacy. Our study highlights that modified peptides derived from artificially modified proteins are suitable as cancer vaccines, especially for melanoma. It may be possible to advance cancer vaccines by screening for HLA class II affinity peptides may be an effective therapeutic strategy. In addition, the treatment regimen has the potential to influence the clinical response of a cancer vaccine, and Montanide ISA-51 might be an effective adjuvant. Finally, we constructed a high sensitivity and specificity machine learning model to assist in designing peptide-based cancer vaccines capable of providing high clinical responses. Together, our findings illustrate that a high clinical response following peptide-based cancer vaccination is correlated with the right type of peptide, the appropriate adjuvant, and a matched HLA allele, as well as an appropriate treatment regimen. This study would allow for enhanced development of cancer vaccines.
Collapse
Affiliation(s)
- Chongming Jiang
- Department of Medicine, Baylor College of Medicine, Houston TX, United States
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, United States
- *Correspondence: Chongming Jiang, ; Cheng-Chi Chao,
| | - Jianrong Li
- Department of Medicine, Baylor College of Medicine, Houston TX, United States
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, United States
| | - Wei Zhang
- Institute of Super Cell, BGI-Shenzhen, Shenzhen, China
| | | | - Geng Liu
- Institute of Super Cell, BGI-Shenzhen, Shenzhen, China
| | - Wei Hong
- Department of Medicine, Baylor College of Medicine, Houston TX, United States
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, United States
| | - Bo Li
- Institute of Super Cell, BGI-Shenzhen, Shenzhen, China
| | - Xiuqing Zhang
- Institute of Super Cell, BGI-Shenzhen, Shenzhen, China
| | - Cheng-Chi Chao
- Department of Pipeline Development, Biomap, Inc, San Francisco, CA, United States
- *Correspondence: Chongming Jiang, ; Cheng-Chi Chao,
| |
Collapse
|
9
|
In Silico Model Estimates the Clinical Trial Outcome of Cancer Vaccines. Cells 2021; 10:cells10113048. [PMID: 34831269 PMCID: PMC8616443 DOI: 10.3390/cells10113048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 12/22/2022] Open
Abstract
Over 30 years after the first cancer vaccine clinical trial (CT), scientists still search the missing link between immunogenicity and clinical responses. A predictor able to estimate the outcome of cancer vaccine CTs would greatly benefit vaccine development. Published results of 94 CTs with 64 therapeutic vaccines were collected. We found that preselection of CT subjects based on a single matching HLA allele does not increase immune response rates (IRR) compared with non-preselected CTs (median 60% vs. 57%, p = 0.4490). A representative in silico model population (MP) comprising HLA-genotyped subjects was used to retrospectively calculate in silico IRRs of CTs based on the percentage of MP-subjects having epitope(s) predicted to bind ≥ 1–4 autologous HLA allele(s). We found that in vitro measured IRRs correlated with the frequency of predicted multiple autologous allele-binding epitopes (AUC 0.63–0.79). Subgroup analysis of multi-antigen targeting vaccine CTs revealed correlation between clinical response rates (CRRs) and predicted multi-epitope IRRs when HLA threshold was ≥ 3 (r = 0.7463, p = 0.0004) but not for single HLA allele-binding epitopes (r = 0.2865, p = 0.2491). Our results suggest that CRR depends on the induction of broad T-cell responses and both IRR and CRR can be predicted when epitopes binding to multiple autologous HLAs are considered.
Collapse
|
10
|
Zhou S, Fan C, Zeng Z, Young KH, Li Y. Clinical and Immunological Effects of p53-Targeting Vaccines. Front Cell Dev Biol 2021; 9:762796. [PMID: 34805170 PMCID: PMC8595300 DOI: 10.3389/fcell.2021.762796] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/18/2021] [Indexed: 12/11/2022] Open
Abstract
Immunotherapy, including immune checkpoint blockade and chimeric antigen receptor T cells, is one of the most promising approaches to treat cancer. Vaccines have been effective in preventing cancers like liver cancer and cervical cancer with a viral etiology. Instead of preventing disease, therapeutic cancer vaccines mobilize the immune system to attack existing cancer. p53 is dysregulated in the majority of human cancers and is a highly promising target for cancer vaccines. Over twenty clinical trials have targeted p53 in malignant diseases using vaccines. In this work, we review the progress of vaccinations with p53 or its peptides as the antigens and summarize the clinical and immunological effects of p53-targeting vaccines from clinical trials. The delivery platforms include p53 peptides, viral vectors, and dendritic cells pulsed with short peptides or transduced by p53-encoding viruses. These studies shed light on the feasibility, safety, and clinical benefit of p53 vaccination in select groups of patients, implicating that p53-targeting vaccines warrant further investigations in experimental animals and human studies.
Collapse
Affiliation(s)
- Shan Zhou
- Section of Epidemiology and Population Science, Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Chunmei Fan
- Section of Epidemiology and Population Science, Department of Medicine, Baylor College of Medicine, Houston, TX, United States
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, China
| | - Zhaoyang Zeng
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, China
| | - Ken H. Young
- Hematopathology Division, Department of Pathology, Duke University Medical Center, Durham, NC, United States
| | - Yong Li
- Section of Epidemiology and Population Science, Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
11
|
Zaiachuk M, Pryimak N, Kovalchuk O, Kovalchuk I. Cannabinoids, Medical Cannabis, and Colorectal Cancer Immunotherapy. Front Med (Lausanne) 2021; 8:713153. [PMID: 34631734 PMCID: PMC8497796 DOI: 10.3389/fmed.2021.713153] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/24/2021] [Indexed: 12/16/2022] Open
Abstract
Colorectal cancer is a major public health problem. Unfortunately, currently, no effective curative option exists for this type of malignancy. The most promising cancer treatment nowadays is immunotherapy which is also called biological or targeted therapy. This type of therapy boosts the patient's immune system ability to fight the malignant tumor. However, cancer cells may become resistant to immunotherapy and escape immune surveillance by obtaining genetic alterations. Therefore, new treatment strategies are required. In the recent decade, several reports suggest the effectiveness of cannabinoids and Cannabis sativa extracts for inhibiting cancer proliferation in vitro and in vivo, including intestinal malignancies. Cannabinoids were shown to modulate the pathways involved in cell proliferation, angiogenesis, programmed cell death and metastasis. Because of that, they are proposed as adjunct therapy for many malignancies. By far less information exists on the potential of the use of cannabis in combination with immunotherapy. Here, we explore the possibility of the use of cannabinoids for modulation of immunotherapy of colon cancer and discuss possible advantages and limitations.
Collapse
Affiliation(s)
| | | | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
12
|
Melief CJM, Welters MJP, Vergote I, Kroep JR, Kenter GG, Ottevanger PB, Tjalma WAA, Denys H, van Poelgeest MIE, Nijman HW, Reyners AKL, Velu T, Goffin F, Lalisang RI, Loof NM, Boekestijn S, Krebber WJ, Hooftman L, Visscher S, Blumenstein BA, Stead RB, Gerritsen W, van der Burg SH. Strong vaccine responses during chemotherapy are associated with prolonged cancer survival. Sci Transl Med 2021; 12:12/535/eaaz8235. [PMID: 32188726 DOI: 10.1126/scitranslmed.aaz8235] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 02/18/2020] [Indexed: 12/23/2022]
Abstract
Therapeutic cancer vaccines have effectively induced durable regressions of premalignant oncogenic human papilloma virus type 16 (HPV16)-induced anogenital lesions. However, the treatment of HPV16-induced cancers requires appropriate countermeasures to overcome cancer-induced immune suppression. We previously showed that standard-of-care carboplatin/paclitaxel chemotherapy can reduce abnormally high numbers of immunosuppressive myeloid cells in patients, allowing the development of much stronger therapeutic HPV16 vaccine (ISA101)-induced tumor immunity. We now show the clinical effects of ISA101 vaccination during chemotherapy in 77 patients with advanced, recurrent, or metastatic cervical cancer in a dose assessment study of ISA101. Tumor regressions were observed in 43% of 72 evaluable patients. The depletion of myeloid suppressive cells by carboplatin/paclitaxel was associated with detection of low frequency of spontaneous HPV16-specific immunity in 21 of 62 tested patients. Patients mounted type 1 T cell responses to the vaccine across all doses. The group of patients with higher than median vaccine-induced immune responses lived longer, with a flat tail on the survival curve. This demonstrates that chemoimmunotherapy can be exploited to the benefit of patients with advanced cancer based on a defined mode of action.
Collapse
Affiliation(s)
- Cornelis J M Melief
- ISA Pharmaceuticals, J.H. Oortweg 19, 2333 CH Leiden, Netherlands. .,Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| | - Marij J P Welters
- Oncode Institute, Jaarbeursplein 6, 3521 AL Utrecht, Netherlands.,Department of Medical Oncology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| | - Ignace Vergote
- Department of Gynecologic Oncology, University Hospital, Leuven Cancer Institute, UZ Herestraat 49, 3000 Leuven, Belgium
| | - Judith R Kroep
- Department of Medical Oncology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| | - Gemma G Kenter
- Center for Gynecologic Oncology Amsterdam, Plesmanlaan 121, 1066 CX Amsterdam, Netherlands
| | - Petronella B Ottevanger
- Department of Medical Oncology, Nijmegen University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, Netherlands
| | - Wiebren A A Tjalma
- Multidisciplinary Breast Clinic-Unit Gynecological Oncology, Antwerp University Hospital, Wilrijkstraat 10, 2650 Edegem, Belgium
| | - Hannelore Denys
- Department of Medical Oncology, University Hospital, De Pintelaan 185, 9000 Gent, Belgium
| | | | - Hans W Nijman
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, Netherlands
| | - Anna K L Reyners
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, Netherlands
| | - Thierry Velu
- Chirec Cancer Institute, Medical Centre Edith Cavell, Rue Edith Cavell 32, 1180 Brussels, Belgium
| | - Frederic Goffin
- Chirec Cancer Institute, Medical Centre Edith Cavell, Rue Edith Cavell 32, 1180 Brussels, Belgium
| | - Roy I Lalisang
- Department of Medical Oncology, GROW School of Oncology and Developmental Biology, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX Maastricht, Netherlands
| | - Nikki M Loof
- Oncode Institute, Jaarbeursplein 6, 3521 AL Utrecht, Netherlands.,Department of Medical Oncology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| | - Sanne Boekestijn
- Oncode Institute, Jaarbeursplein 6, 3521 AL Utrecht, Netherlands.,Department of Medical Oncology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| | | | - Leon Hooftman
- ISA Pharmaceuticals, J.H. Oortweg 19, 2333 CH Leiden, Netherlands
| | - Sonja Visscher
- ISA Pharmaceuticals, J.H. Oortweg 19, 2333 CH Leiden, Netherlands
| | | | - Richard B Stead
- BioPharma Consulting Services, 691 96th Avenue Southeast, Bellevue, WA 98004, USA
| | - Winald Gerritsen
- Department of Medical Oncology, Nijmegen University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, Netherlands
| | - Sjoerd H van der Burg
- Oncode Institute, Jaarbeursplein 6, 3521 AL Utrecht, Netherlands. .,Department of Medical Oncology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| |
Collapse
|
13
|
Integrating context of tumor biology and vaccine design to shape multidimensional immunotherapies. FUTURE DRUG DISCOVERY 2020. [DOI: 10.4155/fdd-2019-0031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Advances in cancer therapy have offered great promise but only modest clinical benefits as monotherapies to date. Patients usually respond well to therapies targeted at specific mutations, but only for a short time. Conversely, immunotherapies help fewer patients, but increase survival. Combination therapies, which could offer the best of both worlds, are currently limited by substantial toxicity. While recent advances in genomics and proteomics have yielded an unprecedented depth of enabling datasets, it has also shifted the focus toward in silico predictions. Designing the next wave of multidimensional immunotherapies will require leveraging this knowledge while providing a renewed emphasis on tumor biology and vaccine design. This includes careful selection of tumor clinical stage in the context of pre-existing tumor microenvironments, target antigen and technology platform selections to maximize their effect, and treatment staging. Here, we review strategies on how to approach an increasingly complex landscape of immunotherapeutic agents for use in combination therapies.
Collapse
|
14
|
Improved Antitumor Efficacy of Combined Vaccine Based on the Induced HUVECs and DC-CT26 Against Colorectal Carcinoma. Cells 2019; 8:cells8050494. [PMID: 31121964 PMCID: PMC6562839 DOI: 10.3390/cells8050494] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 12/24/2022] Open
Abstract
Angiogenesis is essential for the development, growth, and metastasis of solid tumors. Vaccination with viable human umbilical vein endothelial cells (HUVECs) has been used for antitumor angiogenesis. However, the limited immune response induced by HUVECs hinders their clinical application. In the present study, we found that HUVECs induced by a tumor microenvironment using the supernatant of murine CT26 colorectal cancer cells exerted a better antiangiogenic effect than HUVECs themselves. The inhibitory effect on tumor growth in the induced HUVEC group was significantly better than that of the HUVEC group, and the induced HUVEC group showed a strong inhibition in CD31-positive microvessel density in the tumor tissues. Moreover, the level of anti-induced HUVEC membrane protein antibody in mouse serum was profoundly higher in the induced HUVEC group than in the HUVEC group. Based on this, the antitumor effect of a vaccine with a combination of induced HUVECs and dendritic cell-loading CT26 antigen (DC-CT26) was evaluated. Notably, the microvessel density of tumor specimens was significantly lower in the combined vaccine group than in the control groups. Furthermore, the spleen index, the killing effect of cytotoxic T lymphocytes (CTLs), and the concentration of interferon-γ in the serum were enhanced in the combined vaccine group. Based on these results, the combined vaccine targeting both tumor angiogenesis and tumor cells may be an attractive and effective cancer immunotherapy strategy.
Collapse
|
15
|
Abstract
With the spotlight on cancer immunotherapy and the expanding use of immune checkpoint inhibitors, strategies to improve the response rate and duration of current cancer immunotherapeutics are highly sought. In that sense, investigators around the globe have been putting spurs on the development of effective cancer vaccines in humans after decades of efforts that led to limited clinical success. In more than three decades of research in pursuit of targeted and personalized immunotherapy, several platforms have been incorporated into the list of cancer vaccines from live viral or bacterial agents harboring antigens to synthetic peptides with the hope of stronger and durable immune responses that will tackle cancers better. Unlike adoptive cell therapy, cancer vaccines can take advantage of using a patient's entire immune system that can include more than engineered receptors or ligands in developing antigen-specific responses. Advances in molecular technology also secured the use of genetically modified genes or proteins of interest to enhance the chance of stronger immune responses. The formulation of vaccines to increase chances of immune recognition such as nanoparticles for peptide delivery is another area of great interest. Studies indicate that cancer vaccines alone may elicit tumor-specific cellular or humoral responses in immunologic assays and even regression or shrinkage of the cancer in select trials, but novel strategies, especially in combination with other cancer therapies, are under study and are likely to be critical to achieve and optimize reliable objective responses and survival benefit. In this review, cancer vaccine platforms with different approaches to deliver tumor antigens and boost immunity are discussed with the intention of summarizing what we know and what we need to improve in the clinical trial setting.
Collapse
Affiliation(s)
- Hoyoung M. Maeng
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jay A. Berzofsky
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
16
|
Gornati L, Zanoni I, Granucci F. Dendritic Cells in the Cross Hair for the Generation of Tailored Vaccines. Front Immunol 2018; 9:1484. [PMID: 29997628 PMCID: PMC6030256 DOI: 10.3389/fimmu.2018.01484] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/14/2018] [Indexed: 12/14/2022] Open
Abstract
Vaccines represent the discovery of utmost importance for global health, due to both prophylactic action to prevent infections and therapeutic intervention in neoplastic diseases. Despite this, current vaccination strategies need to be refined to successfully generate robust protective antigen-specific memory immune responses. To address this issue, one possibility is to exploit the high efficiency of dendritic cells (DCs) as antigen-presenting cells for T cell priming. DCs functional plasticity allows shaping the outcome of immune responses to achieve the required type of immunity. Therefore, the choice of adjuvants to guide and sustain DCs maturation, the design of multifaceted vehicles, and the choice of surface molecules to specifically target DCs represent the key issues currently explored in both preclinical and clinical settings. Here, we review advances in DCs-based vaccination approaches, which exploit direct in vivo DCs targeting and activation options. We also discuss the recent findings for efficient antitumor DCs-based vaccinations and combination strategies to reduce the immune tolerance promoted by the tumor microenvironment.
Collapse
Affiliation(s)
- Laura Gornati
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Ivan Zanoni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.,Division of Gastroenterology, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Francesca Granucci
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
17
|
Kastenhuber ER, Lowe SW. Putting p53 in Context. Cell 2017; 170:1062-1078. [PMID: 28886379 DOI: 10.1016/j.cell.2017.08.028] [Citation(s) in RCA: 1350] [Impact Index Per Article: 168.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/09/2017] [Accepted: 08/15/2017] [Indexed: 02/06/2023]
Abstract
TP53 is the most frequently mutated gene in human cancer. Functionally, p53 is activated by a host of stress stimuli and, in turn, governs an exquisitely complex anti-proliferative transcriptional program that touches upon a bewildering array of biological responses. Despite the many unveiled facets of the p53 network, a clear appreciation of how and in what contexts p53 exerts its diverse effects remains unclear. How can we interpret p53's disparate activities and the consequences of its dysfunction to understand how cell type, mutation profile, and epigenetic cell state dictate outcomes, and how might we restore its tumor-suppressive activities in cancer?
Collapse
Affiliation(s)
- Edward R Kastenhuber
- Department of Cancer Biology and Genetics, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Scott W Lowe
- Department of Cancer Biology and Genetics, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Howard Hughes Medical Institute, New York, NY 10065, USA.
| |
Collapse
|
18
|
Abstract
Immunotherapy using dendritic cell (DC)-based vaccination is an approved approach for harnessing the potential of a patient's own immune system to eliminate tumor cells in metastatic hormone-refractory cancer. Overall, although many DC vaccines have been tested in the clinic and proven to be immunogenic, and in some cases associated with clinical outcome, there remains no consensus on how to manufacture DC vaccines. In this review we will discuss what has been learned thus far about human DC biology from clinical studies, and how current approaches to apply DC vaccines in the clinic could be improved to enhance anti-tumor immunity.
Collapse
|
19
|
Pardieck IN, Jawahier PA, Swets M, van de Velde CJH, Kuppen PJK. Novel avenues in immunotherapies for colorectal cancer. Expert Rev Gastroenterol Hepatol 2016; 10:465-80. [PMID: 26582071 DOI: 10.1586/17474124.2016.1122522] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Since it is known that the immune system affects tumor growth, it has been studied if immunotherapy can be developed to combat cancer. While some successes have been claimed, the increasing knowledge on tumor-immune interactions has, however, also shown the limitations of this approach. Tumors may show selective outgrowth of cells escaped from immune control. Escape variants arise spontaneously due to the genetically instable nature of tumor cells. This is one of the most obvious limitations of cancer immunotherapy. However, new therapies are becoming available, designed to respond to tumor-immune escape.
Collapse
Affiliation(s)
- Iris N Pardieck
- a Department of Surgery , Leiden University Medical Center , Leiden , The Netherlands
| | - Priscilla A Jawahier
- a Department of Surgery , Leiden University Medical Center , Leiden , The Netherlands
| | - Marloes Swets
- a Department of Surgery , Leiden University Medical Center , Leiden , The Netherlands
| | | | - Peter J K Kuppen
- a Department of Surgery , Leiden University Medical Center , Leiden , The Netherlands
| |
Collapse
|
20
|
A phase I study of recombinant (r) vaccinia-CEA(6D)-TRICOM and rFowlpox-CEA(6D)-TRICOM vaccines with GM-CSF and IFN-α-2b in patients with CEA-expressing carcinomas. Cancer Immunol Immunother 2016; 65:1353-1364. [PMID: 27581603 DOI: 10.1007/s00262-016-1893-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 08/25/2016] [Indexed: 12/22/2022]
Abstract
Prime-boost vaccination with recombinant (r) vaccinia(V)-CEA(6D)-TRICOM (triad of co-stimulatory molecules B7.1, ICAM-1 and LFA-3) and rFowlpox(F)-CEA(6D)-TRICOM infect antigen-presenting cells and direct expression of co-stimulatory molecules. We hypothesized that co-administration of vaccine with GM-CSF and interferon alpha (IFN-α) would have efficacy in CEA-expressing cancers. Patients with CEA-expressing cancers received the rV-CEA(6D)-TRICOM vaccine subcutaneously (s.c.) on day 1 followed by GM-CSF s.c. to the injection site on days 1-4. In Cycle 1, patients received thrice weekly s.c. injections of IFN-α-2b the week after rV-CEA(6D)-TRICOM. In Cycles 2-4, patients received thrice weekly s.c. injections of IFN-α-2b the same week that rF-CEA(6D)-TRICOM was given. The first cohort received no IFN followed by dose escalation of IFN-α in subsequent cohorts. Thirty-three patients were accrued (mean 59.8 years). Grade 3 toxicities included fatigue and hyperglycemia. Grade 4-5 adverse events (unrelated to treatment) were confusion (1), elevated aspartate transaminase (AST)/alanine transaminase (ALT) (1), and sudden death (1). No patients had a partial response, and eight patients exhibited stable disease of ≥3 months. Median progression-free survival and overall survival (OS) were 1.8 and 6.3 months, respectively. Significantly higher serum CD27 levels were observed after vaccine therapy (p = 0.006 post 1-2 cycles, p = 0.003 post 3 cycles, p = 0.03 post 4-7 cycles) and 42 % of patients assayed developed CEA-specific T cell responses. Pre-treatment levels of myeloid-derived suppressor cells correlated with overall survival (p = 0.04). Administration of IFN-α led to significantly increased OS (p = 0.02) compared to vaccine alone. While the vaccine regimen produced no clinical responses, IFN-α administration was associated with improved survival.
Collapse
|
21
|
Type I Interferons Interfere with the Capacity of mRNA Lipoplex Vaccines to Elicit Cytolytic T Cell Responses. Mol Ther 2016; 24:2012-2020. [PMID: 27506450 DOI: 10.1038/mt.2016.161] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 07/28/2016] [Indexed: 12/12/2022] Open
Abstract
Given their high potential to evoke cytolytic T cell responses, tumor antigen-encoding messenger RNA (mRNA) vaccines are now being intensively explored as therapeutic cancer vaccines. mRNA vaccines clearly benefit from wrapping the mRNA into nano-sized carriers such as lipoplexes that protect the mRNA from degradation and increase its uptake by dendritic cells in vivo. Nevertheless, the early innate host factors that regulate the induction of cytolytic T cells to mRNA lipoplex vaccines have remained unresolved. Here, we demonstrate that mRNA lipoplexes induce a potent type I interferon (IFN) response upon subcutaneous, intradermal and intranodal injection. Regardless of the route of immunization applied, these type I IFNs interfered with the generation of potent cytolytic T cell responses. Most importantly, blocking type I IFN signaling at the site of immunization through the use of an IFNAR blocking antibody greatly enhanced the prophylactic and therapeutic antitumor efficacy of mRNA lipoplexes in the highly aggressive B16 melanoma model. As type I IFN induction appears to be inherent to the mRNA itself rather than to unique properties of the mRNA lipoplex formulation, preventing type I IFN induction and/or IFNAR signaling at the site of immunization might constitute a widely applicable strategy to improve the potency of mRNA vaccination.
Collapse
|
22
|
Dijkgraaf EM, Santegoets SJAM, Reyners AKL, Goedemans R, Nijman HW, van Poelgeest MIE, van Erkel AR, Smit VTHBM, Daemen TAHH, van der Hoeven JJM, Melief CJM, Welters MJP, Kroep JR, van der Burg SH. A phase 1/2 study combining gemcitabine, Pegintron and p53 SLP vaccine in patients with platinum-resistant ovarian cancer. Oncotarget 2016; 6:32228-43. [PMID: 26334096 PMCID: PMC4741673 DOI: 10.18632/oncotarget.4772] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/03/2015] [Indexed: 11/25/2022] Open
Abstract
Purpose Preclinical tumor models show that chemotherapy has immune modulatory properties which can be exploited in the context of immunotherapy. The purpose of this study was to determine the feasibility and immunogenicity of combinations of such an immunomodulatory chemotherapeutic agent with immunotherapy, p53 synthetic long peptide (SLP) vaccine and Pegintron (IFN-α) in patients with platinum-resistant p53-positive epithelial ovarian cancer (EOC). Experimental design This is a phase 1/2 trial in which patients sequential 6 cycles of gemcitabine (1000 mg/kg2 iv; n = 3), gemcitabine with Pegintron before and after the first gemcitabine cycle (Pegintron 1 μg/kg sc; n = 6), and gemcitabine and Pegintron combined with p53 SLP vaccine (0.3 mg/peptide, 9 peptides; n = 6). At baseline, 22 days after the 2nd and 6th cycle, blood was collected for immunomonitoring. Toxicity, CA-125, and radiologic response were evaluated after 3 and 6 cycles of chemotherapy. Results None of the patients enrolled experienced dose-limiting toxicity. Predominant grade 3/4 toxicities were nausea/vomiting and dyspnea. Grade 1/2 toxicities consisted of fatigue (78%) and Pegintron-related flu-like symptoms (72%). Gemcitabine reduced myeloid-derived suppressor cells (p = 0.0005) and increased immune-supportive M1 macrophages (p = 0.04). Combination of gemcitabine and Pegintron stimulated higher frequencies of circulating proliferating CD4+ and CD8+ T-cells but not regulatory T-cells. All vaccinated patients showed strong vaccine-induced p53-specific T-cell responses. Conclusion Combination of gemcitabine, the immune modulator Pegintron and therapeutic peptide vaccination is a viable approach in the development of combined chemo-immunotherapeutic regimens to treat cancer.
Collapse
Affiliation(s)
- Eveline M Dijkgraaf
- Department of Medical Oncology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Saskia J A M Santegoets
- Department of Medical Oncology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - An K L Reyners
- Department of Clinical Oncology, University Medical Center Groningen, University of Groningen, 9713 GZ, Groningen, The Netherlands
| | - Renske Goedemans
- Department of Medical Oncology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Hans W Nijman
- Department of Gynecologic Oncology, University Medical Center Groningen, University of Groningen, 9713 GZ, Groningen, The Netherlands
| | | | - Arien R van Erkel
- Department of Radiology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Vincent T H B M Smit
- Department of Pathology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Toos A H H Daemen
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, 9713 GZ, Groningen, The Netherlands
| | | | - Cornelis J M Melief
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Marij J P Welters
- Department of Medical Oncology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Judith R Kroep
- Department of Medical Oncology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Sjoerd H van der Burg
- Department of Medical Oncology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| |
Collapse
|
23
|
Ohtake J, Wada S, Yada E, Fujimoto Y, Uchiyama H, Yoshida S, Itoh K, Sasada T. Personalized immunotherapy in colorectal cancer. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2016. [DOI: 10.1080/23808993.2016.1174060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
van der Burg SH, Arens R, Ossendorp F, van Hall T, Melief CJM. Vaccines for established cancer: overcoming the challenges posed by immune evasion. Nat Rev Cancer 2016; 16:219-33. [PMID: 26965076 DOI: 10.1038/nrc.2016.16] [Citation(s) in RCA: 510] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Therapeutic vaccines preferentially stimulate T cells against tumour-specific epitopes that are created by DNA mutations or oncogenic viruses. In the setting of premalignant disease, carcinoma in situ or minimal residual disease, therapeutic vaccination can be clinically successful as monotherapy; however, in established cancers, therapeutic vaccines will require co-treatments to overcome immune evasion and to become fully effective. In this Review, we discuss the progress that has been made in overcoming immune evasion controlled by tumour cell-intrinsic factors and the tumour microenvironment. We summarize how therapeutic benefit can be maximized in patients with established cancers by improving vaccine design and by using vaccines to increase the effects of standard chemotherapies, to establish and/or maintain tumour-specific T cells that are re-energized by checkpoint blockade and other therapies, and to sustain the antitumour response of adoptively transferred T cells.
Collapse
Affiliation(s)
| | - Ramon Arens
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Ferry Ossendorp
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | | | - Cornelis J M Melief
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
- ISA Pharmaceuticals, J. H. Oortweg 19, 2333 CH, Leiden, The Netherlands
| |
Collapse
|
25
|
Abstract
Overexpressed tumor-self antigens represent the largest group of candidate vaccine targets. Those exhibiting a role in oncogenesis may be some of the least studied but perhaps most promising. This review considers this subset of self antigens by highlighting vaccine efforts for some of the better known members and focusing on TPD52, a new promising vaccine target. We shed light on the importance of both preclinical and clinical vaccine studies demonstrating that tolerance and autoimmunity (presumed to preclude this class of antigens from vaccine development) can be overcome and do not present the obstacle that might have been expected. The potential of this class of antigens for broad application is considered, possibly in the context of low tumor burden or adjuvant therapy, as is the need to understand mechanisms of tolerance that are relatively understudied.
Collapse
Key Words
- ALK, Anaplastic lymphoma kinase
- AR, androgen receptor
- CTL, cytotoxic T lymphocyte
- CTLA-4, cytotoxic T lymphocyte-associated antigen 4
- HLA, human leukocyte antigen
- Her-2/neu, human epithelial growth factor receptor 2
- ODN, oligodeoxynucleotide
- Overexpressed tumor-self antigen
- TAA, tumor associated antigen
- TPD52
- TRAMP, Transgenic adenocarcinoma of the mouse prostate
- Treg, T regulatory cell
- VEGFR2, vascular endothelial growth factor receptor 2
- WT-1, Wilms tumor-1
- hD52
- hD52, human TPD52
- mD52
- mD52, murine TPD52
- oncogenic
- shared
- tumor protein D52
- universal
- vaccine
Collapse
Affiliation(s)
- Robert K Bright
- a Department of Immunology and Molecular Microbiology and the TTUHSC Cancer Center ; Texas Tech University Health Sciences Center ; Lubbock , TX USA
| | | | | |
Collapse
|
26
|
Liu FF. Colorectal cancer immunotherapy: Current clinical studies and prospect of clinical application. Shijie Huaren Xiaohua Zazhi 2015; 23:4464-4472. [DOI: 10.11569/wcjd.v23.i28.4464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer is a type of malignant gastrointestinal cancer with a high incidence rate. Current treatments, mostly surgery and chemotherapy, have not improved the 5-year survival rate of the patients significantly. About one-third of patients died of metastatic colorectal cancer eventually. Cancer immunotherapy has received more and more attention in recent years and become a hot research topic. Immunotherapy includes a variety of methods with an aim at improving the patient's own immune system and anti-tumor ability to control and kill tumor cells by the use of modern bio-technology. It has become the fourth form of cancer treatment after surgery, radiotherapy and chemotherapy. This paper expounds the types of tumor immunotherapy, their applications in colorectal cancer, and the advantages and disadvantages of different methods of immunotherapy. In particular, we discuss the relationship between inflammation microenvironment and immunotherapy, and the relationship between chemotherapy, radiation and immunotherapy in colorectal cancer. Immunotherapy may become an important component of individualized treatment for colorectal cancer in the near future.
Collapse
|
27
|
Dijkgraaf EM, Santegoets SJAM, Reyners AKL, Goedemans R, Wouters MCA, Kenter GG, van Erkel AR, van Poelgeest MIE, Nijman HW, van der Hoeven JJM, Welters MJP, van der Burg SH, Kroep JR. A phase I trial combining carboplatin/doxorubicin with tocilizumab, an anti-IL-6R monoclonal antibody, and interferon-α2b in patients with recurrent epithelial ovarian cancer. Ann Oncol 2015. [PMID: 26216383 DOI: 10.1093/annonc/mdv309] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
MESH Headings
- Adenocarcinoma, Clear Cell/blood
- Adenocarcinoma, Clear Cell/drug therapy
- Adenocarcinoma, Clear Cell/pathology
- Adenocarcinoma, Mucinous/blood
- Adenocarcinoma, Mucinous/drug therapy
- Adenocarcinoma, Mucinous/pathology
- Adult
- Aged
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Biomarkers, Tumor/blood
- CA-125 Antigen/blood
- Carboplatin/administration & dosage
- Cystadenocarcinoma, Serous/blood
- Cystadenocarcinoma, Serous/drug therapy
- Cystadenocarcinoma, Serous/pathology
- Dose-Response Relationship, Drug
- Doxorubicin/administration & dosage
- Doxorubicin/analogs & derivatives
- Endometrial Neoplasms/blood
- Endometrial Neoplasms/drug therapy
- Endometrial Neoplasms/pathology
- Enzyme-Linked Immunosorbent Assay
- Female
- Follow-Up Studies
- Humans
- Interferon alpha-2
- Interferon-alpha/administration & dosage
- Interferon-gamma/blood
- Interleukin-6/blood
- Middle Aged
- Neoplasm Invasiveness
- Neoplasm Recurrence, Local/blood
- Neoplasm Recurrence, Local/drug therapy
- Neoplasm Recurrence, Local/pathology
- Neoplasm Staging
- Ovarian Neoplasms/blood
- Ovarian Neoplasms/drug therapy
- Ovarian Neoplasms/pathology
- Polyethylene Glycols/administration & dosage
- Prognosis
- Receptors, Interleukin-6/antagonists & inhibitors
- Recombinant Proteins/administration & dosage
Collapse
Affiliation(s)
- E M Dijkgraaf
- Department of Clinical Oncology, Leiden University Medical Center, Leiden
| | - S J A M Santegoets
- Department of Clinical Oncology, Leiden University Medical Center, Leiden
| | | | - R Goedemans
- Department of Clinical Oncology, Leiden University Medical Center, Leiden
| | - M C A Wouters
- Department of Gynecologic Oncology, University Medical Center Groningen, Groningen
| | - G G Kenter
- Department of Gynecologic Oncology, Center for Gynecological Oncology Amsterdam, Amsterdam
| | | | - M I E van Poelgeest
- Department of Gynecology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | - M J P Welters
- Department of Clinical Oncology, Leiden University Medical Center, Leiden
| | - S H van der Burg
- Department of Clinical Oncology, Leiden University Medical Center, Leiden
| | - J R Kroep
- Department of Clinical Oncology, Leiden University Medical Center, Leiden
| |
Collapse
|
28
|
Patel SP, Osada T, Lyerly HK, Morse MA. Designing effective vaccines for colorectal cancer. Immunotherapy 2015; 6:913-26. [PMID: 25313570 DOI: 10.2217/imt.14.61] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Achieving long-term control of colorectal cancers with therapeutic vaccines that generate potent anti-tumor T cell and antibody responses has been a goal for more than two decades. To date, clinical trials of these vaccines have demonstrated induction of immune responses, but clinical benefit has been limited. Improved vector delivery systems with enhanced immunostimulatory properties, decreased immunogenicity against vector and improved antigen presentation are some of the key features of modern tumor vaccines. Furthermore, an improved understanding of the various immunosuppressive factors in the tumor microenvironment and regional lymph nodes, coupled with a burgeoning ability to impair inhibitory immune synapses, highlights a growing opportunity to induce beneficial antigen-specific responses against tumor. The combination of improved antigenic delivery systems, coupled with therapeutic immune activation, represents state-of-the-art colorectal vaccine design concepts with the goal of augmenting immune responses against tumor and improving clinical outcomes.
Collapse
Affiliation(s)
- Sandip P Patel
- UCSD Moores Cancer Center, Division of Medical Oncology, Cancer Immunotherapy Program, 3855 Health Sciences Drive #0987, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
29
|
Markman JL, Shiao SL. Impact of the immune system and immunotherapy in colorectal cancer. J Gastrointest Oncol 2015; 6:208-23. [PMID: 25830040 DOI: 10.3978/j.issn.2078-6891.2014.077] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 08/20/2014] [Indexed: 12/12/2022] Open
Abstract
The development of cancer is a multi-step process involving the gradual loss of regulation over the growth and functional capabilities of normal cells. Much research has been focused on the numerous cell intrinsic factors that govern this process; however, recent attention has turned to understanding the cell extrinsic factors in the tumor microenvironment that appear equally critical to the progression and treatment of cancer. One critical component of the tumor microenvironment is the immune system and it has become increasingly evident that the immune system plays an integral role in preventing and promoting the development of cancer. Understanding the immune cell types and pathways involved in this process has enabled the development of novel biomarkers for prognosis and accelerated the development of immune-based therapeutics, both of which have the potential to forever change the treatment paradigms for colorectal cancer (CRC). In this review, we discuss the impact of the immune system on the initiation, progression and treatment of cancer, specifically focusing on CRC.
Collapse
Affiliation(s)
- Janet L Markman
- 1 Department of Biomedical Sciences, 2 Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Stephen L Shiao
- 1 Department of Biomedical Sciences, 2 Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
30
|
Rosenthal KS, Mikecz K, Steiner HL, Glant TT, Finnegan A, Carambula RE, Zimmerman DH. Rheumatoid arthritis vaccine therapies: perspectives and lessons from therapeutic ligand epitope antigen presentation system vaccines for models of rheumatoid arthritis. Expert Rev Vaccines 2015; 14:891-908. [PMID: 25787143 DOI: 10.1586/14760584.2015.1026330] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The current status of therapeutic vaccines for autoimmune diseases is reviewed with rheumatoid arthritis as the focus. Therapeutic vaccines for autoimmune diseases must regulate or subdue responses to common self-antigens. Ideally, such a vaccine would initiate an antigen-specific modulation of the T-cell immune response that drives the inflammatory disease. Appropriate animal models and types of T helper cells and signature cytokine responses that drive autoimmune disease are also discussed. Interpretation of these animal models must be done cautiously because the means of initiation, autoantigens, and even the signature cytokine and T helper cell (Th1 or Th17) responses that are involved in the disease may differ significantly from those in humans. We describe ligand epitope antigen presentation system vaccine modulation of T-cell autoimmune responses as a strategy for the design of therapeutic vaccines for rheumatoid arthritis, which may also be effective in other autoimmune conditions.
Collapse
|
31
|
Poly-(lactic-co-glycolic-acid)-based particulate vaccines: Particle uptake by dendritic cells is a key parameter for immune activation. Vaccine 2015; 33:847-54. [DOI: 10.1016/j.vaccine.2014.12.059] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/19/2014] [Accepted: 12/22/2014] [Indexed: 11/22/2022]
|
32
|
Bi DM, Dong YL, Wu JP, Wang XN, Hu EB, Zheng JG, Liu NN. Expression of Caspase3, P53 and Ki-67 in colon cancer and colon adenoma. Shijie Huaren Xiaohua Zazhi 2015; 23:510-514. [DOI: 10.11569/wcjd.v23.i3.510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the expression of Caspase3, P53 and Ki-67 in colon cancer and colon adenoma.
METHODS: The expression of Caspase3, P53 and Ki-67 in 100 colon cancer tissues and 100 colon adenoma tissues was detected by immunohistochemistry. Correlations between Caspase3, P53 and Ki-67 expression and between their expression and clincopatholgical parameters were investigated using Spearman correlation analysis.
RESULTS: The expression of Caspase3, P53 and Ki-67 had no significant correlation with age, sex, tumor differentiation or infiltration (P > 0.05). The positive expression rates of Caspase3, P53 and Ki-67 differed significantly between the lymph node metastasis group (18.18%, 31.82%, and 90.91%, respectively) and non-lymph node metastasis group (52.56%, 89.74%, and 61.54%, respectively) and between Duke's stage A-B (52.56%, 89.74%, and 61.54%, respectively) and C-D (18.18%, 31.82%, and 90.91%, respectively) (P < 0.05). The positive expression rates of Caspase3, P53 and Ki-67 were 45.00%, 77.00% and 68.00%, respectively, in colon cancer tissues and 83.00%, 49.00% and 26.00%, respectively, in adenoma tissues (P < 0.01). The expression of P53 was positively correlated with that of Caspase3 (r = 0.315, P < 0.01), but negatively correlated with that of Ki-67 (r = -0.302, P < 0.01).
CONCLUSION: Caspase3, P53 and Ki-67 are all involved in the development and progression of colon cancer, and combined detection of their expression can help determine the invasion, metastasis and prognosis of this malignancy.
Collapse
|
33
|
Choi M, Thakur A. Identifying Appropriate Colorectal Cancer-Associated Antigens for the Clinical Trials. CURRENT COLORECTAL CANCER REPORTS 2014. [DOI: 10.1007/s11888-014-0256-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
34
|
Shaib W, Goldstein D, El-Rayes BF. Peptide Vaccines for Treatment of Colon Cancer: Have We Made Progress? CURRENT COLORECTAL CANCER REPORTS 2014. [DOI: 10.1007/s11888-014-0250-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
35
|
Role of type I interferon in inducing a protective immune response: perspectives for clinical applications. Cytokine Growth Factor Rev 2014; 26:195-201. [PMID: 25466627 DOI: 10.1016/j.cytogfr.2014.10.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 10/22/2014] [Indexed: 11/24/2022]
Abstract
Type I IFNs (IFN-I) are antiviral cytokines endowed with many biological effects, including antitumor activity. Over the last 15 years, an ensemble of studies has revealed that these cytokines play a crucial role in the induction of a protective antitumor immune response. Early in vivo studies in mouse models have been instrumental for understanding the IFN-I-induced host-mediated mechanisms. IFN-α is currently recognized as a powerful inducer of the differentiation/activation of dendritic cells (DCs) and today IFN-α-conditioned DCs represent promising DC candidates for the development of therapeutic cancer vaccines. Moreover, data from pilot clinical trials support the concept of using IFN-α as an enhancer of the response of patients to cancer vaccines. Notably, endogenous IFN-I production does also play a critical role in the antitumor response to some chemotherapeutic agents. Thus, we can now envisage new strategies of clinical use of IFN-α, based on the injection of IFN-conditioned cells as well as the usage of these cytokines as cancer vaccine adjuvants, alone or in combination with other treatments (including epigenetic drugs) to induce an immunogenic cell death and a long lasting antitumor response.
Collapse
|
36
|
Comber JD, Philip R. MHC class I antigen presentation and implications for developing a new generation of therapeutic vaccines. THERAPEUTIC ADVANCES IN VACCINES 2014; 2:77-89. [PMID: 24790732 DOI: 10.1177/2051013614525375] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Major histocompatibility complex class I (MHC-I) presented peptide epitopes provide a 'window' into the changes occurring in a cell. Conventionally, these peptides are generated by proteolysis of endogenously synthesized proteins in the cytosol, loaded onto MHC-I molecules, and presented on the cell surface for surveillance by CD8(+) T cells. MHC-I restricted processing and presentation alerts the immune system to any infectious or tumorigenic processes unfolding intracellularly and provides potential targets for a cytotoxic T cell response. Therefore, therapeutic vaccines based on MHC-I presented peptide epitopes could, theoretically, induce CD8(+) T cell responses that have tangible clinical impacts on tumor eradication and patient survival. Three major methods have been used to identify MHC-I restricted epitopes for inclusion in peptide-based vaccines for cancer: genetic, motif prediction and, more recently, immunoproteomic analysis. Although the first two methods are capable of identifying T cell stimulatory epitopes, these have significant disadvantages and may not accurately represent epitopes presented by a tumor cell. In contrast, immunoproteomic methods can overcome these disadvantages and identify naturally processed and presented tumor associated epitopes that induce more clinically relevant tumor specific cytotoxic T cell responses. In this review, we discuss the importance of using the naturally presented MHC-I peptide repertoire in formulating peptide vaccines, the recent application of peptide-based vaccines in a variety of cancers, and highlight the pros and cons of the current state of peptide vaccines.
Collapse
Affiliation(s)
| | - Ramila Philip
- Immunotope, Inc., Pennsylvania Biotechnology Center, 3805 Old Easton Road, Doylestown, PA 18902, USA
| |
Collapse
|
37
|
Quakkelaar ED, Fransen MF, van Maren WWC, Vaneman J, Loof NM, van Heiningen SH, Verbeek JS, Ossendorp F, Melief CJM. IgG-mediated anaphylaxis to a synthetic long peptide vaccine containing a B cell epitope can be avoided by slow-release formulation. THE JOURNAL OF IMMUNOLOGY 2014; 192:5813-20. [PMID: 24813207 DOI: 10.4049/jimmunol.1302337] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Synthetic long peptides (SLP) are a promising vaccine modality to induce therapeutic T cell responses in patients with chronic infections and tumors. We studied different vaccine formulations in mice using SLP derived from carcinoembryonic Ag. We discovered that one of the SLP contains a linear Ab epitope in combination with a CD4 epitope. Repeated vaccination with this carcinoembryonic Ag SLP in mice shows improved T cell responses and simultaneously induced high titers of peptide-specific Abs. These Abs resulted in unexpected anaphylaxis after a third or subsequent vaccinations with the SLP when formulated in saline. Administration of low SLP doses in the slow-release vehicle IFA prevented the anaphylaxis after repeated vaccination. This study underscores both the immunogenicity of SLP vaccination, for inducing T cell as well as B cell responses, and the necessity of safe administration routes.
Collapse
Affiliation(s)
- Esther D Quakkelaar
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Marieke F Fransen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Wendy W C van Maren
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Joost Vaneman
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Nikki M Loof
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Sandra H van Heiningen
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; and
| | - J Sjef Verbeek
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; and
| | - Ferry Ossendorp
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Cornelis J M Melief
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; ISA Pharmaceuticals, 2333 CH Leiden, The Netherlands
| |
Collapse
|
38
|
de Vos van Steenwijk PJ, van Poelgeest MIE, Ramwadhdoebe TH, Löwik MJG, Berends-van der Meer DMA, van der Minne CE, Loof NM, Stynenbosch LFM, Fathers LM, Valentijn ARPM, Oostendorp J, Osse EM, Fleuren GJ, Nooij L, Kagie MJ, Hellebrekers BWJ, Melief CJM, Welters MJP, van der Burg SH, Kenter GG. The long-term immune response after HPV16 peptide vaccination in women with low-grade pre-malignant disorders of the uterine cervix: a placebo-controlled phase II study. Cancer Immunol Immunother 2014; 63:147-60. [PMID: 24233343 PMCID: PMC11028806 DOI: 10.1007/s00262-013-1499-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 11/03/2013] [Indexed: 02/04/2023]
Abstract
The capacity of a low-dose HPV16 synthetic long-peptide vaccine (HPV16-SLP) to induce an HPV16-specific T-cell response as well as to establish long-term immunologic memory in patients with low-grade abnormalities of the cervix was determined in a placebo-controlled, double-blinded phase II study. In addition, the effect of a booster vaccination after 1 year was evaluated. Patients received either the HPV16-SLP or a placebo at the start of the study. After 1 year, the vaccinated patients were again randomized to receive the HPV16-SLP or a placebo. Patients were followed for 2 years. HPV16-specific T-cell responses were determined in pre- and post-vaccination blood samples by ELISPOT, proliferation assay and cytokine assays. We show that the HPV16-specific T-cell responses detected after vaccination are clearly due to vaccination and that reactivity was maintained for at least 2 years. Interestingly, a booster vaccination after 1 year especially augmented the HPV16-specific Th2 response. Furthermore, pre-existing immunity to HPV16 was associated with a stronger response to vaccination and with more side effects, reflected by flu-like symptoms. We conclude that two low-dose injections of HPV16-SLP can induce a strong and stable HPV16-specific T-cell response that lasts for at least 1 year. If booster vaccination is required, then polarizing adjuvant should be added to maintain the Th1 focus of the vaccine-induced T-cell response.
Collapse
Affiliation(s)
| | | | - Tamara H. Ramwadhdoebe
- Department of Clinical Oncology, Leiden University Medical Center, Building 1, K1-P, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Margriet J. G. Löwik
- Department of Gynecology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Caroline E. van der Minne
- Department of Clinical Oncology, Leiden University Medical Center, Building 1, K1-P, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Nikki M. Loof
- Department of Clinical Oncology, Leiden University Medical Center, Building 1, K1-P, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Linda F. M. Stynenbosch
- Department of Clinical Oncology, Leiden University Medical Center, Building 1, K1-P, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Lorraine M. Fathers
- Department of Clinical Pharmacology and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - A. Rob P. M. Valentijn
- Department of Clinical Pharmacology and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jaap Oostendorp
- Department of Clinical Pharmacology and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Elisabeth M. Osse
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Gert Jan Fleuren
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Linda Nooij
- Department of Obstetrics and Gynecology, Medical Centrum Haaglanden, The Hague, The Netherlands
| | - Marjolein J. Kagie
- Department of Obstetrics and Gynecology, Medical Centrum Haaglanden, The Hague, The Netherlands
| | | | - Cornelis J. M. Melief
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
- ISA Pharmaceuticals, Leiden, The Netherlands
| | - Marij J. P. Welters
- Department of Clinical Oncology, Leiden University Medical Center, Building 1, K1-P, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Sjoerd H. van der Burg
- Department of Clinical Oncology, Leiden University Medical Center, Building 1, K1-P, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Gemma G. Kenter
- Department of Gynecology, Leiden University Medical Center, Leiden, The Netherlands
- Present Address: Center of Gynecologic Oncology Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
39
|
Talebian Yazdi M, Keene KR, Hiemstra PS, van der Burg SH. Recent progress in peptide vaccination in cancer with a focus on non-small-cell lung cancer. Expert Rev Vaccines 2013; 13:87-116. [PMID: 24308580 DOI: 10.1586/14760584.2014.862499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Active immunotherapy aimed at the stimulation of tumor-specific T cells has established itself within the clinic as a therapeutic option to treat cancer. One strategy is the use of so-called peptides that mimic genuine T-cell epitopes as vaccines to activate tumor-specific T cells. In various clinical trials, different types of vaccines, adjuvants and other immunomodulatory compounds were evaluated in patients with different types of tumors. Here, we review the trials published in the last 3 years focusing on the T-cell response, the effect of immunomodulation and potential relationships with clinical outcomes. Furthermore, we would like to make a case for the development of peptide vaccines aiming to treat non-small-cell lung cancer, the most common cause of cancer mortality.
Collapse
Affiliation(s)
- Mehrdad Talebian Yazdi
- Department of Pulmonology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | | | | | | |
Collapse
|
40
|
Aranda F, Vacchelli E, Eggermont A, Galon J, Sautès-Fridman C, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Peptide vaccines in cancer therapy. Oncoimmunology 2013; 2:e26621. [PMID: 24498550 PMCID: PMC3902120 DOI: 10.4161/onci.26621] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 09/26/2013] [Indexed: 02/08/2023] Open
Abstract
Throughout the past 3 decades, along with the recognition that the immune system not only influences oncogenesis and tumor progression, but also determines how established neoplastic lesions respond therapy, renovated enthusiasm has gathered around the possibility of using vaccines as anticancer agents. Such an enthusiasm quickly tempered when it became clear that anticancer vaccines would have to be devised as therapeutic, rather than prophylactic, measures, and that malignant cells often fail to elicit (or actively suppress) innate and adaptive immune responses. Nonetheless, accumulating evidence indicates that a variety of anticancer vaccines, including cell-based, DNA-based, and purified component-based preparations, are capable of circumventing the poorly immunogenic and highly immunosuppressive nature of most tumors and elicit (at least under some circumstances) therapeutically relevant immune responses. Great efforts are currently being devoted to the identification of strategies that may provide anticancer vaccines with the capacity of breaking immunological tolerance and eliciting tumor-associated antigen-specific immunity in a majority of patients. In this sense, promising results have been obtained by combining anticancer vaccines with a relatively varied panels of adjuvants, including multiple immunostimulatory cytokines, Toll-like receptor agonists as well as inhibitors of immune checkpoints. One year ago, in the December issue of OncoImmunology, we discussed the biological mechanisms that underlie the antineoplastic effects of peptide-based vaccines and presented an abundant literature demonstrating the prominent clinical potential of such an approach. Here, we review the latest developments in this exciting area of research, focusing on high-profile studies that have been published during the last 13 mo and clinical trials launched in the same period to evaluate purified peptides or full-length proteins as therapeutic anticancer agents.
Collapse
Affiliation(s)
- Fernando Aranda
- Gustave Roussy; Villejuif, France ; INSERM, U848; Villejuif, France ; Université Paris-Sud/Paris XI; Le Kremlin-Bicêtre, France ; Equipe 11 labellisée par la Lique Nationale contre le Cancer; Centre de Recherche des Cordeliers; Paris, France
| | - Erika Vacchelli
- Gustave Roussy; Villejuif, France ; INSERM, U848; Villejuif, France ; Université Paris-Sud/Paris XI; Le Kremlin-Bicêtre, France ; Equipe 11 labellisée par la Lique Nationale contre le Cancer; Centre de Recherche des Cordeliers; Paris, France
| | | | - Jerome Galon
- Université Paris Descartes/Paris V, Sorbonne Paris Cité; Paris, France ; Université Pierre et Marie Curie/Paris VI; Paris, France ; INSERM, U872; Paris, France ; Equipe 15, Centre de Recherche des Cordeliers; Paris, France
| | - Catherine Sautès-Fridman
- Université Pierre et Marie Curie/Paris VI; Paris, France ; INSERM, U872; Paris, France ; Equipe 13, Centre de Recherche des Cordeliers; Paris, France
| | - Eric Tartour
- Pôle de Biologie; Hôpital Européen Georges Pompidou; AP-HP; Paris, France ; INSERM, U970; Paris, France
| | - Laurence Zitvogel
- Gustave Roussy; Villejuif, France ; INSERM, U1015; CICBT507; Villejuif, France
| | - Guido Kroemer
- Pôle de Biologie; Hôpital Européen Georges Pompidou; AP-HP; Paris, France ; INSERM, U848; Villejuif, France ; Equipe 11 labellisée par la Lique Nationale contre le Cancer; Centre de Recherche des Cordeliers; Paris, France ; Université Paris Descartes/Paris V, Sorbonne Paris Cité; Paris, France ; Metabolomics and Cell Biology Platforms; Gustave Roussy; Villejuif, France
| | - Lorenzo Galluzzi
- Gustave Roussy; Villejuif, France ; Equipe 11 labellisée par la Lique Nationale contre le Cancer; Centre de Recherche des Cordeliers; Paris, France ; Université Paris Descartes/Paris V, Sorbonne Paris Cité; Paris, France
| |
Collapse
|
41
|
Abstract
The past decade has seen tremendous developments in novel cancer therapies through the targeting of tumor-cell-intrinsic pathways whose activity is linked to genetic alterations and the targeting of tumor-cell-extrinsic factors, such as growth factors. Furthermore, immunotherapies are entering the clinic at an unprecedented speed after the demonstration that T cells can efficiently reject tumors and that their antitumor activity can be enhanced with antibodies against immune-regulatory molecules (checkpoint blockade). Current immunotherapy strategies include monoclonal antibodies against tumor cells or immune-regulatory molecules, cell-based therapies such as adoptive transfer of ex-vivo-activated T cells and natural killer cells, and cancer vaccines. Herein, we discuss the immunological basis for therapeutic cancer vaccines and how the current understanding of dendritic cell and T cell biology might enable the development of next-generation curative therapies for individuals with cancer.
Collapse
|
42
|
Bacher N, Raker V, Hofmann C, Graulich E, Schwenk M, Baumgrass R, Bopp T, Zechner U, Merten L, Becker C, Steinbrink K. Interferon-α suppresses cAMP to disarm human regulatory T cells. Cancer Res 2013; 73:5647-56. [PMID: 23878189 DOI: 10.1158/0008-5472.can-12-3788] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
IFN-α is an antineoplastic agent in the treatment of several solid and hematologic malignancies that exerts strong immune- and autoimmune-stimulating activity. However, the mechanisms of immune activation by IFN-α remain incompletely understood, particularly with regard to CD4(+)CD25(high)Foxp(+) regulatory T cells (Treg). Here, we show that IFN-α deactivates the suppressive function of human Treg by downregulating their intracellular cAMP level. IFN-α-mediated Treg inactivation increased CD4(+) effector T-cell activation and natural killer cell tumor cytotoxicity. Mechanistically, repression of cAMP in Treg was caused by IFN-α-induced MAP-ERK kinase (MEK)/extracellular signal-regulated kinase (ERK)-mediated phosphodiesterase 4 (PDE4) activation and accompanied by downregulation of IFN receptor (IFNAR)-2 and negative regulation of T-cell receptor signaling. IFN-α did not affect the anergic state, cytokine production, Foxp3 expression, or methylation state of the Treg-specific demethylated region (TSDR) within the FOXP3 locus associated with a stable imprinted phenotype of human Treg. Abrogated protection by IFN-α-treated Treg in a humanized mouse model of xenogeneic graft-versus-host disease confirmed IFN-α-dependent regulation of Treg activity in vivo. Collectively, the present study unravels Treg inactivation as a novel IFN-α activity that provides a conceivable explanation for the immune-promoting effect and induction of autoimmunity by IFN-α treatment in patients with cancer and suggests IFN-α for concomitant Treg blockade in the context of therapeutic vaccination against tumor antigens.
Collapse
Affiliation(s)
- Nicole Bacher
- Authors' Affiliations: Department of Dermatology, Institute of Human Genetics, and Department of Immunology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz; and German Rheumatism Research Centre Berlin (DRFZ), Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Turning Tumors into Vaccines: Co-opting the Innate Immune System. Immunity 2013; 39:27-37. [DOI: 10.1016/j.immuni.2013.07.011] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 07/10/2013] [Indexed: 02/07/2023]
|
44
|
Arens R, van Hall T, van der Burg SH, Ossendorp F, Melief CJM. Prospects of combinatorial synthetic peptide vaccine-based immunotherapy against cancer. Semin Immunol 2013; 25:182-90. [PMID: 23706598 DOI: 10.1016/j.smim.2013.04.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 04/10/2013] [Accepted: 04/19/2013] [Indexed: 01/15/2023]
Abstract
The insight that the immune system is involved in tumor resistance is gaining momentum and this has led to the development of immunotherapeutic strategies aiming at enhancement of immune-mediated tumor destruction. Although some of these strategies have moderate clinical benefit, most stand-alone therapies fail to significantly affect progressive disease and survival or do so only in a minority of patients. Research on the mechanisms underlying the generation of immune responses against tumors and the immune evasion by tumors has emphasized that various mechanisms simultaneously prevent effective immunity against cancer including inefficient presentation of tumor antigens by dendritic cells and induction of negative immune regulation by regulatory T-cells (Tregs) and myeloid derived suppressor cells (MDSCs). Thus the design of therapies that simultaneously improve effective tumor immunity and counteract immune evasion by tumors seems most desirable for clinical efficacy. As it is unlikely that a single immunotherapeutic strategy addresses all necessary requirements, combinatorial strategies that act synergistically need to be developed. Here we discuss the current knowledge and prospects of treatment with synthetic peptide vaccines that stimulate tumor-specific T-cell responses combined with adjuvants, immune modulating antibodies, cytokines and chemotherapy. We conclude that combinatorial approaches have the best potency to accomplish the most significant tumor destruction but further research is required to optimize such approaches.
Collapse
Affiliation(s)
- Ramon Arens
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|
45
|
Affiliation(s)
- Rachel Lubong Sabado
- NYU Langone Medical Center Cancer Institute; New York University School of Medicine, New York; New York
| | - Nina Bhardwaj
- NYU Langone Medical Center Cancer Institute; New York University School of Medicine, New York; New York
| |
Collapse
|
46
|
Vacchelli E, Eggermont A, Fridman WH, Galon J, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Immunostimulatory cytokines. Oncoimmunology 2013; 2:e24850. [PMID: 24073369 PMCID: PMC3782010 DOI: 10.4161/onci.24850] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 04/29/2013] [Indexed: 12/30/2022] Open
Abstract
During the past two decades, the notion that cancer would merely constitute a cell-intrinsic disease has gradually been complemented by a model postulating that the immune system plays a relevant role during all stages of oncogenesis and tumor progression. Along with this conceptual shift, several strategies have been devised to stimulate tumor-specific immune responses, including relatively unselective approaches such as the systemic administration of adjuvants or immunomodulatory cytokines. One year ago, in the July issue of OncoImmunology, we described the main biological features of this large group of proteins and discussed the progress of ongoing clinical studies evaluating their safety and therapeutic potential in cancer patients. Here, we summarize the latest developments in this area of clinical research, focusing on high impact studies that have been published during the last 13 mo and clinical trials launched in the same period to investigate which cytokines can be employed as safe and efficient immunostimulatory interventions against cancer.
Collapse
Affiliation(s)
- Erika Vacchelli
- Institut Gustave Roussy; Villejuif, France ; Université Paris-Sud/Paris XI; Le Kremlin-Bicêtre; Paris, France ; INSERM, U848; Villejuif, France
| | | | | | | | | | | | | |
Collapse
|
47
|
Hernandez-Alcoceba R, Sangro B, Berraondo P, Gonzalez-Aseguinolaza G, Prieto J. Cytokines for the treatment of gastrointestinal cancers: clinical experience and new perspectives. Expert Opin Investig Drugs 2013; 22:827-41. [PMID: 23594171 DOI: 10.1517/13543784.2013.793307] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Cytokines are key mediators of the immune system and have been proposed as therapeutic agents against cancer, either as recombinant proteins, or as transgenes in gene therapy approaches. Stimulation of immune responses against cancer cells is an appealing method to treat tumors with high risk of relapse and systemic dissemination. AREAS COVERED We provide a critical overview of clinical trials involving the use of cytokines for the treatment of liver, colon and pancreatic cancers. Special attention has been paid to advances in the field of gene therapy and oncolytic viruses. The potential of new developments still in a pre-clinical stage is also discussed. We have revised public sources of information (PubMed, US National Institutes of Health clinical trials database) up to January 2013. EXPERT OPINION The complexity of the immune system and the unfavorable pharmacokinetic properties of cytokines limit the efficacy of these molecules as single agents for the treatment of cancer. Expression from gene therapy vectors, together with new methods of targeting and stabilization, may overcome these hurdles. We believe cytokines will play a crucial role as part of combined approaches, enhancing the action of adoptive cell immunotherapy, oncolytic viruses or biological therapies.
Collapse
Affiliation(s)
- Ruben Hernandez-Alcoceba
- CIMA, University of Navarra, Division of Hepatology and Gene Therapy, Foundation for Applied Medical Research, Pamplona, Spain
| | | | | | | | | |
Collapse
|
48
|
van Poelgeest MIE, Welters MJP, van Esch EMG, Stynenbosch LFM, Kerpershoek G, van Persijn van Meerten EL, van den Hende M, Löwik MJG, Berends-van der Meer DMA, Fathers LM, Valentijn ARPM, Oostendorp J, Fleuren GJ, Melief CJM, Kenter GG, van der Burg SH. HPV16 synthetic long peptide (HPV16-SLP) vaccination therapy of patients with advanced or recurrent HPV16-induced gynecological carcinoma, a phase II trial. J Transl Med 2013; 11:88. [PMID: 23557172 PMCID: PMC3623745 DOI: 10.1186/1479-5876-11-88] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 03/23/2013] [Indexed: 12/18/2022] Open
Abstract
Background Human papilloma virus type 16 (HPV16)-induced gynecological cancers, in particular cervical cancers, are found in many women worldwide. The HPV16 encoded oncoproteins E6 and E7 are tumor-specific targets for the adaptive immune system permitting the development of an HPV16-synthetic long peptide (SLP) vaccine with an excellent treatment profile in animal models. Here, we determined the toxicity, safety, immunogenicity and efficacy of the HPV16 SLP vaccine in patients with advanced or recurrent HPV16-induced gynecological carcinoma. Methods Patients with HPV16-positive advanced or recurrent gynecological carcinoma (n = 20) were subcutaneously vaccinated with an HPV16-SLP vaccine consisting of a mix of 13 HPV16 E6 and HPV16 E7 overlapping long peptides in Montanide ISA-51 adjuvant. The primary endpoints were safety, toxicity and tumor regression as determined by RECIST. In addition, the vaccine-induced T-cell response was assessed by proliferation and associated cytokine production as well as IFNγ-ELISPOT. Results No systemic toxicity beyond CTCAE grade II was observed. In a few patients transient flu-like symptoms were observed. In 9 out of 16 tested patients vaccine-induced HPV16-specific proliferative responses were detected which were associated with the production of IFNγ, TNFα, IL-5 and/or IL-10. ELISPOT analysis revealed a vaccine-induced immune response in 11 of the 13 tested patients. The capacity to respond to the vaccine was positively correlated to the patient’s immune status as reflected by their response to common recall antigens at the start of the trial. Median survival was 12.6 ± 9.1 months. No regression of tumors was observed among the 12 evaluable patients. Nineteen patients died of progressive disease. Conclusions The HPV16-SLP vaccine was well tolerated and induced a broad IFNγ-associated T-cell response in patients with advanced or recurrent HPV16-induced gynecological carcinoma but neither induced tumor regression nor prevented progressive disease. We, therefore, plan to use this vaccine in combination with chemotherapy and immunomodulation.
Collapse
|