1
|
Mahmoud HA, Botros SKA, Fouad AM, Kamel MM, Abdel Aziz RS. Roles of DNMT3B and PARP1 Genes Expression in Cytogenetically Normal Acute Myeloid Leukemia. Clin Med Insights Oncol 2024; 18:11795549241295649. [PMID: 39497927 PMCID: PMC11533204 DOI: 10.1177/11795549241295649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 10/07/2024] [Indexed: 11/07/2024] Open
Abstract
Background Acute myeloid leukemia (AML) has a heterogeneous molecular profile, clinical presentations, and response to treatments and outcomes. DNA methylation is conducted by DNA methyltransferases including DNMT3B. Poly ADP-ribose polymerase 1 belongs to a family of enzymes that mediate important cellular processes including DNA repair, transcription, and cell death/cell proliferation, and it is involved in the development, spread, treatment, and prognosis of some cancers. The objective of this study is to assess the impact of PARP1 and DNMT3B genes expression on laboratory characteristics, response to treatment and survival in Egyptian cytogenetically normal AML patients. Methods This study included 67 Egyptian CN-AML patients in addition to 8 healthy bone marrow donors. Measurement of DNMT3B and PARP1 gene expression was done on bone marrow samples via real-time semiquantitative polymerase chain reaction. Result Expression of both DNMT3B and PARP1 genes was significantly upregulated in AML (P = .001, P = .036, respectively). Upregulated DNMT3B was associated with higher total leukocyte count (TLC), PB, and BM blast cell%. Also, upregulated PARP1 correlated with higher TLC, PB, and BM blast cell%. High expression of both DNMT3B and PARP1 correlated with greater frequencies of FLT3-ITD. High DNMT3B expression, and combined upregulation of both PARP1 and DNMT3B genes associated significantly with ELN stratification. But no correlation was found with response (CR), overall survival (OS), disease-free survival (DFS), or event-free survival (EFS). Conclusion Our findings highlight the importance of considering DNMT3B and PARP1 expression levels as potential prognostic biomarkers for progression and aggressiveness of CN-AML patients in AML. Assessing their expression levels could be an indicator to guide treatment decisions and potentially improve patient outcomes.
Collapse
Affiliation(s)
- Hager A Mahmoud
- Clinical Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Shahira KA Botros
- Clinical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | - Mahmoud M Kamel
- Clinical Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Rania S Abdel Aziz
- Clinical Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| |
Collapse
|
2
|
Abbasi SF, Mahjabeen I, Parveen N, Qamar I, Haq MFU, Shafique R, Saeed N, Ashraf NS, Kayani MA. Exploring homologous recombination repair and base excision repair pathway genes for possible diagnostic markers in hematologic malignancies. Mol Genet Genomics 2023; 298:1527-1543. [PMID: 37861816 DOI: 10.1007/s00438-023-02078-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 10/04/2023] [Indexed: 10/21/2023]
Abstract
Hematologic malignancies (HMs) are a collection of malignant transformations, originating from the cells in the bone marrow and lymphoid organs. HMs comprise three main types; leukemia, lymphoma, and multiple myeloma. Globally, HMS accounts for approximately 10% of newly diagnosed cancer. DNA repair pathways defend the cells from recurrent DNA damage. Defective DNA repair mechanisms such as homologous recombination repair (HRR), nucleotide excision repair (NER), and base excision repair (BER) pathways may lead to genomic instability, which initiates HM progression and carcinogenesis. Expression deregulation of HRR, NER, and BER has been investigated in various malignancies. However, no studies have been reported to assess the differential expression of selected DNA repair genes combinedly in HMs. The present study was designed to assess the differential expression of HRR and BER pathway genes including RAD51, XRCC2, XRCC3, APEX1, FEN1, PARP1, and XRCC1 in blood cancer patients to highlight their significance as diagnostic/ prognostic marker in hematological malignancies. The study cohort comprised of 210 blood cancer patients along with an equal number of controls. For expression analysis, q-RT PCR was performed. DNA damage was measured in blood cancer patients and controls using the comet assay and LORD Q-assay. Data analysis showed significant downregulation of selected genes in blood cancer patients compared to healthy controls. To check the diagnostic value of selected genes, the Area under curve (AUC) was calculated and 0.879 AUC was observed for RAD51 (p < 0.0001) and 0.830 (p < 0.0001) for APEX1. Kaplan-Meier analysis showed that downregulation of RAD51 (p < 0.0001), XRCC3 (p < 0.02), and APEX1 (p < 0.0001) was found to be associated with a significant decrease in survival of blood cancer patients. Cox regression analysis showed that deregulation of RAD51 (p < 0.0001), XRCC2 (p < 0.02), XRCC3 (p < 0.003), and APEX1 (p < 0.00001) was found to be associated with the poor prognosis of blood cancer patients. Comet assay showed an increased number of comets in blood cancer patients compared to controls. These results are confirmed by performing the LORD q-assay and an increased frequency of lesions/Kb was observed in selected genes in cancer patients compared to controls. Our results showed significant downregulation of RAD51, XRCC2, XRCC3, APEX1, FEN1, PARP1, and XRCC1 genes with increased DNA damage in blood cancer patients. The findings of the current research suggested that deregulated expression of HRR and BER pathway genes can act as a diagnostic/prognostic marker in hematologic malignancies.
Collapse
Affiliation(s)
- Sumaira Fida Abbasi
- Cancer Genetics and Epigenetics Research Group, Department of Biosciences, COMSATS University, Park Road, Islamabad, Pakistan
| | - Ishrat Mahjabeen
- Cancer Genetics and Epigenetics Research Group, Department of Biosciences, COMSATS University, Park Road, Islamabad, Pakistan.
| | - Neelam Parveen
- Cancer Genetics and Epigenetics Research Group, Department of Biosciences, COMSATS University, Park Road, Islamabad, Pakistan
| | - Imama Qamar
- Cancer Genetics and Epigenetics Research Group, Department of Biosciences, COMSATS University, Park Road, Islamabad, Pakistan
| | - Maria Fazal Ul Haq
- Cancer Genetics and Epigenetics Research Group, Department of Biosciences, COMSATS University, Park Road, Islamabad, Pakistan
| | - Rabia Shafique
- Cancer Genetics and Epigenetics Research Group, Department of Biosciences, COMSATS University, Park Road, Islamabad, Pakistan
| | - Nadia Saeed
- Cancer Genetics and Epigenetics Research Group, Department of Biosciences, COMSATS University, Park Road, Islamabad, Pakistan
| | - Nida Sarosh Ashraf
- Cancer Genetics and Epigenetics Research Group, Department of Biosciences, COMSATS University, Park Road, Islamabad, Pakistan
| | - Mahmood Akhtar Kayani
- Cancer Genetics and Epigenetics Research Group, Department of Biosciences, COMSATS University, Park Road, Islamabad, Pakistan
| |
Collapse
|
3
|
Sun Y, Shi Y, Liu H, Lv C, Zhang A. The role of poly (ADP-ribose) glycohydrolase in phosphatase and tensin homolog deficiency endometrial cancer. J Obstet Gynaecol Res 2023; 49:1244-1254. [PMID: 36759425 DOI: 10.1111/jog.15563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/12/2023] [Indexed: 02/11/2023]
Abstract
AIM To explore the relationship between poly(ADP-ribose) glycohydrolase (PARG) and the occurrence, development, and prognosis of endometrial carcinoma (EC), and investigate whether the PARG inhibitor PDD0017273 could increase the sensitivity of EC cells to cisplatin. METHODS The expression of PARG, phosphatase and tensin homolog (PTEN), and p53 in normal endometrial tissues (NE), endometrial hyperplasia without atypia (EH), atypical endometrial hyperplasia (AH), and EC was detected by immunohistochemistry. AN3CA EC cells with PTEN deficiency were treated with different cisplatin and PDD0017273, alone or in combination. Cell proliferation was detected by MTT method, apoptosis was detected by flow cytometry, and the expression of PARG in EC cells after treatment with different drugs was detected by western blot and immunohistochemistry. RESULTS Expression of PARG in NE, EH, AH, and EC increased gradually. In addition, compared with low PARG expression in PTEN-positive EC, patients who had high PARG expression in PTEN-negative EC had more advanced clinical stages (r = -0.399, p = 0.032) and shorter overall survival time (p = 0.037). A dose of 40 μM PDD0017273 effectively inhibited PARG expression, increased the sensitivity of AN3CA cells to cisplatin. CONCLUSIONS The findings suggest that PARG overexpression is a promising immunohistochemical marker to predict the occurrence and prognosis of EC. Moreover, PARG inhibition produced antitumor effects and increased the sensitivity of EC cells with PTEN deficiency to cisplatin.
Collapse
Affiliation(s)
- Yanyan Sun
- Department of Gynecology, The Third Central Hospital of Tianjin, Tianjin, China
| | - Yi Shi
- Department of Gynecology, The Third Central Hospital of Tianjin, Tianjin, China
| | - Hui Liu
- Artificial Cell Engineering Technology Research Center, Tianjin, China.,Tianjin Institute of Hepatobiliary Disease, Tianjin, China.,Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
| | - Chunmei Lv
- Department of Gynecology, The Third Central Hospital of Tianjin, Tianjin, China
| | - Aihua Zhang
- Department of Gynecology, The Third Central Hospital of Tianjin, Tianjin, China
| |
Collapse
|
4
|
Kumar V, Kumar A, Mir KUI, Yadav V, Chauhan SS. Pleiotropic role of PARP1: an overview. 3 Biotech 2022; 12:3. [PMID: 34926116 PMCID: PMC8643375 DOI: 10.1007/s13205-021-03038-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 10/20/2021] [Indexed: 01/03/2023] Open
Abstract
Poly (ADP-ribose) polymerase 1 (PARP1) protein is encoded by the PARP1 gene located on chromosome 1 (1q42.12) in human cells. It plays a crucial role in post-translational modification by adding poly (ADP-ribose) (PAR) groups to various proteins and PARP1 itself by utilizing nicotinamide adenine dinucleotide (NAD +) as a substrate. Since the discovery of PARP1, its role in DNA repair and cell death has been its identity. This is evident from an overwhelmingly high number of scientific reports in this regard. However, PARP1 also plays critical roles in inflammation, metabolism, tumor development and progression, chromatin modification and transcription, mRNA stability, and alternative splicing. In the present study, we attempted to compile all the scattered scientific information about this molecule, including the structure and multifunctional role of PARP1 in cancer and non-cancer diseases, along with PARP1 inhibitors (PARPis). Furthermore, for the first time, we have classified PARP1-mediated cell death for ease of understanding its role in cell death pathways.
Collapse
Affiliation(s)
- Vikas Kumar
- grid.413618.90000 0004 1767 6103Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Anurag Kumar
- grid.413618.90000 0004 1767 6103Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Khursheed Ul Islam Mir
- grid.413618.90000 0004 1767 6103Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Vandana Yadav
- grid.413618.90000 0004 1767 6103Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Shyam Singh Chauhan
- grid.413618.90000 0004 1767 6103Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
5
|
Poly(ADP)-Ribosylation Inhibition: A Promising Approach for Clear Cell Renal Cell Carcinoma Therapy. Cancers (Basel) 2021; 13:cancers13194973. [PMID: 34638458 PMCID: PMC8507656 DOI: 10.3390/cancers13194973] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 01/11/2023] Open
Abstract
Poly(ADP-ribose) polymerase 1 (PARP-1) and glycohydrolase (PARG) enzymes regulate chromatin structure, transcription activation, and DNA repair by modulating poly(ADP-ribose) (pADPr) level. Interest in PARP-1 inhibitors has soared recently with the recognition of their antitumor efficacy. We have shown that the development of clear cell renal cell carcinoma (ccRCC) is associated with extreme accumulation of pADPr caused by the enhanced expression of PARP-1 and decreased PARG levels. The most severe misregulation of pADPr turnover is found in ccRCC specimens from metastatic lesions. Both, classical NAD-like and non-NAD-like PARP-1 inhibitors reduced viability and clonogenic potential of ccRCC cell lines and suppressed growth of ccRCC xenograft tumors. However, classical NAD-like PARP-1 inhibitors affected viability of normal kidney epithelial cells at high concentrations, while novel non-NAD-like PARP-1 inhibitors exhibited activity against malignant cells only. We have also utilized different approaches to reduce the pADPr level in ccRCC cells by stably overexpressing PARG and demonstrated the prominent antitumor effect of this "back-to-normal" intervention. We also generated ccRCC cell lines with stable overexpression of PARG under doxycycline induction. This genetic approach demonstrated significantly affected malignancy of ccRCC cells. Transcriptome analysis linked observed phenotype with changes in gene expression levels for lipid metabolism, interferon signaling, and angiogenesis pathways along with the changes in expression of key cancer-related genes.
Collapse
|
6
|
Chang HR, Jung E, Cho S, Jeon YJ, Kim Y. Targeting Non-Oncogene Addiction for Cancer Therapy. Biomolecules 2021; 11:129. [PMID: 33498235 PMCID: PMC7909239 DOI: 10.3390/biom11020129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/18/2021] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
While Next-Generation Sequencing (NGS) and technological advances have been useful in identifying genetic profiles of tumorigenesis, novel target proteins and various clinical biomarkers, cancer continues to be a major global health threat. DNA replication, DNA damage response (DDR) and repair, and cell cycle regulation continue to be essential systems in targeted cancer therapies. Although many genes involved in DDR are known to be tumor suppressor genes, cancer cells are often dependent and addicted to these genes, making them excellent therapeutic targets. In this review, genes implicated in DNA replication, DDR, DNA repair, cell cycle regulation are discussed with reference to peptide or small molecule inhibitors which may prove therapeutic in cancer patients. Additionally, the potential of utilizing novel synthetic lethal genes in these pathways is examined, providing possible new targets for future therapeutics. Specifically, we evaluate the potential of TONSL as a novel gene for targeted therapy. Although it is a scaffold protein with no known enzymatic activity, the strategy used for developing PCNA inhibitors can also be utilized to target TONSL. This review summarizes current knowledge on non-oncogene addiction, and the utilization of synthetic lethality for developing novel inhibitors targeting non-oncogenic addiction for cancer therapy.
Collapse
Affiliation(s)
- Hae Ryung Chang
- Department of Biological Sciences and Research Institute of Women’s Health, Sookmyung Women’s University, Seoul 04310, Korea; (E.J.); (S.C.)
| | - Eunyoung Jung
- Department of Biological Sciences and Research Institute of Women’s Health, Sookmyung Women’s University, Seoul 04310, Korea; (E.J.); (S.C.)
| | - Soobin Cho
- Department of Biological Sciences and Research Institute of Women’s Health, Sookmyung Women’s University, Seoul 04310, Korea; (E.J.); (S.C.)
| | - Young-Jun Jeon
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea;
| | - Yonghwan Kim
- Department of Biological Sciences and Research Institute of Women’s Health, Sookmyung Women’s University, Seoul 04310, Korea; (E.J.); (S.C.)
| |
Collapse
|
7
|
Jacob SL, Kiedrowski LA, Chae YK. The dynamic landscape of BRCA1 reversion mutations from indel to SNV in a patient with ovarian cancer treated with PARP-inhibitors and immunotherapy. Heliyon 2020; 6:e03841. [PMID: 32420470 PMCID: PMC7218016 DOI: 10.1016/j.heliyon.2020.e03841] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/19/2020] [Accepted: 04/21/2020] [Indexed: 12/13/2022] Open
Abstract
Background Reversion mutations of somatic BRCA mutations are an important source of resistance within ovarian cancer. Furthermore, these reversion mutations are known to change over the course of treatment. Better understanding of the mechanisms leading to reversion mutations and the role of serial ctDNA collection in detecting changes to overall landscape of resistance mutations over time is needed to guide treatment in the metastatic setting. Methods Here we study a case of metastatic ovarian cancer undergoing multiple lines of treatment with collection of three serial ctDNA samples. These samples were analyzed by Guardant Health next generation sequencing to detect somatic alterations and their associated mutant allele frequency (MAF) as % cfDNA. Results Analysis of our initial ctDNA collection, taken during PARP-inhibitor therapy, revealed a nonsense BRCA-1 mutation (c. 2563C > T p. Q855∗), consistent with the BRCA 1 somatic mutation detected on tumor tissue analysis. Initial analysis also revealed a reversion mutation (c.2535_2576del) resulting in an in-frame deletion of the somatic BRCA-1 alteration. The second collection, taken while still on PARP-inhibitor therapy, re-demonstrated this indel reversion mutation along with a second indel reversion mutation (c.2546_2587del), again resulting in an in-frame deletion of the somatic BRCA-1 mutation. The final ctDNA, collected upon initiation of immunotherapy, revealed 4 novel SNV reversion mutations (c.2564A > C, c.2564A > T, c.2565G > T, and c.2565G > C). These SNV reversion mutations result in missense amino acid changes rather than insertions or deletions within the BRCA-1 somatic mutation. The previous indel reversion mutations were no longer detected. Conclusions This study illustrates the role of serial ctDNA analyses in the detection of resistance mutations and the dynamic nature of reversion mutations with multiple lines of treatment. While other studies have described both indels and SNVs that occur in tandem, a change in the types of reversion mutations detected across changing therapies has never before been described. Further studies regarding the unique selective pressures arising from use of multiple types of therapy is needed to fully explain this phenomenon.
Collapse
Affiliation(s)
- Saya L Jacob
- Northwestern University Feinberg School of Medicine, Chicago IL, USA
| | | | - Young K Chae
- Northwestern University Feinberg School of Medicine, Chicago IL, USA.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
| |
Collapse
|
8
|
Abstract
In this review, Slade provides an overview of the molecular mechanisms and cellular consequences of PARP and PARG inhibition. The author also highlights the clinical performance of four PARP inhibitors used in cancer therapy (olaparib, rucaparib, niraparib, and talazoparib) and discusses the predictive biomarkers of inhibitor sensitivity and mechanisms of resistance as well as the means of overcoming them through combination therapy. Oxidative and replication stress underlie genomic instability of cancer cells. Amplifying genomic instability through radiotherapy and chemotherapy has been a powerful but nonselective means of killing cancer cells. Precision medicine has revolutionized cancer therapy by putting forth the concept of selective targeting of cancer cells. Poly(ADP-ribose) polymerase (PARP) inhibitors represent a successful example of precision medicine as the first drugs targeting DNA damage response to have entered the clinic. PARP inhibitors act through synthetic lethality with mutations in DNA repair genes and were approved for the treatment of BRCA mutated ovarian and breast cancer. PARP inhibitors destabilize replication forks through PARP DNA entrapment and induce cell death through replication stress-induced mitotic catastrophe. Inhibitors of poly(ADP-ribose) glycohydrolase (PARG) exploit and exacerbate replication deficiencies of cancer cells and may complement PARP inhibitors in targeting a broad range of cancer types with different sources of genomic instability. Here I provide an overview of the molecular mechanisms and cellular consequences of PARP and PARG inhibition. I highlight clinical performance of four PARP inhibitors used in cancer therapy (olaparib, rucaparib, niraparib, and talazoparib) and discuss the predictive biomarkers of inhibitor sensitivity, mechanisms of resistance as well as the means of overcoming them through combination therapy.
Collapse
Affiliation(s)
- Dea Slade
- Department of Biochemistry, Max Perutz Labs, Vienna Biocenter (VBC), University of Vienna, 1030 Vienna, Austria
| |
Collapse
|
9
|
Lee H, Riad A, Martorano P, Mansfield A, Samanta M, Batra V, Mach RH, Maris JM, Pryma DA, Makvandi M. PARP-1-Targeted Auger Emitters Display High-LET Cytotoxic Properties In Vitro but Show Limited Therapeutic Utility in Solid Tumor Models of Human Neuroblastoma. J Nucl Med 2019; 61:850-856. [PMID: 31676730 DOI: 10.2967/jnumed.119.233965] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/09/2019] [Indexed: 12/15/2022] Open
Abstract
The currently available therapeutic radiopharmaceutical for high-risk neuroblastoma, 131I-metaiodobenzylguanidine, is ineffective at targeting micrometastases because of the low-linear-energy-transfer (LET) properties of high-energy β-particles. In contrast, Auger radiation has high-LET properties with nanometer ranges in tissue, efficiently causing DNA damage when emitted near DNA. The aim of this study was to evaluate the cytotoxicity of targeted Auger therapy in preclinical models of high-risk neuroblastoma. Methods: We used a radiolabled poly(adenosine diphosphate ribose) polymerase (PARP) inhibitor called 125I-KX1 to deliver Auger radiation to PARP-1, a chromatin-binding enzyme overexpressed in neuroblastoma. The in vitro cytotoxicity of 125I-KX1 was assessed in 19 neuroblastoma cell lines, followed by in-depth pharmacologic analysis in a sensitive and resistant pair of cell lines. Immunofluorescence microscopy was used to characterize 125I-KX1-induced DNA damage. Finally, in vitro and in vivo microdosimetry was modeled from experimentally derived pharmacologic variables. Results: 125I-KX1 was highly cytotoxic in vitro across a panel of neuroblastoma cell lines, directly causing double-strand DNA breaks. On the basis of subcellular dosimetry, 125I-KX1 was approximately twice as effective as 131I-KX1, whereas cytoplasmic 125I-metaiodobenzylguanidine demonstrated low biological effectiveness. Despite the ability to deliver a focused radiation dose to the cell nuclei, 125I-KX1 remained less effective than its α-emitting analog 211At-MM4 and required significantly higher activity for equivalent in vivo efficacy based on tumor microdosimetry. Conclusion: Chromatin-targeted Auger therapy is lethal to high-risk neuroblastoma cells and has the potential to be used in micrometastatic disease. This study provides the first evidence for cellular lethality from a PARP-1-targeted Auger emitter, calling for further investigation into targeted Auger therapy.
Collapse
Affiliation(s)
- Hwan Lee
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; and
| | - Aladdin Riad
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; and
| | - Paul Martorano
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; and
| | - Adam Mansfield
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; and
| | - Minu Samanta
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Vandana Batra
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Robert H Mach
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; and
| | - John M Maris
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Daniel A Pryma
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; and
| | - Mehran Makvandi
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; and
| |
Collapse
|
10
|
Berning L, Scharf L, Aplak E, Stucki D, von Montfort C, Reichert AS, Stahl W, Brenneisen P. In vitro selective cytotoxicity of the dietary chalcone cardamonin (CD) on melanoma compared to healthy cells is mediated by apoptosis. PLoS One 2019; 14:e0222267. [PMID: 31553748 PMCID: PMC6760786 DOI: 10.1371/journal.pone.0222267] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/26/2019] [Indexed: 12/12/2022] Open
Abstract
Malignant melanoma is an aggressive type of cancer and the deadliest form of skin cancer. Even though enormous efforts have been undertaken, in particular the treatment options against the metastasizing form are challenging and the prognosis is generally poor. A novel therapeutical approach is the application of secondary plant constituents occurring in food and food products. Herein, the effect of the dietary chalcone cardamonin, inter alia found in Alpinia species, was tested using human malignant melanoma cells. These data were compared to cardamonin treated normal melanocytes and dermal fibroblasts representing healthy cells. To investigate the impact of cardamonin on tumor and normal cells, it was added to monolayer cell cultures and cytotoxicity, proliferation, tumor invasion, and apoptosis were studied with appropriate cell biological and biochemical methods. Cardamonin treatment resulted in an apoptosis-mediated increase in cytotoxicity towards tumor cells, a decrease in their proliferation rate, and a lowered invasive capacity, whereas the viability of melanocytes and fibroblasts was hardly affected at such concentrations. A selective cytotoxic effect of cardamonin on melanoma cells compared to normal (healthy) cells was shown in vitro. This study along with others highlights that dietary chalcones may be a valuable tool in anticancer therapies which has to be proven in the future in vivo.
Collapse
Affiliation(s)
- Lena Berning
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Lisa Scharf
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Elif Aplak
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - David Stucki
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Claudia von Montfort
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Andreas S. Reichert
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Wilhelm Stahl
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Peter Brenneisen
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
- * E-mail:
| |
Collapse
|
11
|
Abstract
Mitosis ensures accurate segregation of duplicated DNA through tight regulation of chromosome condensation, bipolar spindle assembly, chromosome alignment in the metaphase plate, chromosome segregation and cytokinesis. Poly(ADP-ribose) polymerases (PARPs), in particular PARP1, PARP2, PARP3, PARP5a (TNKS1), as well as poly(ADP-ribose) glycohydrolase (PARG), regulate different mitotic functions, including centrosome function, mitotic spindle assembly, mitotic checkpoints, telomere length and telomere cohesion. PARP depletion or inhibition give rise to various mitotic defects such as centrosome amplification, multipolar spindles, chromosome misalignment, premature loss of cohesion, metaphase arrest, anaphase DNA bridges, lagging chromosomes, and micronuclei. As the mechanisms of PARP1/2 inhibitor-mediated cell death are being progressively elucidated, it is becoming clear that mitotic defects caused by PARP1/2 inhibition arise due to replication stress and DNA damage in S phase. As it stands, entrapment of inactive PARP1/2 on DNA phenocopies replication stress through accumulation of unresolved replication intermediates, double-stranded DNA breaks (DSBs) and incorrectly repaired DSBs, which can be transmitted from S phase to mitosis and instigate various mitotic defects, giving rise to both numerical and structural chromosomal aberrations. Cancer cells have increased levels of replication stress, which makes them particularly susceptible to a combination of agents that compromise replication fork stability. Indeed, combining PARP1/2 inhibitors with genetic deficiencies in DNA repair pathways, DNA-damaging agents, ATR and other cell cycle checkpoint inhibitors has yielded synergistic effects in killing cancer cells. Here I provide a comprehensive overview of the mitotic functions of PARPs and PARG, mitotic phenotypes induced by their depletion or inhibition, as well as the therapeutic relevance of targeting mitotic cells by directly interfering with mitotic functions or indirectly through replication stress.
Collapse
Affiliation(s)
- Dea Slade
- Department of Biochemistry, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-gasse 9, 1030 Vienna, Austria.
| |
Collapse
|
12
|
Song Z, Wang Y, Xiao Q, Yu Z, Zhao L, Wu H, Sun M, Chai Z, Hou P, Geng X, Liu W, Wei M. Poly(ADP-ribose) polymerase-3 overexpression is associated with poor prognosis in patients with breast cancer following chemotherapy. Oncol Lett 2018; 16:5621-5630. [PMID: 30344717 PMCID: PMC6176245 DOI: 10.3892/ol.2018.9398] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 05/18/2017] [Indexed: 12/31/2022] Open
Abstract
Double strand breaks induced by genotoxic agents, if inappropriately repaired, will cause cell death or induce cancer. Poly(ADP-ribose) polymerase-3 (PARP-3) serves a role in double strand break repair, and may be involved in tumorigenesis. To the best of our knowledge, the role of PARP-3 in breast cancer has not yet been examined. In the present study, the expression of PARP-3 was investigated in 493 breast cancer samples and 54 tumor-adjacent control samples using tissue-microarray-based immunohistochemistry. PARP-3 expression was higher in breast cancer samples compared with control samples. PARP-3 overexpression was significantly associated with histological grade II–III (P=0.012). In addition, PARP-3 overexpression was significantly associated with shorter disease-free survival (DFS; P=0.027) time and exhibited a tendency toward shorter overall survival (OS; P=0.183) time in patients with breast cancer compared with patients with lower PARP-3 expression, particularly in BRCA1-positive patients (P=0.004 for disease-free survival and P=0.095 for OS). Multivariate Cox regression analysis indicated that PARP-3 was an independent prognostic factor in patients with breast cancer. Furthermore, it was revealed that PARP-3 overexpression was associated with shorter survival time in patients with cyclophosphamide/doxorubicin or epirubicin/5-fluorouracil (CAF/CEF) chemotherapy compared with low PARP-3 expression, but not in patients with CAF/CEF + docetaxel chemotherapy. The present study suggested that PARP-3 may be used as a biomarker for predicting the clinical outcome of patients receiving chemotherapy, and targeting PARP-3 may be a potential therapeutic strategy for the treatment of breast cancer.
Collapse
Affiliation(s)
- Zhiguo Song
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Yong Wang
- Department of General Practice, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Qinghuan Xiao
- Deparment of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Zhaojin Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Huizhe Wu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Mingli Sun
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Zhangguo Chai
- Outpatient Department, Shenyang Artillery Academy, Shenyang, Liaoning 110867, P.R. China
| | - Ping Hou
- Liaoning Blood Center, Shenyang, Liaoning 110044, P.R. China
| | - Xiaoqiang Geng
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Wensi Liu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P.R. China
| |
Collapse
|
13
|
Pourfarjam Y, Ventura J, Kurinov I, Cho A, Moss J, Kim IK. Structure of human ADP-ribosyl-acceptor hydrolase 3 bound to ADP-ribose reveals a conformational switch that enables specific substrate recognition. J Biol Chem 2018; 293:12350-12359. [PMID: 29907568 PMCID: PMC6093245 DOI: 10.1074/jbc.ra118.003586] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/30/2018] [Indexed: 01/07/2023] Open
Abstract
ADP-ribosyl-acceptor hydrolase 3 (ARH3) plays important roles in regulation of poly(ADP-ribosyl)ation, a reversible post-translational modification, and in maintenance of genomic integrity. ARH3 degrades poly(ADP-ribose) to protect cells from poly(ADP-ribose)-dependent cell death, reverses serine mono(ADP-ribosyl)ation, and hydrolyzes O-acetyl-ADP-ribose, a product of Sirtuin-catalyzed histone deacetylation. ARH3 preferentially hydrolyzes O-linkages attached to the anomeric C1″ of ADP-ribose; however, how ARH3 specifically recognizes and cleaves structurally diverse substrates remains unknown. Here, structures of full-length human ARH3 bound to ADP-ribose and Mg2+, coupled with computational modeling, reveal a dramatic conformational switch from closed to open states that enables specific substrate recognition. The glutamate flap, which blocks substrate entrance to Mg2+ in the unliganded closed state, is ejected from the active site when substrate is bound. This closed-to-open transition significantly widens the substrate-binding channel and precisely positions the scissile 1″-O-linkage for cleavage while securing tightly 2″- and 3″-hydroxyls of ADP-ribose. Our collective data uncover an unprecedented structural plasticity of ARH3 that supports its specificity for the 1″-O-linkage in substrates and Mg2+-dependent catalysis.
Collapse
Affiliation(s)
- Yasin Pourfarjam
- From the Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221
| | - Jessica Ventura
- From the Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221
| | - Igor Kurinov
- Cornell University, Department of Chemistry and Chemical Biology, Northeastern Collaborative Access Team Advanced Photon Source (NE-CAT APS), Argonne, Illinois 60439, and
| | - Ahra Cho
- From the Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221
| | - Joel Moss
- Pulmonary Branch, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - In-Kwon Kim
- From the Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, , Supported by the University of Cincinnati startup fund. To whom correspondence should be addressed:
Dept. of Chemistry, University of Cincinnati, 301 Clifton Ct., Cincinnati, OH 45221. Tel.:
513-556-1909; Fax:
513-556-9239; E-mail:
| |
Collapse
|
14
|
Pashaiefar H, Yaghmaie M, Tavakkoly-Bazzaz J, Hamidollah Ghaffari S, Alimoghaddam K, Izadi P, Ghavamzadeh A. The Association between PARP1 and LIG3 Expression Levels and Chromosomal Translocations in Acute Myeloid Leukemia Patients. CELL JOURNAL 2018; 20:204-210. [PMID: 29633598 PMCID: PMC5893292 DOI: 10.22074/cellj.2018.5210] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 07/24/2017] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Chromosomal translocations are among the most common mutational events in cancer development, especially in hematologic malignancies. However, the precise molecular mechanism of these events is still not clear. It has been recently shown that alternative non-homologous end-joining (alt-NHEJ), a newly described pathway for double-stranded DNA break repair, mediates the formation of chromosomal translocations. Here, we examined the expression levels of the main components of alt-NHEJ (PARP1 and LIG3) in acute myeloid leukemia (AML) patients and assessed their potential correlation with the formation of chromosomal translocations. MATERIALS AND METHODS This experimental study used reverse transcription-quantitative polymerase chain reaction (RTqPCR) to quantify the expression levels of PARP1 and LIG3 at the transcript level in AML patients (n=78) and healthy individuals (n=19). RESULTS PARP1 was the only gene overexpressed in the AML group when compared with healthy individuals (P=0.0004), especially in the poor prognosis sub-group. Both genes were, however, found to be up-regulated in AML patients with chromosomal translocations (P=0.04 and 0.0004 respectively). Moreover, patients with one isolated translocation showed an over-expression of only LIG3 (P=0.005), whereas those with two or more translocations over-expressed both LIG3 (P=0.002) and PARP1 (P=0.02). CONCLUSIONS The significant correlations observed between PARP1 and LIG3 expression and the rate of chromosomal translocations in AML patients provides a molecular context for further studies to investigate the causality of this association.
Collapse
Affiliation(s)
- Hossein Pashaiefar
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Marjan Yaghmaie
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Javad Tavakkoly-Bazzaz
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Hamidollah Ghaffari
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Kamran Alimoghaddam
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Pantea Izadi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ardeshir Ghavamzadeh
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Kukolj E, Kaufmann T, Dick AE, Zeillinger R, Gerlich DW, Slade D. PARP inhibition causes premature loss of cohesion in cancer cells. Oncotarget 2017; 8:103931-103951. [PMID: 29262611 PMCID: PMC5732777 DOI: 10.18632/oncotarget.21879] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 09/22/2017] [Indexed: 12/11/2022] Open
Abstract
Poly(ADP-ribose) polymerases (PARPs) regulate various aspects of cellular function including mitotic progression. Although PARP inhibitors have been undergoing various clinical trials and the PARP1/2 inhibitor olaparib was approved as monotherapy for BRCA-mutated ovarian cancer, their mode of action in killing tumour cells is not fully understood. We investigated the effect of PARP inhibition on mitosis in cancerous (cervical, ovary, breast and osteosarcoma) and non-cancerous cells by live-cell imaging. The clinically relevant inhibitor olaparib induced strong perturbations in mitosis, including problems with chromosome alignment at the metaphase plate, anaphase delay, and premature loss of cohesion (cohesion fatigue) after a prolonged metaphase arrest, resulting in sister chromatid scattering. PARP1 and PARP2 depletion suppressed the phenotype while PARP2 overexpression enhanced it, suggesting that olaparib-bound PARP1 and PARP2 rather than the lack of catalytic activity causes this phenotype. Olaparib-induced mitotic chromatid scattering was observed in various cancer cell lines with increased protein levels of PARP1 and PARP2, but not in non-cancer or cancer cell lines that expressed lower levels of PARP1 or PARP2. Interestingly, the sister chromatid scattering phenotype occurred only when olaparib was added during the S-phase preceding mitosis, suggesting that PARP1 and PARP2 entrapment at replication forks impairs sister chromatid cohesion. Clinically relevant DNA-damaging agents that impair replication progression such as topoisomerase inhibitors and cisplatin were also found to induce sister chromatid scattering and metaphase plate alignment problems, suggesting that these mitotic phenotypes are a common outcome of replication perturbation.
Collapse
Affiliation(s)
- Eva Kukolj
- Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, Vienna, Austria
| | - Tanja Kaufmann
- Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, Vienna, Austria
| | - Amalie E Dick
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, Vienna, Austria
| | - Robert Zeillinger
- Molecular Oncology Group, Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Daniel W Gerlich
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, Vienna, Austria
| | - Dea Slade
- Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, Vienna, Austria
| |
Collapse
|
16
|
Mangia A, Scarpi E, Partipilo G, Schirosi L, Opinto G, Giotta F, Simone G. NHERF1 together with PARP1 and BRCA1 expression as a new potential biomarker to stratify breast cancer patients. Oncotarget 2017; 8:65730-65742. [PMID: 29029467 PMCID: PMC5630367 DOI: 10.18632/oncotarget.19444] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 04/27/2017] [Indexed: 12/31/2022] Open
Abstract
It has been recognized that Na+/H+ Exchanger Regulatory Factor 1 (NHERF1) in breast cancer (BC) acts as a tumor suppressor or as an oncogenic protein, depending on its subcellular localization. This study aims to correlate NHERF1 expression to BRCA1 and PARP1 proteins, to investigate their relationship, and their biological and clinical significance. Using immunohistochemistry on tissue microarrays, we evaluated subcellular NHERF1, BRCA1 and PARP1 expression in 308 BCs including a subgroup (n=80) of triple negative BCs (TNBCs). Herein, we show that nuclear NHERF1 (nNHERF1) expression was significantly associated with nuclear BRCA1 (nBRCA1) expression (p=0.0008), and an association was also found between nuclear PARP1 (nPARP1) and nBRCA1 (p<0.0001). Cytoplasmic NHERF1 (cNHERF1) was correlated to nPARP1 (p<0.0001). Survival analyses showed that the patients with positive nPARP1 and nNHERF1 tended toward a shorter 5-year overall survival (OS) (p=0.057). In TNBCs, the association between nBRCA1 and nPARP1 was maintained (p<0.0001), and an association between nNHERF1 and nPARP1 was observed (p=0.010). Univariate analysis revealed that TNBCs with positive cNHERF1 and nPARP1 had a shorter 5-year OS (p=0.048). Our data suggest that NHERF1 could be a new potential biomarker in combination with PARP1 and BRCA1 expression to stratify BC patients. In particular, in TNBCs, cNHERF1 associated with nPARP1 expression identified a patient subgroup with a shorter survival, for whom it may be useful to develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Anita Mangia
- Functional Biomorphology Laboratory, IRCCS-Istituto Tumori "Giovanni Paolo II", Bari 70124, Italy
| | - Emanuela Scarpi
- Unit of Biostatistics and Clinical Trials, (IRST)-IRCCS-Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Meldola (FC) 47014, Italy
| | - Giulia Partipilo
- Functional Biomorphology Laboratory, IRCCS-Istituto Tumori "Giovanni Paolo II", Bari 70124, Italy
| | - Laura Schirosi
- Functional Biomorphology Laboratory, IRCCS-Istituto Tumori "Giovanni Paolo II", Bari 70124, Italy
| | - Giuseppina Opinto
- Functional Biomorphology Laboratory, IRCCS-Istituto Tumori "Giovanni Paolo II", Bari 70124, Italy
| | - Francesco Giotta
- Medical Oncology Unit, IRCCS-Istituto Tumori "Giovanni Paolo II", Bari 70124, Italy
| | - Giovanni Simone
- Pathology Department, IRCCS-Istituto Tumori "Giovanni Paolo II", Bari 70124, Italy
| |
Collapse
|
17
|
Chiker S, Pennaneach V, Loew D, Dingli F, Biard D, Cordelières FP, Gemble S, Vacher S, Bieche I, Hall J, Fernet M. Cdk5 promotes DNA replication stress checkpoint activation through RPA-32 phosphorylation, and impacts on metastasis free survival in breast cancer patients. Cell Cycle 2016; 14:3066-78. [PMID: 26237679 DOI: 10.1080/15384101.2015.1078020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cyclin dependent kinase 5 (Cdk5) is a determinant of PARP inhibitor and ionizing radiation (IR) sensitivity. Here we show that Cdk5-depleted (Cdk5-shRNA) HeLa cells show higher sensitivity to S-phase irradiation, chronic hydroxyurea exposure, and 5-fluorouracil and 6-thioguanine treatment, with hydroxyurea and IR sensitivity also seen in Cdk5-depleted U2OS cells. As Cdk5 is not directly implicated in DNA strand break repair we investigated in detail its proposed role in the intra-S checkpoint activation. While Cdk5-shRNA HeLa cells showed altered basal S-phase dynamics with slower replication velocity and fewer active origins per DNA megabase, checkpoint activation was impaired after a hydroxyurea block. Cdk5 depletion was associated with reduced priming phosphorylations of RPA32 serines 29 and 33 and SMC1-Serine 966 phosphorylation, lower levels of RPA serine 4 and 8 phosphorylation and DNA damage measured using the alkaline Comet assay, gamma-H2AX signal intensity, RPA and Rad51 foci, and sister chromatid exchanges resulting in impaired intra-S checkpoint activation and subsequently higher numbers of chromatin bridges. In vitro kinase assays coupled with mass spectrometry demonstrated that Cdk5 can carry out the RPA32 priming phosphorylations on serines 23, 29, and 33 necessary for this checkpoint activation. In addition we found an association between lower Cdk5 levels and longer metastasis free survival in breast cancer patients and survival in Cdk5-depleted breast tumor cells after treatment with IR and a PARP inhibitor. Taken together, these results show that Cdk5 is necessary for basal replication and replication stress checkpoint activation and highlight clinical opportunities to enhance tumor cell killing.
Collapse
Affiliation(s)
- Sara Chiker
- a Institut Curie; Centre de Recherche; Centre Universitaire ; Orsay Cedex , France.,b Inserm; U612; Centre Universitaire ; Orsay Cedex , France.,c Université Paris-XI; Faculté de Médecine ; Le Kremlin Bicêtre , France
| | - Vincent Pennaneach
- a Institut Curie; Centre de Recherche; Centre Universitaire ; Orsay Cedex , France.,b Inserm; U612; Centre Universitaire ; Orsay Cedex , France
| | - Damarys Loew
- d Institut Curie; Centre de Recherche; Laboratoire de Spectrométrie de Masse Protéomique ; Paris , France
| | - Florent Dingli
- d Institut Curie; Centre de Recherche; Laboratoire de Spectrométrie de Masse Protéomique ; Paris , France
| | - Denis Biard
- e Commissariat à l'Energie Atomique; DSV; iMETI; SEPIA; Team Cellular Engineering and Human Syndromes ; Fontenay aux Roses , France
| | - Fabrice P Cordelières
- a Institut Curie; Centre de Recherche; Centre Universitaire ; Orsay Cedex , France.,f CNRS; UMR3348; Centre Universitaire ; Orsay Cedex , France.,g Plateforme IBiSA d'Imagerie Cellulaire et Tissulaire; Institut Curie; Centre Universitaire ; Orsay , France
| | - Simon Gemble
- a Institut Curie; Centre de Recherche; Centre Universitaire ; Orsay Cedex , France.,f CNRS; UMR3348; Centre Universitaire ; Orsay Cedex , France
| | - Sophie Vacher
- h Pharmacogenetics Unit; Genetics Service ; Department of Tumour Biology ; Institut Curie ; Paris , France
| | - Ivan Bieche
- h Pharmacogenetics Unit; Genetics Service ; Department of Tumour Biology ; Institut Curie ; Paris , France
| | - Janet Hall
- a Institut Curie; Centre de Recherche; Centre Universitaire ; Orsay Cedex , France.,b Inserm; U612; Centre Universitaire ; Orsay Cedex , France.,i Centre de Recherche en Cancérologie de Lyon -UMR Inserm 1052 - CNRS 5286 ; Lyon , France
| | - Marie Fernet
- a Institut Curie; Centre de Recherche; Centre Universitaire ; Orsay Cedex , France.,b Inserm; U612; Centre Universitaire ; Orsay Cedex , France
| |
Collapse
|
18
|
Wang L, Cai W, Zhang W, Chen X, Dong W, Tang D, Zhang Y, Ji C, Zhang M. Inhibition of poly(ADP-ribose) polymerase 1 protects against acute myeloid leukemia by suppressing the myeloproliferative leukemia virus oncogene. Oncotarget 2016; 6:27490-504. [PMID: 26314963 PMCID: PMC4695004 DOI: 10.18632/oncotarget.4748] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 07/13/2015] [Indexed: 01/08/2023] Open
Abstract
An abnormal expression of poly(ADP-ribose) polymerase 1 (PARP-1) has been described in many tumors. PARP-1 promotes tumorigenesis and cancer progression by acting on different molecular pathways. PARP-1 inhibitors can be used with radiotherapy or chemotherapy to enhance the susceptibility of tumor cells to the treatment. However, the specific mechanism of PARP-1 in acute myeloid leukemia (AML) remains unknown. Our study showed that expression of PARP-1 was upregulated in AML patients. PARP-1 inhibition slowed AML cell proliferation, arrested the cell cycle, induced apoptosis in vitro and improved AML prognosis in vivo. Mechanistically, microarray assay of AML cells with loss of PARP-1 function revealed that the myeloproliferative leukemia virus oncogene (MPL) was significantly downregulated. In human AML samples, MPL expression was increased, and gain-of-function and loss-of-function analysis demonstrated that MPL promoted cell growth. Moreover, PARP-1 and MPL expression were positively correlated in AML samples, and their overexpression was associated with an unfavorable prognosis. Furthermore, PARP-1 and MPL consistently acted on Akt and ERK1/2 pathways, and the anti-proliferative and pro-apoptotic function observed with PARP-1 inhibition were reversed in part via MPL activation upon thrombopoietin stimulation or gene overexpression. These data highlight the important function of PARP-1 in the progression of AML, which suggest PARP-1 as a potential target for AML treatment.
Collapse
Affiliation(s)
- Lingbo Wang
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China
| | - Weili Cai
- Department of Cardiology, The Third Hospital of Jinan, Jinan, China
| | - Wei Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China
| | - Xueying Chen
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China
| | - Wenqian Dong
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China
| | - Dongqi Tang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China
| | - Yun Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China
| | - Chunyan Ji
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Mingxiang Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
19
|
Seibold P, Schmezer P, Behrens S, Michailidou K, Bolla MK, Wang Q, Flesch-Janys D, Nevanlinna H, Fagerholm R, Aittomäki K, Blomqvist C, Margolin S, Mannermaa A, Kataja V, Kosma VM, Hartikainen JM, Lambrechts D, Wildiers H, Kristensen V, Alnæs GG, Nord S, Borresen-Dale AL, Hooning MJ, Hollestelle A, Jager A, Seynaeve C, Li J, Liu J, Humphreys K, Dunning AM, Rhenius V, Shah M, Kabisch M, Torres D, Ulmer HU, Hamann U, Schildkraut JM, Purrington KS, Couch FJ, Hall P, Pharoah P, Easton DF, Schmidt MK, Chang-Claude J, Popanda O. A polymorphism in the base excision repair gene PARP2 is associated with differential prognosis by chemotherapy among postmenopausal breast cancer patients. BMC Cancer 2015; 15:978. [PMID: 26674097 PMCID: PMC4682235 DOI: 10.1186/s12885-015-1957-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 11/27/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Personalized therapy considering clinical and genetic patient characteristics will further improve breast cancer survival. Two widely used treatments, chemotherapy and radiotherapy, can induce oxidative DNA damage and, if not repaired, cell death. Since base excision repair (BER) activity is specific for oxidative DNA damage, we hypothesized that germline genetic variation in this pathway will affect breast cancer-specific survival depending on treatment. METHODS We assessed in 1,408 postmenopausal breast cancer patients from the German MARIE study whether cancer specific survival after adjuvant chemotherapy, anthracycline chemotherapy, and radiotherapy is modulated by 127 Single Nucleotide Polymorphisms (SNPs) in 21 BER genes. For SNPs with interaction terms showing p<0.1 (likelihood ratio test) using multivariable Cox proportional hazard analyses, replication in 6,392 patients from nine studies of the Breast Cancer Association Consortium (BCAC) was performed. RESULTS rs878156 in PARP2 showed a differential effect by chemotherapy (p=0.093) and was replicated in BCAC studies (p=0.009; combined analysis p=0.002). Compared to non-carriers, carriers of the variant G allele (minor allele frequency=0.07) showed better survival after chemotherapy (combined allelic hazard ratio (HR)=0.75, 95% 0.53-1.07) and poorer survival when not treated with chemotherapy (HR=1.42, 95% 1.08-1.85). A similar effect modification by rs878156 was observed for anthracycline-based chemotherapy in both MARIE and BCAC, with improved survival in carriers (combined allelic HR=0.73, 95% CI 0.40-1.32). None of the SNPs showed significant differential effects by radiotherapy. CONCLUSIONS Our data suggest for the first time that a SNP in PARP2, rs878156, may together with other genetic variants modulate cancer specific survival in breast cancer patients depending on chemotherapy. These germline SNPs could contribute towards the design of predictive tests for breast cancer patients.
Collapse
Affiliation(s)
- Petra Seibold
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Peter Schmezer
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69124, Heidelberg, Germany.
| | - Sabine Behrens
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Kyriaki Michailidou
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK.
| | - Manjeet K Bolla
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK.
| | - Qin Wang
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK.
| | - Dieter Flesch-Janys
- Department of Cancer Epidemiology/Clinical Cancer Registry, University Cancer Center Hamburg (UCCH), Hamburg, Germany.
- Department of Medical Biometrics and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland.
| | - Rainer Fagerholm
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland.
| | - Kristiina Aittomäki
- Department of Clinical Genetics, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland.
| | - Carl Blomqvist
- Department of Oncology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland.
| | - Sara Margolin
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, Sweden.
| | - Arto Mannermaa
- School of Medicine, Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland.
- Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland.
- Imaging Center, Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland.
| | - Vesa Kataja
- School of Medicine, Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland.
- Central Finland Health Care District, Jyväskylä Central Hospital, Jyväskylä, Finland.
| | - Veli-Matti Kosma
- School of Medicine, Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland.
- Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland.
- Imaging Center, Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland.
| | - Jaana M Hartikainen
- School of Medicine, Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland.
- Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland.
- Imaging Center, Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland.
| | - Diether Lambrechts
- Vesalius Research Center (VRC), VIB, Leuven, Belgium.
- Department of Oncology, Laboratory for Translational Genetics, University of Leuven, Leuven, Belgium.
| | - Hans Wildiers
- Department of General Medical Oncology, Multidisciplinary Breast Center, University Hospitals Leuven, Leuven, Belgium.
| | - Vessela Kristensen
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Radiumhospitalet, Oslo, Norway.
- Institute of Clinical Medicine, K.G. Jebsen Center for Breast Cancer Research, Faculty of Medicine, University of Oslo (UiO), Oslo, Norway.
- Department of Clinical Molecular Biology (EpiGen), Akershus University Hospital, University of Oslo (UiO), Oslo, Norway.
| | - Grethe Grenaker Alnæs
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Radiumhospitalet, Oslo, Norway.
| | - Silje Nord
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Radiumhospitalet, Oslo, Norway.
| | - Anne-Lise Borresen-Dale
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Radiumhospitalet, Oslo, Norway.
- Institute of Clinical Medicine, K.G. Jebsen Center for Breast Cancer Research, Faculty of Medicine, University of Oslo (UiO), Oslo, Norway.
| | - Maartje J Hooning
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
| | - Antoinette Hollestelle
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
| | - Agnes Jager
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
| | - Caroline Seynaeve
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
| | - Jingmei Li
- Human Genetics Division, Genome Institute of Singapore, Singapore, Singapore.
| | - Jianjun Liu
- Human Genetics Division, Genome Institute of Singapore, Singapore, Singapore.
| | - Keith Humphreys
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
| | - Alison M Dunning
- Department of Oncology, Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK.
| | - Valerie Rhenius
- Department of Oncology, Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK.
| | - Mitul Shah
- Department of Oncology, Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK.
| | - Maria Kabisch
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Diana Torres
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Institute of Human Genetics, Pontificia Universidad Javeriana, Bogota, Colombia.
| | | | - Ute Hamann
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Joellen M Schildkraut
- Department of Community and Family Medicine, Duke University Medical Center, Durham, North Carolina, USA.
| | - Kristen S Purrington
- Department of Oncology, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, Michigan, USA.
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Michigan, USA.
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
| | - Paul Pharoah
- Department of Oncology, Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK.
| | - Doug F Easton
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK.
| | - Marjanka K Schmidt
- Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands.
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Odilia Popanda
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69124, Heidelberg, Germany.
| |
Collapse
|
20
|
Sistigu A, Manic G, Obrist F, Vitale I. Trial watch - inhibiting PARP enzymes for anticancer therapy. Mol Cell Oncol 2015; 3:e1053594. [PMID: 27308587 DOI: 10.1080/23723556.2015.1053594] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 05/16/2015] [Accepted: 05/18/2015] [Indexed: 12/25/2022]
Abstract
Poly(ADP-ribose) polymerases (PARPs) are a members of family of enzymes that catalyze poly(ADP-ribosyl)ation (PARylation) and/or mono(ADP-ribosyl)ation (MARylation), two post-translational protein modifications involved in crucial cellular processes including (but not limited to) the DNA damage response (DDR). PARP1, the most abundant family member, is a nuclear protein that is activated upon sensing distinct types of DNA damage and contributes to their resolution by PARylating multiple DDR players. Recent evidence suggests that, along with DDR, activated PARP1 mediates a series of prosurvival and proapoptotic processes aimed at preserving genomic stability. Despite this potential oncosuppressive role, upregulation and/or overactivation of PARP1 or other PARP enzymes has been reported in a variety of human neoplasms. Over the last few decades, several pharmacologic inhibitors of PARP1 and PARP2 have been assessed in preclinical and clinical studies showing potent antineoplastic activity, particularly against homologous recombination (HR)-deficient ovarian and breast cancers. In this Trial Watch, we describe the impact of PARP enzymes and PARylation in cancer, discuss the mechanism of cancer cell killing by PARP1 inactivation, and summarize the results of recent clinical studies aimed at evaluating the safety and therapeutic profile of PARP inhibitors in cancer patients.
Collapse
Affiliation(s)
| | - Gwenola Manic
- Regina Elena National Cancer Institute , Rome, Italy
| | - Florine Obrist
- Université Paris-Sud/Paris XI, Le Kremlin-Bicêtre, France; INSERM, UMRS1138, Paris, France; Equipe 11 labelisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France; Gustave Roussy Cancer Campus, Villejuif, France
| | - Ilio Vitale
- Regina Elena National Cancer Institute, Rome, Italy; Department of Biology, University of Rome "TorVergata", Rome, Italy
| |
Collapse
|
21
|
Guillot C, Favaudon V, Herceg Z, Sagne C, Sauvaigo S, Merle P, Hall J, Chemin I. PARP inhibition and the radiosensitizing effects of the PARP inhibitor ABT-888 in in vitro hepatocellular carcinoma models. BMC Cancer 2014; 14:603. [PMID: 25139788 PMCID: PMC4153905 DOI: 10.1186/1471-2407-14-603] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 08/06/2014] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma is the third cause of cancer related death for which new treatment strategies are needed. Targeting DNA repair pathways to sensitize tumor cells to chemo- or radiotherapy is under investigation for the treatment of several cancers with poly(ADP-ribose) polymerase (PARP) inhibitors showing great potential. The aim of this preclinical study was to evaluate the expression of PARP and PARG genes in a panel of liver cancer cell lines and primary human hepatocytes, their DNA repair capacity and assess the impact on cell survival of PARP inhibitors alone and in combination with radiotherapy. METHODS Quantitative PCR was used to measure PARP-1, -2, -3 and PARG mRNA levels and western blotting for PARP-1 protein expression and ADP-ribose polymer formation after exposure of cells to doxorubicin, a topoisomerase II poison. DNA repair capacity was assessed using an in vitro DNA lesion excision/synthesis assay and the effects on cell killing of the PARP inhibitor ABT-888 alone and in combination with ionizing radiation using clonogenic survival. RESULTS Although a wide range in expression of the PARPs and PARG was found correlations between PARP-1 and PARP-2 mRNA levels and PARP-1 mRNA and protein levels were noted. However these expression profiles were not predictive of PARP activity in the different cell lines that also showed variability in excision/synthesis repair capacity. 4 of the 7 lines were sensitive to ABT-888 alone and the two lines tested showed enhanced radiosensitivity in the presence of ABT-888. CONCLUSIONS PARP inhibitors combined with radiotherapy show potential as a therapeutic option for hepatocellular carcinoma.
Collapse
Affiliation(s)
- Clément Guillot
- />UMR INSERM U1052 CNRS 5286, CRCL, 151 Cours A Thomas, Lyon, F-69008 France
- />Université Lyon-1, Villeurbanne, F-69622 France
- />International Agency for Research on Cancer, 150 cours Albert Thomas, F-69424 Lyon Cedex 03, France
| | - Vincent Favaudon
- />Institut Curie, Bats 110–112 Centre Universitaire, Orsay, F-91405 France
- />Inserm U612, Bats 110–112 Centre Universitaire, Orsay, F-91405 France
| | - Zdenko Herceg
- />International Agency for Research on Cancer, 150 cours Albert Thomas, F-69424 Lyon Cedex 03, France
| | - Charlotte Sagne
- />Institut Curie, Bats 110–112 Centre Universitaire, Orsay, F-91405 France
- />Inserm U612, Bats 110–112 Centre Universitaire, Orsay, F-91405 France
- />International Agency for Research on Cancer, 150 cours Albert Thomas, F-69424 Lyon Cedex 03, France
| | - Sylvie Sauvaigo
- />Laboratoire Lésions des Acides Nucléiques, CEA, DSM/INAC/SCIB, UMR-E3 CEA/UJF-Grenoble 1, 17 rue des Martyrs, Grenoble, F-38054 France
| | - Philippe Merle
- />UMR INSERM U1052 CNRS 5286, CRCL, 151 Cours A Thomas, Lyon, F-69008 France
- />Université Lyon-1, Villeurbanne, F-69622 France
- />Hospices Civils de Lyon, Service d’Hépatologie et de Gastroentérologie, Groupement Hospitalier Lyon Nord, Lyon, France
| | - Janet Hall
- />Institut Curie, Bats 110–112 Centre Universitaire, Orsay, F-91405 France
- />Inserm U612, Bats 110–112 Centre Universitaire, Orsay, F-91405 France
| | - Isabelle Chemin
- />UMR INSERM U1052 CNRS 5286, CRCL, 151 Cours A Thomas, Lyon, F-69008 France
- />Université Lyon-1, Villeurbanne, F-69622 France
| |
Collapse
|