1
|
Huang L, Xu K, Yang Q, Ding Z, Shao Z, Li E. ANXA2 in cancer: aberrant regulation of tumour cell apoptosis and its immune interactions. Cell Death Discov 2025; 11:174. [PMID: 40234383 PMCID: PMC12000292 DOI: 10.1038/s41420-025-02469-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 03/24/2025] [Accepted: 04/01/2025] [Indexed: 04/17/2025] Open
Abstract
Annexin A2 (ANXA2) is a multifunctional protein that binds to calcium and phospholipids and plays a critical role in various pathological conditions, including cancer and inflammation. Recently, there has been increasing recognition of the significant role of ANXA2 in inhibiting apoptosis and promoting immune evasion in tumour cells. Therefore, a deep understanding of the regulatory mechanisms of ANXA2 in tumour cell apoptosis and its relationship with immune evasion can provide new targets for cancer therapy. This review summarizes the role and mechanisms of ANXA2 in regulating apoptosis in tumour cells, the connection between apoptosis regulation and tumour immunity, and the potential role of ANXA2 in therapy resistance.
Collapse
Affiliation(s)
- Le Huang
- Department of General Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 Minde Road, Nanchang, 330006, China
- HuanKui Academy, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Kailing Xu
- HuanKui Academy, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Qingping Yang
- Department of Reproductive Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwai zheng Street, Nanchang, Jiangxi, 330006, China
| | - Zijun Ding
- School of Ophthalmology and Optometry, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Zhenduo Shao
- Department of General Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 Minde Road, Nanchang, 330006, China
| | - Enliang Li
- Department of General Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 Minde Road, Nanchang, 330006, China.
- Jiangxi Provincial Key Laboratory of Intelligent Medical Imaging, Nanchang, Jiangxi, China.
| |
Collapse
|
2
|
Weijie S. Annexin A2: the feasibility of being a therapeutic target associated with cancer metastasis and drug resistance in cancer microenvironment. Discov Oncol 2024; 15:783. [PMID: 39692932 DOI: 10.1007/s12672-024-01693-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/10/2024] [Indexed: 12/19/2024] Open
Abstract
At present, there is still a lack of effective treatment strategies for cancer metastasis and drug resistance, so finding effective biomarkers is particularly important. AnnexinA2 (ANXA2), a vital membrane protein, critically influences cancer progression, tumor invasion, and tumor microenvironment modulation. To assess the possible application of ANXA2 as a therapeutic target against cancer cell metastasis and drug resistance to chemotherapeutic drugs in the tumor microenvironment, we elucidated the functionality of ANXA2 in stromal cells, angiogenic vascular cells, and infiltrated immune cells that mediate metastasis and drug resistance, as well as its potential as a therapeutic target. ANXA2 shows a high expression level in many tissues, and its expression level is even higher in several tumors and their microenvironments. ANXA2 is a crucial regulator of many factors and may serve as a target against drug-resistant cancers.
Collapse
Affiliation(s)
- Song Weijie
- Laboratory Animal Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.
- Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin, 300060, China.
| |
Collapse
|
3
|
Hegde S, Wagh K, Narayana SM, Abikar A, Nambiar S, Ananthamurthy S, Narayana NH, Reddihalli PV, Chandraiah S, Ranganathan P. microRNA profile of endometrial cancer from Indian patients-identification of potential biomarkers for prognosis. Biochem Biophys Rep 2024; 39:101812. [PMID: 39282095 PMCID: PMC11395764 DOI: 10.1016/j.bbrep.2024.101812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/18/2024] Open
Abstract
Endometrial cancer is one of the major cancers in women throughout the world. If diagnosed early, these cancers are treatable and the prognosis is usually good. However, one major problem in treating endometrial cancer is accurate diagnosis and staging. Till date, the choice method for diagnosis and staging is histopathology. Although there are few molecular markers identified, they are not always sufficient in making accurate diagnosis and deciding on therapeutic strategy. As a result, very often patients are under treated or over treated. In this study, our group has profiled microRNAs from Indian patients using NGS-based approach. We have identified 212 differentially expressed microRNAs in endometrial cancer. Among these, there are 17 novel miRNAs. Since this data represents only Indian cohort and also lacks survival data, validation across other populations is necessary before being considered as biomarkers. As one approach towards this, these microRNAs have also been compared to data from TCGA, which represent other populations and also correlated to relevance in overall survival. Using in-silico approaches, mRNA targets of the miRNAs have been predicted. After comparing with TCGA, we have identified 16 miRNA-mRNA pairs which could be potential prognostic biomarkers for endometrial cancer. This is the first miRNA profiling report from Indian cohort and one of the very few studies which have identified potential biomarkers of prognosis in endometrial cancer.
Collapse
Affiliation(s)
| | | | | | - Apoorva Abikar
- Centre for Human Genetics, Bengaluru, India
- Manipal Academy for Higher Education, Manipal, India
| | | | | | | | | | - Savitha Chandraiah
- Vani Vilas Hospital, Bangalore Medical College and Research Institute, Bengaluru, India
| | - Prathibha Ranganathan
- Centre for Human Genetics, Bengaluru, India
- Manipal Academy for Higher Education, Manipal, India
| |
Collapse
|
4
|
Artuyants A, Guo G, Flinterman M, Middleditch M, Jacob B, Lee K, Vella L, Su H, Wilson M, Eva L, Shelling AN, Blenkiron C. The tumour-derived extracellular vesicle proteome varies by endometrial cancer histology and is confounded by an obesogenic environment. Proteomics 2024; 24:e2300055. [PMID: 38644352 DOI: 10.1002/pmic.202300055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/23/2024]
Abstract
Endometrial cancer, the most common gynaecological cancer worldwide, is closely linked to obesity and metabolic diseases, particularly in younger women. New circulating biomarkers have the potential to improve diagnosis and treatment selections, which could significantly improve outcomes. Our approach focuses on extracellular vesicle (EV) biomarker discovery by directly profiling the proteome of EVs enriched from frozen biobanked endometrial tumours. We analysed nine tissue samples to compare three clinical subgroups-low BMI (Body Mass Index) Endometrioid, high BMI Endometrioid, and Serous (any BMI)-identifying proteins related to histological subtype, BMI, and shared secreted proteins. Using collagenase digestion and size exclusion chromatography, we successfully enriched generous quantities of EVs (range 204.8-1291.0 µg protein: 1.38 × 1011-1.10 × 1012 particles), characterised by their size (∼150 nm), expression of EV markers (CD63/81), and proposed endometrial cancer markers (L1CAM, ANXA2). Mass spectrometry-based proteomic profiling identified 2075 proteins present in at least one of the 18 samples. Compared to cell lysates, EVs were successfully depleted for mitochondrial and blood proteins and enriched for common EV markers and large secreted proteins. Further analysis highlighted significant differences in EV protein profiles between the high BMI subgroup and others, underlining the impact of comorbidities on the EV secretome. Interestingly, proteins differentially abundant in tissue subgroups were largely not also differential in matched EVs. This research identified secreted proteins known to be involved in endometrial cancer pathophysiology and proposed novel diagnostic biomarkers (EIF6, MUC16, PROM1, SLC26A2).
Collapse
Affiliation(s)
- Anastasiia Artuyants
- Department of Molecular Medicine and Pathology, The University of Auckland, Auckland, New Zealand
- Auckland Cancer Society Research Centre, The University of Auckland, Auckland, New Zealand
| | - George Guo
- Department of Physiology in the School of Medical Sciences, The University of Auckland, Auckland, New Zealand
- Mass Spectrometry Hub, The University of Auckland, Auckland, New Zealand
| | - Marcella Flinterman
- Auckland Cancer Society Research Centre, The University of Auckland, Auckland, New Zealand
| | - Martin Middleditch
- Technical Services, Faculty of Science, The University of Auckland, Auckland, New Zealand
| | - Bincy Jacob
- Centre of eResearch, Faculty of Science, The University of Auckland, Auckland, New Zealand
| | - Kate Lee
- Department of Molecular Medicine and Pathology, The University of Auckland, Auckland, New Zealand
| | - Laura Vella
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - Huaqi Su
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Michelle Wilson
- Cancer and Blood, Auckland City Hospital, Auckland, New Zealand
- Department of Oncology, The University of Auckland, Auckland, New Zealand
| | - Lois Eva
- Department of Gynaecological Oncology, Auckland City Hospital, Auckland, New Zealand
- Department of Obstetrics and Gynaecology, The University of Auckland, Auckland, New Zealand
| | - Andrew N Shelling
- Department of Obstetrics and Gynaecology, The University of Auckland, Auckland, New Zealand
- Centre for Cancer Research, The University of Auckland, Auckland, New Zealand
| | - Cherie Blenkiron
- Department of Molecular Medicine and Pathology, The University of Auckland, Auckland, New Zealand
- Auckland Cancer Society Research Centre, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
5
|
Hunt AL, Bateman NW, Barakat W, Makohon-Moore SC, Abulez T, Driscoll JA, Schaaf JP, Hood BL, Conrads KA, Zhou M, Calvert V, Pierobon M, Loffredo J, Wilson KN, Litzi TJ, Teng PN, Oliver J, Mitchell D, Gist G, Rojas C, Blanton B, Darcy KM, Rao UNM, Petricoin EF, Phippen NT, Maxwell GL, Conrads TP. Mapping three-dimensional intratumor proteomic heterogeneity in uterine serous carcinoma by multiregion microsampling. Clin Proteomics 2024; 21:4. [PMID: 38254014 PMCID: PMC10804562 DOI: 10.1186/s12014-024-09451-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/14/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Although uterine serous carcinoma (USC) represents a small proportion of all uterine cancer cases, patients with this aggressive subtype typically have high rates of chemotherapy resistance and disease recurrence that collectively result in a disproportionately high death rate. The goal of this study was to provide a deeper view of the tumor microenvironment of this poorly characterized uterine cancer variant through multi-region microsampling and quantitative proteomics. METHODS Tumor epithelium, tumor-involved stroma, and whole "bulk" tissue were harvested by laser microdissection (LMD) from spatially resolved levels from nine USC patient tumor specimens and underwent proteomic analysis by mass spectrometry and reverse phase protein arrays, as well as transcriptomic analysis by RNA-sequencing for one patient's tumor. RESULTS LMD enriched cell subpopulations demonstrated varying degrees of relatedness, indicating substantial intratumor heterogeneity emphasizing the necessity for enrichment of cellular subpopulations prior to molecular analysis. Known prognostic biomarkers were quantified with stable levels in both LMD enriched tumor and stroma, which were shown to be highly variable in bulk tissue. These USC data were further used in a comparative analysis with a data generated from another serous gynecologic malignancy, high grade serous ovarian carcinoma, and have been added to our publicly available data analysis tool, the Heterogeneity Analysis Portal ( https://lmdomics.org/ ). CONCLUSIONS Here we identified extensive three-dimensional heterogeneity within the USC tumor microenvironment, with disease-relevant biomarkers present in both the tumor and the stroma. These data underscore the critical need for upfront enrichment of cellular subpopulations from tissue specimens for spatial proteogenomic analysis.
Collapse
Grants
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
- HU0001-16-2-0006, HU0001-19-2-0031, HU0001-20-2-0033, and HU0001-21-2-0027, and HU0001-22-2-0016 Defense Health Agency
Collapse
Affiliation(s)
- Allison L Hunt
- Women's Health Integrated Research Center, Inova Women's Service Line, Inova Health System, 3289 Woodburn Rd, Suite 375, Annandale, VA, 22042, USA
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
| | - Nicholas W Bateman
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
- Department of Surgery, The John P. Murtha Cancer Center Research Program, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
| | - Waleed Barakat
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Sasha C Makohon-Moore
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Tamara Abulez
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Jordan A Driscoll
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Joshua P Schaaf
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Brian L Hood
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Kelly A Conrads
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Ming Zhou
- Women's Health Integrated Research Center, Inova Women's Service Line, Inova Health System, 3289 Woodburn Rd, Suite 375, Annandale, VA, 22042, USA
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
| | - Valerie Calvert
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Mariaelena Pierobon
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Jeremy Loffredo
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Katlin N Wilson
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Tracy J Litzi
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Pang-Ning Teng
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Julie Oliver
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Dave Mitchell
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Glenn Gist
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Christine Rojas
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
| | - Brian Blanton
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Kathleen M Darcy
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
- Department of Surgery, The John P. Murtha Cancer Center Research Program, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
| | - Uma N M Rao
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Neil T Phippen
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
- Department of Surgery, The John P. Murtha Cancer Center Research Program, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
| | - G Larry Maxwell
- Women's Health Integrated Research Center, Inova Women's Service Line, Inova Health System, 3289 Woodburn Rd, Suite 375, Annandale, VA, 22042, USA
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- Department of Surgery, The John P. Murtha Cancer Center Research Program, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
| | - Thomas P Conrads
- Women's Health Integrated Research Center, Inova Women's Service Line, Inova Health System, 3289 Woodburn Rd, Suite 375, Annandale, VA, 22042, USA.
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA.
- Department of Surgery, The John P. Murtha Cancer Center Research Program, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA.
| |
Collapse
|
6
|
Taylor AH, Konje JC, Ayakannu T. Identification of Potentially Novel Molecular Targets of Endometrial Cancer Using a Non-Biased Proteomic Approach. Cancers (Basel) 2023; 15:4665. [PMID: 37760635 PMCID: PMC10527058 DOI: 10.3390/cancers15184665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
The present study was aimed at identifying novel proteins in endometrial cancer (EC), employing proteomic analysis of tissues obtained after surgery. A differential MS-based proteomic analysis was conducted from whole tissues dissected from biopsies from post-menopausal women, histologically confirmed as endometrial cancer (two endometrioid and two serous; n = 4) or normal atrophic endometrium (n = 4), providing 888 differentially expressed proteins with 246 of these previously documented elsewhere as expressed in EC and 372 proteins not previously demonstrated to be expressed in EC but associated with other types of cancer. Additionally, 33 proteins not recorded previously in PubMed as being expressed in any forms of cancer were also identified, with only 26 of these proteins having a publication associated with their expression patterns or putative functions. The putative functions of the 26 proteins (GRN, APP, HEXA, CST3, CAD, QARS, SIAE, WARS, MYH8, CLTB, GOLIM4, SCARB2, BOD1L1, C14orf142, C9orf142, CCDC13, CNPY4, FAM169A, HN1L, PIGT, PLCL1, PMFBP1, SARS2, SCPEP1, SLC25A24 and ZC3H4) in other tissues point towards and provide a basis for further investigation of these previously unrecognised novel EC proteins. The developmental biology, disease, extracellular matrix, homeostatic, immune, metabolic (both RNA and protein), programmed cell death, signal transduction, molecular transport, transcriptional networks and as yet uncharacterised pathways indicate that these proteins are potentially involved in endometrial carcinogenesis and thus may be important in EC diagnosis, prognostication and treatment and thus are worthy of further investigation.
Collapse
Affiliation(s)
- Anthony H. Taylor
- Reproductive Sciences Section, Department of Cancer Studies & Molecular Medicine, University of Leicester, Leicester LE1 7RH, UK; (A.H.T.); (J.C.K.)
- Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Justin C. Konje
- Reproductive Sciences Section, Department of Cancer Studies & Molecular Medicine, University of Leicester, Leicester LE1 7RH, UK; (A.H.T.); (J.C.K.)
- Department of Health Sciences, University of Leicester, Leicester LE1 7RH, UK
- Weill Cornell Medicine-Qatar, Al Rayyan, Doha P.O. Box 24144, Qatar
| | - Thangesweran Ayakannu
- Reproductive Sciences Section, Department of Cancer Studies & Molecular Medicine, University of Leicester, Leicester LE1 7RH, UK; (A.H.T.); (J.C.K.)
- Department of Obstetrics & Gynaecology, Taylor’s University, Subang Jaya 47500, Selangor, Malaysia
- Sunway Medical Centre, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia
| |
Collapse
|
7
|
Nectin2 influences cell apoptosis by regulating ANXA2 expression in neuroblastoma. Acta Biochim Biophys Sin (Shanghai) 2023; 55:356-366. [PMID: 36916296 PMCID: PMC10160223 DOI: 10.3724/abbs.2023020] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
Neuroblastoma (NB) is a pediatric cancer of the peripheral sympathetic nervous system and represents the most frequent solid malignancy in infants. Nectin2 belongs to the immunoglobulin superfamily and has been shown to play a role in tumorigenesis. In the current study, we demonstrate that serum Nectin2 level is increased in NB patients compared with that in healthy controls and Nectin2 level is correlated with neuroblastoma international neuroblastoma staging system (INSS) classification. There is a positive correlation between Nectin2 level and shorter overall survival in NB patients. Knockdown of Nectin2 reduces the migration of SH-SY5Y and SK-N-BE2 cells and induces their apoptosis and cell cycle arrest. RNA-seq analysis demonstrates that Nectin2 knockdown affects the expressions of 258 genes, including 240 that are upregulated and 18 that are downregulated compared with negative controls. qRT-PCR and western blot analysis confirm that ANXA2 expression is decreased in Nectin2-knockdown SH-SY5Y cells, consistent with the RNA-seq results. ANXA2 overexpression rescues the percentage of apoptotic NB cells induced by Nectin2 knockdown and compensates for the impact of Nectin2 knockdown on cleaved caspase3 and bax expressions. In addition, western blot analysis results show that ANXA2 overexpression rescues the effect of Nectin2 knockdown on MMP2 and MMP9 expressions. The current data highlight the importance of Nectin2 in NB progression and the potential of Nectin2 as a novel candidate target for gene therapy.
Collapse
|
8
|
Abstract
CONTEXT Every year, approximately 0.4 million women suffer from endometrial cancer (EC) worldwide and it has become the most common gynecological malignancy. Almost 66% of EC cases are diagnosed at an early stage and can be cured by performing surgery while those at an advanced stage turns out to be fatal. Biomarkers of endometrial cancer would be very valuable for screening of women who are at high risk and in detecting the chance of recurrence of disease. OBJECTIVE The current article has reviewed studies published on expression of biomarkers and susceptibility to EC. METHODS Google Scholar and PubMed were used as searching platforms and we have majorly considered the literature from last 10 years. RESULTS Potential biomarkers of EC identified from various studies were summarised.
Collapse
Affiliation(s)
- Kareena Moar
- Department of Biochemistry, Central University of Haryana, Mahendragarh, India
| | - Anuja Pant
- Department of Biochemistry, Central University of Haryana, Mahendragarh, India
| | - Vikas Saini
- Biomedical Sciences, Department of Vocational Studies and Skill Development, Central University of Haryana, Mahendragarh, India
| | - Pawan Kumar Maurya
- Department of Biochemistry, Central University of Haryana, Mahendragarh, India
| |
Collapse
|
9
|
Abdelraouf EM, Hussein RRS, Shaaban AH, El-Sherief HAM, Embaby AS, Abd El-Aleem SA. Annexin A2 (AnxA2) association with the clinicopathological data in different breast cancer subtypes: A possible role for AnxA2 in tumor heterogeneity and cancer progression. Life Sci 2022; 308:120967. [PMID: 36116530 DOI: 10.1016/j.lfs.2022.120967] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Breast cancer is a highly heterogeneous type of neoplasia with molecular and biochemical alterations in the ductal epithelium. AnxA2 has a diverse functions and through intracellular interaction with other molecules promotes carcinogenesis. AIMS To study the possible involvement of AnxA2 in breast cancer heterogeneity and cancer progression. PATIENTS AND METHODS Tumor tissue and serum were obtained from different breast cancer subtypes. Tumor tissues were processed for histopathological studies. AnxA2 levels were assessed in the tissues by H scoring and in the serum by ELISA. AnxA2 levels were correlated with HER2 and Ki67 and with clinicopathological data. Normal breast tissues and serum from healthy subjects were used as controls. RESULTS AnxA2 showed a peculiar distribution in tumor tissues and nearby interstitial tissues. Pattern of expressions varied in different subtypes with the highest expression in triple negative subtype. Tissue and serum AnxA2 showed significant co-upregulations in breast cancer. Moreover, they showed positive correlations with HER2 and Ki67 and associations with clinicopathological data including cancer staging and lymph node metastasis. CONCLUSION For the best of our knowledge this is the first study showing correlation between AnxA2, the proposed prognostic marker and the well-established tumor markers; HER2 and Ki67. AnxA2 might contribute to breast cancer heterogeneity and is associated with poor prognosis. AnxA2 might be a prognostic marker and an additional marker for breast cancer grading and clinical staging. Interestingly, tissue and serum AnxA2 showed a strong correlation. Thus, assessing serum AnxA2 can be a noninvasive prognostic tool.
Collapse
Affiliation(s)
| | - Raghda R S Hussein
- Clinical Pharmacy, Faculty of Pharmacy, Beni-Suef University, Egypt; Department of Clinical Pharmacy, Faculty of Pharmacy, October 6 University, 6 October City, Giza, Egypt
| | - Ahmed Hassan Shaaban
- Department of clinical Oncology, Faculty of Medicine, Beni-Suef University, Egypt
| | - Hany A M El-Sherief
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, Egypt
| | - Azza S Embaby
- Department of Histology, Faculty of Medicine, Beni-Suef University, Egypt
| | - Seham A Abd El-Aleem
- Department of Cell Biology and Histology, Faculty of Medicine, Minia University, Egypt.
| |
Collapse
|
10
|
Akkour K, Alanazi IO, Alfadda AA, Alhalal H, Masood A, Musambil M, Rahman AMA, Alwehaibi MA, Arafah M, Bassi A, Benabdelkamel H. Tissue-Based Proteomic Profiling in Patients with Hyperplasia and Endometrial Cancer. Cells 2022; 11:cells11132119. [PMID: 35805203 PMCID: PMC9265283 DOI: 10.3390/cells11132119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 12/24/2022] Open
Abstract
Uterine cancers are among the most prevalent gynecological malignancies, and endometrial cancer (EC) is the most common in this group. This study used tissue-based proteomic profiling analysis in patients with endometrial cancer and hyperplasia, and control patients. Conventional 2D gel electrophoresis, followed by a mass spectrometry approach with bioinformatics, including a network pathway analysis pipeline, was used to identify differentially expressed proteins and associated metabolic pathways between the study groups. Thirty-six patients (twelve with endometrial cancer, twelve with hyperplasia, and twelve controls) were enrolled in this study. The mean age of the participants was 46–75 years. Eighty-seven proteins were significantly differentially expressed between the study groups, of which fifty-three were significantly differentially regulated (twenty-eight upregulated and twenty-five downregulated) in the tissue samples of EC patients compared to the control (Ctrl). Furthermore, 26 proteins were significantly dysregulated (8 upregulated and 18 downregulated) in tissue samples of hyperplasia (HY) patients compared to Ctrl. Thirty-two proteins (nineteen upregulated and thirteen downregulated) including desmin, peptidyl prolyl cis-trans isomerase A, and zinc finger protein 844 were downregulated in the EC group compared to the HY group. Additionally, fructose bisphosphate aldolase A, alpha enolase, and keratin type 1 cytoskeletal 10 were upregulated in the EC group compared to those in the HY group. The proteins identified in this study were known to regulate cellular processes (36%), followed by biological regulation (16%). Ingenuity pathway analysis found that proteins that are differentially expressed between EC and HY are linked to AKT, ACTA2, and other signaling pathways. The panels of protein markers identified in this study could be used as potential biomarkers for distinguishing between EC and HY and early diagnosis and progression of EC from hyperplasia and normal patients.
Collapse
Affiliation(s)
- Khalid Akkour
- Obstetrics and Gynecology Department, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia; (K.A.); (H.A.); (A.B.)
| | - Ibrahim O. Alanazi
- The National Center for Biotechnology (NCB), Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia;
| | - Assim A. Alfadda
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia; (A.A.A.); (A.M.); (M.M.); (M.A.A.)
- Department of Medicine, College of Medicine and King Saud Medical City, King Saud University, Riyadh 11461, Saudi Arabia
| | - Hani Alhalal
- Obstetrics and Gynecology Department, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia; (K.A.); (H.A.); (A.B.)
| | - Afshan Masood
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia; (A.A.A.); (A.M.); (M.M.); (M.A.A.)
| | - Mohthash Musambil
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia; (A.A.A.); (A.M.); (M.M.); (M.A.A.)
| | - Anas M. Abdel Rahman
- Metabolomics Section, Department of Clinical Genomics, Center for Genome Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh 11211, Saudi Arabia;
| | - Moudi A. Alwehaibi
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia; (A.A.A.); (A.M.); (M.M.); (M.A.A.)
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11461, Saudi Arabia
| | - Maria Arafah
- Department of Pathology, College of Medicine, King Saud University, King Saud University Medical City, Riyadh 11461, Saudi Arabia;
| | - Ali Bassi
- Obstetrics and Gynecology Department, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia; (K.A.); (H.A.); (A.B.)
| | - Hicham Benabdelkamel
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia; (A.A.A.); (A.M.); (M.M.); (M.A.A.)
- Correspondence:
| |
Collapse
|
11
|
Huang Y, Jia M, Yang X, Han H, Hou G, Bi L, Yang Y, Zhang R, Zhao X, Peng C, Ouyang X. Annexin A2: The Diversity of Pathological Effects in Tumorigenesis and Immune Response. Int J Cancer 2022; 151:497-509. [PMID: 35474212 DOI: 10.1002/ijc.34048] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 11/11/2022]
Abstract
Annexin A2 (ANXA2) is widely used as a marker in a variety of tumors. By regulating multiple signal pathways, ANXA2 promotes the epithelial-mesenchymal transition, which can cause tumorigenesis and accelerate thymus degeneration. The elevated ANXA2 heterotetramer facilitates the production of plasmin, which participates in pathophysiologic processes such as tumor cell invasion and metastasis, bleeding diseases, angiogenesis, inducing the expression of inflammatory factors. In addition, the ANXA2 on the cell membrane mediates immune response via its interaction with surface proteins of pathogens, C1q, toll-like receptor 2, anti-dsDNA antibodies and immunoglobulins. Nuclear ANXA2 plays a role as part of a primer recognition protein complex that enhances DNA synthesis and cells proliferation by acting on the G1-S phase of the cell. ANXA2 reduction leads to the inhibition of invasion and metastasis in multiple tumor cells, bleeding complications in acute promyelocytic leukemia, retinal angiogenesis, autoimmunity response and tumor drug resistance. In this review, we provide an update on the pathological effects of ANXA2 in both tumorigenesis and the immune response. We highlight ANXA2 as a critical protein in numerous malignancies and the immune host response.
Collapse
Affiliation(s)
- Yanjie Huang
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China.,Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, China
| | - Mengzhen Jia
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xiaoqing Yang
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, China
| | - Hongyan Han
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Gailing Hou
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Liangliang Bi
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, China
| | - Yueli Yang
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, China
| | - Ruoqi Zhang
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xueru Zhao
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Chaoqun Peng
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xinshou Ouyang
- Department of Internal Medicine, Digestive Disease Section, Yale University, New Haven, Ct, USA
| |
Collapse
|
12
|
Huang SW, Chen YC, Lin YH, Yeh CT. Clinical Limitations of Tissue Annexin A2 Level as a Predictor of Postoperative Overall Survival in Patients with Hepatocellular Carcinoma. J Clin Med 2021; 10:jcm10184158. [PMID: 34575275 PMCID: PMC8465313 DOI: 10.3390/jcm10184158] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/07/2021] [Accepted: 09/13/2021] [Indexed: 11/20/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the second common cause of cancer-related death in Taiwan. Tumor recurrence is frequently observed in HCC patients receiving surgical resection, resulting in unsatisfactory overall survival (OS). Therefore, it is pivotal to identify effective prognostic makers, so that intensive surveillance or adjuvant treatments can be applied to predictively unfavorable patients. Previous studies indicated that Annexin A2 (ANXA2) was an effective prognostic marker in several cancers, including HCC. However, the prognostic value of ANXA2 in Taiwanese HCC patients remains unclear, where a great proportion of patients had chronic hepatitis B with liver cirrhosis. Here, ANXA2 was highly expressed in HCC tissues compared with para-neoplastic noncancerous tissues. Furthermore, high ANXA2 expression in HCC tissues independently predicted shorter OS. In subgroup analysis, however, ANXA2 expression could not effectively predict OS in the following subgroups: female, age > 65 years old, Child–Pugh classification B, hepatitis B virus surface antigen negative or anti-hepatitis C antibody positive, alcoholism, tumor number >1, presence of micro- or macrovascular invasion, absence of capsule, non-cirrhosis and high alpha-fetoprotein. In conclusion, ANXA2 expression in HCC tissues could predict postoperative OS. However, the predictive value was limited in patients with specific clinical conditions.
Collapse
Affiliation(s)
- Shu-Wei Huang
- Department of Gastroenterology and Hepatology, New Taipei Municipal Tucheng Hospital, New Taipei 236, Taiwan;
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan
| | - Yen-Chin Chen
- Graduate Institute of Clinical Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Yang-Hsiang Lin
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan
- Correspondence: (Y.-H.L.); (C.-T.Y.); Tel.: +886-3328-1200 (ext. 7785) (Y.-H.L.); +886-3328-1200 (ext. 8129) (C.-T.Y.); Fax: +886-3328-2824 (C.-T.Y.)
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan
- Correspondence: (Y.-H.L.); (C.-T.Y.); Tel.: +886-3328-1200 (ext. 7785) (Y.-H.L.); +886-3328-1200 (ext. 8129) (C.-T.Y.); Fax: +886-3328-2824 (C.-T.Y.)
| |
Collapse
|
13
|
Herrero C, Brea J, Pérez-Díaz A, Cuadrado E, Ferreño N, Moiola CP, Colás E, Gil-Moreno A, López-López R, Loza MI, Abal M, Alonso-Alconada L. Modeling ANXA2-overexpressing circulating tumor cells homing and high throughput screening for metastasis impairment in endometrial carcinomas. Biomed Pharmacother 2021; 140:111744. [PMID: 34049223 DOI: 10.1016/j.biopha.2021.111744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/25/2022] Open
Abstract
Endometrial cancer (EC) is the most common neoplasm of the female reproductive tract in the developed world. Patients usually are diagnosed in early stage having a good prognosis. However, up to 20-25% of patients are diagnosed in advanced stages and have a higher risk of recurrence, making the prognosis worse. Previously studies identified ANXA2 as a predictor of recurrent disease in EC even in low risk patients. Furthermore, Circulating Tumor Cells (CTC) released from the primary tumor into the bloodstream, are plasticity entities responsible of the process of metastasis, becoming into an attractive clinical target. In this work we validated ANXA2 expression in CTC from high-risk EC patients. After that, we modelled in vitro and in vivo the tumor cell attachment of ANXA2-expressing CTC to the endothelium and the homing for the generation of micrometastasis. ANXA2 overexpression does not provide an advantage in the adhesion process of CTC, but it could be playing an important role in more advanced steps, conferring a greater homing capacity. We also performed a high-throughput screening (HTS) for compounds specifically targeting ANXA2, and selected Daunorubicin as candidate hit. Finally, we validated Daunorubicin in a 3D transendothelial migration system and also in a in vivo model of advanced EC, demonstrating the ability of Daunorubicin to inhibit the proliferation of ANXA2-overexpressing tumor cells.
Collapse
Affiliation(s)
- Carolina Herrero
- Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain
| | - Jose Brea
- Drug Screening Platform/Biofarma Research Group, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Amparo Pérez-Díaz
- Drug Screening Platform/Biofarma Research Group, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Emiliano Cuadrado
- Drug Screening Platform/Biofarma Research Group, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Noelia Ferreño
- Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain
| | - Cristian Pablo Moiola
- Biomedical Research Group in Gynecology, Vall d'Hebron Research Institute (VHIR), Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Eva Colás
- Biomedical Research Group in Gynecology, Vall d'Hebron Research Institute (VHIR), Universitat Autonoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Antonio Gil-Moreno
- Biomedical Research Group in Gynecology, Vall d'Hebron Research Institute (VHIR), Universitat Autonoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Rafael López-López
- Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - María Isabel Loza
- Drug Screening Platform/Biofarma Research Group, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Miguel Abal
- Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| | - Lorena Alonso-Alconada
- Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain.
| |
Collapse
|
14
|
Li Z, Yu L, Hu B, Chen L, Jv M, Wang L, Zhou C, Wei M, Zhao L. Advances in cancer treatment: a new therapeutic target, Annexin A2. J Cancer 2021; 12:3587-3596. [PMID: 33995636 PMCID: PMC8120175 DOI: 10.7150/jca.55173] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/25/2021] [Indexed: 12/11/2022] Open
Abstract
Annexin A2 (ANXA2) is a calcium regulated phospholipid-binding protein. It is expressed in some tumor cells, endothelial cells, macrophages, and mononuclear cells, affecting cell survival and mediating interactions between intercellular and extracellular microenvironment. Aberrant expression of ANXA2 can be used as a potential predictive factor, diagnostic biomarker and therapeutic target in cancer therapy. Investigators used various technologies to target ANXA2 in a preclinical model of human cancers and demonstrated encouraging results. In this review article, we discuss the diagnosis and prognosis latent capacity of ANXA2 in progressive cancers, focus on the exploration of restorative interventions targeting ANXA2 in cancer treatment. Further, we comment on a promising candidate therapy that is conceivable for clinical translation.
Collapse
Affiliation(s)
- Zinan Li
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China.,Liaoning Engineering Technology Research Center, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
| | - Lifeng Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China.,Liaoning Engineering Technology Research Center, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
| | - Baohui Hu
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China.,Liaoning Engineering Technology Research Center, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
| | - Lianze Chen
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China.,Liaoning Engineering Technology Research Center, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
| | - Mingyi Jv
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China.,Liaoning Engineering Technology Research Center, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
| | - Lin Wang
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China.,Liaoning Engineering Technology Research Center, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
| | - Chenyi Zhou
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China.,Liaoning Engineering Technology Research Center, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China.,Liaoning Engineering Technology Research Center, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China.,Liaoning Medical Diagnosis and Treatment Center, Liaoning Province, China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China.,Liaoning Engineering Technology Research Center, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
| |
Collapse
|
15
|
Gibbs LD, Mansheim K, Maji S, Nandy R, Lewis CM, Vishwanatha JK, Chaudhary P. Clinical Significance of Annexin A2 Expression in Breast Cancer Patients. Cancers (Basel) 2020; 13:cancers13010002. [PMID: 33374917 PMCID: PMC7792619 DOI: 10.3390/cancers13010002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Annexin A2 (AnxA2) is a Ca++-dependent phospholipid-binding protein that is involved in invasion and metastasis of breast cancer. However, the expression of AnxA2 in breast cancer patients has not been reported. Here, we show that the expression of AnxA2 was high in tumor tissues and serum samples of breast cancer patients compared to non-cancer patients. The high expression of serum AnxA2 in breast cancer was associated with tumor grade and poor survival. The expression and diagnostic value of serum AnxA2 was high in triple-negative breast cancer (TNBC) subtypes and associated with the phosphorylation of AnxA2 at tyrosine 23. Overall, this study highlights the diagnostic and prognostic significance of AnxA2 in breast cancer. Abstract Increasing evidence suggests that AnxA2 contributes to invasion and metastasis of breast cancer. However, the clinical significance of AnxA2 expression in breast cancer has not been reported. The expression of AnxA2 in cell lines, tumor tissues, and serum samples of breast cancer patients were analyzed by immunoblotting, immunohistochemistry, and enzyme-linked immunosorbent assay, respectively. We found that AnxA2 was significantly upregulated in tumor tissues and serum samples of breast cancer patients compared with normal controls. The high expression of serum AnxA2 was significantly associated with tumor grades and poor survival of the breast cancer patients. Based on molecular subtypes, AnxA2 expression was significantly elevated in tumor tissues and serum samples of triple-negative breast cancer (TNBC) patients compared with other breast cancer subtypes. Our analyses on breast cancer cell lines demonstrated that secretion of AnxA2 is associated with its tyrosine 23 (Tyr23) phosphorylation in cells. The expression of non-phosphomimetic mutant of AnxA2 in HCC1395 cells inhibits its secretion from cells compared to wild-type AnxA2, which further suggest that Tyr23 phosphorylation is a critical step for AnxA2 secretion from TNBC cells. Our analysis of AnxA2 phosphorylation in clinical samples further confirmed that the phosphorylation of AnxA2 at Tyr23 was high in tumor tissues of TNBC patients compared to matched adjacent non-tumorigenic breast tissues. Furthermore, we observed that the diagnostic value of serum AnxA2 was significantly high in TNBC compared with other breast cancer subtypes. These findings suggest that serum AnxA2 concentration could be a potential diagnostic biomarker for TNBC patients.
Collapse
Affiliation(s)
- Lee D. Gibbs
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (L.D.G.); (S.M.); (J.K.V.)
| | - Kelsey Mansheim
- Department of Pathology, Brookwood Baptist Health, 1130 22nd St S # 1000, Birmingham, AL 35205, USA;
| | - Sayantan Maji
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (L.D.G.); (S.M.); (J.K.V.)
| | - Rajesh Nandy
- Department of Biostatistics and Epidemiology, School of Public Health, University of North Texas Health Science Center, Fort Worth, TX 76107, USA;
| | - Cheryl M. Lewis
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Jamboor K. Vishwanatha
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (L.D.G.); (S.M.); (J.K.V.)
- Center for Diversity and International Programs, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Pankaj Chaudhary
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (L.D.G.); (S.M.); (J.K.V.)
- Center for Diversity and International Programs, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Correspondence: ; Tel.: +1-817-735-2045
| |
Collapse
|
16
|
Herrero C, Abal M, Muinelo-Romay L. Circulating Extracellular Vesicles in Gynecological Tumors: Realities and Challenges. Front Oncol 2020; 10:565666. [PMID: 33178595 PMCID: PMC7591787 DOI: 10.3389/fonc.2020.565666] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/13/2020] [Indexed: 12/11/2022] Open
Abstract
Although liquid biopsy can be considered a reality for the clinical management of some cancers, such as lung or colorectal cancer, it remains a promising field in gynecological tumors. In particular, circulating extracellular vesicles (cEVs) secreted by tumor cells represent a scarcely explored type of liquid biopsy in gynecological tumors. Importantly, these vesicles are responsible for key steps in tumor development and dissemination and are recognized as major players in cell-to-cell communication between the tumor and the microenvironment. However, limited work has been reported about the biologic effects and clinical value of EVs in gynecological tumors. Therefore, here we review the promising but already relatively limited data on the role of circulating EVs in promoting gynecological tumor spread and also their value as non-invasive biomarkers to improve the management of these type of tumors.
Collapse
Affiliation(s)
- Carolina Herrero
- Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain
- Nasasbiotech, S.L., A Coruña, Spain
| | - Miguel Abal
- Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain
- Nasasbiotech, S.L., A Coruña, Spain
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Laura Muinelo-Romay
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Liquid Biopsy Analysis Unit, Translational Medical Oncology (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| |
Collapse
|
17
|
Bojcsuk D, Nagy G, Bálint BL. Alternatively Constructed Estrogen Receptor Alpha-Driven Super-Enhancers Result in Similar Gene Expression in Breast and Endometrial Cell Lines. Int J Mol Sci 2020; 21:E1630. [PMID: 32120995 PMCID: PMC7084573 DOI: 10.3390/ijms21051630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 01/07/2023] Open
Abstract
Super-enhancers (SEs) are clusters of highly active enhancers, regulating cell type-specific and disease-related genes, including oncogenes. The individual regulatory regions within SEs might be simultaneously bound by different transcription factors (TFs) and co-regulators, which together establish a chromatin environment conducting to effective transcription. While cells with distinct TF profiles can have different functions, how different cells control overlapping genetic programs remains a question. In this paper, we show that the construction of estrogen receptor alpha-driven SEs is tissue-specific, both collaborating TFs and the active SE components greatly differ between human breast cancer-derived MCF-7 and endometrial cancer-derived Ishikawa cells; nonetheless, SEs common to both cell lines have similar transcriptional outputs. These results delineate that despite the existence of a combinatorial code allowing alternative SE construction, a single master regulator might be able to determine the overall activity of SEs.
Collapse
Affiliation(s)
- Dóra Bojcsuk
- Genomic Medicine and Bioinformatic Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
- Doctoral School of Molecular Cell and Immune Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Gergely Nagy
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Bálint László Bálint
- Genomic Medicine and Bioinformatic Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| |
Collapse
|
18
|
Nazri HM, Imran M, Fischer R, Heilig R, Manek S, Dragovic RA, Kessler BM, Zondervan KT, Tapmeier TT, Becker CM. Characterization of exosomes in peritoneal fluid of endometriosis patients. Fertil Steril 2020; 113:364-373.e2. [PMID: 32106990 PMCID: PMC7057257 DOI: 10.1016/j.fertnstert.2019.09.032] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/11/2019] [Accepted: 09/23/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To demonstrate the feasibility of studying exosomes directly from peritoneal fluid, we isolated exosomes from endometriosis patient samples and from controls, and characterized their cargo. DESIGN Case-control experimental study. SETTING Academic clinical center. PATIENT (S) Women with and without endometriosis who underwent laparoscopic surgery (n = 28 in total). INTERVENTION (S) None. MAIN OUTCOME MEASURE (S) Concentration of exosomes within peritoneal fluid and protein content of the isolated exosomes. RESULT (S) Peritoneal fluid samples were pooled according to the cycle phase and disease stage to form six experimental groups, from which the exosomes were isolated. Exosomes were successfully isolated from peritoneal fluid in all the study groups. The concentration varied with cycle phase and disease stage. Proteomic analysis showed specific proteins in the exosomes derived from endometriosis patients that were absent in the controls. Five proteins were found exclusively in the endometriosis groups: PRDX1, H2A type 2-C, ANXA2, ITIH4, and the tubulin α-chain. CONCLUSION (S) Exosomes are present in peritoneal fluid. The characterization of endometriosis-specific exosomes opens up new avenues for the diagnosis and investigation of endometriosis.
Collapse
Affiliation(s)
- Hannah M Nazri
- Endometriosis CaRe Centre, Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Maria Imran
- Endometriosis CaRe Centre, Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Roman Fischer
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Raphael Heilig
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Sanjiv Manek
- Department of Cellular Pathology, Oxford University Hospitals, Oxford, United Kingdom
| | - Rebecca A Dragovic
- Endometriosis CaRe Centre, Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Benedikt M Kessler
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Krina T Zondervan
- Endometriosis CaRe Centre, Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, United Kingdom; Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Thomas T Tapmeier
- Endometriosis CaRe Centre, Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, United Kingdom.
| | - Christian M Becker
- Endometriosis CaRe Centre, Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
19
|
Extracellular Vesicles-Based Biomarkers Represent a Promising Liquid Biopsy in Endometrial Cancer. Cancers (Basel) 2019; 11:cancers11122000. [PMID: 31842290 PMCID: PMC6966595 DOI: 10.3390/cancers11122000] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/03/2019] [Accepted: 12/09/2019] [Indexed: 12/22/2022] Open
Abstract
Tumor-derived extracellular vesicles (EVs) are secreted in large amounts into biological fluids of cancer patients. The analysis of EVs cargoes has been associated with patient´s outcome and response to therapy. However, current technologies for EVs isolation are tedious and low cost-efficient for routine clinical implementation. To explore the clinical value of circulating EVs analysis we attempted a proof-of-concept in endometrial cancer (EC) with ExoGAG, an easy to use and highly efficient new technology to enrich EVs. Technical performance was first evaluated using EVs secreted by Hec1A cells. Then, the clinical value of this strategy was questioned by analyzing the levels of two well-known tissue biomarkers in EC, L1 cell adhesion molecule (L1CAM) and Annexin A2 (ANXA2), in EVs purified from plasma in a cohort of 41 EC patients and 20 healthy controls. The results demonstrated the specific content of ANXA2 in the purified EVs fraction, with an accurate sensitivity and specificity for EC diagnosis. Importantly, high ANXA2 levels in circulating EVs were associated with high risk of recurrence and non-endometrioid histology suggesting a potential value as a prognostic biomarker in EC. These results also confirmed ExoGAG technology as a robust technique for the clinical implementation of circulating EVs analyses.
Collapse
|
20
|
Hernández JE, González-Montiel A, Allos-Villalva JCC, Cantú D, Barquet S, Olivares-Mundo A, Herrera LA, Prada D. Prognostic molecular biomarkers in endometrial cancer: A review. ACTA ACUST UNITED AC 2019; 7:17-28. [PMID: 34322276 PMCID: PMC8315102 DOI: 10.14312/2052-4994.2019-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Background: Endometrial cancer (EC) is the fourth most common malignancy in women worldwide and the most common gynecological cancer in developed countries. The endometrioid subtype has an excellent prognosis with conventional treatment; however, recurrence reduces overall survival. Objective: Describe the most relevant evidence regarding selected potential molecular biomarkers that may predict overall survival (OS), relapse-free survival (RFS), and cancer-specific survival (CSS) in EC. Methods: An exhaustive search was performed in PUBMED with the search terms endometrial cancer, molecular biomarker, and survival. We selected original articles written in English about endometrial cancer, molecular biomarkers, and that included survival analysis published between January 2000 and December 2016. Results: Several molecular prognostic biomarkers have been studied in terms of survival and therapeutic response in women with endometrial cancer; hormone receptors, microRNAs, and other molecules have emerged as potentially useful biomarkers, including HER2, p21, HE4, PTEN, p27, ANCCA, and ANXA2. Conclusions: The use of biomarkers in the assessment of OS, RFS, and CSS requires large trials to expand our understanding of endometrial carcinogenesis. Several molecular markers are significantly associated with a high tumor grade and advanced clinical stage in EC and, therefore, could have additive effects when combined.
Collapse
Affiliation(s)
- J Edgardo Hernández
- Unit of Biomedical Research, National Cancer Institute- Biomedical Research Institute, National Autonomous University of Mexico. San Fernando 22, Colonia Sección XVI, Delegatión Tlalpan, Mexico City, Mexico, 14080
| | - Ailyn González-Montiel
- Unit of Biomedical Research, National Cancer Institute- Biomedical Research Institute, National Autonomous University of Mexico. San Fernando 22, Colonia Sección XVI, Delegatión Tlalpan, Mexico City, Mexico, 14080
| | - Jesús C Ceb Allos-Villalva
- Department of Biomedical Informatics, Faculty of Medicine, National Autonomous University of Mexico, C.U., Av. Universidad 3000, Mexico City, Mexico, 04510
| | - David Cantú
- Unit of Biomedical Research, National Cancer Institute- Biomedical Research Institute, National Autonomous University of Mexico. San Fernando 22, Colonia Sección XVI, Delegatión Tlalpan, Mexico City, Mexico, 14080
| | - Salim Barquet
- Unit of Biomedical Research, National Cancer Institute- Biomedical Research Institute, National Autonomous University of Mexico. San Fernando 22, Colonia Sección XVI, Delegatión Tlalpan, Mexico City, Mexico, 14080
| | - Anny Olivares-Mundo
- Unit of Biomedical Research, National Cancer Institute- Biomedical Research Institute, National Autonomous University of Mexico. San Fernando 22, Colonia Sección XVI, Delegatión Tlalpan, Mexico City, Mexico, 14080
| | - Luis A Herrera
- Unit of Biomedical Research, National Cancer Institute- Biomedical Research Institute, National Autonomous University of Mexico. San Fernando 22, Colonia Sección XVI, Delegatión Tlalpan, Mexico City, Mexico, 14080
| | - Diddier Prada
- Unit of Biomedical Research, National Cancer Institute- Biomedical Research Institute, National Autonomous University of Mexico. San Fernando 22, Colonia Sección XVI, Delegatión Tlalpan, Mexico City, Mexico, 14080.,Department of Biomedical Informatics, Faculty of Medicine, National Autonomous University of Mexico, C.U., Av. Universidad 3000, Mexico City, Mexico, 04510
| |
Collapse
|
21
|
Expression of annexin A2 in adenomyosis and dysmenorrhea. Arch Gynecol Obstet 2019; 300:711-716. [PMID: 31183557 PMCID: PMC6694070 DOI: 10.1007/s00404-019-05205-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 05/30/2019] [Indexed: 12/11/2022]
Abstract
PURPOSE To investigate the expression of annexin A2 (ANXA2) in ectopic and eutopic endometrium and serum of women with adenomyosis, and their relationships with adenomyosis-associated dysmenorrhea. METHODS The expression of ANXA2 was detected by immunohistochemical S-P method in ectopic and eutopic endometrium tissues from 30 patients with adenomyosis who underwent hysterectomy. The correlation between ANXA2 expression and dysmenorrhea degree was evaluated. The endometrium tissues from 15 patients with uterine fibroids which underwent hysterectomy were used as controls. The preoperative serum level of ANXA2 was measured by enzyme-linked immunosorbent assay in 30 patients with adenomyosis and 15 patients with hysteromyoma. RESULT The expression of ANXA2 in eutopic and ectopic endometrium of adenomyosis was higher than in normal endometrium (P < 0.05), but no significant difference of ANXA2 expression was observed between the eutopic endometrium and the ectopic endometrium (P > 0.05). In the ectopic endometrium, but not in the eutopic endometrium, of women with adenomyosis, ANXA2 expression was positively correlated with the severity of dysmenorrhea (R = 0.831, P = 0.000). The preoperative serum level of ANXA2 was markedly higher in patients with adenomyosis compared with the patients with hysteromyoma (P < 0.05). CONCLUSION The increased ANXA2 may contribute to the occurrence and development of adenomyosis, and may play a important role in the dysmenorrhea. The present study may provide a new idea of diagnosis and treatment to adenomyosis-associated dysmenorrhea.
Collapse
|
22
|
International Society of Gynecological Pathologists (ISGyP) Endometrial Cancer Project: Guidelines From the Special Techniques and Ancillary Studies Group. Int J Gynecol Pathol 2019. [PMID: 29521846 PMCID: PMC6296838 DOI: 10.1097/pgp.0000000000000496] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The aim of this article is to propose guidelines and recommendations in problematic areas in pathologic reporting of endometrial carcinoma (EC) regarding special techniques and ancillary studies. An organizing committee designed a comprehensive survey with different questions related to pathologic features, diagnosis, and prognosis of EC that was sent to all members of the International Society of Gynecological Pathologists. The special techniques/ancillary studies group received 4 different questions to be addressed. Five members of the group reviewed the literature and came up with recommendations and an accompanying text which were discussed and agreed upon by all members of the group. Twelve different recommendations are made. They address the value of immunohistochemistry, ploidy, and molecular analysis for assessing prognosis in EC, the value of steroid hormone receptor analysis to predict response to hormone therapy, and parameters regarding applying immunohistochemistry and molecular tests for assessing mismatch deficiency in EC.
Collapse
|
23
|
Mariscal J, Fernandez-Puente P, Calamia V, Abalo A, Santacana M, Matias-Guiu X, Lopez-Lopez R, Gil-Moreno A, Alonso-Alconada L, Abal M. Proteomic Characterization of Epithelial-Like Extracellular Vesicles in Advanced Endometrial Cancer. J Proteome Res 2019; 18:1043-1053. [PMID: 30585730 DOI: 10.1021/acs.jproteome.8b00750] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Endometrial cancer (EC) is the most frequent gynecological cancer. Tumor dissemination affecting ∼20% of EC patients is characterized at the primary carcinoma by epithelial-to-mesenchymal transition (EMT) associated with myometrial infiltration. At distant sites, the interaction of circulating tumor cells (CTCs) with the microenvironment is crucial for metastatic colonization, with a participation of the extracellular vesicles (EVs). We comprehensively approached these primary and secondary sites to study the impact of tumor EVs on the metastatic efficiency of CTCs in EC. Tumor EVs in circulation reproduce the epithelial phenotype predominant in the primary carcinoma, whereas CTCs are characterized by an EMT phenotype. We modeled this EMT-related clinical scenario in the Hec1A endometrial cell line and characterized the epithelial-like EVs in circulation by SILAC proteome analysis. The identification of proteins involved in cell-cell and cell-matrix interaction and binding, together with in vitro evidence of an improved adhesion of CTC to a functionalized endothelium, suggests a contribution of the epithelial-like EVs in the homing of CTCs at metastatic sites. Accordingly, adhesion protein LGALS3BP was found to be significantly enriched in circulating EVs from a cohort of EC patients with a high risk of recurrence by targeted proteomics (multiple reaction monitoring), highlighting its potential in liquid biopsy in EC.
Collapse
Affiliation(s)
- Javier Mariscal
- Translational Medical Oncology, CIBERONC, Health Research Institute of Santiago (IDIS) , University Hospital of Santiago (SERGAS) , Santiago de Compostela 15706 , Spain
| | - Patricia Fernandez-Puente
- Proteomics Group-PBR2-ProteoRed/ISCIII, Rheumatology Division, Instituto de Investigación Biomédica de A Coruña (INIBIC) , University Hospital A Coruña (SERGAS), Universidade da Coruña , A Coruña 15006 , Spain
| | - Valentina Calamia
- Proteomics Group-PBR2-ProteoRed/ISCIII, Rheumatology Division, Instituto de Investigación Biomédica de A Coruña (INIBIC) , University Hospital A Coruña (SERGAS), Universidade da Coruña , A Coruña 15006 , Spain
| | - Alicia Abalo
- Translational Medical Oncology, CIBERONC, Health Research Institute of Santiago (IDIS) , University Hospital of Santiago (SERGAS) , Santiago de Compostela 15706 , Spain
| | - Maria Santacana
- Hospital Universitari Arnau de Vilanova , University of Lleida, IRBLLEIDA, CIBERONC , Lleida 08080 , Spain
| | - Xavier Matias-Guiu
- Hospital Universitari Arnau de Vilanova , University of Lleida, IRBLLEIDA, CIBERONC , Lleida 08080 , Spain
| | - Rafael Lopez-Lopez
- Translational Medical Oncology, CIBERONC, Health Research Institute of Santiago (IDIS) , University Hospital of Santiago (SERGAS) , Santiago de Compostela 15706 , Spain
| | - Antonio Gil-Moreno
- Biomedical Research Group in Gynecology, Vall Hebron Research Institute (VHIR) , Universitat Autonoma de Barcelona, CIBERONC , Barcelona 08035 , Spain
| | - Lorena Alonso-Alconada
- Translational Medical Oncology, CIBERONC, Health Research Institute of Santiago (IDIS) , University Hospital of Santiago (SERGAS) , Santiago de Compostela 15706 , Spain
| | - Miguel Abal
- Translational Medical Oncology, CIBERONC, Health Research Institute of Santiago (IDIS) , University Hospital of Santiago (SERGAS) , Santiago de Compostela 15706 , Spain
| |
Collapse
|
24
|
Sharma MC. Annexin A2 (ANX A2): An emerging biomarker and potential therapeutic target for aggressive cancers. Int J Cancer 2018; 144:2074-2081. [PMID: 30125343 DOI: 10.1002/ijc.31817] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/08/2018] [Accepted: 08/13/2018] [Indexed: 12/12/2022]
Abstract
ANX A2 is an important member of annexin family of proteins expressed on surface of endothelial cells (ECs), macrophages, mononuclear cells and various types of cancer cells. It exhibits high affinity binding for calcium (Ca++ ) and phospholipids. ANX A2 plays an important role in many biological processes such as endocytosis, exocytosis, autophagy, cell-cell communications and biochemical activation of plasminogen. On the cell surface ANX A2 organizes the assembly of plasminogen (PLG) and tissue plasminogen activator (tPA) for efficient conversion of PLG to plasmin, a serine protease. Proteolytic activity of plasmin is required for activation of inactive pro-metalloproteases (pro-MMPs) and latent growth factors for their biological actions. These activation steps are critical for degradation of extracellular matrix (ECM) and basement proteins (BM) for cancer cell invasion and metastasis. Increased expression of ANX A2 protein/gene has been correlated with invasion and metastasis in a variety of human cancers. Moreover, clinical studies have positively correlated ANX A2 protein expression with aggressive cancers and with resistance to anticancer drugs, shorter disease-free survival (DFS), and worse overall survival (OS). The mechanism(s) by which ANX A2 regulates cancer invasion and metastasis are beginning to emerge. Investigators used various technologies to target ANX A2 in preclinical model of human cancers and demonstrated exciting results. In this review article, we analyzed existing literature concurrent with our own findings and provided a critical overview of ANX A2-dependent mechanism(s) of cancer invasion and metastasis.
Collapse
Affiliation(s)
- Mahesh C Sharma
- Research Service, Veterans Affairs Medical Center, Washington, DC.,Department of Biochemistry and Molecular Medicine, George Washington University, Washington, DC
| |
Collapse
|
25
|
Annexin A2-mediated cancer progression and therapeutic resistance in nasopharyngeal carcinoma. J Biomed Sci 2018; 25:30. [PMID: 29598816 PMCID: PMC5877395 DOI: 10.1186/s12929-018-0430-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/20/2018] [Indexed: 02/07/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a head and neck cancer with poor clinical outcomes and insufficient treatments in Southeast Asian populations. Although concurrent chemoradiotherapy has improved recovery rates of patients, poor overall survival and low efficacy are still critical problems. To improve the therapeutic efficacy, we focused on a tumor-associated protein called Annexin A2 (ANXA2). This review summarizes the mechanisms by which ANXA2 promotes cancer progression (e.g., proliferation, migration, the epithelial-mesenchymal transition, invasion, and cancer stem cell formation) and therapeutic resistance (e.g., radiotherapy, chemotherapy, and immunotherapy). These mechanisms gave us a deeper understanding of the molecular aspects of cancer progression, and further provided us with a great opportunity to overcome therapeutic resistance of NPC and other cancers with high ANXA2 expression by developing this prospective ANXA2-targeted therapy.
Collapse
|
26
|
Christensen M, H�gdall C, Jochumsen K, H�gdall E. Annexin A2 and cancer: A systematic review. Int J Oncol 2017; 52:5-18. [DOI: 10.3892/ijo.2017.4197] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/10/2017] [Indexed: 11/06/2022] Open
Affiliation(s)
- Maria Christensen
- Department of Pathology, Molecular Unit, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Claus H�gdall
- Department of Gynaecology, Juliane Maria Centre (JMC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Kirsten Jochumsen
- Department of Gynaecology and Obstetrics, Odense University Hospital, Odense, Denmark
| | - Estrid H�gdall
- Department of Pathology, Molecular Unit, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
27
|
Wang Y, Chen K, Cai Y, Cai Y, Yuan X, Wang L, Wu Z, Wu Y. Annexin A2 could enhance multidrug resistance by regulating NF-κB signaling pathway in pediatric neuroblastoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:111. [PMID: 28814318 PMCID: PMC5559827 DOI: 10.1186/s13046-017-0581-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 08/10/2017] [Indexed: 12/14/2022]
Abstract
Background Chemotherapy is one of major therapeutic regimens for neuroblastoma (NB) in children. However, recurrence and metastasis associated with poor prognosis caused by acquired multidrug resistance remains a challenge. There is a great need to achieve new insight into the molecular mechanism of drug resistance in NB. The aim of this study is to identify novel drug sensitivity-related biomarkers as well as new therapeutic targets to overcome chemoresistance. Methods We proteome-wide quantitatively compared protein expression of two NB cell lines with different drug sensitivities, isolated from the same patient prior to and following chemotherapy. Annexin A2 (ANXA2) emerged as a key factor contributing to drug resistance in NB. Then, we assessed the correlation of ANXA2 expression and clinical characteristics using a tissue microarray. Further, the roles of ANXA2 in chemoresistance for NB and the underlying mechanisms were studied by using short hairpin RNA (shRNA) in vitro and vivo. Results First in total, over 6000 proteins were identified, and there were about 460 significantly regulated proteins which were up- or down-regulated by greater than two folds. We screened out ANXA2 which was upregulated by more than 12-fold in the chemoresistant NB cell line, and it might be involved in the drug resistance of NB. Then, using a tissue chip containing 42 clinical NB samples, we found that strong expression of ANXA2 was closely associated with advanced stage, greater number of chemotherapy cycles, tumor metastasis and poor prognosis. Following knockdown of ANXA2 in NB cell line SK-N-BE(2) using shRNA, we demonstrate enhanced drug sensitivity for doxorubicin (2.77-fold) and etoposide (7.87-fold) compared with control. Pro-apoptotic genes such as AIF and cleaved-PARP were upregulated. Inhibiting ANXA2 expression attenuated transcriptional activity of NF-κB via down-regulated nuclear translocation of subunit p50. Finally, simulated chemotherapy in a xenograft NB nude mouse model suggests that ANXA2 knockdown could improve clinical results in vivo. Conclusion Our profiling data provided a rich source for further study of the molecular mechanisms of acquired drug resistance in NB. Further study may determine the role of ANXA2 as a prognostic biomarker and a potential therapeutic target for patients with multidrug-resistant NB. Electronic supplementary material The online version of this article (doi:10.1186/s13046-017-0581-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yi Wang
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.1665, Kongjiang Road, Yangpu District, Shanghai, China.,Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, No. 1665, Kongjiang Road, Yangpu District, Shanghai, China
| | - Kai Chen
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.1665, Kongjiang Road, Yangpu District, Shanghai, China
| | - Yihong Cai
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.1665, Kongjiang Road, Yangpu District, Shanghai, China
| | - Yuanxia Cai
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.1665, Kongjiang Road, Yangpu District, Shanghai, China
| | - Xiaojun Yuan
- Pediatric Hematology & Oncology Department, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.1665, Kongjiang Road, Yangpu District, Shanghai, China
| | - Lifeng Wang
- Pathology Department, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.1665, Kongjiang Road, Yangpu District, Shanghai, China
| | - Zhixiang Wu
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.1665, Kongjiang Road, Yangpu District, Shanghai, China. .,Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, No. 1665, Kongjiang Road, Yangpu District, Shanghai, China.
| | - Yeming Wu
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.1665, Kongjiang Road, Yangpu District, Shanghai, China. .,Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, No. 1665, Kongjiang Road, Yangpu District, Shanghai, China.
| |
Collapse
|
28
|
Mass spectrometry as a tool for biomarkers searching in gynecological oncology. Biomed Pharmacother 2017; 92:836-842. [PMID: 28601044 DOI: 10.1016/j.biopha.2017.05.146] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 05/21/2017] [Accepted: 05/31/2017] [Indexed: 01/10/2023] Open
Abstract
Tumors of the female reproductive tract are an important target for the development of diagnostic, prognostic and therapeutic strategies. Recent research has turned to proteomics based on mass spectrometry techniques, to achieve more effective diagnostic results. Mass spectrometry (MS) enables identification and quantification of multiple molecules simultaneously in a single experiment according to mass to charge ratio (m/z). Several proteomic strategies may be applied to establish the function of a particular protein/peptide or to identify a novel disease and specific biomarkers related to it. Therefore, MS could facilitate treatment in patients with tumors by helping researchers discover new biomarkers and narrowly targeted drugs. This review presents a comprehensive discussion of mass spectrometry as a tool for biomarkers searching that may lead to the discovery of easily available diagnostic tests in gynecological oncology with emphasis on clinical proteomics over the past decade. The article provides an insight into different MS based proteomic approaches.
Collapse
|
29
|
Devis L, Moiola CP, Masia N, Martinez-Garcia E, Santacana M, Stirbat TV, Brochard-Wyart F, García Á, Alameda F, Cabrera S, Palacios J, Moreno-Bueno G, Abal M, Thomas W, Dufour S, Matias-Guiu X, Santamaria A, Reventos J, Gil-Moreno A, Colas E. Activated leukocyte cell adhesion molecule (ALCAM) is a marker of recurrence and promotes cell migration, invasion, and metastasis in early-stage endometrioid endometrial cancer. J Pathol 2017; 241:475-487. [PMID: 27873306 DOI: 10.1002/path.4851] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/17/2016] [Accepted: 10/29/2016] [Indexed: 02/06/2023]
Abstract
Endometrial cancer is the most common gynaecological cancer in western countries, being the most common subtype of endometrioid tumours. Most patients are diagnosed at an early stage and present an excellent prognosis. However, a number of those continue to suffer recurrence, without means of identification by risk classification systems. Thus, finding a reliable marker to predict recurrence becomes an important unmet clinical issue. ALCAM is a cell-cell adhesion molecule and member of the immunoglobulin superfamily that has been associated with the genesis of many cancers. Here, we first determined the value of ALCAM as a marker of recurrence in endometrioid endometrial cancer by conducting a retrospective multicentre study of 174 primary tumours. In early-stage patients (N = 134), recurrence-free survival was poorer in patients with ALCAM-positive compared to ALCAM-negative tumours (HR 4.237; 95% CI 1.01-17.76). This difference was more significant in patients with early-stage moderately-poorly differentiated tumours (HR 9.259; 95% CI 2.12-53.47). In multivariate analysis, ALCAM positivity was an independent prognostic factor in early-stage disease (HR 6.027; 95% CI 1.41-25.74). Then we demonstrated in vitro a role for ALCAM in cell migration and invasion by using a loss-of-function model in two endometrial cancer cell lines. ALCAM depletion resulted in a reduced primary tumour size and reduced metastatic local spread in an orthotopic murine model. Gene expression analysis of ALCAM-depleted cell lines pointed to motility, invasiveness, cellular assembly, and organization as the most deregulated functions. Finally, we assessed some of the downstream effector genes that are involved in ALCAM-mediated cell migration; specifically FLNB, TXNRD1, and LAMC2 were validated at the mRNA and protein level. In conclusion, our results highlight the potential of ALCAM as a recurrent biomarker in early-stage endometrioid endometrial cancer and point to ALCAM as an important molecule in endometrial cancer dissemination by regulating cell migration, invasion, and metastasis. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Laura Devis
- Biomedical Research Group in Gynecology, Vall Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Cristian P Moiola
- Biomedical Research Group in Gynecology, Vall Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Nuria Masia
- Cell Cycle and Ovarian Cancer Group, Biomedical Research Group in Gynecology, Vall Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Elena Martinez-Garcia
- Biomedical Research Group in Gynecology, Vall Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria Santacana
- Pathological Oncology Group and Pathology Department, Hospital Arnau de Vilanova, Lleida, Spain
| | | | | | - Ángel García
- Pathology Department, Vall Hebron University Hospital, Barcelona, Spain
| | | | - Silvia Cabrera
- Gynecological Oncology Department, Vall Hebron University Hospital, Barcelona, Spain
| | - Jose Palacios
- Department of Pathology, Hospital Universitario Ramón y Cajal, 28031 Madrid, Spain
| | - Gema Moreno-Bueno
- Hospital MD Anderson Cancer Centre Madrid, 28033 Madrid, Spain.,Departament of Biochemistry, Universidad Autonoma de Madrid (UAM), Instituto de Investigaciones Biomedicas 'Alberto Sols' (CSIC-UAM), IdiPAZ, 28046 Madrid, Spain
| | - Miguel Abal
- Translational Medical Oncology, Health Research Institute of Santiago (IDIS), Fundacion Ramon Dominguez, SERGAS, 15706 Santiago de Compostela, Spain
| | - William Thomas
- Department of Natural Sciences, Colby-Sawyer College, New London, NH 03257, USA
| | | | - Xavier Matias-Guiu
- Pathological Oncology Group and Pathology Department, Hospital Arnau de Vilanova, Lleida, Spain
| | - Anna Santamaria
- Cell Cycle and Ovarian Cancer Group, Biomedical Research Group in Gynecology, Vall Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jaume Reventos
- Biomedical Research Group in Gynecology, Vall Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Basic Sciences Department, International University of Catalonia, Barcelona, Spain
| | - Antonio Gil-Moreno
- Biomedical Research Group in Gynecology, Vall Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Gynecological Oncology Department, Vall Hebron University Hospital, Barcelona, Spain
| | - Eva Colas
- Biomedical Research Group in Gynecology, Vall Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Pathological Oncology Group and Pathology Department, Hospital Arnau de Vilanova, Lleida, Spain
| |
Collapse
|
30
|
Mittal P, Klingler-Hoffmann M, Arentz G, Winderbaum L, Kaur G, Anderson L, Scurry J, Leung Y, Stewart CJ, Carter J, Hoffmann P, Oehler MK. Annexin A2 and alpha actinin 4 expression correlates with metastatic potential of primary endometrial cancer. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1865:846-857. [PMID: 27784647 DOI: 10.1016/j.bbapap.2016.10.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/30/2016] [Accepted: 10/16/2016] [Indexed: 12/12/2022]
Abstract
The prediction of lymph node metastasis using clinic-pathological data and molecular information from endometrial cancers lacks accuracy and is therefore currently not routinely used in patient management. Consequently, although only a small percentage of patients with endometrial cancers suffer from metastasis, the majority undergo radical surgery including removal of pelvic lymph nodes. Upon analysis of publically available data and published research, we compiled a list of 60 proteins having the potential to display differential abundance between primary endometrial cancers with versus those without lymph node metastasis. Using data dependent acquisition LC-ESI-MS/MS we were able to detect 23 of these proteins in endometrial cancers, and using data independent LC-ESI-MS/MS the differential abundance of five of those proteins was observed. The localization of the differentially expressed proteins, was visualized using peptide MALDI MSI in whole tissue sections as well as tissue microarrays of 43 patients. The proteins identified were further validated by immunohistochemistry. Our data indicate that annexin A2 protein level is upregulated, whereas annexin A1 and α actinin 4 expression are downregulated in tumours with lymph node metastasis compared to those without lymphatic spread. Moreover, our analysis confirmed the potential of these markers, to be included in a statistical model for prediction of lymph node metastasis. The predictive model using highly ranked m/z values identified by MALDI MSI showed significantly higher predictive accuracy than the model using immunohistochemistry data. In summary, using publicly available data and complementary proteomics approaches, we were able to improve the prediction model for lymph node metastasis in EC.
Collapse
Affiliation(s)
- Parul Mittal
- Adelaide Proteomics Centre, School of Biological Sciences, The University of Adelaide, SA 5005; Institute for Photonics and Advanced Sensing (IPAS), The University of Adelaide, SA 5005
| | - Manuela Klingler-Hoffmann
- Adelaide Proteomics Centre, School of Biological Sciences, The University of Adelaide, SA 5005; Institute for Photonics and Advanced Sensing (IPAS), The University of Adelaide, SA 5005
| | - Georgia Arentz
- Adelaide Proteomics Centre, School of Biological Sciences, The University of Adelaide, SA 5005; Institute for Photonics and Advanced Sensing (IPAS), The University of Adelaide, SA 5005
| | - Lyron Winderbaum
- Adelaide Proteomics Centre, School of Biological Sciences, The University of Adelaide, SA 5005; Institute for Photonics and Advanced Sensing (IPAS), The University of Adelaide, SA 5005
| | - Gurjeet Kaur
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia
| | - Lyndal Anderson
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - James Scurry
- Faculty of Health and Medicine, University of New South Wales, Callaghan, New South Wales, Australia
| | - Yee Leung
- School of Women's and Infants' Health, University of Western Australia, Crawley, Western Australia, Australia
| | - Colin Jr Stewart
- School of Women's and Infants' Health, University of Western Australia, Crawley, Western Australia, Australia
| | - Jonathan Carter
- Department of Gynaecological Oncology, Chris O'Brien Lifehouse, Camperdown, New South Wales, Australia
| | - Peter Hoffmann
- Adelaide Proteomics Centre, School of Biological Sciences, The University of Adelaide, SA 5005; Institute for Photonics and Advanced Sensing (IPAS), The University of Adelaide, SA 5005.
| | - Martin K Oehler
- Discipline of Obstetrics and Gynaecology, School of Paediatrics and Reproductive Health, Research Centre for Reproductive Health, Robinson Institute, The University of Adelaide, SA 5005; Department of Gynaecological Oncology, Royal Adelaide Hospital, Adelaide, SA 5005, Australia.
| |
Collapse
|
31
|
Wang Y, Deng J, Guo G, Tong A, Peng X, Chen H, Xu J, Liu Y, You C, Zhou L. Clinical and prognostic role of annexin A2 in adamantinomatous craniopharyngioma. J Neurooncol 2016; 131:21-29. [DOI: 10.1007/s11060-016-2273-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 08/31/2016] [Indexed: 01/08/2023]
|
32
|
Abstract
The expression of annexin A2 (ANXA2) in nasopharyngeal carcinoma (NPC) cells induces the immunosuppressive response in dendritic cells; however, the oncogenic effect and clinical significance of ANXA2 have not been fully investigated in NPC cells. Immunohistochemical staining for ANXA2 was performed in 61 patients and the association with clinicopathological status was determined. Short hairpin (sh)RNA knockdown of ANXA2 was used to examine cellular effects of ANXA2, by investigating alterations in cell proliferation, migration, invasion, adhesion, tube-formation assay, and chemo- and radiosensitivity assays were performed. RT-qPCR, Western blotting, and immunofluorescence were applied to determine molecular expression levels. Clinical association studies showed that the expression of ANXA2 was significantly correlated with metastasis (p = 0.0326) and poor survival (p = 0.0256). Silencing of ANXA2 suppressed the abilities of cell proliferation, adhesion, migration, invasion, and vascular formation in NPC cell. ANXA2 up-regulated epithelial-mesenchymal transition associated signal proteins. Moreover, ANXA2 reduced sensitivities to irradiation and chemotherapeutic drugs. These results define ANXA2 as a novel prognostic factor for malignant processes, and it can serve as a molecular target of therapeutic interventions for NPC.
Collapse
|
33
|
Lokman NA, Pyragius CE, Ruszkiewicz A, Oehler MK, Ricciardelli C. Annexin A2 and S100A10 are independent predictors of serous ovarian cancer outcome. Transl Res 2016; 171:83-95.e1-2. [PMID: 26925708 DOI: 10.1016/j.trsl.2016.02.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 01/20/2016] [Accepted: 02/02/2016] [Indexed: 11/28/2022]
Abstract
Annexin A2, a calcium phospholipid binding protein, has been shown to play an important role in ovarian cancer metastasis. This study examined whether annexin A2 and S100A10 can be used as prognostic markers in serous ovarian cancer. ANXA2 and S100A10 gene expressions were assessed in publicly available ovarian cancer data sets and annexin A2 and S100A10 protein expressions were assessed by immunohistochemistry in a uniform cohort of stage III serous ovarian cancers (n = 109). Kaplan-Meier and Cox regression analyses were performed to assess the relationship between annexin A2 or S100A10 messenger RNA (mRNA) and protein expressions with clinical outcome. High ANXA2 mRNA levels in stage III serous ovarian cancers were associated with reduced progression-free survival (PFS; P = 0.023) and overall survival (OS; P = 0.0038), whereas high S100A10 mRNA levels predicted reduced OS (P = 0.0019). Using The Cancer Genome Atlas data sets, ANXA2 but not S100A10 expression was associated with higher clinical stage (P = 0.005), whereas both ANXA2 and S100A10 expressions were associated with the mesenchymal molecular subtype (P < 0.0001). Kaplan-Meier and Cox regression analyses showed that high stromal annexin A2 immunostaining was significantly associated with reduced PFS (P = 0.013) and OS (P = 0.044). Moreover, high cytoplasmic S100A10 staining was significantly associated with reduced OS (P = 0.027). Multivariate Cox regression analysis showed stromal annexin A2 (P = 0.009) and cytoplasmic S100A10 (P = 0.016) levels to be independent predictors of OS. Patients with high stromal annexin A2 and high cytoplasmic S100A10 expressions had a 3.4-fold increased risk of progression (P = 0.02) and 7.9-fold risk of ovarian cancer death (P = 0.04). Our findings indicate that together annexin A2 and S100A10 expressions are powerful predictors of serous ovarian cancer outcome.
Collapse
Affiliation(s)
- Noor A Lokman
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia; Adelaide Proteomics Centre, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Carmen E Pyragius
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Andrew Ruszkiewicz
- Centre of Cancer Biology, University of South Australia, Adelaide, South Australia, Australia; Department of Anatomical Pathology, SA Pathology, Adelaide, South Australia, Australia
| | - Martin K Oehler
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia; Department of Gynaecological Oncology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Carmela Ricciardelli
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia.
| |
Collapse
|
34
|
Mittal P, Klingler-Hoffmann M, Arentz G, Zhang C, Kaur G, Oehler MK, Hoffmann P. Proteomics of endometrial cancer diagnosis, treatment, and prognosis. Proteomics Clin Appl 2015; 10:217-29. [DOI: 10.1002/prca.201500055] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 08/13/2015] [Accepted: 11/02/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Parul Mittal
- Adelaide Proteomics Centre; School of Biological Sciences; The University of Adelaide; Adelaide Australia
- Institute for Photonics and Advanced Sensing (IPAS); The University of Adelaide; Adelaide Australia
| | - Manuela Klingler-Hoffmann
- Adelaide Proteomics Centre; School of Biological Sciences; The University of Adelaide; Adelaide Australia
- Institute for Photonics and Advanced Sensing (IPAS); The University of Adelaide; Adelaide Australia
| | - Georgia Arentz
- Adelaide Proteomics Centre; School of Biological Sciences; The University of Adelaide; Adelaide Australia
- Institute for Photonics and Advanced Sensing (IPAS); The University of Adelaide; Adelaide Australia
| | - Chao Zhang
- Adelaide Proteomics Centre; School of Biological Sciences; The University of Adelaide; Adelaide Australia
- Institute for Photonics and Advanced Sensing (IPAS); The University of Adelaide; Adelaide Australia
| | - Gurjeet Kaur
- Institute for Research in Molecular Medicine; Universiti Sains Malaysia; Minden Pulau Pinang Malaysia
| | - Martin K. Oehler
- Department of Gynaecological Oncology; Royal Adelaide Hospital; North Terrace Adelaide Australia
| | - Peter Hoffmann
- Adelaide Proteomics Centre; School of Biological Sciences; The University of Adelaide; Adelaide Australia
| |
Collapse
|
35
|
Zhang H, Yao M, Wu W, Qiu L, Sai W, Yang J, Zheng W, Huang J, Yao D. Up-regulation of annexin A2 expression predicates advanced clinicopathological features and poor prognosis in hepatocellular carcinoma. Tumour Biol 2015; 36:9373-9383. [PMID: 26109000 DOI: 10.1007/s13277-015-3678-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 06/15/2015] [Indexed: 12/15/2022] Open
Abstract
Hepatic annexin A2 (ANXA2) orchestrates multiple biologic processes and clinical symptoms and plays a key role in development, metastasis, and drug resistance of lethal hepatocellular carcinoma (HCC). However, the prognostic significance of ANXA2 for HCC has not been elucidated up to now. In this study, ANXA2 was frequently found to be up-regulated in HCC tissues compared with benign liver disease (BLD) tissues, which was consistent with the results in serum samples and tissue specimens of patients with HCC. Furthermore, ANXA2 expression was significantly correlated with differentiated degree, intrahepatic metastasis, portal vein thrombus, and tumor node metastasis (TNM) staging. More importantly, increased ANXA2 level was first confirmed to be closely associated with shortened overall survival of HCC (χ (2) = 12.872, P = 0.005) and identified as an independent prognostic factor (hazard ratio 1.338, 95 % confidence interval (CI) 1.013 ~ 1.766, P = 0.040), suggesting that ANXA2 up-regulation might represent an acquired metastasis phenotype of HCC, help to screen out high-risk population for HCC, or more effectively treat a subset of postsurgical HCC patients positive for ANXA2.
Collapse
Affiliation(s)
- Haijian Zhang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 West Temple Road, Jiangsu, 226001, China
| | - Min Yao
- Department of Immunology, Medical School of Nantong University, Nantong, China
| | - Wei Wu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 West Temple Road, Jiangsu, 226001, China
| | - Liwei Qiu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 West Temple Road, Jiangsu, 226001, China
| | - Wenli Sai
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 West Temple Road, Jiangsu, 226001, China
| | - Junling Yang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 West Temple Road, Jiangsu, 226001, China
| | - Wenjie Zheng
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 West Temple Road, Jiangsu, 226001, China
| | - Jianfei Huang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, 226001, China.
| | - Dengfu Yao
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 West Temple Road, Jiangsu, 226001, China.
| |
Collapse
|
36
|
Deng L, Gao Y, Li X, Cai M, Wang H, Zhuang H, Tan M, Liu S, Hao Y, Lin B. Expression and clinical significance of annexin A2 and human epididymis protein 4 in endometrial carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2015; 34:96. [PMID: 26362938 PMCID: PMC4567805 DOI: 10.1186/s13046-015-0208-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/19/2015] [Indexed: 01/30/2023]
Abstract
Background It is well-known that the treatment and monitoring methods are limited for advanced stage of endometrial carcinoma. Biological molecules with expression changes during tumor progression become potential therapeutic targets for advanced stage endometrial carcinoma. Annexin A2 (ANXA2) has been reported to be overexpressed in recurrent endometrial carcinoma, and the expression of human epididymis protein 4 (HE4) is upregulated in endometrial carcinoma. What’s more, ANXA2 and HE4 interacted in ovarian cancer and promoted the malignant biological behavior. We speculated that their interaction may exist in endometrial carcinoma as well. We evaluated the expression and the correlation relationship of ANXA2 and HE4 in endometrial carcinoma. Methods The expression of ANXA2 and HE4 protein in 84 endometrial carcinoma, 30 endometrial atypical hyperplasia, and 18 normal endometrial tissue samples were then measured using an immunohistochemical assay in paraffin embedded endometrial tissues. The structural relationship between ANXA2 and HE4 was explored by immunoprecipitation and double immunofluorescent staining. Results ANXA2 and HE4 co-localized in both endometrial tissues and endometrial carcinoma cells. ANXA2 and HE4 were expressed in 95.2 % and 85.7 % of the the endometrial carcinoma, respectively, which were significantly higher than normal endometrium (55.6 % and 16.7 %, both p < 0.05). The expression of ANXA2 and HE4 was significantly correlated with FIGO stage, degree of differentiation, myometrial invasion, and lymph node metastasis. ANXA2 was an independent risk factor for the prognosis of endometrial carcinoma (p < 0.05, hazard ratio [HR] = 8.004). The expression of ANXA2 and HE4 was positively correlated (Spearman correlation coefficient = 0.228, p < 0.05). HE4 was an independent factor for ANXA2 in multivariate linear regression model (p < 0.05). Conclusion We revealed the co-localization of ANXA2 and HE4 in endometrial carcinoma. Expression levels of ANXA2 and HE4 were closely related to the malignant biological behavior of endometrial carcinoma, and ANXA2 was an independent risk factor for poor prognosis. The expression of ANXA2 and HE4 can affect each other. Electronic supplementary material The online version of this article (doi:10.1186/s13046-015-0208-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lu Deng
- Department of Gynaecology and Obstetrics, Shengjing Hospital affiliated to China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China.
| | - Yiping Gao
- Department of Gynaecology and Obstetrics, Shengjing Hospital affiliated to China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China. .,Tianjin Central Hospital of Gynaecology and Obstetrics, Tianjin, China.
| | - Xiao Li
- Department of Gynaecology and Obstetrics, Shengjing Hospital affiliated to China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China.
| | - Mingbo Cai
- Department of Gynaecology and Obstetrics, Shengjing Hospital affiliated to China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China. .,Department of Obstetrics and Gynecology, Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Huimin Wang
- Department of Gynaecology and Obstetrics, Shengjing Hospital affiliated to China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China.
| | - Huiyu Zhuang
- Department of Gynaecology and Obstetrics, Shengjing Hospital affiliated to China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China. .,Department of Gynecology and Obstetrics, Beijing chaoyang Hospital, Capital Medical University, Beijing, China.
| | - Mingzi Tan
- Department of Gynaecology and Obstetrics, Shengjing Hospital affiliated to China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China.
| | - Shuice Liu
- Department of Gynaecology and Obstetrics, Shengjing Hospital affiliated to China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China.
| | - Yingying Hao
- Department of Gynaecology and Obstetrics, Shengjing Hospital affiliated to China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China.
| | - Bei Lin
- Department of Gynaecology and Obstetrics, Shengjing Hospital affiliated to China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
37
|
Overexpression of ANXA2 predicts adverse outcomes of patients with malignant tumors: a systematic review and meta-analysis. Med Oncol 2014; 32:392. [PMID: 25476478 DOI: 10.1007/s12032-014-0392-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 11/19/2014] [Indexed: 01/23/2023]
Abstract
Accumulated evidence has indicated a correlation between annexin A2 (ANXA2) and malignancy progression. However, whether ANXA2 expression can be considered as a prognostic factor for cancer patients remains controversial. This meta-analysis aimed to explore the prognostic value of ANXA2 overexpression. A systematically comprehensive search for studies investigating the relationships between ANXA2 expression and outcome of malignant tumor patients was performed using PubMed and EMBASE. Prognostic value of ANXA2 expression in malignancy patients was evaluated regarding overall survival (OS), disease-free survival (DFS) and various clinicopathological features measured by pooled hazard ratios (HRs) or odds ratios and their 95 % confidence intervals (CIs). Fifteen studies including 2,321 patients were enrolled in the meta-analysis. Our results showed that the overexpression of ANXA2 was correlated with poor prognosis in terms of OS (HR 1.56; 95 % CI 1.24-1.97; P < 0.001) and DFS (HR 1.47; 95 % CI 1.18-1.83; P < 0.001) in patients with malignant tumors. In addition, ANXA2 overexpression was significantly associated with tumor invasion (HR 2.06; 95 % CI 1.47-2.89; P < 0.001) and lymph node metastasis (HR 2.25; 95 % CI 1.21-4.15; P = 0.01). However, when age, tumor stage, histological grade and distant metastasis were considered, no obvious association was observed. Publication bias was absent. Sensitivity analysis suggested that the results of this meta-analysis were robust. The present meta-analysis results indicated that ANXA2 overexpression might be associated with poor outcomes in patients with malignant tumors.
Collapse
|