1
|
Bamfield-Cummings S, Silva J, Karim ZA. A thematic analysis of prognostic, diagnostic, and therapeutic of circulating miRNA biomarkers in bortezomib-resistant multiple myeloma. SAGE Open Med 2025; 13:20503121251328486. [PMID: 40297788 PMCID: PMC12035079 DOI: 10.1177/20503121251328486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 03/03/2025] [Indexed: 04/30/2025] Open
Abstract
Objective The increasing demand for precision medicine has spurred molecular diagnostic investigations to emphasize the utility of miRNA as significant biomarkers. Recent studies have underscored miRNA's role as prognostic, diagnostic, and therapeutic biomarkers in managing and monitoring multiple myeloma patients. This review aims to present the latest insights on the potential of circulating miRNA as prognostic, diagnostic, and therapeutic biomarkers in bortezomib-resistant multiple myeloma. Methods For this purpose, a comprehensive thematic literature review from January 2014 and August 2024 was conducted utilizing the databases CINAHL, Pubmed, and Google Scholar. Twenty pertinent studies were meticulously analyzed and categorized into the following sections: Bortezomib (BTZ) resistance in multiple myeloma, the predictive role of miRNAs in BTZ resistance, the impact of circulating miRNAs in multiple myeloma, and the potential of circulating miRNA as prognostic, diagnostic, and therapeutic biomarkers. Results Of note, eight studies identified circulating miRNAs as diagnostic miRNA biomarkers (i.e., miR-744, miR-130a, let-7d, let-7e, miR-34a, etc.). In comparison, nine studies identified several circulating miRNAs that can be used as prognostic biomarkers (i.e., miR-20a, miR-483-5p, mir-1246, let-7a, let-7e, etc.). Moreover, five studies identified circulating miRNAs as promising therapeutic biomarkers (i.e., mir-15a, mir-92a, mir-19a, etc.). This discovery can significantly enhance early detection, accurate diagnosis, prognosis, overall survival rates, and quality of life for patients with multiple myeloma. Conclusion Based on this evidence, exploring circulating miRNAs as a potential noninvasive biomarker for multiple myeloma represents a noteworthy advancement. This is attributed to the abundance of miRNAs in plasma or serum, which exhibits remarkable stability against enzymatic degradation.
Collapse
Affiliation(s)
| | - Jeane Silva
- Department of Health Management, Economics, and Policy, Augusta University, GA, USA
| | - Zubair A. Karim
- Department of Nutrition and Dietetics, College of Allied Health Science, Augusta University, GA, USA
| |
Collapse
|
2
|
Karimi F, Aghaei M, Saki N. Impact of Genetic Polymorphisms on Treatment Outcomes of Proteasome Inhibitors and Immunomodulatory Drugs in Multiple Myeloma. Curr Treat Options Oncol 2025; 26:197-212. [PMID: 40042740 DOI: 10.1007/s11864-025-01295-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2025] [Indexed: 03/20/2025]
Abstract
OPINION STATEMENT Multiple myeloma (MM) is classified as a lymphoproliferative disorder that remains an incurable malignancy despite improved patient survival with new drug therapies. Polymorphisms are essential in determining the effectiveness and outcome of treatments in MM. Despite significant advances, there needs to be more understanding of the underlying biological mechanisms that determine treatment outcomes. studies show that investigating gene polymorphisms involved in drug metabolism, DNA repair, inflammation, and apoptosis pathways can predict the effectiveness of treatment in MM patients. Therefore, these findings emphasize the potential of genetic profiling for predicting treatment outcomes and tailoring treatments to individual genetic profiles, which increases the efficiency and reduces the toxicity of MM treatments.
Collapse
Affiliation(s)
- Fatemeh Karimi
- Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mojtaba Aghaei
- Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
3
|
Raghunathachar SK, Krishnamurthy KP, Gopalaiah LM, Abhijith D, Prashant A, Parichay SR, Ramesh AM. Navigating the clinical landscape: Update on the diagnostic and prognostic biomarkers in multiple myeloma. Mol Biol Rep 2024; 51:972. [PMID: 39249557 DOI: 10.1007/s11033-024-09892-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/26/2024] [Indexed: 09/10/2024]
Abstract
Multiple myeloma, a complex hematologic malignancy, has devastating consequences for patients, including dramatic bone loss, severe bone pain, and pathological fractures that markedly decrease the quality of life and impact the survival of affected patients. This necessitates a refined understanding of biomarkers for accurate diagnosis and prognosis of such severe malignancy. Therefore, this article comprehensively covers current research, elucidating the diverse spectrum of biomarkers employed in clinical settings. From traditional serum markers to advanced molecular profiling techniques, the review provides a thorough examination of their utility and limitations. Through this scoping review, emphasis is placed on the evolving landscape of personalized medicine, where biomarkers play a pivotal role in tailoring therapeutic strategies. The integration of genomic, proteomic, next generation sequencing and flow cytometric data further enriches the discussion, unravelling the molecular intricacies underlying disease progression. The updated criteria allow for the treatment of people who clearly would benefit from therapy and might live longer if treated before significant organ damage occurs. Navigating through the evolving diagnostic and prognostic paradigms in multiple myeloma, this article equips clinicians and researchers with crucial insights for optimizing patient care and advancing future therapeutic approaches.
Collapse
Affiliation(s)
| | - Kiran Pura Krishnamurthy
- Department of Oncology, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru, 570015, India
| | | | - D Abhijith
- Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru, 570015, India
| | - Akila Prashant
- Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru, 570015, India
| | | | - Arpitha Maraliga Ramesh
- Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru, 570015, India.
| |
Collapse
|
4
|
Al-Hawary SIS, Jasim SA, Altalbawy FMA, Hjazi A, Jyothi SR, Kumar A, Eldesoqui M, Rasulova MT, Sinha A, Zwamel AH. Highlighting the role of long non-coding RNA (LncRNA) in multiple myeloma (MM) pathogenesis and response to therapy. Med Oncol 2024; 41:171. [PMID: 38849654 DOI: 10.1007/s12032-024-02392-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 04/24/2024] [Indexed: 06/09/2024]
Abstract
Transcripts longer than 200 nucleotides that are not translated into proteins are known as long non-coding RNAs, or lncRNAs. Now, they are becoming more significant as important regulators of gene expression, and as a result, of many biological processes in both healthy and pathological circumstances, such as blood malignancies. Through controlling alternative splicing, transcription, and translation at the post-transcriptional level, lncRNAs have an impact on the expression of genes. In multiple myeloma (MM), the majority of lncRNAs is elevated and promotes the proliferation, adhesion, drug resistance and invasion of MM cells by blocking apoptosis and altering the tumor microenvironment (TME). To control mRNA splicing, stability, and translation, they either directly attach to the target mRNA or transfer RNA-binding proteins (RBPs). By expressing certain miRNA-binding sites that function as competitive endogenous RNAs (ceRNAs), most lncRNAs mimic the actions of miRNAs. Here, we highlight lncRNAs role in the MM pathogenesis with emphasize on their capacity to control the molecular mechanisms known as "hallmarks of cancer," which permit earlier tumor initiation and progression and malignant cell transformation.
Collapse
Affiliation(s)
| | | | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
| | - S Renuka Jyothi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Ashwani Kumar
- Department of Pharmacy, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Mamdouh Eldesoqui
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, 13713, Diriyah, Riyadh, Saudi Arabia.
- Department of Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt.
| | - M T Rasulova
- Department of Physiology, Dean of the Faculty of Therapeutics, Fergana Medical Institute of Public Health, Fergana, Uzbekistan
- Western Caspian University, Scientific Researcher, Baku, Azerbaijan
| | - Aashna Sinha
- School of Applied and Life Sciences, Divison of Research and Innovation, Uttaranchal University Dehradun, Dehradun, Uttarakhand, India
| | - Ahmed Hussein Zwamel
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
5
|
Tang P, Yu Z, Sun H, Liu L, Gong L, Fang T, Sun X, Xie S, An G, Xu Z, Qiu L, Hao M. CRIP1 involves the pathogenesis of multiple myeloma via dual-regulation of proteasome and autophagy. EBioMedicine 2024; 100:104961. [PMID: 38199044 PMCID: PMC10825369 DOI: 10.1016/j.ebiom.2023.104961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/18/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Multiple myeloma (MM) is an incurable hematological malignancy of the plasma cells. The maintenance of protein homeostasis is critical for MM cell survival. Elevated levels of paraproteins in MM cells are cleared by proteasomes or lysosomes, which are independent but inter-connected with each other. Proteasome inhibitors (PIs) work as a backbone agent and successfully improved the outcome of patients; however, the increasing activity of autophagy suppresses the sensitivity to PIs treatment. METHODS The transcription levels of CRIP1 were explored in plasma cells obtained from healthy donors, patients with newly diagnosed multiple myeloma (NDMM), and relapsed/refractory multiple myeloma (RRMM) using Gene expression omnibus datasets. Doxycycline-inducible CRIP1-shRNA and CRIP1 overexpressed MM cell lines were constructed to explore the role of CRIP1 in MM pathogenesis. Proliferation, invasion, migration, proteasome activity and autophagy were examined in MM cells with different CRIP1 levels. Co-immunoprecipitation (Co-IP) with Tandem affinity purification/Mass spectrum (TAP/MS) was performed to identify the binding proteins of CRIP1. The mouse xenograft model was used to determine the role of CRIP1 in the proliferation and drug-resistance of MM cells. FINDINGS High CRIP1 expression was associated with unfavorable clinical outcomes in patients with MM and served as a biomarker for RRMM with shorter overall survival. In vitro and in vivo studies showed that CRIP1 plays a critical role in protein homeostasis via the dual regulation of the activities of proteasome and autophagy in MM cells. A combined analysis of RNA-seq, Co-IP and TAP/MS demonstrated that CRIP1 promotes proteasome inhibitors resistance in MM cells by simultaneously binding to de-ubiquitinase USP7 and proteasome coactivator PA200. CRIP1 promoted proteasome activity and autophagosome maturation by facilitating the dequbiquitination and stabilization of PA200. INTERPRETATION Our findings clarified the pivotal roles of the CRIP1/USP7/PA200 complex in ubiquitin-dependent proteasome degradation and autophagy maturation involved in the pathogenesis of MM. FUNDING A full list of funding sources can be found in the acknowledgements section.
Collapse
Affiliation(s)
- Peixia Tang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China
| | - Zhen Yu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China
| | - Hao Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Lanting Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China
| | - Lixin Gong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Teng Fang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xiyue Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Shiyi Xie
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Gang An
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Zhenshu Xu
- Hematology Department Fujian Medical University Union Hospital, Fujian Institute of Hematology, Fuzhou, Fujian, China.
| | - Lugui Qiu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China; Gobroad Healthcare Group, Beijing, China.
| | - Mu Hao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China.
| |
Collapse
|
6
|
Pereira IDS, Cruz ABD, Maia MM, Carneiro FM, Gava R, Spegiorin LCJF, Brandão CC, Truzzi IGDC, Junior GMDF, de Mattos LC, Pereira-Chioccola VL, Meira-Strejevitch CS. Identification and validation of reference genes of circulating microRNAs for use as control in gestational toxoplasmosis. Mol Biochem Parasitol 2023; 256:111592. [PMID: 37666471 DOI: 10.1016/j.molbiopara.2023.111592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 08/21/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023]
Abstract
Toxoplasmosis causes serious harm to the fetus, as tachyzoite dissemination, during pregnancy in women developing the primo-infection. The microRNAs (miRNAs) are small non-coding RNAs, which have regulatory roles in cells by silencing messenger RNA. Circulating miRNA are promising biomarkers for diagnosis and prognosis of numerous diseases. The miRNAs levels are estimated by quantitative real-time PCR (qPCR), however, the relative quantification of each miRNA expression requires proper normalization methods using endogenous miRNAs as control. This study analyzed the expression of three endogenous miRNAs (miR-484, miR -423-3p and miR-26b-5p) for use as normalizers in future studies of target miRNAs for gestational toxoplasmosis (GT). A total of 32 plasma samples were used in all assays divided in 21 from women with GT and 11 from healthy women. The stability of each endogenous miRNA was evaluated by the algorithm methods RefFinder that included GeNorm, Normfinder, BestKeeper and comparative delta-CT programs. The miR-484 was the most stably gene, and equivalently expressed in GT and NC groups. These results contribute to future studies of target miRNAs in clinical samples of women with gestational toxoplasmosis.
Collapse
Affiliation(s)
- Ingrid de Siqueira Pereira
- Centro de Parasitologia e Micologia, Instituto Adolfo Lutz, Sao Paulo, Brazil; Programa de Pós-Graduação em Ciências da Coordenadoria de Controle de Doenças da Secretaria de Estado da Saúde de São Paulo, Brazil
| | - Allecineia Bispo da Cruz
- Centro de Parasitologia e Micologia, Instituto Adolfo Lutz, Sao Paulo, Brazil; Programa de Pós-Graduação em Ciências da Coordenadoria de Controle de Doenças da Secretaria de Estado da Saúde de São Paulo, Brazil
| | - Marta Marques Maia
- Centro de Parasitologia e Micologia, Instituto Adolfo Lutz, Sao Paulo, Brazil; Programa de Pós-Graduação em Ciências da Coordenadoria de Controle de Doenças da Secretaria de Estado da Saúde de São Paulo, Brazil
| | - Francieli Marinho Carneiro
- Centro de Parasitologia e Micologia, Instituto Adolfo Lutz, Sao Paulo, Brazil; Programa de Pós-Graduação em Ciências da Coordenadoria de Controle de Doenças da Secretaria de Estado da Saúde de São Paulo, Brazil
| | - Ricardo Gava
- Centro de Parasitologia e Micologia, Instituto Adolfo Lutz, Sao Paulo, Brazil
| | | | | | | | | | | | - Vera Lucia Pereira-Chioccola
- Centro de Parasitologia e Micologia, Instituto Adolfo Lutz, Sao Paulo, Brazil; Programa de Pós-Graduação em Ciências da Coordenadoria de Controle de Doenças da Secretaria de Estado da Saúde de São Paulo, Brazil
| | - Cristina Silva Meira-Strejevitch
- Centro de Parasitologia e Micologia, Instituto Adolfo Lutz, Sao Paulo, Brazil; Programa de Pós-Graduação em Ciências da Coordenadoria de Controle de Doenças da Secretaria de Estado da Saúde de São Paulo, Brazil.
| |
Collapse
|
7
|
Ismail NH, Mussa A, Al-Khreisat MJ, Mohamed Yusoff S, Husin A, Al-Jamal HAN, Johan MF, Islam MA. Dysregulation of Non-Coding RNAs: Roles of miRNAs and lncRNAs in the Pathogenesis of Multiple Myeloma. Noncoding RNA 2023; 9:68. [PMID: 37987364 PMCID: PMC10660696 DOI: 10.3390/ncrna9060068] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/22/2023] Open
Abstract
The dysregulation of non-coding RNAs (ncRNAs), specifically microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), leads to the development and advancement of multiple myeloma (MM). miRNAs, in particular, are paramount in post-transcriptional gene regulation, promoting mRNA degradation and translational inhibition. As a result, miRNAs can serve as oncogenes or tumor suppressors depending on the target genes. In MM, miRNA disruption could result in abnormal gene expression responsible for cell growth, apoptosis, and other biological processes pertinent to cancer development. The dysregulated miRNAs inhibit the activity of tumor suppressor genes, contributing to disease progression. Nonetheless, several miRNAs are downregulated in MM and have been identified as gene regulators implicated in extracellular matrix remodeling and cell adhesion. miRNA depletion potentially facilitates the tumor advancement and resistance of therapeutic drugs. Additionally, lncRNAs are key regulators of numerous cellular processes, such as gene expression, chromatin remodeling, protein trafficking, and recently linked MM development. The lncRNAs are uniquely expressed and influence gene expression that supports MM growth, in addition to facilitating cellular proliferation and viability via multiple molecular pathways. miRNA and lncRNA alterations potentially result in anomalous gene expression and interfere with the regular functioning of MM. Thus, this review aims to highlight the dysregulation of these ncRNAs, which engender novel therapeutic modalities for the treatment of MM.
Collapse
Affiliation(s)
- Nor Hayati Ismail
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Ali Mussa
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Department of Biology, Faculty of Education, Omdurman Islamic University, Omdurman 11111, Sudan
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Mutaz Jamal Al-Khreisat
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Shafini Mohamed Yusoff
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Azlan Husin
- Department of Internal Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Hamid Ali Nagi Al-Jamal
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin (UniSZA), Kuala Nerus 21300, Terengganu, Malaysia
| | - Muhammad Farid Johan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Md Asiful Islam
- WHO Collaborating Centre for Global Women’s Health, Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
8
|
Elkady MA, Yehia AM, Elsakka EGE, Abulsoud AI, Abdelmaksoud NM, Elshafei A, Elkhawaga SY, Ismail A, Mokhtar MM, El-Mahdy HA, Hegazy M, Elballal MS, Mohammed OA, El-Husseiny HM, Midan HM, El-Dakroury WA, Zewail MB, Abdel Mageed SS, Doghish AS. miRNAs driving diagnosis, progression, and drug resistance in multiple myeloma. Pathol Res Pract 2023; 248:154704. [PMID: 37499518 DOI: 10.1016/j.prp.2023.154704] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
Multiple myeloma (MM) is a tumor of transformed plasma cells. It's the second most common hematologic cancer after non-Hodgkin lymphoma. MM is a complex disease with many different risk factors, including ethnicity, race, and epigenetics. The microRNAs (miRNAs) are a critical epigenetic factor in multiple myeloma, influencing key aspects such as pathogenesis, prognosis, and resistance to treatment. They have the potential to assist in disease diagnosis and modulate the resistance behavior of MM towards therapeutic regimens. These characteristics could be attributed to the modulatory effects of miRNAs on some vital pathways such as NF-KB, PI3k/AKT, and P53. This review discusses the role of miRNAs in MM with a focus on their role in disease progression, diagnosis, and therapeutic resistance.
Collapse
Affiliation(s)
- Mohamed A Elkady
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Amr Mohamed Yehia
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Nourhan M Abdelmaksoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Ahmed Elshafei
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Samy Y Elkhawaga
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Mahmoud Mohamed Mokhtar
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Maghawry Hegazy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Osama A Mohammed
- Department of Clinical Pharmacology, Faculty of Medicine, Bisha University, Bisha 61922, Saudi Arabia; Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Hussein M El-Husseiny
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt; Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Heba M Midan
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Moataz B Zewail
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sherif S Abdel Mageed
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|
9
|
Sevcikova A, Fridrichova I, Nikolaieva N, Kalinkova L, Omelka R, Martiniakova M, Ciernikova S. Clinical Significance of microRNAs in Hematologic Malignancies and Hematopoietic Stem Cell Transplantation. Cancers (Basel) 2023; 15:cancers15092658. [PMID: 37174123 PMCID: PMC10177548 DOI: 10.3390/cancers15092658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/14/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Hematologic malignancies are a group of neoplastic conditions that can develop from any stage of the hematopoiesis cascade. Small non-coding microRNAs (miRNAs) play a crucial role in the post-transcriptional regulation of gene expression. Mounting evidence highlights the role of miRNAs in malignant hematopoiesis via the regulation of oncogenes and tumor suppressors involved in proliferation, differentiation, and cell death. In this review, we provide current knowledge about dysregulated miRNA expression in the pathogenesis of hematological malignancies. We summarize data about the clinical utility of aberrant miRNA expression profiles in hematologic cancer patients and their associations with diagnosis, prognosis, and the monitoring of treatment response. Moreover, we will discuss the emerging role of miRNAs in hematopoietic stem cell transplantation (HSCT), and severe post-HSCT complications, such as graft-versus-host disease (GvHD). The therapeutical potential of the miRNA-based approach in hemato-oncology will be outlined, including studies with specific antagomiRs, mimetics, and circular RNAs (circRNAs). Since hematologic malignancies represent a full spectrum of disorders with different treatment paradigms and prognoses, the potential use of miRNAs as novel diagnostic and prognostic biomarkers might lead to improvements, resulting in a more accurate diagnosis and better patient outcomes.
Collapse
Affiliation(s)
- Aneta Sevcikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Ivana Fridrichova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Nataliia Nikolaieva
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Lenka Kalinkova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Radoslav Omelka
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia
| | - Monika Martiniakova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia
| | - Sona Ciernikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| |
Collapse
|
10
|
Puła A, Robak P, Jarych D, Mikulski D, Misiewicz M, Drozdz I, Fendler W, Szemraj J, Robak T. The Relationship between Serum miRNAs and Early Mortality in Multiple Myeloma Patients Treated with Bortezomib-Based Regimens. Int J Mol Sci 2023; 24:2938. [PMID: 36769265 PMCID: PMC9917942 DOI: 10.3390/ijms24032938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Multiple myeloma (MM) is a hematological malignancy characterized by the clonal proliferation of plasma cells in the bone marrow (BM) microenvironment. Despite the progress made in treatment, some MM patients still die within the first year of diagnosis. Numerous studies investigating microRNA (miRNA) expression patterns suggest they may be good prognostic markers. The primary aim of this study was to analyze the expression of selected miRNAs in the serum of MM patients who were later treated with bortezomib-based regimens, and to determine their potential to predict early mortality. The study was conducted in 70 prospectively recruited patients with newly diagnosed MM admitted to the Department of Hematology of the Copernicus Memorial Hospital, Lodz (Poland) between 2017 and 2021. Among them, 17 patients experienced death within 12 months of diagnosis. The expression of 31 selected miRNAs was determined using a miRCURY LNA miRNA Custom PCR Panel. The obtained clinical data included patient characteristics on diagnosis, treatment regimen, response to treatment, and follow-up. Differential expression analysis found two miRNAs to be significantly downregulated in the early mortality group: hsa-miR-328-3p (fold change-FC: 0.72, p = 0.0342) and hsa-miR-409-3p (FC: 0.49, p = 0.0357). Univariate and multivariate logistic regression analyses were performed to assess the early mortality rate. The final model consisted of hsa-miR-409-3p, hsa-miR-328-3p, age, and R-ISS 3. It yielded an area under the curve (AUC) of 0.863 (95%CI: 0.761-0.965) with 88.2% sensitivity and 77.5% specificity. Further external validation of our model is needed to confirm its clinical value.
Collapse
Affiliation(s)
- Anna Puła
- Department of Hematology, Medical University of Lodz, 93-510 Lodz, Poland
- Department of Hematooncology, Copernicus Memorial Hospital, 93-510 Lodz, Poland
| | - Paweł Robak
- Department of Hematooncology, Copernicus Memorial Hospital, 93-510 Lodz, Poland
- Department of Experimental Hematology, Medical University of Lodz, 93-510 Lodz, Poland
| | - Dariusz Jarych
- Laboratory of Virology, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland
| | - Damian Mikulski
- Department of Hematooncology, Copernicus Memorial Hospital, 93-510 Lodz, Poland
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 92-215 Lodz, Poland
| | | | - Izabela Drozdz
- Department of Clinical Genetics, Medical University of Lodz, 92-213 Lodz, Poland
| | - Wojciech Fendler
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 92-215 Lodz, Poland
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland
| | - Tadeusz Robak
- Department of Hematology, Medical University of Lodz, 93-510 Lodz, Poland
- Department of General Hematology, Copernicus Memorial Hospital, 93-510 Lodz, Poland
| |
Collapse
|
11
|
Abstract
Multiple myeloma (MM) remains incurable despite advances in current treatment. Patients with MM exhibit significant variations in their prognosis and survival. Recently, genetic abnormalities, such as chromosomal variations and gene mutations, have been increasingly recognized in MM. Therefore, better prognostic indicators of MM are required for the diagnosis and treatment of patients with MM. ncRNAs are non-protein-coding transcripts that regulate gene expression at the post-transcriptional level. Deregulation of ncRNAs affects cell cycle progression, cancer cell invasion and metastasis. The abnormal expression of these ncRNAs is also critical for the pathogenesis of several cancers, including MM. Hence, this review aims to discuss the recent findings on the role of regulatory ncRNAs and evaluate their potential value in MM.
Collapse
Affiliation(s)
- Songze Leng
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Huiting Qu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Xiao Lv
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, People's Republic of China
| | - Xin Liu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China
| |
Collapse
|
12
|
[Diagnostic and prognostic value of serum miR-19a-3p in patients with multiple myeloma]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2022; 43:598-601. [PMID: 36709139 PMCID: PMC9395561 DOI: 10.3760/cma.j.issn.0253-2727.2022.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
13
|
Chen D, Yang X, Liu M, Zhang Z, Xing E. Roles of miRNA dysregulation in the pathogenesis of multiple myeloma. Cancer Gene Ther 2021; 28:1256-1268. [PMID: 33402729 PMCID: PMC8636266 DOI: 10.1038/s41417-020-00291-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/03/2020] [Accepted: 12/11/2020] [Indexed: 01/29/2023]
Abstract
Multiple myeloma (MM) is a malignant disease of plasma cells with complex pathology, causing significant morbidity due to its end-organ destruction. The outcomes of patients with myeloma have significantly improved in the past couple of decades with the introduction of novel agents, such as proteasome inhibitors, immunomodulators, and monoclonal antibodies. However, MM remains incurable and presents considerable individual heterogeneity. MicroRNAs (miRNAs) are short, endogenous noncoding RNAs of 19-22 nucleotides that regulate gene expression at the posttranscriptional level. Numerous studies have shown that miRNA deregulation is closely related to MM pathology, including tumor initiation, progression, metastasis, prognosis, and drug response, which make the complicated miRNA network an attractive and marvelous area of investigation for novel anti-MM therapeutic approaches. Herein, we mainly summarized the current knowledge on the roles of miRNAs, which are of great significance in regulating pathological factors involved in MM progressions, such as bone marrow microenvironment, methylation, immune regulation, genomic instability, and drug resistance. Meanwhile, their potential as novel prognostic biomarkers and therapeutic targets was also discussed.
Collapse
Affiliation(s)
- Dan Chen
- Department of Central Laboratory, The Affiliated Hospital of Chengde Medical College, Chengde, Hebei, China
| | - Xinhong Yang
- Department of Hematology, The Affiliated Hospital of Chengde Medical College, Chengde, Hebei, China
| | - Min Liu
- Department of Hematology, The Affiliated Hospital of Chengde Medical College, Chengde, Hebei, China
| | - Zhihua Zhang
- Department of Hematology, The Affiliated Hospital of Chengde Medical College, Chengde, Hebei, China.
| | - Enhong Xing
- Department of Central Laboratory, The Affiliated Hospital of Chengde Medical College, Chengde, Hebei, China.
| |
Collapse
|
14
|
Mei Y, Li K, Zhang Z, Li M, Yang H, Wang H, Huang X, Li X, Shi S, Yang H. miR-33b-3p Acts as a Tumor Suppressor by Targeting DOCK4 in Prostate Cancer. Front Oncol 2021; 11:740452. [PMID: 34804930 PMCID: PMC8595470 DOI: 10.3389/fonc.2021.740452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/18/2021] [Indexed: 11/28/2022] Open
Abstract
Despite that androgen-deprivation therapy results in long-lasting responses, the disease inevitably progresses to metastatic castration-resistant prostate cancer. In this study, we identified miR-33b-3p as a tumor suppressor in prostate cancer. miR-33b-3p was significantly reduced in prostate cancer tissues, and the low expression of miR-33b-3p was correlated with poor overall survival of prostate cancer patients. Overexpression of miR-33b-3p inhibited both migration and invasion of highly metastatic prostate cancer cells whereas inhibition of miR-33b-3p promoted those processes in lowly metastatic cells. The in vivo results demonstrate that miR-33b-3p suppresses metastasis of tail vein inoculated prostate cancer cells to lung and lymph nodes in mice. DOCK4 was validated as the direct target of miR-33b-3p. miR-33b-3p decreased the expression of DOCK4 and restoration of DOCK4 could rescue miR-33b-3p inhibition on cell migration and invasion. Moreover, downregulation of miR-33b-3p was induced by bortezomib, the clinically used proteasome inhibitor, and overexpression of miR-33b-3p enhanced the insufficient inhibition of bortezomib on migration and invasion as well as metastasis of prostate cancer cells. In summary, our findings demonstrate that miR-33b-3p suppresses metastasis by targeting DOCK4 in prostate cancer. Our results suggest that enhancing miR-33b-3p expression may provide a promising therapeutic strategy for overcoming that proteasome inhibitor’s poor efficacy against metastatic prostate cancer.
Collapse
Affiliation(s)
- Yu Mei
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Kai Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Zhicheng Zhang
- Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mengmeng Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Hong Yang
- Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hui Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Xuemei Huang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Xinyuan Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Shuhua Shi
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Huanjie Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
15
|
Kalushkova A, Nylund P, Párraga AA, Lennartsson A, Jernberg-Wiklund H. One Omics Approach Does Not Rule Them All: The Metabolome and the Epigenome Join Forces in Haematological Malignancies. EPIGENOMES 2021; 5:epigenomes5040022. [PMID: 34968247 PMCID: PMC8715477 DOI: 10.3390/epigenomes5040022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/17/2021] [Accepted: 09/26/2021] [Indexed: 02/01/2023] Open
Abstract
Aberrant DNA methylation, dysregulation of chromatin-modifying enzymes, and microRNAs (miRNAs) play a crucial role in haematological malignancies. These epimutations, with an impact on chromatin accessibility and transcriptional output, are often associated with genomic instability and the emergence of drug resistance, disease progression, and poor survival. In order to exert their functions, epigenetic enzymes utilize cellular metabolites as co-factors and are highly dependent on their availability. By affecting the expression of metabolic enzymes, epigenetic modifiers may aid the generation of metabolite signatures that could be utilized as targets and biomarkers in cancer. This interdependency remains often neglected and poorly represented in studies, despite well-established methods to study the cellular metabolome. This review critically summarizes the current knowledge in the field to provide an integral picture of the interplay between epigenomic alterations and the cellular metabolome in haematological malignancies. Our recent findings defining a distinct metabolic signature upon response to enhancer of zeste homolog 2 (EZH2) inhibition in multiple myeloma (MM) highlight how a shift of preferred metabolic pathways may potentiate novel treatments. The suggested link between the epigenome and the metabolome in haematopoietic tumours holds promise for the use of metabolic signatures as possible biomarkers of response to treatment.
Collapse
Affiliation(s)
- Antonia Kalushkova
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden; (P.N.); (A.A.P.); (H.J.-W.)
- Correspondence:
| | - Patrick Nylund
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden; (P.N.); (A.A.P.); (H.J.-W.)
| | - Alba Atienza Párraga
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden; (P.N.); (A.A.P.); (H.J.-W.)
| | - Andreas Lennartsson
- Department of Biosciences and Nutrition, NEO, Karolinska Institutet, 14157 Huddinge, Sweden;
| | - Helena Jernberg-Wiklund
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden; (P.N.); (A.A.P.); (H.J.-W.)
| |
Collapse
|
16
|
Liquid biopsy: an evolving paradigm for the biological characterisation of plasma cell disorders. Leukemia 2021; 35:2771-2783. [PMID: 34262132 DOI: 10.1038/s41375-021-01339-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/14/2021] [Accepted: 06/25/2021] [Indexed: 02/06/2023]
Abstract
Liquid biopsies-a source of circulating cell-free nucleic acids, proteins and extracellular vesicles-are currently being explored for the quantitative and qualitative characterisation of the tumour genome and as a mode of non-invasive therapeutic monitoring in cancer. Emerging data suggest that liquid biopsies might offer a potentially simple, non-invasive, repeatable strategy for diagnosis, prognostication and therapeutic decision making in a genetically heterogeneous disease like multiple myeloma (MM), with particular applicability in subsets of patients where conventional markers of disease burden may be less informative. In this review, we describe the emerging utility of the evaluation of circulating tumour DNA, extracellular RNA, cell-free proteins and metabolites and extracellular vesicles in MM.
Collapse
|
17
|
Desantis V, Solimando AG, Saltarella I, Sacco A, Giustini V, Bento M, Lamanuzzi A, Melaccio A, Frassanito MA, Paradiso A, Montagnani M, Vacca A, Roccaro AM. MicroRNAs as a Potential New Preventive Approach in the Transition from Asymptomatic to Symptomatic Multiple Myeloma Disease. Cancers (Basel) 2021; 13:cancers13153650. [PMID: 34359551 PMCID: PMC8344971 DOI: 10.3390/cancers13153650] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 01/02/2023] Open
Abstract
Simple Summary Multiple myeloma (MM) is the second most common haematologic malignancy, and it remains an incurable disease despite the advances of novel therapies. It is characterised by a multistep process that arises from a pre-malignant asymptomatic status-defined monoclonal gammopathy of undetermined significance (MGUS), evolves to a middle stage named smouldering myeloma phase (SMM), and culminates in the active disease (MM). Identification of early and non-invasive markers of the disease progression is currently an active field of investigation. In this review, we discuss the role and significance of microRNAs (miRNAs) as potential diagnostic biomarkers to predict the clinical transition from MGUS/SMM status to MM. Abstract Multiple myeloma (MM) is a hematological malignancy characterised by proliferation of clonal plasma cells (PCs) within the bone marrow (BM). Myelomagenesis is a multi-step process which goes from an asymptomatic phase, defined as monoclonal gammopathy of undetermined significance (MGUS), to a smouldering myeloma (SMM) stage, to a final active MM disease, characterised by hypercalcemia, renal failure, bone lesions anemia, and higher risk of infections. Overall, microRNAs (miRNAs) have shown to significantly impact on MM tumorigenesis, as a result of miRNA-dependent modulation of genes involved in pathways known to be crucial for MM pathogenesis and disease progression. We aim to revise the literature related to the role of miRNAs as potential diagnostic and prognostic biomarkers, thus highlighting their key role as novel players within the field of MM and related premalignant conditions.
Collapse
Affiliation(s)
- Vanessa Desantis
- Unit of Internal Medicine and Clinical Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy; (V.D.); (A.G.S.); (I.S.); (A.L.); (A.M.)
- Department of Biomedical Sciences and Human Oncology, Pharmacology Section, Medical School, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Antonio Giovanni Solimando
- Unit of Internal Medicine and Clinical Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy; (V.D.); (A.G.S.); (I.S.); (A.L.); (A.M.)
- IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy;
| | - Ilaria Saltarella
- Unit of Internal Medicine and Clinical Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy; (V.D.); (A.G.S.); (I.S.); (A.L.); (A.M.)
| | - Antonio Sacco
- Clinical Research Development and Phase I Unit, ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (A.S.); (V.G.)
| | - Viviana Giustini
- Clinical Research Development and Phase I Unit, ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (A.S.); (V.G.)
| | - Marta Bento
- Centro Hospitalar Lisboa Norte, Department of Hematology and Transplantation, Institute of Molecular Medicine, University of Lisbon, 1649-035 Lisbon, Portugal;
| | - Aurelia Lamanuzzi
- Unit of Internal Medicine and Clinical Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy; (V.D.); (A.G.S.); (I.S.); (A.L.); (A.M.)
| | - Assunta Melaccio
- Unit of Internal Medicine and Clinical Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy; (V.D.); (A.G.S.); (I.S.); (A.L.); (A.M.)
| | - Maria Antonia Frassanito
- Unit of General Pathology, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Angelo Paradiso
- IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy;
| | - Monica Montagnani
- Department of Biomedical Sciences and Human Oncology, Pharmacology Section, Medical School, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Angelo Vacca
- Unit of Internal Medicine and Clinical Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy; (V.D.); (A.G.S.); (I.S.); (A.L.); (A.M.)
- Correspondence: (A.V.); (A.M.R.)
| | - Aldo M. Roccaro
- Clinical Research Development and Phase I Unit, ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (A.S.); (V.G.)
- Correspondence: (A.V.); (A.M.R.)
| |
Collapse
|
18
|
Next-Generation Biomarkers in Multiple Myeloma: Understanding the Molecular Basis for Potential Use in Diagnosis and Prognosis. Int J Mol Sci 2021; 22:ijms22147470. [PMID: 34299097 PMCID: PMC8305153 DOI: 10.3390/ijms22147470] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 06/25/2021] [Accepted: 07/02/2021] [Indexed: 12/19/2022] Open
Abstract
Multiple myeloma (MM) is considered to be the second most common blood malignancy and it is characterized by abnormal proliferation and an accumulation of malignant plasma cells in the bone marrow. Although the currently utilized markers in the diagnosis and assessment of MM are showing promising results, the incidence and mortality rate of the disease are still high. Therefore, exploring and developing better diagnostic or prognostic biomarkers have drawn global interest. In the present review, we highlight some of the recently reported and investigated novel biomarkers that have great potentials as diagnostic and/or prognostic tools in MM. These biomarkers include angiogenic markers, miRNAs as well as proteomic and immunological biomarkers. Moreover, we present some of the advanced methodologies that could be utilized in the early and competent diagnosis of MM. The present review also focuses on understanding the molecular concepts and pathways involved in these biomarkers in order to validate and efficiently utilize them. The present review may also help in identifying areas of improvement for better diagnosis and superior outcomes of MM.
Collapse
|
19
|
Xiang Y, Zhang L, Xiang P, Zhang J. Circulating miRNAs as Auxiliary Diagnostic Biomarkers for Multiple Myeloma: A Systematic Review, Meta-Analysis, and Recommendations. Front Oncol 2021; 11:698197. [PMID: 34307166 PMCID: PMC8297545 DOI: 10.3389/fonc.2021.698197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/22/2021] [Indexed: 01/20/2023] Open
Abstract
Multiple myeloma (MM) is a hematologic malignancy characterized by aberrant expansion of monoclonal plasma cells with high mortality and severe complications due to the lack of early diagnosis and timely treatment. Circulating miRNAs have shown potential in the diagnosis of MM with inconsistent results, which remains to be fully assessed. Here we updated a meta-analysis with relative studies and essays published in English before Jan 31, 2021. After steps of screening, 32 studies from 11 articles that included a total of 627 MM patients and 314 healthy controls were collected. All data were analyzed by REVMAN 5.3 and Stata MP 16, and the quality of included literatures was estimated by Diagnostic Accuracy Study 2 (QUADAS-2). The pooled area under the curve (AUC) shown in summary receiver operating characteristic (SROC) analyses of circulating miRNAs was 0.87 (95%CI, 0.81–0.89), and the sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), and diagnostic odds ratio (DOR) were 0.79, 0.86, 5, 0.27, 22, respectively. Meta-regression and subgroup analysis exhibited that “miRNA cluster”, patient “detailed stage or Ig isotype” accounted for a considerable proportion of heterogeneity, revealing the importance of study design and patient inclusion in diagnostic trials; thus standardized recommendations were proposed for further studies. In addition, the performance of the circulating miRNAs included in MM prognosis and treatment response prediction was summarized, indicating that they could serve as valuable biomarkers, which would expand their clinical application greatly.
Collapse
Affiliation(s)
- Yunhui Xiang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Liuyun Zhang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Pinpin Xiang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Juan Zhang
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
20
|
Attia HRM, Abdelrahman AH, Ibrahim MH, Eid MM, Eid OM, Sallam MT, El Gammal MM, Kamel MM. Altered Expression of MicroRNAs in the Bone Marrow of Multiple Myeloma Patients and their Relationship to Cytogenetic Aberrations. Curr Pharm Biotechnol 2020; 21:1394-1401. [PMID: 32196445 DOI: 10.2174/1389201021666200320135139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/24/2020] [Accepted: 03/11/2020] [Indexed: 01/26/2023]
Abstract
BACKGROUND Multiple Myeloma (MM) is a complex hematologic malignancy, driven by several genetic and epigenetic alterations. MiRNAs as biomarkers have become a rapidly growing research area in the last decade. AIM The aim was to study the expression pattern of selected miRNAs and to explore the impact of cytogenetic aberrations in MM patients for therapeutic tools. PATIENTS AND METHODS Forty Egyptian adult patients were selected for the study with symptomatic newly diagnosed MM disease. Bone marrow samples were collected to investigate twelve miRNAs selected according to their relation to the most common cytogenetic aberrations with relevant prognostic value. The relative expression of the selected miRNAs was determined using a real-time PCR technique. Fluorescence In Situ Hybridization (FISH) technique was performed for cytogenetic analysis. RESULTS Eight miRNAs were down-regulated [miR-15a (p<0.001), miR214-3p (p<0.001), miR135b (p<0.001), miR19a-3p (p<0.001), miR19b-3p ((p=0.026), miR30e-5p (NS), miR133a (NS), miR146a- 5p (p<0.001)]. Four miRNAs were up-regulated [miR99b-5p (p=0.028), miR125a-3p (p=0.004), let7b- 5p (p<0.001), let7c-5p (p<0.001)]. Significant relation was observed between positive 14q32 rearrangement using the break apart re-arrangement probe for 14q32.33 locus and lower expression levels of miR15a (p= 0.014), 214-3p (p=0.046), 99b-5p (p=0.014), 146a-5p (p=0.041). A higher expression level of miR30e-5p was significantly related to positive 14q32 rearrangement. CONCLUSION Deregulated miRNAs were identified and the association with 14q32 rearrangement and MM pathogenesis has been determined.
Collapse
Affiliation(s)
- Hanaa R M Attia
- Department of Clinical and Chemical Pathology, National Research Centre, Cairo, Egypt
| | - Amany H Abdelrahman
- Department of Clinical and Chemical Pathology, National Research Centre, Cairo, Egypt
| | - Mona H Ibrahim
- Department of Clinical and Chemical Pathology, National Research Centre, Cairo, Egypt
| | - Maha M Eid
- Department of Human Cytogenetics, National Research Centre, Cairo, Egypt
| | - Ola M Eid
- Department of Human Cytogenetics, National Research Centre, Cairo, Egypt
| | - Mohamed T Sallam
- Department of Clinical Pathology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mosaad M El Gammal
- Department of Medical Oncology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Mahmoud M Kamel
- Immunology & Bone Marrow Transplantation (BMT) Unit, National Cancer Institute, Cairo University, Cairo, Egypt
| |
Collapse
|
21
|
Gao SS, Wang YJ, Zhang GX, Zhang WT. Potential diagnostic value of circulating miRNA for multiple myeloma: A meta-analysis. J Bone Oncol 2020; 25:100327. [PMID: 33145153 PMCID: PMC7596263 DOI: 10.1016/j.jbo.2020.100327] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/29/2020] [Accepted: 10/12/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Multiple myeloma (MM) is the second incurable hematological malignancy. In recent years, due to the rise of microRNA (miRNA), many scholars have participated in the study of its value in the diagnosis of MM, and have obtained good but inconsistent results. Therefore, in order to determine the role of miRNA in the early diagnosis of MM, we performed this meta-analysis. METHODS We searched for related studies including PubMed, Web of Science, EMBASE, Cochrane Library, China National Knowledge Infrastructure (CNKI) and Wanfang Database as of July 20, 2020 to conduct this meta-analysis. To improve the accuracy, the quality assessment of Diagnostic Accuracy Study 2 (QUADAS-2) was used. We also applied random effects models to summarize sensitivity and specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR) and area under the curve (AUC) to measure diagnostic values, and subgroup analysis used to discover potential sources of heterogeneity. RESULTS We finally collected 32 studies from 15 articles that included a total of 2053 MM patients and 1118 healthy controls in this meta-analysis. The overall sensitivity, specificity, PLR, NLR, DOR and AUC were 0.81, 0.85, 5.5, 0.22, 25 and 0.90, respectively. Subgroup analysis shows that the down-regulation of microRNA clusters with larger samples size of plasma type could carry out a better diagnostic accuracy of MM patients. In addition, publication bias was not found. CONCLUSIONS Circulating miRNA could be a potential non-invasive biomarker for early diagnosis of MM. However, multi-center, more rigorous, and larger-scale studies are needed to verify our conclusions.
Collapse
Key Words
- AUC, Area under the curve
- CI, confidence interval
- DOR, Diagnostic odds ratio
- Diagnosis
- MGUS, Monoclonal gammopathy of undetermined significance
- MM, Multiple myeloma
- Meta-analysis
- MicroRNAs
- Multiple myeloma
- NLR, Negative likelihood ratio
- PCL, Plasma cell leukemia
- PLR, Positive likelihood ratio
- QUADAS-2, Quality Assessment of Diagnostic Accuracy Study 2
- SE, Sensitivity
- SP, Specificity
- microRNA, miRNA
Collapse
Affiliation(s)
- Shuai-Shuai Gao
- Department of Traumatology and Orthopedic Surgery, Xi'an Daxing Hospital, Shaanxi, China
- International Doctoral School, University of Seville, Spain
| | - Yan-Jun Wang
- Department of Traumatology and Orthopedic Surgery, Xi'an Daxing Hospital, Shaanxi, China
| | - Guo-Xun Zhang
- International Doctoral School, University of Seville, Spain
| | - Wen-Ting Zhang
- International Doctoral School, University of Seville, Spain
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW MiRNAs are critical regulators for gene expression. Numerous studies have revealed how miRNAs contribute to the pathogenesis of hematologic malignancies. RECENT FINDINGS The identification of novel miRNA regulatory factors and pathways crucial for miRNA dysregulation has been linked to hematologic malignancies. miRNA expression profiling has shown their potential to predict outcomes and treatment responses. Recently, targeting miRNA biogenesis or pathways has become a promising therapeutic strategy with recent miRNA-therapeutics being developed. SUMMARY We provide a comprehensive overview of the role of miRNAs for diagnosis, prognosis, and therapeutic potential in hematologic malignancies.
Collapse
Affiliation(s)
- Zhen Han
- Division of Dermatology, City of Hope, Duarte, CA, USA
- Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Steven T. Rosen
- Dept of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
- Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Christiane Querfeld
- Division of Dermatology, City of Hope, Duarte, CA, USA
- Department of Pathology, City of Hope, Duarte, CA, USA
- Beckman Research Institute, City of Hope, Duarte, CA, USA
| |
Collapse
|
23
|
Yu T, Du C, Ma X, Sui W, Yu Z, Liu L, Zhao L, Li Z, Xu J, Wei X, Zhou W, Deng S, Zou D, An G, Tai YT, Tricot G, Anderson KC, Qiu L, Zhan F, Hao M. Polycomb-like Protein 3 Induces Proliferation and Drug Resistance in Multiple Myeloma and Is Regulated by miRNA-15a. Mol Cancer Res 2020; 18:1063-1073. [PMID: 32312841 DOI: 10.1158/1541-7786.mcr-19-0852] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/27/2019] [Accepted: 04/16/2020] [Indexed: 02/02/2023]
Abstract
Multiple myeloma remains incurable due to the persistence of a minor population of multiple myeloma cells that exhibit drug resistance, which leads to relapsed and/or refractory multiple myeloma. Elucidating the mechanism underlying drug resistance and developing an effective treatment are critical for clinical management of multiple myeloma. Here we showed that promoting expression of the gene for polycomb-like protein 3 (PHF19) induced multiple myeloma cell growth and multidrug resistance in vitro and in vivo. PHF19 was overexpressed in high-risk and drug-resistant primary cells from patients. High levels of PHF19 were correlated with inferior survival of patients with multiple myeloma, in the Total Therapy 2 cohort and in the Intergroup Francophone du Myeloma (IFM) cohort. Enhancing PHF19 expression levels increased Bcl-xL, Mcl-1, and HIF-1a expression in multiple myeloma cells. PHF19 also bound directly with EZH2 and promoted the phosphorylation of EZH2 through PDK1/AKT signaling. miR-15a is a small noncoding RNA that targeted the 3'UTR of PHF19. We found that downregulation of miR-15a led to high levels of PHF19 in multiple myeloma cells. These findings revealed that PHF19 served a crucial role in multiple myeloma proliferation and drug resistance and suggested that the miR-15a/PHF19/EZH2 pathway made a pivotal contribution to multiple myeloma pathogenesis, offering a promising approach to multiple myeloma treatment. IMPLICATIONS: Our findings identify that PHF19 mediates EZH2 phosphorylation as a mechanism of myeloma cell drug resistance, providing a rationale to explore therapeutic potential of targeting PHF19 in relapsed or refractory patients with multiple myeloma.
Collapse
Affiliation(s)
- Tengteng Yu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematological Disorders, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Chenxing Du
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematological Disorders, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xiaoke Ma
- School of Computer Science and Technology, Xidian University, Xi'an, China
| | - Weiwei Sui
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematological Disorders, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Zhen Yu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematological Disorders, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Lanting Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematological Disorders, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Lei Zhao
- Department of Biophysics and Molecular Physiology, The University of Iowa, Roy J and Lucille A. Carver College of Medicine, Iowa City, Iowa
| | - Zhongqing Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematological Disorders, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Jie Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematological Disorders, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xiaojing Wei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematological Disorders, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Wen Zhou
- Key Laboratory of Carcinogenesis, Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Shuhui Deng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematological Disorders, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Dehui Zou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematological Disorders, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Gang An
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematological Disorders, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yu-Tzu Tai
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Guido Tricot
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Kenneth C Anderson
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Lugui Qiu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematological Disorders, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Fenghuang Zhan
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Mu Hao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematological Disorders, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.
| |
Collapse
|
24
|
Ferreira B, Caetano J, Barahona F, Lopes R, Carneiro E, Costa-Silva B, João C. Liquid biopsies for multiple myeloma in a time of precision medicine. J Mol Med (Berl) 2020; 98:513-525. [PMID: 32246161 PMCID: PMC7198642 DOI: 10.1007/s00109-020-01897-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/06/2020] [Accepted: 03/11/2020] [Indexed: 12/17/2022]
Abstract
Multiple myeloma (MM) is a challenging, progressive, and highly heterogeneous hematological malignancy. MM is characterized by multifocal proliferation of neoplastic plasma cells in the bone marrow (BM) and sometimes in extramedullary organs. Despite the availability of novel drugs and the longer median overall survival, some patients survive more than 10 years while others die rapidly. This heterogeneity is mainly driven by biological characteristics of MM cells, including genetic abnormalities. Disease progressions are mainly due to the inability of drugs to overcome refractory disease and inevitable drug-resistant relapse. In clinical practice, a bone marrow biopsy, mostly performed in one site, is still used to access the genetics of MM. However, BM biopsy use is limited by its invasive nature and by often not accurately reflecting the mutational profile of MM. Recent insights into the genetic landscape of MM provide a valuable opportunity to implement precision medicine approaches aiming to enable better patient profiling and selection of targeted therapies. In this review, we explore the use of the emerging field of liquid biopsies in myeloma patients considering current unmet medical needs, such as assessing the dynamic mutational landscape of myeloma, early predictors of treatment response, and a less invasive response monitoring.
Collapse
Affiliation(s)
- Bruna Ferreira
- Myeloma and Lymphoma Research Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Joana Caetano
- Hemato-Oncology Unit, Myeloma and Lymphoma Research Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Filipa Barahona
- Myeloma and Lymphoma Research Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Raquel Lopes
- Myeloma and Lymphoma Research Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Emilie Carneiro
- Myeloma and Lymphoma Research Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Bruno Costa-Silva
- Systems Oncology Group, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Cristina João
- Hemato-Oncology Unit, Myeloma and Lymphoma Research Programme, Nova Medical School, Champalimaud Centre for the Unknown, Lisbon, Portugal.
| |
Collapse
|
25
|
Quirico L, Orso F. The power of microRNAs as diagnostic and prognostic biomarkers in liquid biopsies. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3:117-139. [PMID: 35582611 PMCID: PMC9090592 DOI: 10.20517/cdr.2019.103] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/24/2020] [Accepted: 02/07/2020] [Indexed: 02/06/2023]
Abstract
In the last decades, progresses in medical oncology have ameliorated the treatment of patients and their outcome. However, further improvements are still necessary, in particular for certain types of tumors such as pancreatic, gastric, and lung cancer as well as acute myeloid leukemia where early detection and monitoring of the disease are crucial for final patient outcome. Liquid biopsy represents a great advance in the field because it is less invasive, less time-consuming, and safer compared to classical biopsies and it can be useful to monitor the evolution of the disease as well as the response of patients to therapy. Liquid biopsy allows the detection of circulating tumor cells, nucleic acids, and exosomes not only in blood but also in different biological fluids: urine, saliva, pleural effusions, cerebrospinal fluid, and stool. Among the potential biomarkers detectable in liquid biopsies, microRNAs (miRNAs) are gaining more and more attention, since they are easily detectable, quite stable in biological fluids, and show high sensitivity. Many data demonstrate that miRNAs alone or in combination with other biomarkers could improve the diagnostic and prognostic power for many different tumors. Despite this, standardization of methods, sample preparation, and analysis remain challenging and a huge effort should be made to address these issues before miRNA biomarkers can enter the clinic. This review summarizes the main findings in the field of circulating miRNAs in both solid and hematological tumors.
Collapse
Affiliation(s)
- Lorena Quirico
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino 10126, Italy
- Molecular Biotechnology Center (MBC), University of Torino, Torino 10126, Italy
| | - Francesca Orso
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino 10126, Italy
- Molecular Biotechnology Center (MBC), University of Torino, Torino 10126, Italy
- Center for Complex Systems in Molecular Biology and Medicine, University of Torino, Torino 10126, Italy
| |
Collapse
|
26
|
The Non-Coding RNA Landscape of Plasma Cell Dyscrasias. Cancers (Basel) 2020; 12:cancers12020320. [PMID: 32019064 PMCID: PMC7072200 DOI: 10.3390/cancers12020320] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 12/14/2022] Open
Abstract
Despite substantial advancements have been done in the understanding of the pathogenesis of plasma cell (PC) disorders, these malignancies remain hard-to-treat. The discovery and subsequent characterization of non-coding transcripts, which include several members with diverse length and mode of action, has unraveled novel mechanisms of gene expression regulation often malfunctioning in cancer. Increasing evidence indicates that such non-coding molecules also feature in the pathobiology of PC dyscrasias, where they are endowed with strong therapeutic and/or prognostic potential. In this review, we aim to summarize the most relevant findings on the biological and clinical features of the non-coding RNA landscape of malignant PCs, with major focus on multiple myeloma. The most relevant classes of non-coding RNAs will be examined, along with the mechanisms accounting for their dysregulation and the recent strategies used for their targeting in PC dyscrasias. It is hoped these insights may lead to clinical applications of non-coding RNA molecules as biomarkers or therapeutic targets/agents in the near future.
Collapse
|
27
|
Li Z, Liu L, Du C, Yu Z, Yang Y, Xu J, Wei X, Zhan F, Lai Y, Qiu L, Hao M. Therapeutic effects of oligo-single-stranded DNA mimicking of hsa-miR-15a-5p on multiple myeloma. Cancer Gene Ther 2020; 27:869-877. [PMID: 31988477 DOI: 10.1038/s41417-020-0161-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/21/2019] [Accepted: 01/07/2020] [Indexed: 12/13/2022]
Abstract
Despite the fact that a few novel agents improve the outcome of patients, MM remains incurable. Hence, developing a novel treatment strategy may prove to be promising for the clinical management of MM. Noncoding small RNAs, a cluster of RNAs that do not encode functional proteins, have been underlined that play a pivotal role in the pathogenesis of MM. Our previous study indicated that miR-15a acted as a tumor suppressor, which inhibited the cell proliferation and promoted the apoptosis of MM cells. The level of miR-15a was downregulated in MM cells and correlated with inferior outcome of MM patients. In the present study, we first developed an oligo-single-stranded DNA mimicking the sequence of hsa-miR-15a-5p (OMM-15a) and modified with locked nucleic acid (LNA-15a) to evaluate its anti-MM effects. Our results indicated that the LNA-15a presented an exciting anti-MM effect that showed notable cell growth suppression and apoptosis promotion in MM and other cancer cell lines through downregulating the expression level of target genes BCL-2, VEGF-A, and PHF19. Moreover, LNA-15a treatment significantly improved the anti-MM activity of bortezomib with the synergism effect in OCI-My5 MM cells. In our in vivo study, LNA-15a treatment significantly suppressed the tumor growth, and prolonged the survival of mice compared with the control group. However, our results indicated that the native form of oligo-single-stranded DNA mimic of hsa-miR-15a-5p (OMM-15a) without any modification had no effective inhibition on cell growth, even after increasing the dosage of OMM-15a in the treatment. Altogether, our finding provides the preclinical rationale to support the oligo-single-stranded DNA mimic of hsa-miR-15a with LNA modification, which is a promising tool for the therapy of both MM and other tumors with miR-15a downregulation.
Collapse
Affiliation(s)
- Zhongqing Li
- Guangxi Medical University, Nanning, 530021, China.,State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China
| | - Lanting Liu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China
| | - Chenxing Du
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China
| | - Zhen Yu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China
| | - Yuanyuan Yang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China
| | - Jie Xu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China
| | - Xiaojing Wei
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China
| | - Fenghuang Zhan
- Division of Hematology, Oncology, and Blood and Marrow Transplantation, Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Yongrong Lai
- Guangxi Medical University, Nanning, 530021, China.
| | - Lugui Qiu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China
| | - Mu Hao
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China.
| |
Collapse
|
28
|
High expression of chaperonin-containing TCP1 subunit 3 may induce dismal prognosis in multiple myeloma. THE PHARMACOGENOMICS JOURNAL 2020; 20:563-573. [PMID: 31902948 DOI: 10.1038/s41397-019-0145-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/18/2019] [Accepted: 12/18/2019] [Indexed: 12/18/2022]
Abstract
The prognosis role of CCT3 in MM and the possible pathways it involved were studied in our research. By analyzing ten independent datasets (including 48 healthy donors, 2220 MM, 73 MGUS, and 6 PCL), CCT3 was found to express higher in MM than healthy donors, and the expression level was gradually increased from MGUS, SMM, MM to PCL (all P < 0.01). By analyzing three independent datasets (GSE24080, GSE2658, and GSE4204), we found that CCT3 was a significant indicator of poor prognosis (all P < 0.01). KEGG and GSEA analysis showed that CCT3 expression was associated with JAK-STAT3 pathway, Hippo signaling pathway, and WNT signaling pathway. In addition, different expressed genes analysis revealed MYC, which was one of the downstream genes regulated by JAK-STAT3 pathway, was upregulated in MM. This confirms that JAK-STAT3 signaling pathway may promote the progress of disease which was regulated by CCT3 expression. Our study revealed that CCT3 may play a supporting role at the diagnosis of myeloid, and high expression of CCT3 suggested poor prognosis in MM. CCT3 expression may promote the progression of MM mainly by regulating MYC through JAK-STAT3 signaling pathway.
Collapse
|
29
|
Pourhanifeh MH, Mahjoubin-Tehran M, Shafiee A, Hajighadimi S, Moradizarmehri S, Mirzaei H, Asemi Z. MicroRNAs and exosomes: Small molecules with big actions in multiple myeloma pathogenesis. IUBMB Life 2019; 72:314-333. [PMID: 31828868 DOI: 10.1002/iub.2211] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 11/22/2019] [Indexed: 12/17/2022]
Abstract
Multiple myeloma (MM), an incurable hematologic malignancy of plasma cells increasing in the bone marrow (BM), has a complex microenvironment made to support proliferation, survival, and drug resistance of tumor cells. MicroRNAs (miRNAs), short non-coding RNAs regulating genes expression at posttranscriptional level, have been indicated to be functionally deregulated or abnormally expressed in MM cells. Moreover, by means of miRNAs, tumor microenvironment also modulates the function of MM cells. Consistently, it has been demonstrated that miRNA levels regulation impairs their interaction with the microenvironment of BM as well as create considerable antitumor feature even capable of overcoming the protective BM milieu. Communication between cancer stromal cells and cancer cells is a key factor in tumor progression. Finding out this interaction is important to develop effective approaches that reverse bone diseases. Exosomes, nano-vehicles having crucial roles in cell-to-cell communication, through targeting their cargos (i.e., miRNAs, mRNAs, DNAs, and proteins), are implicated in MM pathogenesis.
Collapse
Affiliation(s)
- Mohammad H Pourhanifeh
- Halal Research Center of IRI, FDA, Tehran, Iran.,Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Mahjoubin-Tehran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alimohammad Shafiee
- Division of General Internal Medicine, Toronto General Hospital, Toronto, Canada
| | - Sarah Hajighadimi
- Division of General Internal Medicine, Toronto General Hospital, Toronto, Canada
| | - Sanaz Moradizarmehri
- Division of General Internal Medicine, Toronto General Hospital, Toronto, Canada
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
30
|
Yin Q, Wang PP, Peng R, Zhou H. MiR-19a enhances cell proliferation, migration, and invasiveness through enhancing lymphangiogenesis by targeting thrombospondin-1 in colorectal cancer. Biochem Cell Biol 2019; 97:731-739. [PMID: 31199884 DOI: 10.1139/bcb-2018-0302] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Colorectal cancer (CRC) is a devastating disease with high mortality and morbidity, and the underlying mechanisms of miR-19a in CRC are poorly understood. In our study, dual-luciferase reporter assays were used to evaluate the binding of miR-19a with thrombospondin-1 (THBS1). Cell viability, migration, and invasiveness were assessed using MTT, wound healing, and Transwell assays, respectively. Tube-formation assays with human lymphatic endothelial cells (HLECs) were used to evaluate lymphangiogenesis, and tumor xenograft assays were used to measure tumor growth. The results showed that miR-19a was up-regulated and THBS1 was down-regulated in CRC tissues and cells. Applying an inhibitor of miR-19a suppressed survival, migration, and invasiveness, and inhibited the expression of matrix metallopeptidase 9 (MMP-9) and vascular endothelial growth factor C (VEGFC). Further mechanistic study identified that THBS1 is a direct target of miR-19a. THBS1 silencing attenuated the above-mentioned suppressive effects induced with the miR-19a inhibitor. Furthermore, the miR-19a inhibitor suppressed the migration and tube-formation abilities of HLECs via targeting the THBS1–MMP-9/VEGFC signaling pathway. And the inhibition of miR-19a also suppressed tumor growth and lymphatic tube formation in vivo. In conclusion, miR-19a inhibition suppresses the viability, migration, and invasiveness of CRC cells, and suppresses the migration and tube-formation abilities of HLECs, and further, inhibits tumor growth and lymphatic tube formation in vivo via targeting THBS1.
Collapse
Affiliation(s)
- Qian Yin
- Department of Abdominal Oncology, The Affiliated Hospital of Zunyi Medical University, Zunyi 563000, P.R. China
- Department of Abdominal Oncology, The Affiliated Hospital of Zunyi Medical University, Zunyi 563000, P.R. China
| | - Pei-Pei Wang
- Department of Abdominal Oncology, The Affiliated Hospital of Zunyi Medical University, Zunyi 563000, P.R. China
- Department of Abdominal Oncology, The Affiliated Hospital of Zunyi Medical University, Zunyi 563000, P.R. China
| | - Rui Peng
- Department of Abdominal Oncology, The Affiliated Hospital of Zunyi Medical University, Zunyi 563000, P.R. China
- Department of Abdominal Oncology, The Affiliated Hospital of Zunyi Medical University, Zunyi 563000, P.R. China
| | - Hang Zhou
- Department of Abdominal Oncology, The Affiliated Hospital of Zunyi Medical University, Zunyi 563000, P.R. China
- Department of Abdominal Oncology, The Affiliated Hospital of Zunyi Medical University, Zunyi 563000, P.R. China
| |
Collapse
|
31
|
Abstract
BACKGROUND Multiple myeloma (MM) is a clonal plasma cell malignancy associated with hypercalcemia, bone lesions, and renal failure. The prognostic significance of the mutation of miRNAs, one kind of small noncoding RNA molecules that can modulate gene expression, should be confirmed in non-Hodgkin lymphomas (NHL). This study aimed to identify the prognostic value of miRNAs in patients with MM. METHODS A meta-analysis was performed to estimate the pooled hazard ratios and their corresponding 95% confidence intervals for the associations between levels of miRNA expression (predictive factors) and outcomes in patients with MM. We systematically searched the PubMed, Web of Science, and China National Knowledge Infrastructure databases (final search conducted January 1, 2018) to identify eligible studies. Eligible studies were included by certain inclusion and exclusion criteria, whose quality was assessed by Newcastle-Ottawa Scale. RESULTS After performing the literature search and review, 10 relevant studies, including 1214 cases, were identified. The results of our meta-analysis revealed that upregulated miR-92a level and downregulated miR-16, miR-25, miR-744, miR-15a, let-7e, and miR-19b expression were associated with poor prognosis in MM. CONCLUSIONS This study identified miRNAs could serve as potential prognostic biomarkers in MM. Given the limited research available, the clinical application of these findings has yet to be verified.
Collapse
|
32
|
Drokow EK, Sun K, Ahmed HAW, Akpabla GS, Song J, Shi M. Circulating microRNA as diagnostic biomarkers for haematological cancers: a systematic review and meta-analysis. Cancer Manag Res 2019; 11:4313-4326. [PMID: 31190996 PMCID: PMC6520596 DOI: 10.2147/cmar.s199126] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 03/10/2019] [Indexed: 12/31/2022] Open
Abstract
Purpose: Recent studies have validated microRNAs (miRNAs) as a diagnostic biomarker for haematological cancers. This study aimed to estimate the overall diagnostic accuracy of circulating miRNAs in haematological malignancies. Materials and Methods: Multiple databases (Google Scholar, PubMed, EMBASE, Cochrane Library,) were searched until 19th August 2017. Results: The meta-analysis included 50 studies from 20 publications. The diagnostic accuracy was assessed by pooled specificity, sensitivity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR) and area under the curve area (AUC) by random effect model. We used QUADAS (Quality Assessment for diagnostic accuracy studies) to evaluate the quality of the included studies. To perform the meta-analysis, we used Meta-Disk 1.4, Revman 5.3 and Stata 12.0 software. High diagnostic accuracy was demonstrated, with a sensitivity of 0.81, a specificity of 0.85, a PLR of 5.28, an NLR of 0.22, a DOR of 30.39, and an AUC of 0.91. Subgroup analyses showed better outcomes for the African population, combined miRNAs and leukaemia patients compared with other subgroups. Conclusion: Our results indicated that circulating miRNAs especially combined miRNA can be used as a diagnostic marker in haematological cancers.
Collapse
Affiliation(s)
- Emmanuel Kwateng Drokow
- Department of Haematology, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital Henan, Zhengzhou, People’s Republic of China
| | - Kai Sun
- Department of Haematology, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital Henan, Zhengzhou, People’s Republic of China
| | - Hafiz Abdul Waqas Ahmed
- Department of Haematology, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital Henan, Zhengzhou, People’s Republic of China
| | - Gloria Selorm Akpabla
- Department of Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Juanjuan Song
- Department of Haematology, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital Henan, Zhengzhou, People’s Republic of China
| | - Mingyue Shi
- Department of Haematology, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital Henan, Zhengzhou, People’s Republic of China
| |
Collapse
|
33
|
Circulating microRNAs and Their Role in Multiple Myeloma. Noncoding RNA 2019; 5:ncrna5020037. [PMID: 31052608 PMCID: PMC6631121 DOI: 10.3390/ncrna5020037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 12/14/2022] Open
Abstract
Multiple myeloma (MM) is a plasma cell dyscrasia characterized by bone marrow infiltration of clonal plasma cells. The recent literature has clearly demonstrated clonal heterogeneity in terms of both the genomic and transcriptomic signature of the tumor. Of note, novel studies have also highlighted the importance of the functional cross-talk between the tumor clone and the surrounding bone marrow milieu, as a relevant player of MM pathogenesis. These findings have certainly enhanced our understanding of the underlying mechanisms supporting MM pathogenesis and disease progression. Within the specific field of small non-coding RNA-research, recent studies have provided evidence for considering microRNAs as a crucial regulator of MM biology and, in this context, circulating microRNAs have been shown to potentially contribute to prognostic stratification of MM patients. The present review will summarize the most recent studies within the specific topic of microRNAs and circulating microRNAs in MM.
Collapse
|
34
|
Faraldi M, Gomarasca M, Banfi G, Lombardi G. Free Circulating miRNAs Measurement in Clinical Settings: The Still Unsolved Issue of the Normalization. Adv Clin Chem 2018; 87:113-139. [PMID: 30342709 PMCID: PMC7112021 DOI: 10.1016/bs.acc.2018.07.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Circulating molecules that are released into the circulation in response to specific stimuli are considered potential biomarkers for physiological or pathological processes. Their effective usefulness as biomarkers resides in their stability and high availability in all the biological fluids, combined with the limited invasiveness of intervention. Among the circulating molecules, miRNAs represent a novel class of biomarkers as they possess all the required characteristics such as sensitivity, predictivity, specificity, robustness, translatability, and noninvasiveness. miRNAs are small non-coding RNAs, that act as inhibitors of protein translation, and intervene in the complex network of the post-transcriptional mechanisms finely regulating gene expression. The emerging role of miRNAs as potential biomarkers for clinical applications (e.g., cancer and cardiovascular diseases diagnosis and prediction, musculoskeletal disease diagnosis and bone fracture risk prediction), however, requires the standardization of miRNA processing, from sample collection and sample storage, to RNA isolation, RNA reverse-transcription, and data analyses. Normalization is one of the most controversial issues related to quantitative Real-Time PCR data analysis since no universally accepted normalization strategies and reference genes exist, even more importantly, for circulating miRNA quantification. As it is widely demonstrated that the choice of different normalization strategies influences the results of gene expression analysis, it is important to select the most appropriate normalizers for each experimental set. This review discloses on the different strategies adopted in RT-qPCR miRNA normalization and the concerning issues to highlight on the need of a universally accepted methodology to make comparable the results produced by different studies.
Collapse
Affiliation(s)
- Martina Faraldi
- Laboratory of Experimental Biochemistry & Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| | - Marta Gomarasca
- Laboratory of Experimental Biochemistry & Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| | - Giuseppe Banfi
- Laboratory of Experimental Biochemistry & Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
- Vita-Salute San Raffaele University, Milano, Italy
| | - Giovanni Lombardi
- Laboratory of Experimental Biochemistry & Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
- Corresponding author: E-mail:
| |
Collapse
|
35
|
Abstract
This study aims to investigate the role of miR-181a in multiple myeloma (MM). Fresh peripheral blood and bone marrows were collected. Expression of miR-181a, BCL-2 mRNA, and NOVA1 mRNA was detected by RT-qPCR. The correlation between miR-181a and clinical features of MM was further analyzed. miR-181a in serum and bone marrow mononuclear cells of MM patients were significantly higher. And, miR-181a level was significantly higher in MM Durie-Salmon stage III than that in stage I+II. miR-181a was positively correlated to Durie-Salmon staging, age, kidney injury, bone injury, β2-MG whereas negatively related to red blood cell, hemoglobin, and albumin. Additionally, BCL-2 and NOVA1 were predicted to be downstream targets of miR-181a. BCL-2 mRNA was significantly higher in the bone marrow mononuclear cells from MM patients. To sum up, the miR-181a expression is increased in peripheral blood and bone marrow of MM patients and is closely related to the clinical pathological indicators of MM.
Collapse
Affiliation(s)
- Ruili Yuan
- Department of Clinical Laboratory, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an
| | - Ni Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an
| | - Jinyu Yang
- Department of Clinical Laboratory, An’kang Hospital of Traditional Chinese Medicine, An’kang
| | - Jing Peng
- Department of Clinical Laboratory, Xi’an Hospital of Traditional Chinese Medicine, Xi’an, China
| | - Lina Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an
| | - Xuan Guo
- Department of Clinical Laboratory, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an
| |
Collapse
|
36
|
Soekojo CY, de Mel S, Ooi M, Yan B, Chng WJ. Potential Clinical Application of Genomics in Multiple Myeloma. Int J Mol Sci 2018; 19:ijms19061721. [PMID: 29890777 PMCID: PMC6032230 DOI: 10.3390/ijms19061721] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/02/2018] [Accepted: 06/07/2018] [Indexed: 12/19/2022] Open
Abstract
Multiple myeloma is a heterogeneous disease with different characteristics, and genetic aberrations play important roles in this heterogeneity. Studies have shown that these genetic aberrations are crucial in prognostication and response assessment; recent efforts have focused on their possible therapeutic implications. Despite many emerging studies being published, the best way to incorporate these results into clinical practice remains unclear. In this review paper we describe the different genomic techniques available, including the latest advancements, and discuss the potential clinical application of genomics in multiple myeloma.
Collapse
Affiliation(s)
- Cinnie Yentia Soekojo
- Department of Hematology-Oncology, National University Cancer Institute, Singapore, National University Health System, 1E Kent Ridge Road, Singapore 119228, Singapore.
| | - Sanjay de Mel
- Department of Hematology-Oncology, National University Cancer Institute, Singapore, National University Health System, 1E Kent Ridge Road, Singapore 119228, Singapore.
| | - Melissa Ooi
- Department of Hematology-Oncology, National University Cancer Institute, Singapore, National University Health System, 1E Kent Ridge Road, Singapore 119228, Singapore.
| | - Benedict Yan
- Department of Laboratory Medicine, National University Hospital, National University Health System, 5 Lower Kent Ridge Road, Singapore 119074, Singapore.
| | - Wee Joo Chng
- Department of Hematology-Oncology, National University Cancer Institute, Singapore, National University Health System, 1E Kent Ridge Road, Singapore 119228, Singapore.
- Cancer Science Institute of Singapore, National University of Singapore,14 Medical Drive, Singapore 117599, Singapore.
| |
Collapse
|
37
|
Zhu B, Ju S, Chu H, Shen X, Zhang Y, Luo X, Cong H. The potential function of microRNAs as biomarkers and therapeutic targets in multiple myeloma. Oncol Lett 2018; 15:6094-6106. [PMID: 29731841 PMCID: PMC5920744 DOI: 10.3892/ol.2018.8157] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 01/10/2018] [Indexed: 12/30/2022] Open
Abstract
Multiple myeloma (MM), accounting for ~1% of all types of human cancer and 13% of all hematological malignancies, is characterized by the malignant proliferation of monoclonal plasma cells (PCs) in the bone marrow. MM leads to end stage organ impairment, including bone lesions, renal dysfunction, hypercalcemia and anemia. So far, the specific pathogenesis of MM remains unclear and no early-stage sensitive biomarker of MM has been well characterized. Furthermore, treating MM is difficult, as the majority of patients eventually relapse or become refractory following treatment using presently available methods. To date, a number of studies have demonstrated that microRNAs (miRNAs) may serve crucial functions in the progression of numerous cancers, including MM. During the tumorigenesis and pathogenesis of MM, there are multiple carcinogenic events that involve the pernicious transformation from normal to malignant PCs. miRNAs, as oncogenes or tumor suppressors, regulate MM progression-related signaling pathways. In the present review, the up-to-date preliminary basic studies and associated clinical works on the underlying mechanisms of aberrant miRNA profiling in MM have been summarized, including an evaluation of its value as a potential biomarker and a novel therapeutic strategy for MM.
Collapse
Affiliation(s)
- Bingying Zhu
- Laboratory Medicine Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China
| | - Shaoqing Ju
- Laboratory Medicine Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China
| | - Haidan Chu
- Laboratory Medicine Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China
| | - Xianjuan Shen
- Surgical Comprehensive Laboratory, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China
| | - Yan Zhang
- Laboratory Medicine Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China
| | - Xi Luo
- Laboratory Medicine Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China
| | - Hui Cong
- Laboratory Medicine Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China
| |
Collapse
|
38
|
Deng Y, Zhou X, Xiang X, Ou Y, He J. Effect of miRNA-19a on gastrointestinal motility in rats with functional dyspepsia. Exp Ther Med 2018; 15:4875-4879. [PMID: 29805508 PMCID: PMC5952082 DOI: 10.3892/etm.2018.6009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 02/01/2018] [Indexed: 12/17/2022] Open
Abstract
The effect of microRNA (miRNA)-19a on gastrointestinal motility in rats with functional dyspepsia was investigated. Fifty adult Sprague-Dawley (SD) rats were randomly divided into 5 groups, 10 rats in each group, one group as the normal group, one group as the model group, and the other three groups were divided into negative control group, miRNA-19a mimic group and miRNA-19a inhibitor group. All rats were intraperitoneally injected with miRNA-19a scramble, miRNA-19a mimic and miRNA-19a inhibitor. Except the normal group, the functional dyspepsia model rat was established by proper clipping tail stimulation. The gastric emptying rate, intestinal propulsive ratio, serum motilin and vasoactive intestinal peptide of rats in each group were measured. The level of miRNA-19a expression in each group was detected by reverse transcription-polymerase chain reaction (RT-PCR). The gastric emptying rate, intestinal propulsive ratio and serum motilin in model group were significantly lower than those in normal group, and vasoactive intestinal peptide was higher in model group than that in normal group (P<0.05). The expression of miRNA-19a in model group was significantly higher than that in normal group (P<0.05). After intraperitoneal injection of miRNA-19a mimic, the expression of miRNA-19a was increased; gastric emptying rate, intestinal propulsive ratio and serum motilin were significantly reduced in model group, and vasoactive intestinal peptide was increased (P<0.05). After intraperitoneal injection of miRNA-19a inhibitor, the expression of miRNA-19a was remarkably decreased; gastric emptying rate, intestinal propulsive ratio and serum motilin were further increased in model group, and vasoactive intestinal peptide was decreased (P<0.05). In conclusion, the expression of miRNA-19a in rats with functional dyspepsia is higher than that in normal rats, and the reduced miRNA-19a expression can ameliorate the gastrointestinal motility in rats with functional dyspepsia.
Collapse
Affiliation(s)
- Yinzhi Deng
- Department of Gastroenterology, The Central Hospital of Enshi Autonomous Prefecture, Enshi, Hubei 445000, P.R. China
| | - Xiangyu Zhou
- Department of Gastroenterology, The Central Hospital of Enshi Autonomous Prefecture, Enshi, Hubei 445000, P.R. China
| | - Xingchao Xiang
- Department of Gastroenterology, The Central Hospital of Enshi Autonomous Prefecture, Enshi, Hubei 445000, P.R. China
| | - Yangli Ou
- Department of Gastroenterology, The Central Hospital of Enshi Autonomous Prefecture, Enshi, Hubei 445000, P.R. China
| | - Jianhua He
- Department of Gastroenterology, The Central Hospital of Enshi Autonomous Prefecture, Enshi, Hubei 445000, P.R. China
| |
Collapse
|
39
|
Zhang TJ, Lin J, Zhou JD, Li XX, Zhang W, Guo H, Xu ZJ, Yan Y, Ma JC, Qian J. High bone marrow miR-19b level predicts poor prognosis and disease recurrence in de novo acute myeloid leukemia. Gene 2018; 640:79-85. [DOI: 10.1016/j.gene.2017.10.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/26/2017] [Accepted: 10/11/2017] [Indexed: 01/01/2023]
|
40
|
Fu F, Wan X, Wang D, Kong Z, Zhang Y, Huang W, Wang C, Wu H, Li Y. MicroRNA-19a acts as a prognostic marker and promotes prostate cancer progression via inhibiting VPS37A expression. Oncotarget 2017; 9:1931-1943. [PMID: 29416742 PMCID: PMC5788610 DOI: 10.18632/oncotarget.23026] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 11/14/2017] [Indexed: 12/29/2022] Open
Abstract
Prostate cancer (PCa) is a leading cause of cancer-related deaths among males worldwide. However, the molecular mechanisms underlying the progression of PCa remain unclear. Despite several reported miRNAs in prostate cancer, these reports lacked system-level identification of differentially expressed miRNAs in large sample size. Moreover, it's still largely unknown how miRNAs result in tumorigenesis and progression of PCa. Therefore, by analyzing three public databases, we identified 16 upregulated miRNAs and 13 downregulated miRNAs, and validated miR-19a was one of the most upregulated miRNAs using qRT-PCR. The dual-luciferase reporter assays indicated VPS37A was a potential target of miR-19a. Functional assays revealed miR-19a served as an oncogene by inhibiting VPS37A. Notably, a significant inverse correlation of miR-19a and VPS37A expression was observed in PCa specimens. Moreover, miR-19a-high and VPS37A-low phenotypes were associated with poor prognosis with biochemical recurrence-free probability. In this study, we confirmed the oncogenic role of miR-19a via targeting VPS37A in PCa, identifying miR-19a and VPS37A as diagnosis and therapeutic biomarkers for PCa.
Collapse
Affiliation(s)
- Fangqiu Fu
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai 200433, PR China
| | - Xuechao Wan
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai 200433, PR China
| | - Dan Wang
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai 200433, PR China
| | - Zhe Kong
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai 200433, PR China
| | - Yalong Zhang
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai 200433, PR China
| | - Wenhua Huang
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai 200433, PR China
| | - Chenji Wang
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai 200433, PR China.,Key Laboratory of Reproduction Regulation of NPFPC, Fudan University, Shanghai 200433, PR China
| | - Hai Wu
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai 200433, PR China.,Key Laboratory of Reproduction Regulation of NPFPC, Fudan University, Shanghai 200433, PR China
| | - Yao Li
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai 200433, PR China.,Key Laboratory of Reproduction Regulation of NPFPC, Fudan University, Shanghai 200433, PR China
| |
Collapse
|
41
|
Serum high expression of miR-214 and miR-135b as novel predictor for myeloma bone disease development and prognosis. Oncotarget 2017; 7:19589-600. [PMID: 26995755 PMCID: PMC4991403 DOI: 10.18632/oncotarget.7319] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 01/01/2016] [Indexed: 01/08/2023] Open
Abstract
Multiple myeloma (MM) originates from malignant plasma cells, leading to multiple destructive lytic bone lesions that occur in more than 80% of MM patients. MicroRNAs have been reported to be involved in development of bone lesions in MM. However, the circulating microRNA as diagnostic and prognostic biomarkers for bone lesions has not been elucidated yet. In this study, we identified differentially expressed miRNAs that are potentially involved in myeloma-related bone disease in serum of MM patients. MiR-214 and miR-135b was shown to be increased in serum of MM patients with bone lesions. Serum level of miR-214 and miR-135b was highly correlated with the severity of lytic bone lesions and demonstrated as a diagnostic tool for identifying bone diseases based on results of a receiver operating characteristic analysis (ROC). In addition, patients with high levels of serum miR-214 had a dismal survival with significantly shortened progression free survival (PFS) and overall survival (OS). Interestingly, bisphosphonates treatment significantly extended PFS and OS in patients with higher level of miR-214 comparing to patients without bisphosphonates treatment. Taken together, our findings revealed the significance of circulating miR-214 and miR-135b levels in detection of bone disease and in prediction of prognosis of patients with multiple myeloma, suggesting its potential clinical applications. The result of this study also set the foundation for searching more circulating miRNA as biomarker for tumor bone lesions.
Collapse
|
42
|
Abstract
The development of better diagnostic and prognostic non-invasive biomarkers holds an enormous potential to improve the ability to diagnose and individualize treatment of a great number of human diseases and substantially reduce health care cost. The discovery of a fundamental role of microRNAs in the disease pathogenesis and their presence and stability in biological fluids has led to extensive investigation of the role of microRNAs as potential non-invasive biomarkers for disease diagnosis and prognosis. The result of this research has suggested that alterations of microRNAs may be sensitive indicators of various pathologies; however, despite the indisputable progress in this field, the diagnostic promise of microRNAs has remained a work in progress, and circulating microRNAs have not entered the field of clinical medicine yet. Commonly reported microRNAs as disease biomarkers are largely not disease-specific and the results are often contradicting in independent studies. This review summarizes the current knowledge on the role of microRNAs as disease indicators and emphasizes the current gaps, challenges, and questions that need to be addressed in future well-designed and well-controlled studies for a successful translation of microRNA profiling into clinically meaningful tests. Impact statement This review summarizes the current knowledge on the role of circulating miRNAs as clinical diagnostic biomarkers and highlights the challenges that need to be addressed in future studies for a successful translation of circulating miRNAs into a novel diagnostic tool.
Collapse
Affiliation(s)
- Igor P Pogribny
- Division of Biochemical Toxicology, 4136 National Center for Toxicological Research , Jefferson, AR 72079, USA
| |
Collapse
|
43
|
Wang W, Zhang Y, Chen R, Tian Z, Zhai Y, Janz S, Gu C, Yang Y. Chromosomal instability and acquired drug resistance in multiple myeloma. Oncotarget 2017; 8:78234-78244. [PMID: 29100463 PMCID: PMC5652852 DOI: 10.18632/oncotarget.20829] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 08/26/2017] [Indexed: 12/29/2022] Open
Abstract
Chromosomal instability (CIN) is an important hallmark of human cancer. CIN not only contributes to all stages of tumor development (initiation, promotion and progression) but also drives, in large measure, the acquisition of drug resistance by cancer cells. Although CIN is a cornerstone of the complex mutational architecture that underlies neoplastic cell development and tumor heterogeneity and has been tightly associated with treatment responses and survival of cancer patients, it may be one of the least understood features of the malignant phenotype in terms of genetic pathways and molecular mechanisms. Here we review new insights into the type of CIN seen in multiple myeloma (MM), a blood cancer of terminally differentiated, immunoglobulin-producing B-lymphocytes called plasma cells that remains incurable in the great majority of cases. We will consider bona fide myeloma CIN genes, methods for measuring CIN in myeloma cells, and novel approaches to CIN-targeted treatments of patients with myeloma. The new findings generate optimism that enhanced understanding of CIN will lead to the design and testing of new therapeutic strategies to overcome drug resistance in MM in the not-so-distant future.
Collapse
Affiliation(s)
- Wang Wang
- The Third Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yi Zhang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Ruini Chen
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhidan Tian
- Department of Pathology, Nanjing First Hospital, Nanjing, 210006, China
| | - Yongpin Zhai
- Department of Hematology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, 210002, China
| | - Siegfried Janz
- Department of Pathology, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, 52242, USA
| | - Chunyan Gu
- The Third Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ye Yang
- The Third Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| |
Collapse
|
44
|
Zhang K, Zhang L, Zhang M, Zhang Y, Fan D, Jiang J, Ye L, Fang X, Chen X, Fan S, Chao M, Liang C. Prognostic value of high-expression of miR-17-92 cluster in various tumors: evidence from a meta-analysis. Sci Rep 2017; 7:8375. [PMID: 28827775 PMCID: PMC5567103 DOI: 10.1038/s41598-017-08349-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/10/2017] [Indexed: 12/18/2022] Open
Abstract
The prognostic value of miR-17-92 cluster high-expression in various tumors remains controversial. Therefore, we conducted this meta-analysis by searching literatures in PubMed, Embase, Cochrane Library, China Biology Medicine disc, China National Knowledge Infrastructure to identify eligible studies. Eventually, we analyzed 36 articles that examined 17 tumor types from 4965 patients. Consequently, high-expression of miR-17-92 cluster in various tumors was associated with unfavorable overall survival in both univariate (HR = 2.05, 95%CI: 1.58-2.65, P<0.001) and multivariate (HR = 2.14, 95%CI: 1.75-2.61, P<0.001) analyses. Likewise, similar results were found in different subgroups of country, test method, miR-17-92 cluster component, sample source and size. Additionally, high-expression of miR-17-92 cluster was linked with poor disease-free survival (Univariate: HR = 1.96, 95%CI: 1.55-2.48, P<0.001; Multivariate: HR = 2.18, 95%CI: 1.63-2.91, P<0.001), favorable progression-free survival (Univariate: HR = 0.36, 95%CI: 0.16-0.80, P = 0.012; Multivariate: HR = 1.55, 95%CI: 0.79-3.05, P = 0.201) and poor cancer specific survival in univariate rather than multivariate analyses (Univariate: HR = 1.77, 95%CI: 1.21-2.60, P = 0.004; Multivariate: HR = 1.77, 95%CI: 0.80-3.92, P = 0.160). However, no association of miR-17-92 cluster high-expression was detected with recurrence or relapse-free survival. In summary, this meta-analysis towards high-expression of miR-17-92 cluster has indicated poor prognosis of various cancers. Notably, future studies comprising large cohort size from multicenter are required to confirm our conclusions.
Collapse
Affiliation(s)
- Kaiping Zhang
- Department of Urology, Anhui Provincial Children's Hospital, Hefei, China
| | - Li Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University (AHMU) and Institute of Urology, AHMU, Hefei, China
| | - Meng Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University (AHMU) and Institute of Urology, AHMU, Hefei, China
| | - Yin Zhang
- Department of Urology, Anhui Provincial Children's Hospital, Hefei, China
| | - Dengxin Fan
- Department of Urology, Anhui Provincial Children's Hospital, Hefei, China
| | - Jiabin Jiang
- Department of Urology, Anhui Provincial Children's Hospital, Hefei, China
| | - Liqin Ye
- Department of Urology, Anhui Provincial Children's Hospital, Hefei, China
| | - Xiang Fang
- Department of Urology, Anhui Provincial Children's Hospital, Hefei, China
| | - Xianguo Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University (AHMU) and Institute of Urology, AHMU, Hefei, China
| | - Song Fan
- Department of Urology, The First Affiliated Hospital of Anhui Medical University (AHMU) and Institute of Urology, AHMU, Hefei, China
| | - Min Chao
- Department of Urology, Anhui Provincial Children's Hospital, Hefei, China.
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University (AHMU) and Institute of Urology, AHMU, Hefei, China.
| |
Collapse
|
45
|
Jung SH, Lee SE, Lee M, Kim SH, Yim SH, Kim TW, Min CK, Chung YJ. Circulating microRNA expressions can predict the outcome of lenalidomide plus low-dose dexamethasone treatment in patients with refractory/relapsed multiple myeloma. Haematologica 2017; 102:e456-e459. [PMID: 28775122 DOI: 10.3324/haematol.2017.168070] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Seung-Hyun Jung
- Departments of Cancer Evolution Research Center, The Catholic University of Korea, Seoul, South Korea.,Precision Medicine Research Center, The Catholic University of Korea, Seoul, South Korea
| | - Sung-Eun Lee
- Hematology, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Minho Lee
- Precision Medicine Research Center, The Catholic University of Korea, Seoul, South Korea
| | - So-Hee Kim
- Integrated Research Center for Genome Polymorphism, The Catholic University of Korea, Seoul, South Korea
| | - Seon-Hee Yim
- Integrated Research Center for Genome Polymorphism, The Catholic University of Korea, Seoul, South Korea
| | - Tae Woo Kim
- Hematology, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Chang-Ki Min
- Hematology, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea .,Leukemia Research Institute, The Catholic University of Korea, Seoul, South Korea
| | - Yeun-Jun Chung
- Precision Medicine Research Center, The Catholic University of Korea, Seoul, South Korea .,Integrated Research Center for Genome Polymorphism, The Catholic University of Korea, Seoul, South Korea.,Microbiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
46
|
Ma F, Wang Z, Wang J, Liu X, Hu C. MicroRNA-19a promotes nasopharyngeal carcinoma by targeting transforming growth factor β receptor 2. Exp Ther Med 2017; 14:1419-1426. [PMID: 28810605 PMCID: PMC5526133 DOI: 10.3892/etm.2017.4655] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 05/05/2017] [Indexed: 12/22/2022] Open
Abstract
MicroRNA (miR), a class of small non-coding RNA, function as key regulators in gene expression through directly binding to the 3' untranslated region of their target mRNA, which further leads to translational repression or mRNA degradation. miR-19a, a member of miR-17-92 cluster, has an oncogenic role in a variety of malignant tumors. However, the exact role of miR-19a in nasopharyngeal carcinoma (NPC) has not previously been studied. The present study aimed to investigate the function and mechanism of miR-19a in regulating the viability and invasion of NPC cells. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) data indicated that the expression levels of miR-17-92 cluster members (miR-17, miR-18a, miR-19a and miR-20a) were frequently increased in NPC tissues compared to the normal tissues. It was also demonstrated that miR-19a was significantly upregulated in NPC C666-1 cells compared to NP69 cells (P<0.01). Knockdown of miR-19a led to a significant decrease in the viability and invasion of NPC C666-1 cells (P<0.01), and induced increased protein expression levels of transforming growth factor β receptor 2 (TGFβR2), which was further identified as a direct target gene of miR-19a by using a luciferase reporter assay. Overexpression of TGFβR2 also suppressed the viability and invasion of C666-1 cells, similar to the effects of miR-19a inhibition. Furthermore, knockdown of TGFβR2 reversed the suppressive effects of miR-19a inhibition on C666-1 cell viability and invasion, suggesting that the role of miR-19a in mediating cell viability and invasion is through directly targeting TGFβR2 in NPC cells. In addition, RT-qPCR data demonstrated that the mRNA expression level of TGFβR2 was markedly reduced in NPC tissues and C666-1 cells. In summary, the present study demonstrated an oncogenic role of miR-19a in NPC via mediation of TGFβR2. Therefore, miR-19a may be a potential therapeutic target for NPC.
Collapse
Affiliation(s)
- Fang Ma
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Zhiyuan Wang
- Department of Oncology, Tumor Hospital of Hunan, Changsha, Hunan 410013, P.R. China
| | - Jingjing Wang
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Xianling Liu
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Chunhong Hu
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
47
|
Yang Y, Lin J, Ma Z, Li J, Li D, Wang B, Fei Q. Potential roles of microRNAs and their target genes in human multiple myeloma. Eur J Haematol 2017; 99:178-185. [PMID: 28467652 DOI: 10.1111/ejh.12901] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Yong Yang
- Department of Orthopedics; Beijing Friendship Hospital; Capital Medical University; Beijing China
| | - Jisheng Lin
- Department of Orthopedics; Beijing Friendship Hospital; Capital Medical University; Beijing China
| | - Zhao Ma
- Department of Orthopedics; Beijing Friendship Hospital; Capital Medical University; Beijing China
| | - Jinjun Li
- Department of Orthopedics; Beijing Friendship Hospital; Capital Medical University; Beijing China
| | - Dong Li
- Department of Orthopedics; Beijing Friendship Hospital; Capital Medical University; Beijing China
| | - Bingqiang Wang
- Department of Orthopedics; Beijing Friendship Hospital; Capital Medical University; Beijing China
| | - Qi Fei
- Department of Orthopedics; Beijing Friendship Hospital; Capital Medical University; Beijing China
| |
Collapse
|
48
|
Hu T, Li J, Zhang C, lv X, Li S, He S, Yan H, Tan Y, Lei M, Wen M, Zuo J. The potential value of microRNA-4463 in the prognosis evaluation in hepatocellular carcinoma. Genes Dis 2017; 4:116-122. [PMID: 30258914 PMCID: PMC6136594 DOI: 10.1016/j.gendis.2017.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 03/06/2017] [Indexed: 02/08/2023] Open
Abstract
The purpose of this study is to measure the expression of microRNA-4463 and microRNA-6087 between normal persons and patients with hepatocellular carcinoma (HCC), and to clarify the meaning of them in the prognosis evaluation in HCC. Forty-five samples from healthy people and patients, who had been diagnosed with hepatocellular carcinoma before any treatment, were collected to study respectively. Real-time PCR was used to detect the expression of miRNA-4463 and miRNA-6087 in the serum of control group and hepatocellular carcinoma patients. The expression of miR-4463 in the serum of HCC patients was significantly higher than that in control group (P < 0.05), and the expression level was independent of gender, tumor size, cell types, stages, alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TBIL) and HBsAg status (P > 0.05). But there was a significant difference of different level of AFP in HCC (P < 0.05), and the difference between the group of AFP lower than 400 ug/l and the control group is statistically significant (P < 0.05). Besides, the survival time had showed a significant difference at the high and low expression levels (P < 0.05). But the expression level of miRNA-6087 was no difference in HCC and control group. The disorder of miRNA-4463 occurred in HCC, even the AFP level doesn't rises. What's more, patients who get the high level of miRNA-4463 seem to have a shorter survival time. And it contributes great to the prognostic evaluation. This is the first study to illustrate the potential significance of miRNA-4463 in the prognosis in HCC.
Collapse
Affiliation(s)
- Tian Hu
- The Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan, 421001, China
- School of Medicine, University of South China, Hengyang, Hunan, 421001, China
| | - Jincheng Li
- Medical School, Shaoyang University, Shaoyang, Hunan, 422000, China
| | - Chuhong Zhang
- The Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan, 421001, China
| | - Xiu lv
- The Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan, 421001, China
| | - Sai Li
- The Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan, 421001, China
| | - Sha He
- The Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan, 421001, China
| | - Hanxing Yan
- The Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan, 421001, China
| | - Yixi Tan
- The Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan, 421001, China
| | - Mingsheng Lei
- Department of Respiratory and Critical Care Medicine, Zhangjiajie City Hospital, Zhangjiajie, Hunan, 427000, China
| | - Meiling Wen
- The Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan, 421001, China
| | - Jianhong Zuo
- The Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan, 421001, China
- School of Medicine, University of South China, Hengyang, Hunan, 421001, China
| |
Collapse
|
49
|
Manier S, Liu CJ, Avet-Loiseau H, Park J, Shi J, Campigotto F, Salem KZ, Huynh D, Glavey SV, Rivotto B, Sacco A, Roccaro AM, Bouyssou J, Minvielle S, Moreau P, Facon T, Leleu X, Weller E, Trippa L, Ghobrial IM. Prognostic role of circulating exosomal miRNAs in multiple myeloma. Blood 2017; 129:2429-2436. [PMID: 28213378 PMCID: PMC5409448 DOI: 10.1182/blood-2016-09-742296] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 02/07/2017] [Indexed: 01/15/2023] Open
Abstract
Exosomes, secreted by several cell types, including cancer cells, can be isolated from the peripheral blood and have been shown to be powerful markers of disease progression in cancer. In this study, we examined the prognostic significance of circulating exosomal microRNAs (miRNAs) in multiple myeloma (MM). A cohort of 156 patients with newly diagnosed MM, uniformly treated and followed, was studied. Circulating exosomal miRNAs were isolated and used to perform a small RNA sequencing analysis on 10 samples and a quantitative reverse transcription polymerase chain reaction (qRT-PCR) array on 156 samples. We studied the relationship between miRNA levels and patient outcomes, including progression-free survival (PFS) and overall survival (OS). We identified miRNAs as the most predominant small RNAs present in exosomes isolated from the serum of patients with MM and healthy controls by small RNA sequencing of circulating exosomes. We then analyzed exosomes isolated from serum samples of 156 patients using a qRT-PCR array for 22 miRNAs. Two of these miRNAs, let-7b and miR-18a, were significantly associated with both PFS and OS in the univariate analysis and were still statistically significant after adjusting for the International Staging System and adverse cytogenetics in the multivariate analysis. Our findings support the use of circulating exosomal miRNAs to improve the identification of patients with newly diagnosed MM with poor outcomes. The results require further validation in other independent prospective MM cohorts.
Collapse
Affiliation(s)
- Salomon Manier
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Department of Hematology, University Hospital Center of Lille, Lille, France
- INSERM Unité Mixte de Recherche (UMR)-S1172, Lille 2 University, Lille, France
| | - Chia-Jen Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Division of Hematology and Oncology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Hervé Avet-Loiseau
- Laboratory for Genomics in Myeloma, INSERM Unité 1037, Toulouse University Hospital, Toulouse, France
| | - Jihye Park
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Jiantao Shi
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Federico Campigotto
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Karma Z Salem
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Daisy Huynh
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Siobhan V Glavey
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Bradley Rivotto
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Antonio Sacco
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Azienda Socio Sanitaria Territoriale (ASST) Spedali Civili di Brescia, Coordinamento e Progettazione Ricerca Clinica, Compressible-Fluid Dynamics for Renewable Energy Applications (CREA) Laboratory, Brescia, Italy
| | - Aldo M Roccaro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Azienda Socio Sanitaria Territoriale (ASST) Spedali Civili di Brescia, Coordinamento e Progettazione Ricerca Clinica, Compressible-Fluid Dynamics for Renewable Energy Applications (CREA) Laboratory, Brescia, Italy
| | - Juliette Bouyssou
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Stéphane Minvielle
- Center for Cancer Research Nantes-Angers, UMR-892 INSERM-6299 Centre National de la Recherche Scientifique, and
| | - Philippe Moreau
- Department of Hematology, University Hospital Center of Nantes, Nantes, France; and
| | - Thierry Facon
- Department of Hematology, University Hospital Center of Lille, Lille, France
| | - Xavier Leleu
- Department of Hematology, University Hospital Center of Poitiers, Poitiers, France
| | - Edie Weller
- Laboratory for Genomics in Myeloma, INSERM Unité 1037, Toulouse University Hospital, Toulouse, France
| | - Lorenzo Trippa
- Laboratory for Genomics in Myeloma, INSERM Unité 1037, Toulouse University Hospital, Toulouse, France
| | - Irene M Ghobrial
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| |
Collapse
|
50
|
Xiang T, Hu AX, Sun P, Liu G, Liu G, Xiao Y. Identification of four potential predicting miRNA biomarkers for multiple myeloma from published datasets. PeerJ 2017; 5:e2831. [PMID: 28168095 PMCID: PMC5289111 DOI: 10.7717/peerj.2831] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/24/2016] [Indexed: 12/19/2022] Open
Abstract
Background Multiple myeloma is a cancer which has a high occurrence rate and causes great injury to people worldwide. In recent years, many studies reported the effects of miRNA on the appearance of multiple myeloma. However, due to the differences of samples and sequencing platforms, a large number of inconsistent results have been generated among these studies, which limited the cure of multiple myeloma at the miRNA level. Methods We performed meta-analyses to identify the key miRNA biomarkers which could be applied on the treatment of multiple myeloma. The key miRNAs were determined by overlap comparisons of seven datasets in multiple myeloma. Then, the target genes for key miRNAs were predicted by the software TargetScan. Additionally, functional enrichments and binding TFs were investigated by DAVID database and Tfacts database, respectively. Results Firstly, comparing the normal tissues, 13 miRNAs were differently expressed miRNAs (DEMs) for at least three datasets. They were considered as key miRNAs, with 12 up-regulated (hsa-miR-106b, hsa-miR-125b, hsa-miR-130b, hsa-miR-138, hsa-miR-15b, hsa-miR-181a, hsa-miR-183, hsa-miR-191, hsa-miR-19a, hsa-miR-20a, hsa-miR-221 and hsa-miR-25) and one down-regulated (hsa-miR-223). Secondly, functional enrichment analyses indicated that target genes of the upregulated miRNAs were mainly transcript factors and enriched in transcription regulation. Besides, these genes were enriched in multiple pathways: the cancer signal pathway, insulin signal metabolic pathway, cell binding molecules, melanin generation, long-term regression and P53 signaling pathway. However, no significant enrichment was found for target genes of the down-regulated genes. Due to the distinct regulation function, four miRNAs (hsa-miR-19a has-miR-221 has-miR25 and has-miR223) were ascertained as the potential prognostic and diagnostic markers in MM. Thirdly, transcript factors analysis unveiled that there were 148 TFs and 60 TFs which bind target genes of the up-regulated miRNAs and target genes of the down-regulated miRNAs, respectively. They respectively generated 652 and 139 reactions of TFs and target genes. Additionally, 50 (31.6%) TFs were shared, while higher specificity was found in TFs of target genes for the upregulated miRNAs. Discussions Together, our findings provided the key miRNAs which affected occurrence of multiple myeloma and regulation function of these miRNAs. It is valuable for the prognosis and diagnosis of multiple myeloma.
Collapse
Affiliation(s)
- Tian Xiang
- Department of Clinical Laboratory Center, Central Hospital of Enshi Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi, Hubei, China
| | - Ai-Xin Hu
- The Department of Orthopedic Surgery, People's Hospital of Three Gorges University, YiChang, Hubei, China
| | - Peng Sun
- Department of Orthopedics, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China
| | - Gao Liu
- Department of Gastrointestinal Surgery, Central Hospital of Enshi Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi, Hubei, China
| | - Gang Liu
- Department of Orthopedics, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China
| | - Yan Xiao
- Department of Hematology, The Affiliated Huai'an Hospital of Xuzhou Medical College and The Second People's Hospital of Huai'an, Huai'an, China
| |
Collapse
|