1
|
Lv FL, Zhang L, Ji C, Peng L, Zhu M, Yang S, Dong S, Zhou M, Guo F, Li Z, Wang F, Chen Y, Zhou J, Ren X, Shen G, Yang JM, Li B, Zhang Y. Cabozantinib selectively induces proteasomal degradation of p53 somatic mutant Y220C and impedes tumor growth. J Biol Chem 2025; 301:108167. [PMID: 39793887 PMCID: PMC11847077 DOI: 10.1016/j.jbc.2025.108167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 12/07/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Inactivation of p53 by mutations commonly occurs in human cancer. The mutated p53 proteins may escape proteolytic degradation and exhibit high expression in tumors and acquire gain-of-function activity that promotes tumor progression and chemo-resistance. Therefore, selectively targeting of the gain-of-function p53 mutants may serve as a promising therapeutic strategy for cancer prevention and treatment. In this study, we identified cabozantinib, a multikinase inhibitor currently used in the clinical treatment of several types of cancer, as a selective inducer of proteasomal degradation of the p53-Y220C mutant. We demonstrate that cabozantinib disrupts the interaction between p53Y220C and USP7, a deubiquitylating enzyme, resulting in the dissociation of p53Y220C protein from its binding with USP7 and subsequent ubiquitination and degradation mediated by CHIP (the carboxyl terminal of Hsp70-interacting protein). We also show that cabozantinib displays preferential cytotoxicity to p53Y220C-harboring cancer cells both in vitro and in vivo. This study demonstrates a novel, p53-Y220C mutant-targeted anticancer action and mechanism for cabozantinib and provides the rationale for use of this drug in the treatment of cancers that carry the p53-Y220C mutation.
Collapse
Affiliation(s)
- Fang Lin Lv
- Department of Hepatopancreatobiliary Surgery, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, Jiangsu, China; Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Lu Zhang
- Department of Hepatopancreatobiliary Surgery, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, Jiangsu, China; Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Cheng Ji
- Department of Respiratory Medicine, First Affiliated Hospital, Soochow University, Suzhou, Jiangsu, China
| | - Lei Peng
- Department of Hepatopancreatobiliary Surgery, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, Jiangsu, China; Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Mingxian Zhu
- Department of Hepatopancreatobiliary Surgery, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, Jiangsu, China; Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Shumin Yang
- Department of Hepatopancreatobiliary Surgery, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, Jiangsu, China; Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Shunli Dong
- Department of Hepatopancreatobiliary Surgery, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, Jiangsu, China; Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Mingxuan Zhou
- Department of Hepatopancreatobiliary Surgery, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, Jiangsu, China; Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Fanfan Guo
- Department of Hepatopancreatobiliary Surgery, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, Jiangsu, China; Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Zhenyun Li
- Department of Hepatopancreatobiliary Surgery, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, Jiangsu, China; Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Fang Wang
- Department of Gynecology and Obstetrics, First Affiliated Hospital, Soochow University, Suzhou, Jiangsu, China
| | - Youguo Chen
- Department of Gynecology and Obstetrics, First Affiliated Hospital, Soochow University, Suzhou, Jiangsu, China
| | - Jinhua Zhou
- Department of Gynecology and Obstetrics, First Affiliated Hospital, Soochow University, Suzhou, Jiangsu, China
| | - Xingcong Ren
- Department of Gynecology and Obstetrics, First Affiliated Hospital, Soochow University, Suzhou, Jiangsu, China
| | - Genhai Shen
- Department of Hepatopancreatobiliary Surgery, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, Jiangsu, China; Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Jin-Ming Yang
- Department of Cancer Biology and Toxicology, Markey Cancer Center, University of Kentucky, College of Medicine, Lexington, Kentucky, USA
| | - Bin Li
- Department of Hepatopancreatobiliary Surgery, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, Jiangsu, China; Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China.
| | - Yi Zhang
- Department of Hepatopancreatobiliary Surgery, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, Jiangsu, China; Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
2
|
Chen KL, Huang SW, Yao JJ, He SW, Gong S, Tan XR, Liang YL, Li JY, Huang SY, Li YQ, Zhao Y, Qiao H, Xu S, Zang S, Ma J, Liu N. LncRNA DYNLRB2-AS1 promotes gemcitabine resistance of nasopharyngeal carcinoma by inhibiting the ubiquitination degradation of DHX9 protein. Drug Resist Updat 2024; 76:101111. [PMID: 38908233 DOI: 10.1016/j.drup.2024.101111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
Gemcitabine (GEM) based induction chemotherapy is a standard treatment for locoregionally advanced nasopharyngeal carcinoma (NPC). However, approximately 15 % of patients are still resistant to GEM-containing chemotherapy, which leads to treatment failure. Nevertheless, the underlying mechanisms of GEM resistance remain poorly understood. Herein, based on a microarray analysis, we identified 221 dysregulated lncRNAs, of which, DYNLRB2-AS1 was one of the most upregulated lncRNAs in GEM-resistance NPC cell lines. DYNLRB2-AS1 was shown to function as contain an oncogenic lncRNA that promoted NPC GEM resistance, cell proliferation, but inhibited cell apoptosis. Mechanistically, DYNLRB2-AS1 could directly bind to the DHX9 protein and prevent its interaction with the E3 ubiquitin ligase PRPF19, and thus blocking PRPF19-mediated DHX9 degradation, which ultimately facilitated the repair of DNA damage in the presence of GEM. Clinically, higher DYNLRB2-AS1 expression indicated an unfavourable overall survival of NPC patients who received induction chemotherapy. Overall, this study identified the oncogenic lncRNA DYNLRB2-AS1 as an independent prognostic biomarker for patients with locally advanced NPC and as a potential therapeutic target for overcoming GEM chemoresistance in NPC.
Collapse
Affiliation(s)
- Kai-Lin Chen
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Sai-Wei Huang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Ji-Jin Yao
- Department of Head and Neck Oncology, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Shi-Wei He
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Sha Gong
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xi-Rong Tan
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Ye-Lin Liang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jun-Yan Li
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Sheng-Yan Huang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Ying-Qin Li
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yin Zhao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Han Qiao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Sha Xu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Shengbing Zang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| | - Jun Ma
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| | - Na Liu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| |
Collapse
|
3
|
Wang L, Li M, Lian G, Yang S, Wu Y, Cui J. USP18 Antagonizes Pyroptosis by Facilitating Selective Autophagic Degradation of Gasdermin D. RESEARCH (WASHINGTON, D.C.) 2024; 7:0380. [PMID: 38779488 PMCID: PMC11109516 DOI: 10.34133/research.0380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/15/2024] [Indexed: 05/25/2024]
Abstract
As a key executioner of pyroptosis, Gasdermin D (GSDMD) plays a crucial role in host defense and emerges as an essential therapeutic target in the treatment of inflammatory diseases. So far, the understanding of the mechanisms that regulate the protein level of GSDMD to prevent detrimental effects and maintain homeostasis is currently limited. Here, we unveil that ubiquitin-specific peptidase 18 (USP18) works as a negative regulator of pyroptosis by targeting GSDMD for degradation and preventing excessive innate immune responses. Mechanically, USP18 recruits E3 ubiquitin ligase mind bomb homolog 2 (MIB2) to catalyze ubiquitination on GSDMD at lysine (K) 168, which acts as a recognition signal for the selective autophagic degradation of GSDMD. We further confirm the alleviating effect of USP18 on LPS-triggered inflammation in vivo. Collectively, our study demonstrates the role of USP18 in regulating GSDMD-mediated pyroptosis and reveals a previously unknown mechanism by which GSDMD protein level is rigorously controlled by selective autophagy.
Collapse
Affiliation(s)
- Liqiu Wang
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol,
School of Life Sciences of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Mengqiu Li
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol,
School of Life Sciences of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Guangyu Lian
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol,
School of Life Sciences of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shuai Yang
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol,
School of Life Sciences of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yaoxing Wu
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jun Cui
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol,
School of Life Sciences of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Li W, Wang Z. Ubiquitination Process Mediates Prostate Cancer Development and Metastasis through Multiple Mechanisms. Cell Biochem Biophys 2024; 82:77-90. [PMID: 37847340 PMCID: PMC10866789 DOI: 10.1007/s12013-023-01156-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 07/30/2023] [Indexed: 10/18/2023]
Abstract
Prostate cancer (PCa) is a common malignant tumor in men, when the disease progresses to the advanced stage, most patients will develop distant metastasis and develop into castration-resistant prostate cancer (CRPC), resulting in increased mortality. Ubiquitination is a widespread protein post-translational modification process in the biological world, and it plays an important role in the development and transfer of PCa. E3 ubiquitin ligase plays an important role in the specific selection and role of substrates in the process of ubiquitination ligase. This review will briefly introduce the ubiquitination process and E3 ubiquitin ligase, focus on the recently discovered multiple mechanisms by which ubiquitination affects PCa development and metastasis, and a summary of the current emerging proteolysis-targeting chimeras (PROTAC) in the treatment of PCa.
Collapse
Affiliation(s)
- Wen Li
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhiyu Wang
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
5
|
Zhang M, Zhang Z, Tian X, Zhang E, Wang Y, Tang J, Zhao J. NEDD4L in human tumors: regulatory mechanisms and dual effects on anti-tumor and pro-tumor. Front Pharmacol 2023; 14:1291773. [PMID: 38027016 PMCID: PMC10666796 DOI: 10.3389/fphar.2023.1291773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Tumorigenesis and tumor development are closely related to the abnormal regulation of ubiquitination. Neural precursor cell expressed developmentally downregulated 4-like (NEDD4L), an E3 ubiquitin ligase critical to the ubiquitination process, plays key roles in the regulation of cancer stem cells, as well as tumor cell functions, including cell proliferation, apoptosis, cell cycle regulation, migration, invasion, epithelial-mesenchymal transition (EMT), and tumor drug resistance, by controlling subsequent protein degradation through ubiquitination. NEDD4L primarily functions as a tumor suppressor in several tumors but also plays an oncogenic role in certain tumors. In this review, we comprehensively summarize the relevant signaling pathways of NEDD4L in tumors, the regulatory mechanisms of its upstream regulatory molecules and downstream substrates, and the resulting functional alterations. Overall, therapeutic strategies targeting NEDD4L to treat cancer may be feasible.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhenyong Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xin Tian
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Enchong Zhang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yichun Wang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jun Tang
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jianzhu Zhao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
6
|
Zhao Y, Li J, Chen J, Ye M, Jin X. Functional roles of E3 ubiquitin ligases in prostate cancer. J Mol Med (Berl) 2022; 100:1125-1144. [PMID: 35816219 DOI: 10.1007/s00109-022-02229-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 12/16/2022]
Abstract
Prostate cancer (PCa) is a malignant epithelial tumor of the prostate gland with a high male cancer incidence. Numerous studies indicate that abnormal function of ubiquitin-proteasome system (UPS) is associated with the progression and metastasis of PCa. E3 ubiquitin ligases, key components of UPS, determine the specificity of substrates, and substantial advances of E3 ubiquitin ligases have been reached recently. Herein, we introduce the structures and functions of E3 ubiquitin ligases and summarize the mechanisms of E3 ubiquitin ligases-related PCa signaling pathways. In addition, some progresses in the development of inhibitors targeting E3 ubiquitin ligases are also included.
Collapse
Affiliation(s)
- Yiting Zhao
- Department of Oncology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315020, China.,Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, 315211, China.,Department of Chemoradiotherapy, the Affiliated People's Hospital of Ningbo University, Ningbo, 315040, China
| | - Jinyun Li
- Department of Oncology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315020, China.,Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, 315211, China
| | - Jun Chen
- Department of Chemoradiotherapy, the Affiliated People's Hospital of Ningbo University, Ningbo, 315040, China
| | - Meng Ye
- Department of Oncology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315020, China.,Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, 315211, China
| | - Xiaofeng Jin
- Department of Oncology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315020, China. .,Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
7
|
Shen W, Zhou Q, Peng C, Li J, Yuan Q, Zhu H, Zhao M, Jiang X, Liu W, Ren C. FBXW7 and the Hallmarks of Cancer: Underlying Mechanisms and Prospective Strategies. Front Oncol 2022; 12:880077. [PMID: 35515121 PMCID: PMC9063462 DOI: 10.3389/fonc.2022.880077] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/15/2022] [Indexed: 12/13/2022] Open
Abstract
FBXW7, a member of the F-box protein family within the ubiquitin–proteasome system, performs an indispensable role in orchestrating cellular processes through ubiquitination and degradation of its substrates, such as c-MYC, mTOR, MCL-1, Notch, and cyclin E. Mainly functioning as a tumor suppressor, inactivation of FBXW7 induces the aberrations of its downstream pathway, resulting in the occurrence of diseases especially tumorigenesis. Here, we decipher the relationship between FBXW7 and the hallmarks of cancer and discuss the underlying mechanisms. Considering the interplay of cancer hallmarks, we propose several prospective strategies for circumventing the deficits of therapeutic resistance and complete cure of cancer patients.
Collapse
Affiliation(s)
- Wenyue Shen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Quanwei Zhou
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chenxi Peng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jiaheng Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qizhi Yuan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hecheng Zhu
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China.,Changsha Kexin Cancer Hospital, Changsha, China
| | - Ming Zhao
- Changsha Kexin Cancer Hospital, Changsha, China
| | - Xingjun Jiang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Weidong Liu
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, School of Basic Medicine, Central South University, Changsha, China
| | - Caiping Ren
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, School of Basic Medicine, Central South University, Changsha, China
| |
Collapse
|
8
|
Tao L, Liu X, Jiang X, Zhang K, Wang Y, Li X, Jiang S, Han T. USP10 as a Potential Therapeutic Target in Human Cancers. Genes (Basel) 2022; 13:genes13050831. [PMID: 35627217 PMCID: PMC9142050 DOI: 10.3390/genes13050831] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/28/2022] [Accepted: 05/04/2022] [Indexed: 12/04/2022] Open
Abstract
Deubiquitination is a major form of post-translational protein modification involved in the regulation of protein homeostasis and various cellular processes. Deubiquitinating enzymes (DUBs), comprising about five subfamily members, are key players in deubiquitination. USP10 is a USP-family DUB featuring the classic USP domain, which performs deubiquitination. Emerging evidence has demonstrated that USP10 is a double-edged sword in human cancers. However, the precise molecular mechanisms underlying its different effects in tumorigenesis remain elusive. A possible reason is dependence on the cell context. In this review, we summarize the downstream substrates and upstream regulators of USP10 as well as its dual role as an oncogene and tumor suppressor in various human cancers. Furthermore, we summarize multiple pharmacological USP10 inhibitors, including small-molecule inhibitors, such as spautin-1, and traditional Chinese medicines. Taken together, the development of specific and efficient USP10 inhibitors based on USP10’s oncogenic role and for different cancer types could be a promising therapeutic strategy.
Collapse
Affiliation(s)
- Li Tao
- The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, China;
| | - Xiao Liu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China; (X.L.); (X.J.); (K.Z.); (Y.W.)
| | - Xinya Jiang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China; (X.L.); (X.J.); (K.Z.); (Y.W.)
| | - Kun Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China; (X.L.); (X.J.); (K.Z.); (Y.W.)
| | - Yijing Wang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China; (X.L.); (X.J.); (K.Z.); (Y.W.)
| | - Xiumin Li
- Henan Key Laboratory of Tumor Molecular Therapy Medicine, Xinxiang Medical University, Xinxiang 453003, China;
| | - Shulong Jiang
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining Medical University, Jining 272000, China
- Correspondence: (S.J.); (T.H.)
| | - Tao Han
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China; (X.L.); (X.J.); (K.Z.); (Y.W.)
- Henan Key Laboratory of Tumor Molecular Therapy Medicine, Xinxiang Medical University, Xinxiang 453003, China;
- Correspondence: (S.J.); (T.H.)
| |
Collapse
|
9
|
Li J, Zhang N, Li M, Hong T, Meng W, Ouyang T. The Emerging Role of OTUB2 in Diseases: From Cell Signaling Pathway to Physiological Function. Front Cell Dev Biol 2022; 10:820781. [PMID: 35309903 PMCID: PMC8926145 DOI: 10.3389/fcell.2022.820781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/03/2022] [Indexed: 11/13/2022] Open
Abstract
Ovarian tumor (OTU) domain-containing ubiquitin aldehyde-binding protein Otubain2 (OTUB2) was a functional cysteine protease in the OTU family with deubiquitinase activity. In recent years, with the wide application of molecular biology techniques, molecular mechanism regulation at multiple levels of cell signaling pathways has been gradually known, such as ubiquitin-mediated protein degradation and phosphorylation-mediated protein activation. OTUB2 is involved in the deubiquitination of many key proteins in different cell signaling pathways, and the effect of OTUB2 on human health or disease is not clear. OTUB2 is likely to cause cancer and other malignant diseases while maintaining normal human development and physiological function. Therefore, it is of great value to comprehensively understand the regulatory mechanism of OTUB2 and regard it as a target for the treatment of diseases. This review makes a general description and appropriate analysis of OTUB2's regulation in different cell signaling pathways, and connects OTUB2 with cancer from the research hotspot perspective of DNA damage repair and immunity, laying the theoretical foundation for future research.
Collapse
Affiliation(s)
- Jun Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Jiangxi, China.,Department of the Second Clinical Medical College of Nanchang University, Jiangxi, China
| | - Na Zhang
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Meihua Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Tao Hong
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Wei Meng
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Taohui Ouyang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Jiangxi, China
| |
Collapse
|
10
|
Jin JO, Puranik N, Bui QT, Yadav D, Lee PCW. The Ubiquitin System: An Emerging Therapeutic Target for Lung Cancer. Int J Mol Sci 2021; 22:9629. [PMID: 34502538 PMCID: PMC8431782 DOI: 10.3390/ijms22179629] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/03/2021] [Accepted: 09/03/2021] [Indexed: 12/25/2022] Open
Abstract
The ubiquitin system, present in all eukaryotes, contributes to regulating multiple types of cellular protein processes such as cell signaling, cell cycle, and receptor trafficking, and it affects the immune response. In most types of cancer, unusual events in ubiquitin-mediated signaling pathway modulation can lead to a variety of clinical outcomes, including tumor formation and metastasis. Similarly, ubiquitination acts as a core component, which contributes to the alteration of cell signaling activity, dictating biosignal turnover and protein fates. As lung cancer acquires the most commonly mutated proteins, changes in the ubiquitination of the proteins contribute to the development of lung cancer. Various inhibitors targeting the ubiquitin system have been developed for clinical applications in lung cancer treatment. In this review, we summarize the current research advances in therapeutics for lung cancer by targeting the ubiquitin system.
Collapse
Affiliation(s)
- Jun-O Jin
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 201508, China
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea
| | - Nidhi Puranik
- Biological Sciences Department, Bharathiar University, Coimbatore 641046, Tamil Nadu, India;
| | - Quyen Thu Bui
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea;
| | - Dhananjay Yadav
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea
| | - Peter Chang-Whan Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea;
| |
Collapse
|
11
|
Cruz L, Soares P, Correia M. Ubiquitin-Specific Proteases: Players in Cancer Cellular Processes. Pharmaceuticals (Basel) 2021; 14:ph14090848. [PMID: 34577547 PMCID: PMC8469789 DOI: 10.3390/ph14090848] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 12/14/2022] Open
Abstract
Ubiquitination represents a post-translational modification (PTM) essential for the maintenance of cellular homeostasis. Ubiquitination is involved in the regulation of protein function, localization and turnover through the attachment of a ubiquitin molecule(s) to a target protein. Ubiquitination can be reversed through the action of deubiquitinating enzymes (DUBs). The DUB enzymes have the ability to remove the mono- or poly-ubiquitination signals and are involved in the maturation, recycling, editing and rearrangement of ubiquitin(s). Ubiquitin-specific proteases (USPs) are the biggest family of DUBs, responsible for numerous cellular functions through interactions with different cellular targets. Over the past few years, several studies have focused on the role of USPs in carcinogenesis, which has led to an increasing development of therapies based on USP inhibitors. In this review, we intend to describe different cellular functions, such as the cell cycle, DNA damage repair, chromatin remodeling and several signaling pathways, in which USPs are involved in the development or progression of cancer. In addition, we describe existing therapies that target the inhibition of USPs.
Collapse
Affiliation(s)
- Lucas Cruz
- i3S—Instituto de Investigação e Inovação Em Saúde, Universidade Do Porto, 4200-135 Porto, Portugal; (L.C.); (P.S.)
- Ipatimup—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4250-475 Porto, Portugal
- FCUP—Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Paula Soares
- i3S—Instituto de Investigação e Inovação Em Saúde, Universidade Do Porto, 4200-135 Porto, Portugal; (L.C.); (P.S.)
- Ipatimup—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4250-475 Porto, Portugal
- FCUP—Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
- Departamento de Patologia, Faculdade de Medicina da Universidade Do Porto, 4200-139 Porto, Portugal
| | - Marcelo Correia
- i3S—Instituto de Investigação e Inovação Em Saúde, Universidade Do Porto, 4200-135 Porto, Portugal; (L.C.); (P.S.)
- Ipatimup—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4250-475 Porto, Portugal
- Correspondence:
| |
Collapse
|
12
|
Xu L, Zhang B, Li W. Downregulated expression levels of USP46 promote the resistance of ovarian cancer to cisplatin and are regulated by PUM2. Mol Med Rep 2021; 23:263. [PMID: 33576437 PMCID: PMC7893694 DOI: 10.3892/mmr.2021.11902] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023] Open
Abstract
Ovarian cancer (OC) is a major contributor to cancer‑related mortality in women. Despite numerous drugs being available for the treatment and improving the prognosis of OC, resistance to clinical chemotherapy remains a major obstacle for the treatment of advanced OC. Therefore, determining how to reverse the chemoresistance of OC has become a research hotspot in recent years. The present study aimed to reveal the potential mechanism of OC chemoresistance. Reverse transcription‑quantitative PCR and western blot analysis were performed to detect the expression levels of Ubiquitin‑specific peptidase 46 (USP46) and Pumilio 2 (PUM2) in OC. Cell viability and apoptosis were evaluated by Cell Counting Kit‑8 assay and flow cytometry, respectively. The association between USP46 and PUM2 was assessed by RNA immunoprecipitation. The results of the present study revealed that the expression levels of USP46 which is associated with tumor progression, was downregulated, while PUM2 expression levels were upregulated in cisplatin (DDP)‑resistant OC cells and patient tissues. The downregulation of USP46 expression levels in SKOV3 cells significantly inhibited cell apoptosis and increased cell viability. In SKOV3/DDP cells, the upregulation of USP46 expression levels notably suppressed cell viability and increased cell apoptosis. The results of the RNA immunoprecipitation chip assay demonstrated that PUM2 bound to USP46 and regulated its expression. Furthermore, following the knockdown of USP46 expression, the mRNA and protein expression levels of the cell apoptosis‑related protein, Bcl‑2, were upregulated, whereas the expression levels of caspase‑3, caspase‑9 and Bax were significantly downregulated. In addition, phosphorylated AKT expression levels were notably upregulated. Following the overexpression of USP46 in SKOV3/DDP cells, the opposite trends were observed. In SKOV3 cells, the knockdown of PUM2 could reverse the DDP resistance induced by small interfering RNA‑USP46 as the expression levels of Bcl‑2 were downregulated whereas those of caspase‑3, caspase‑9 and Bax were upregulated compared with the small interfering‑USP46 group. Similarly, in SKOV3/DDP cells, the overexpression of PUM2 could reverse DDP sensitivity induced by the overexpression of USP46. In conclusion, the findings of the present study suggested that the downregulation of USP46 expression levels may promote DDP resistance in OC, which may be regulated by PUM2. Therefore, targeting PUM2/USP46 may be an effective way to reverse DDP resistance in OC.
Collapse
Affiliation(s)
- Lei Xu
- Department of Gynecology, People's Hospital of Qingdao West Coast New Area, Qingdao, Shandong 266400, P.R. China
| | - Bin Zhang
- Department of Surgery, People's Hospital of Qingdao West Coast New Area, Qingdao, Shandong 266400, P.R. China
| | - Wenlan Li
- Department of Outpatient Department, People's Hospital of Qingdao West Coast New Area, Qingdao, Shandong 266400, P.R. China
| |
Collapse
|
13
|
Soysouvanh F, Giuliano S, Habel N, El-Hachem N, Pisibon C, Bertolotto C, Ballotti R. An Update on the Role of Ubiquitination in Melanoma Development and Therapies. J Clin Med 2021; 10:jcm10051133. [PMID: 33800394 PMCID: PMC7962844 DOI: 10.3390/jcm10051133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 12/27/2022] Open
Abstract
The ubiquitination system plays a critical role in regulation of large array of biological processes and its alteration has been involved in the pathogenesis of cancers, among them cutaneous melanoma, which is responsible for the most deaths from skin cancers. Over the last decades, targeted therapies and immunotherapies became the standard therapeutic strategies for advanced melanomas. However, despite these breakthroughs, the prognosis of metastatic melanoma patients remains unoptimistic, mainly due to intrinsic or acquired resistances. Many avenues of research have been investigated to find new therapeutic targets for improving patient outcomes. Because of the pleiotropic functions of ubiquitination, and because each step of ubiquitination is amenable to pharmacological targeting, much attention has been paid to the role of this process in melanoma development and resistance to therapies. In this review, we summarize the latest data on ubiquitination and discuss the possible impacts on melanoma treatments.
Collapse
Affiliation(s)
- Frédéric Soysouvanh
- Inserm U1065, C3M, Team 1, Biology, and Pathologies of Melanocytes, University of Nice Côte d’Azur, 06200 Nice, France; (F.S.); (S.G.); (N.H.); (C.P.); (C.B.)
| | - Serena Giuliano
- Inserm U1065, C3M, Team 1, Biology, and Pathologies of Melanocytes, University of Nice Côte d’Azur, 06200 Nice, France; (F.S.); (S.G.); (N.H.); (C.P.); (C.B.)
| | - Nadia Habel
- Inserm U1065, C3M, Team 1, Biology, and Pathologies of Melanocytes, University of Nice Côte d’Azur, 06200 Nice, France; (F.S.); (S.G.); (N.H.); (C.P.); (C.B.)
| | - Najla El-Hachem
- Laboratory of Cancer Signaling, University of Liège, 4020 Liège, Belgium;
| | - Céline Pisibon
- Inserm U1065, C3M, Team 1, Biology, and Pathologies of Melanocytes, University of Nice Côte d’Azur, 06200 Nice, France; (F.S.); (S.G.); (N.H.); (C.P.); (C.B.)
| | - Corine Bertolotto
- Inserm U1065, C3M, Team 1, Biology, and Pathologies of Melanocytes, University of Nice Côte d’Azur, 06200 Nice, France; (F.S.); (S.G.); (N.H.); (C.P.); (C.B.)
- Equipe labellisée Fondation ARC 2019, 06200 Nice, France
| | - Robert Ballotti
- Inserm U1065, C3M, Team 1, Biology, and Pathologies of Melanocytes, University of Nice Côte d’Azur, 06200 Nice, France; (F.S.); (S.G.); (N.H.); (C.P.); (C.B.)
- Equipe labellisée Ligue Contre le Cancer 2020, 06200 Nice, France
- Correspondence: ; Tel.: +33-4-89-06-43-32
| |
Collapse
|
14
|
Sinha A, Iyengar PV, ten Dijke P. E3 Ubiquitin Ligases: Key Regulators of TGFβ Signaling in Cancer Progression. Int J Mol Sci 2021; 22:E476. [PMID: 33418880 PMCID: PMC7825147 DOI: 10.3390/ijms22020476] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/25/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023] Open
Abstract
Transforming growth factor β (TGFβ) is a secreted growth and differentiation factor that influences vital cellular processes like proliferation, adhesion, motility, and apoptosis. Regulation of the TGFβ signaling pathway is of key importance to maintain tissue homeostasis. Perturbation of this signaling pathway has been implicated in a plethora of diseases, including cancer. The effect of TGFβ is dependent on cellular context, and TGFβ can perform both anti- and pro-oncogenic roles. TGFβ acts by binding to specific cell surface TGFβ type I and type II transmembrane receptors that are endowed with serine/threonine kinase activity. Upon ligand-induced receptor phosphorylation, SMAD proteins and other intracellular effectors become activated and mediate biological responses. The levels, localization, and function of TGFβ signaling mediators, regulators, and effectors are highly dynamic and regulated by a myriad of post-translational modifications. One such crucial modification is ubiquitination. The ubiquitin modification is also a mechanism by which crosstalk with other signaling pathways is achieved. Crucial effector components of the ubiquitination cascade include the very diverse family of E3 ubiquitin ligases. This review summarizes the diverse roles of E3 ligases that act on TGFβ receptor and intracellular signaling components. E3 ligases regulate TGFβ signaling both positively and negatively by regulating degradation of receptors and various signaling intermediates. We also highlight the function of E3 ligases in connection with TGFβ's dual role during tumorigenesis. We conclude with a perspective on the emerging possibility of defining E3 ligases as drug targets and how they may be used to selectively target TGFβ-induced pro-oncogenic responses.
Collapse
Affiliation(s)
| | | | - Peter ten Dijke
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (A.S.); (P.V.I.)
| |
Collapse
|
15
|
Functional Toll-Like Receptors (TLRs) Are Expressed by a Majority of Primary Human Acute Myeloid Leukemia Cells and Inducibility of the TLR Signaling Pathway Is Associated with a More Favorable Phenotype. Cancers (Basel) 2019; 11:cancers11070973. [PMID: 31336716 PMCID: PMC6678780 DOI: 10.3390/cancers11070973] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/26/2019] [Accepted: 07/09/2019] [Indexed: 02/06/2023] Open
Abstract
Acute myeloid leukemia (AML) is a highly heterogeneous disease with regard to biological characteristics and receptor expression. Toll-like receptors (TLRs) are upstream to the transcription factor NFκB and part of the innate immune system. They are differentially expressed on AML blasts, and during normal hematopoiesis they initiate myeloid differentiation. In this study, we investigated the response upon TLR stimulation in an AML cohort (n = 83) by measuring the increase of NFκB-mediated cytokine secretion. We observed that TLR4 is readily induced in most patients, while TLR1/2 response was more restricted. General response to TLR stimulation correlated with presence of nucleophosmin gene mutations, increased mRNA expression of proteins, which are part of the TLR signaling pathway and reduced expression of transcription-related proteins. Furthermore, signaling via TLR1/2 appeared to be linked with prolonged patient survival. In conclusion, response upon TLR stimulation, and especially TLR1/2 induction, seems to be part of a more favorable phenotype, which also is characterized by higher basal cytokine secretion and a more mature blast population.
Collapse
|
16
|
Lynn BD, Li X, Hormuzdi SG, Griffiths EK, McGlade CJ, Nagy JI. E3 ubiquitin ligases LNX1 and LNX2 localize at neuronal gap junctions formed by connexin36 in rodent brain and molecularly interact with connexin36. Eur J Neurosci 2018; 48:3062-3081. [PMID: 30295974 DOI: 10.1111/ejn.14198] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 08/31/2018] [Accepted: 09/25/2018] [Indexed: 12/31/2022]
Abstract
Electrical synapses in the mammalian central nervous system (CNS) are increasingly recognized as highly complex structures for mediation of neuronal communication, both with respect to their capacity for dynamic short- and long-term modification in efficacy of synaptic transmission and their multimolecular regulatory and structural components. These two characteristics are inextricably linked, such that understanding of mechanisms that contribute to electrical synaptic plasticity requires knowledge of the molecular composition of electrical synapses and the functions of proteins associated with these synapses. Here, we provide evidence that the key component of gap junctions that form the majority of electrical synapses in the mammalian CNS, namely connexin36 (Cx36), directly interacts with the related E3 ubiquitin ligase proteins Ligand of NUMB protein X1 (LNX1) and Ligand of NUMB protein X2 (LNX2). This is based on immunofluorescence colocalization of LNX1 and LNX2 with Cx36-containing gap junctions in adult mouse brain versus lack of such coassociation in LNX null mice, coimmunoprecipitation of LNX proteins with Cx36, and pull-down of Cx36 with the second PDZ domain of LNX1 and LNX2. Furthermore, cotransfection of cultured cells with Cx36 and E3 ubiquitin ligase-competent LNX1 and LNX2 isoforms led to loss of Cx36-containing gap junctions between cells, whereas these junctions persisted following transfection with isoforms of these proteins that lack ligase activity. Our results suggest that a LNX protein mediates ubiquitination of Cx36 at neuronal gap junctions, with consequent Cx36 internalization, and may thereby contribute to intracellular mechanisms that govern the recently identified modifiability of synaptic transmission at electrical synapses.
Collapse
Affiliation(s)
- Bruce D Lynn
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Xinbo Li
- Casey Eye Institute, Oregon Health and Science University, Portland, Oregon
| | - Sheriar G Hormuzdi
- D'Arcy Thompson Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Emily K Griffiths
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - C Jane McGlade
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - James I Nagy
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Science, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
17
|
USP22 knockdown enhanced chemosensitivity of hepatocellular carcinoma cells to 5-Fu by up-regulation of Smad4 and suppression of Akt. Oncotarget 2018; 8:24728-24740. [PMID: 28445968 PMCID: PMC5421883 DOI: 10.18632/oncotarget.15798] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 02/13/2017] [Indexed: 12/31/2022] Open
Abstract
USP22, a member of the deubiquitinases (DUBs) family, is known to be a key subunit of the human Spt-Ada-Gcn5 acetyltransferase (hSAGA) transcriptional cofactor complex. Within hSAGA, USP22 removes ubiquitin from histone proteins, thus regulating the transcription and expression of downstream genes. USP22 plays important roles in many cancers; however, its effect and the mechanism underlying HCC chemoresistance remain unclear. In the present study, we found that USP22 was highly expressed in chemoresistant HCC tissues and cells and was correlated with the prognosis of HCC patients who received chemotherapy. Silencing USP22 in chemoresistant HCC Bel/Fu cells dramatically inhibited proliferation, migration, invasion and epithelial-mesenchymal transition in vitro; suppressed tumorigenic and metastatic capacities in vivo; and inhibited drug resistance-related proteins (MDR1, LRP, MRP1). Mechanistically, we found that USP22 knockdown exerts its function through down-regulating PI3K and activating Smad4, which inhibited phosphorylation of Akt. Silencing Smad4 blocked USP22 knockdown-induced Akt inhibition in Bel/Fu cells. Our results, for the first time, provide evidence that USP22 plays a critical role in the development of chemoresistant HCC cells and that high USP22 expression serves as a molecular marker for the prognosis of HCC patients who undergo chemotherapy.
Collapse
|
18
|
Abstract
Ubiquitin-conjugating enzymes (E2 enzymes) such as UBE2T target proteins for degradation via the proteasome. Here, we examined the effects of UBE2T on the progression of gastric cancer. UBE2T was highly expressed in gastric tumors and gastric cancer cells. siRNA-mediated suppression of UBE2T inhibited gastric cancer cell proliferation and colony formation by promoting cell cycle arrest at G2/M phase and increasing apoptosis. Suppression of UBE2T also attenuated the invasive and metastatic abilities of gastric cancer cells by altering expression of epithelial-mesenchymal transition (EMT)-related factors. A xenograft model in which nude mice were injected with UBE2T knockdown human gastric cancer cells confirmed that suppression of UBE2T also decreased tumor formation and growth in vivo. Expression levels of CCND1, Phospho-GSK3B, WNT family members, and MYC were all affected by UBE2T knockdown. These results suggest that UBE2T plays a critical role in gastric cancer, and that it may serve as a useful prognostic biomarker and therapeutic target in gastric cancer patients.
Collapse
|
19
|
Zhi J, Sun J, Wang Z, Ding W. Support vector machine classifier for prediction of the metastasis of colorectal cancer. Int J Mol Med 2018; 41:1419-1426. [PMID: 29328363 PMCID: PMC5819940 DOI: 10.3892/ijmm.2018.3359] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 12/13/2017] [Indexed: 12/17/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers and a major cause of mortality. The present study aimed to identify potential biomarkers for CRC metastasis and uncover the mechanisms underlying the etiology of the disease. The five datasets GSE68468, GSE62321, GSE22834, GSE14297 and GSE6988 were utilized in the study, all of which contained metastatic and non-metastatic CRC samples. Among them, three datasets were integrated via meta-analysis to identify the differentially expressed genes (DEGs) between the two types of samples. A protein-protein interaction (PPI) network was constructed for these DEGs. Candidate genes were then selected by the support vector machine (SVM) classifier based on the betweenness centrality (BC) algorithm. A CRC dataset from The Cancer Genome Atlas database was used to evaluate the accuracy of the SVM classifier. Pathway enrichment analysis was carried out for the SVM-classified gene signatures. In total, 358 DEGs were identified by meta‑analysis. The top ten nodes in the PPI network with the highest BC values were selected, including cAMP responsive element binding protein 1 (CREB1), cullin 7 (CUL7) and signal sequence receptor 3 (SSR3). The optimal SVM classification model was established, which was able to precisely distinguish between the metastatic and non-metastatic samples. Based on this SVM classifier, 40 signature genes were identified, which were mainly enriched in protein processing in endoplasmic reticulum (e.g., SSR3), AMPK signaling pathway (e.g., CREB1) and ubiquitin mediated proteolysis (e.g., FBXO2, CUL7 and UBE2D3) pathways. In conclusion, the SVM-classified genes, including CREB1, CUL7 and SSR3, precisely distinguished the metastatic CRC samples from the non-metastatic ones. These genes have the potential to be used as biomarkers for the prognosis of metastatic CRC.
Collapse
Affiliation(s)
- Jiajun Zhi
- Department of Colorectal Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Jiwei Sun
- Department of Colorectal Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Zhongchuan Wang
- Department of Colorectal Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Wenjun Ding
- Department of Colorectal Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| |
Collapse
|
20
|
Nyati S, Chaudhry N, Chatur A, Gregg BS, Kimmel L, Khare D, Basrur V, Ray D, Rehemtulla A. A novel reporter for real-time, quantitative imaging of AKT-directed K63-poly-ubiquitination in living cells. Oncotarget 2018. [PMID: 29541398 PMCID: PMC5834254 DOI: 10.18632/oncotarget.24323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Post-translational K63-linked poly-ubiquitination of AKT is required for its membrane recruitment and phosphorylation dependent activation in response to growth-factor stimulation. Current assays for target specific poly-ubiquitination involve cumbersome enzymatic preparations and semi-quantitative readouts. We have engineered a reporter that can quantitatively and in a target specific manner report on AKT-directed K63-polyubiquitination (K63UbR) in live cells. The reporter constitutes the AKT-derived poly-ubiquitination substrate peptide, a K63 poly-ubiquitin binding domain (UBD) as well as the split luciferase protein complementation domains. In cells, wherein signaling events upstream of AKT are activated (e.g. either EGFR or IGFR), poly-ubiquitination of the reporter leads to a stearic constraint that prevents luciferase complementation. However, upon inhibition of growth factor receptor signaling, loss of AKT poly-ubiquitination results in a decrease in interaction between the target peptide and the UBD, allowing for reconstitution of the split luciferase domains and therefore increased bioluminescence in a quantitative and dynamic manner. The K63UbR was confirmed to be suitable for high throughput screen (HTS), thus providing an excellent tool for small molecule or siRNA based HTS to discover new inhibitors or identify novel regulators of this key signaling node. Furthermore, the K63UbR platform could be adapted for non-invasive monitoring of additional target specific K63-polyubiquitination events in live cells.
Collapse
Affiliation(s)
- Shyam Nyati
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI-48109, USA
| | - Nauman Chaudhry
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI-48109, USA
| | - Areeb Chatur
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI-48109, USA
| | - Brandon S Gregg
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI-48109, USA
| | - Lauren Kimmel
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI-48109, USA
| | - Dheeraj Khare
- Life Sciences Institute, University of Michigan, Ann Arbor, MI-48109, USA
| | - Venkatesha Basrur
- UMCCC Proteomics Shared Resource, University of Michigan, Ann Arbor, MI-48109, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI-48109, USA
| | - Dipankar Ray
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI-48109, USA
| | - Alnawaz Rehemtulla
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI-48109, USA
| |
Collapse
|
21
|
Novel Insights Into E3 Ubiquitin Ligase in Cancer Chemoresistance. Am J Med Sci 2017; 355:368-376. [PMID: 29661351 DOI: 10.1016/j.amjms.2017.12.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 12/20/2017] [Accepted: 12/23/2017] [Indexed: 12/18/2022]
Abstract
Drug resistance can obstruct successful cancer chemotherapy. The ubiquitin-proteasome pathway has emerged as a crucial player that controls steady-state protein levels regulating multiple biological processes, such as cell cycle, cellular proliferation, apoptosis, and DNA damage response, which are involved in oncogenesis, cancer development, prognosis, and drug resistance. E3 ligases perform the final step in the ubiquitination cascade, and determine which protein becomes ubiquitylated by specifically binding the substrate protein. They are promising drug targets thanks to their ability to regulate protein stability and functions. Although patient survival has increased in recent years with the availability of novel agents, chemoresistance remains a major problem in cancer management. E3 ligases attract increasing attention with advances in chemoresistance knowledge. To explore the role of E3 ligase in cancer chemotherapy resistance and the underlying mechanism, we summarize the growing number of E3 ligases and their substrate proteins, which have emerged as crucial players in cancer chemoresistance and targeted therapies.
Collapse
|
22
|
Xie Z, Liang H, Wang J, Xu X, Zhu Y, Guo A, Shen X, Cao F, Chang W. Significance of the E3 ubiquitin protein UBR5 as an oncogene and a prognostic biomarker in colorectal cancer. Oncotarget 2017; 8:108079-108092. [PMID: 29296225 PMCID: PMC5746127 DOI: 10.18632/oncotarget.22531] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 10/29/2017] [Indexed: 12/31/2022] Open
Abstract
The E3 ubiquitin protein UBR5 has been implicated in the regulation of multiple biological functions and has recently emerged as a key regulator of the ubiquitin-proteasome system (UPS) in cancer. However, the clinical significance and biological function of UBR5 in colorectal cancer (CRC) are poorly understood. In this study, we compared the expression pattern of UBR5 between CRC and adjacent normal tissues and found that UBR5 expression was frequently elevated in CRC, possibly through chromosomal gains. Using three CRC patient cohorts, we found that patients with high UBR5 mRNA levels, UBR5 gene amplification, or high nuclear UBR5 protein levels had poor prognoses. Multivariate analysis showed that the alterations in UBR5 were independent predictors of CRC prognosis with the TNM stage as a confounding factor. Furthermore, knockdown of UBR5 prevented the proliferation, colony formation, migration, and invasion of CRC cells in cell culture models. An in vivo animal model further confirmed that UBR5 knockdown reduced the growth of CRC tumors. In conclusion, our study is the first to systematically investigate the clinical and biological significance of UBR5 and to conclude that an elevated UBR5 level plays an oncogenic role and may be a potential prognostic marker in CRC.
Collapse
Affiliation(s)
- Zhongdong Xie
- Department of Environmental Hygiene, Second Military Medical University, Shanghai, China.,Department of General Surgery, First Affiliated Hospital, Wenzhou Medical University, Zhejiang, China
| | - Han Liang
- Department of Environmental Hygiene, Second Military Medical University, Shanghai, China
| | - Jinmeng Wang
- Department of Environmental Hygiene, Second Military Medical University, Shanghai, China.,Department of Dermatology, Wenzhou Central Hospital, Zhejiang, China
| | - Xiaowen Xu
- Department of Colorectal Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yan Zhu
- Department of Pathology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Aizhen Guo
- Department of General Practice, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xian Shen
- Department of General Surgery, First Affiliated Hospital, Wenzhou Medical University, Zhejiang, China
| | - Fuao Cao
- Department of Colorectal Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Wenjun Chang
- Department of Environmental Hygiene, Second Military Medical University, Shanghai, China
| |
Collapse
|
23
|
EXPRESSION OF UBIQUITIN SPECIFIC PEPTIDASE GENES IN IRE1 KNOCKDOWN U87 GLIOMA CELLS UPON GLUCOSE DEPRIVATION. BIOTECHNOLOGIA ACTA 2016. [DOI: 10.15407/biotech9.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
24
|
Delogu S, Wang C, Cigliano A, Utpatel K, Sini M, Longerich T, Waldburger N, Breuhahn K, Jiang L, Ribback S, Dombrowski F, Evert M, Chen X, Calvisi DF. SKP2 cooperates with N-Ras or AKT to induce liver tumor development in mice. Oncotarget 2016; 6:2222-34. [PMID: 25537506 PMCID: PMC4385847 DOI: 10.18632/oncotarget.2945] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/09/2015] [Indexed: 12/17/2022] Open
Abstract
Mounting evidence indicates that S-Phase Kinase-Associated Protein 2 (SKP2) is overexpressed in human hepatocellular carcinoma (HCC). However, the role of SKP2 in hepatocarcinogenesis remains poorly delineated. To elucidate the function(s) of SKP2 in HCC, we stably overexpressed the SKP2 gene in the mouse liver, either alone or in combination with activated forms of N-Ras (N-RasV12), AKT1 (myr-AKT1), or β-catenin (ΔN90-β-catenin) protooncogenes, via hydrodynamic gene delivery. We found that forced overexpression of SKP2, N-RasV12 or ΔN90-β-catenin alone as well as co-expression of SKP2 and ΔN90-β-catenin did not induce liver tumor development. Overexpression of myr-AKT1 alone led to liver tumor development after long latency. In contrast, co-expression of SKP2 with N-RasV12 or myr-AKT1 resulted in early development of multiple hepatocellular tumors in all SKP2/N-RasV12 and SKP2/myr-AKT1 mice. At the molecular level, preneoplastic and neoplastic liver lesions from SKP2/N-RasV12 and SKP2/myr-AKT1 mice exhibited a strong induction of AKT/mTOR and Ras/MAPK pathways. Noticeably, the tumor suppressor proteins whose levels have been shown to be downregulated by SKP2-dependent degradation in various tumor types, including p27, p57, Dusp1, and Rassf1A were not decreased in liver lesions from SKP2/N-RasV12 and SKP2/myr-AKT1 mice. In human HCC specimens, nuclear translocation of SKP2 was associated with activation of the AKT/mTOR and Ras/MAPK pathways, but not with β-catenin mutation or activation. Altogether, the present data indicate that SKP2 cooperates with N-Ras and AKT proto-oncogenes to promote hepatocarcinogenesis in vivo.
Collapse
Affiliation(s)
- Salvatore Delogu
- Institut für Pathologie, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Chunmei Wang
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA
| | - Antonio Cigliano
- Institut für Pathologie, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Kirsten Utpatel
- Institut für Pathologie, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Marcella Sini
- Institut für Pathologie, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Thomas Longerich
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Nina Waldburger
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Kai Breuhahn
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Lijie Jiang
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA
| | - Silvia Ribback
- Institut für Pathologie, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Frank Dombrowski
- Institut für Pathologie, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Matthias Evert
- Institut für Pathologie, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA
| | - Diego F Calvisi
- Institut für Pathologie, Universitätsmedizin Greifswald, Greifswald, Germany
| |
Collapse
|
25
|
Vriend J, Ghavami S, Marzban H. The role of the ubiquitin proteasome system in cerebellar development and medulloblastoma. Mol Brain 2015; 8:64. [PMID: 26475605 PMCID: PMC4609148 DOI: 10.1186/s13041-015-0155-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 10/08/2015] [Indexed: 01/12/2023] Open
Abstract
Cerebellar granule cells precursors are derived from the upper rhombic lip and migrate tangentially independent of glia along the subpial stream pathway to form the external germinal zone. Postnatally, granule cells migrate from the external germinal zone radially through the Purkinje cell layer, guided by Bergmann glia fibers, to the internal granular cell layer. Medulloblastomas (MBs) are the most common malignant childhood brain tumor. Many of these tumors develop from precursor cells of the embryonic rhombic lips. Four main groups of MB are recognized. The WNT group of MBs arise primarily from the lower rhombic lip and embryonic brainstem. The SHH group of MBs originate from cerebellar granule cell precursors in the external germinal zone of the embryonic cerebellum. The cellular origins of type 3 and type 4 MBs are not clear. Several ubiquitin ligases are revealed to be significant factors in development of the cerebellum as well as in the initiation and maintenance of MBs. Proteasome dysfunction at a critical stage of development may be a major factor in determining whether progenitor cells which are destined to become granule cells differentiate normally or become MB cells. We propose the hypothesis that proteasomal activity is essential to regulate the critical transition between proliferating granule cells and differentiated granule cells and that proteasome dysfunction may lead to MB. Proteasome dysfunction could also account for various mutations in MBs resulting from deficiencies in DNA checkpoint and repair mechanisms prior to development of MBs. Data showing a role for the ubiquitin ligases β-TrCP, FBW7, Huwe1, and SKP2 in MBs suggest the possibility of a classification of MBs based on the expression (over expression or under expression) of specific ubiquitin ligases which function as oncogenes, tumor suppressors or cell cycle regulators.
Collapse
Affiliation(s)
- Jerry Vriend
- Department of Human Anatomy and Cell Science, Rm129, BMSB, 745 Bannatyne Avenue, Winnipeg, MB, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Rm129, BMSB, 745 Bannatyne Avenue, Winnipeg, MB, Canada.,Children's Hospital Research Institute of Manitoba (CHRIM), College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada
| | - Hassan Marzban
- Department of Human Anatomy and Cell Science, Rm129, BMSB, 745 Bannatyne Avenue, Winnipeg, MB, Canada. .,Children's Hospital Research Institute of Manitoba (CHRIM), College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada.
| |
Collapse
|
26
|
Zhu M, Li Y, Chen G, Ren L, Xie Q, Zhao Z, Hu Z. Silencing SlELP2L, a tomato Elongator complex protein 2-like gene, inhibits leaf growth, accelerates leaf, sepal senescence, and produces dark-green fruit. Sci Rep 2015; 5:7693. [PMID: 25573793 PMCID: PMC4287726 DOI: 10.1038/srep07693] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 11/28/2014] [Indexed: 11/12/2022] Open
Abstract
The multi-subunit complex Elongator interacts with elongating RNA polymerase II (RNAPII) and is thought to facilitate transcription through histone acetylation. Elongator is highly conserved in eukaryotes, yet has multiple kingdom-specific functions in diverse organisms. Recent genetic studies performed in Arabidopsis have demonstrated that Elongator functions in plant growth and development, and in response to biotic and abiotic stress. However, little is known about its roles in other plant species. Here, we study the function of an Elongator complex protein 2-like gene in tomato, here designated as SlELP2L, through RNAi-mediated gene silencing. Silencing SlELP2L in tomato inhibits leaf growth, accelerates leaf and sepal senescence, and produces dark-green fruit with reduced GA and IAA contents in leaves, and increased chlorophyll accumulation in pericarps. Gene expression analysis indicated that SlELP2L-silenced plants had reduced transcript levels of ethylene- and ripening-related genes during fruit ripening with slightly decreased carotenoid content in fruits, while the expression of DNA methyltransferase genes was up-regulated, indicating that SlELP2L may modulate DNA methylation in tomato. Besides, silencing SlELP2L increases ABA sensitivity in inhibiting seedling growth. These results suggest that SlELP2L plays important roles in regulating plant growth and development, as well as in response to ABA in tomato.
Collapse
Affiliation(s)
- Mingku Zhu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, People's Republic of China
| | - Yali Li
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, People's Republic of China
| | - Guoping Chen
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, People's Republic of China
| | - Lijun Ren
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, People's Republic of China
| | - Qiaoli Xie
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, People's Republic of China
| | - Zhiping Zhao
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, People's Republic of China
| | - Zongli Hu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, People's Republic of China
| |
Collapse
|
27
|
Kumari R, Kohli S, Das S. p53 regulation upon genotoxic stress: intricacies and complexities. Mol Cell Oncol 2014; 1:e969653. [PMID: 27308356 DOI: 10.4161/23723548.2014.969653] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 09/02/2014] [Accepted: 09/02/2014] [Indexed: 12/11/2022]
Abstract
p53, the revered savior of genomic integrity, receives signals from diverse stress sensors and strategizes to maintain cellular homeostasis. However, the predominance of p53 overshadows the fact that this herculean task is no one-man show; rather, there is a huge army of regulators that reign over p53 at various levels to avoid an unnecessary surge in its levels and sculpt it dynamically to favor one cellular outcome over another. This governance starts right at the time of p53 translation, which is gated by proteins that bind to p53 mRNA and keep a stringent check on p53 protein levels. The same effect is also achieved by ubiquitylases and deubiquitylases that fine-tune p53 turnover and miRNAs that modulate p53 levels, adding precision to this entire scheme. In addition, extensive covalent modifications and differential protein interactions allow p53 to trigger a tailor-made response for a given circumstance. To magnify the marvel, these various tiers of regulation operate simultaneously and in various combinations. In this review, we have tried to provide a glimpse into this bewildering labyrinth. We believe that further studies will result in a better understanding of p53 regulation and that new insights will help unravel many aspects of cancer biology.
Collapse
Affiliation(s)
- Rajni Kumari
- Molecular Oncology Laboratory; National Institute of Immunology ; New Delhi, India
| | - Saishruti Kohli
- Molecular Oncology Laboratory; National Institute of Immunology ; New Delhi, India
| | - Sanjeev Das
- Molecular Oncology Laboratory; National Institute of Immunology ; New Delhi, India
| |
Collapse
|
28
|
Fukumoto C, Nakashima D, Kasamatsu A, Unozawa M, Shida-Sakazume T, Higo M, Ogawara K, Yokoe H, Shiiba M, Tanzawa H, Uzawa K. WWP2 is overexpressed in human oral cancer, determining tumor size and poor prognosis in patients: downregulation of WWP2 inhibits the AKT signaling and tumor growth in mice. Oncoscience 2014; 1:807-20. [PMID: 25621296 PMCID: PMC4303889 DOI: 10.18632/oncoscience.101] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 11/27/2014] [Indexed: 01/14/2023] Open
Abstract
The WW domain containing E3 ubiquitin protein ligase 2 (WWP2) encodes a member of the Nedd4 family of E3 ligases, which catalyzes the final step of the ubiquitination cascade. WWP2 is involved in tumoral growth with degradation of the tumor suppressor phosphatase and tensin homologue deleted on chromosome TEN (PTEN). However, little is known about the mechanisms and roles of WWP2 in human malignancies including oral squamous cell carcinomas (OSCCs). We found frequent WWP2 overexpression in all OSCC-derived cell lines examined that was associated with cellular growth by accelerating the cell cycle in the G1 phase via degradation of PTEN and activation of the PI3K/AKT signaling pathway. Our in vivo data of WWP2 silencing showed dramatic inhibition of tumoral growth with increased expression of PTEN. Our 104 primary OSCCs had significantly higher expression of WWP2 than their normal counterparts. Moreover, among the clinical variables analyzed, enhanced WWP2 expression was correlated with primary tumoral size and poor prognosis. These data suggested that WWP2 overexpression contributes to neoplastic promotion via the PTEN/PI3K/AKT pathway in OSCCs. WWP2 is likely to be a biomarker of tumoral progression and prognosis and a potential therapeutic target for development of anticancer drugs in OSCCs.
Collapse
Affiliation(s)
- Chonji Fukumoto
- Department of Oral Science, Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba, Japan
| | - Dai Nakashima
- Department of Oral Science, Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba, Japan
| | - Atsushi Kasamatsu
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Inohana, Chuo-ku, Chiba, Japan
| | - Motoharu Unozawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba, Japan
| | - Tomomi Shida-Sakazume
- Department of Oral Science, Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba, Japan
| | - Morihiro Higo
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Inohana, Chuo-ku, Chiba, Japan
| | - Katsunori Ogawara
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Inohana, Chuo-ku, Chiba, Japan
| | - Hidetaka Yokoe
- Department of Oral and Maxillofacial Surgery Research Institute, National Defense Medical College Hospital, Tokorozawa, Japan
| | - Masashi Shiiba
- Department of Medical Oncology, Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba, Japan
| | - Hideki Tanzawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba, Japan ; Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Inohana, Chuo-ku, Chiba, Japan
| | - Katsuhiro Uzawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba, Japan ; Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Inohana, Chuo-ku, Chiba, Japan
| |
Collapse
|
29
|
McKeon JE, Sha D, Li L, Chin LS. Parkin-mediated K63-polyubiquitination targets ubiquitin C-terminal hydrolase L1 for degradation by the autophagy-lysosome system. Cell Mol Life Sci 2014; 72:1811-24. [PMID: 25403879 DOI: 10.1007/s00018-014-1781-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 11/04/2014] [Accepted: 11/13/2014] [Indexed: 11/24/2022]
Abstract
Ubiquitin C-terminal hydrolase L1 (UCH-L1) is a key neuronal deubiquitinating enzyme which is mutated in Parkinson disease (PD) and in childhood-onset neurodegenerative disorder with optic atrophy. Furthermore, reduced UCH-L1 protein levels are associated with a number of neurodegenerative diseases, whereas up-regulation of UCH-L1 protein expression is found in multiple types of cancer. However, very little is known about how UCH-L1 protein level is regulated in cells. Here, we report that UCH-L1 is a novel interactor and substrate of PD-linked E3 ubiquitin-protein ligase parkin. We find that parkin mediates K63-linked polyubiquitination of UCH-L1 in cooperation with the Ubc13/Uev1a E2 ubiquitin-conjugating enzyme complex and promotes UCH-L1 degradation by the autophagy-lysosome pathway. Targeted disruption of parkin gene expression in mice causes a significant decrease in UCH-L1 ubiquitination with a concomitant increase in UCH-L1 protein level in brain, supporting an in vivo role of parkin in regulating UCH-L1 ubiquitination and degradation. Our findings reveal a direct link between parkin-mediated ubiquitin signaling and UCH-L1 regulation, and they have important implications for understanding the roles of these two proteins in health and disease.
Collapse
Affiliation(s)
- Jeanne E McKeon
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | | | | | | |
Collapse
|
30
|
Rescue of embryonic stem cells from cellular transformation by proteomic stabilization of mutant p53 and conversion into WT conformation. Proc Natl Acad Sci U S A 2014; 111:7006-11. [PMID: 24778235 DOI: 10.1073/pnas.1320428111] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
p53 is a well-known tumor suppressor that is mutated in over 50% of human cancers. These mutations were shown to exhibit gain of oncogenic function compared with the deletion of the gene. Additionally, p53 has fundamental roles in differentiation and development; nevertheless, mutant p53 mice are viable and develop malignant tumors only on adulthood. We set out to reveal the mechanisms by which embryos are protected from mutant p53-induced transformation using ES cells (ESCs) that express a conformational mutant of p53. We found that, despite harboring mutant p53, the ESCs remain pluripotent and benign and have relatively normal karyotype compared with ESCs knocked out for p53. Additionally, using high-content RNA sequencing, we show that p53 is transcriptionally active in response to DNA damage in mutant ESCs and elevates p53 target genes, such as p21 and btg2. We also show that the conformation of mutant p53 protein in ESCs is stabilized to a WT conformation. Through MS-based interactome analyses, we identified a network of proteins, including the CCT complex, USP7, Aurora kinase, Nedd4, and Trim24, that bind mutant p53 and may shift its conformation to a WT form. We propose this conformational shift as a novel mechanism of maintenance of genomic integrity, despite p53 mutation. Harnessing the ability of these protein interactors to transform the oncogenic mutant p53 to the tumor suppressor WT form can be the basis for future development of p53-targeted cancer therapy.
Collapse
|
31
|
Kazi A, Ozcan S, Tecleab A, Sun Y, Lawrence HR, Sebti SM. Discovery of PI-1840, a novel noncovalent and rapidly reversible proteasome inhibitor with anti-tumor activity. J Biol Chem 2014; 289:11906-11915. [PMID: 24570003 DOI: 10.1074/jbc.m113.533950] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The proteasome inhibitor bortezomib is effective in hematologic malignancies such as multiple myeloma but has little activity against solid tumors, acts covalently, and is associated with undesired side effects. Therefore, noncovalent inhibitors that are less toxic and more effective against solid tumors are desirable. Structure activity relationship studies led to the discovery of PI-1840, a potent and selective inhibitor for chymotrypsin-like (CT-L) (IC50 value = 27 ± 0.14 nm) over trypsin-like and peptidylglutamyl peptide hydrolyzing (IC50 values >100 μm) activities of the proteasome. Furthermore, PI-1840 is over 100-fold more selective for the constitutive proteasome over the immunoproteasome. Mass spectrometry and dialysis studies demonstrate that PI-1840 is a noncovalent and rapidly reversible CT-L inhibitor. In intact cancer cells, PI-1840 inhibits CT-L activity, induces the accumulation of proteasome substrates p27, Bax, and IκB-α, inhibits survival pathways and viability, and induces apoptosis. Furthermore, PI-1840 sensitizes human cancer cells to the mdm2/p53 disruptor, nutlin, and to the pan-Bcl-2 antagonist BH3-M6. Finally, in vivo, PI-1840 but not bortezomib suppresses the growth in nude mice of human breast tumor xenografts. These results warrant further evaluation of a noncovalent and rapidly reversible proteasome inhibitor as potential anticancer agents against solid tumors.
Collapse
Affiliation(s)
- Aslamuzzaman Kazi
- Drug Discovery Department, H. Lee Moffit Cancer Center and Research Institute, Tampa, Florida 33612; Department of Oncologic Sciences, University of South Florida, Tampa, Florida 33620
| | - Sevil Ozcan
- Drug Discovery Department, H. Lee Moffit Cancer Center and Research Institute, Tampa, Florida 33612
| | - Awet Tecleab
- Drug Discovery Department, H. Lee Moffit Cancer Center and Research Institute, Tampa, Florida 33612
| | - Ying Sun
- Drug Discovery Department, H. Lee Moffit Cancer Center and Research Institute, Tampa, Florida 33612
| | - Harshani R Lawrence
- Drug Discovery Department, H. Lee Moffit Cancer Center and Research Institute, Tampa, Florida 33612; Department of Oncologic Sciences, University of South Florida, Tampa, Florida 33620; Chemical Biology Core, H. Lee Moffit Cancer Center and Research Institute, Tampa, Florida 33612
| | - Saïd M Sebti
- Drug Discovery Department, H. Lee Moffit Cancer Center and Research Institute, Tampa, Florida 33612; Department of Oncologic Sciences, University of South Florida, Tampa, Florida 33620.
| |
Collapse
|
32
|
Hurst JH, Dohlman HG. Dynamic ubiquitination of the mitogen-activated protein kinase kinase (MAPKK) Ste7 determines mitogen-activated protein kinase (MAPK) specificity. J Biol Chem 2013; 288:18660-71. [PMID: 23645675 DOI: 10.1074/jbc.m113.475707] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ubiquitination is a post-translational modification that tags proteins for proteasomal degradation. In addition, there is a growing appreciation that ubiquitination can influence protein activity and localization. Ste7 is a prototype MAPKK in yeast that participates in both the pheromone signaling and nutrient deprivation/invasive growth pathways. We have shown previously that Ste7 is ubiquitinated upon pheromone stimulation. Here, we show that the Skp1/Cullin/F-box ubiquitin ligase SCF(Cdc4) and the ubiquitin protease Ubp3 regulate Ste7 ubiquitination and signal specificity. Using purified components, we demonstrate that SCF(Cdc4) ubiquitinates Ste7 directly. Using gene deletion mutants, we show that SCF(Cdc4) and Ubp3 have opposing effects on Ste7 ubiquitination. Although SCF(Cdc4) is necessary for proper activation of the pheromone MAPK Fus3, Ubp3 is needed to limit activation of the invasive growth MAPK Kss1. Finally, we show that Fus3 phosphorylates Ubp3 directly and that phosphorylation of Ubp3 is necessary to limit Kss1 activation. These results reveal a feedback loop wherein one MAPK limits the ubiquitination of an upstream MAPKK and thereby prevents spurious activation of a second competing MAPK.
Collapse
Affiliation(s)
- Jillian H Hurst
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599-7260, USA
| | | |
Collapse
|