1
|
Saeedi-Moghaddam F, Mohammaditabar M, Mozhgani SH. Bovine leukemia virus (BLV) and risk of breast cancer; a systematic review and meta-analysis. Retrovirology 2024; 21:20. [PMID: 39623467 PMCID: PMC11613672 DOI: 10.1186/s12977-024-00653-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 11/03/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND The role of viruses in the development of breast cancer has been a subject of debate and extensive research over the past few decades. Several studies have examined the association between Bovine leukemia virus (BLV) infection and the risk of developing breast cancer; however, their findings have yielded inconsistent results. To address this uncertainty, the purpose of the present study was to conduct a systematic review and meta-analysis to determine any potential association between BLV and breast cancer. METHODS The literature search was performed by finding related articles from PubMed, Web of Science, Scopus, EMBASE, and ScienceDirect databases. Statistical analysis was conducted using the meta package in R Studio and Review Manager 5.1. The I2 test was used to assess between-study heterogeneity. The Mantel-Haenszel method calculated the pooled odds ratio and its 95% confidence interval. Studies were divided into subgroups for comparison. RESULTS The literature search identified a total of 17 studies that were deemed suitable for inclusion in the systematic review. Out of these 17 studies, 12 were used in the subsequent meta-analysis. Combining the data from these eligible studies, we calculated the pooled multi-factor adjusted odds ratio (OR) and a 95% confidence interval (CI). Considering the heterogeneity observed across the studies, the result obtained using the fixed effects model was 2.12 (1.77, 2.54). However, upon removing the six studies that contributed significantly to the heterogeneity, the pooled OR with a 95% CI was recalculated to be 3.92 (2.98, 5.16). CONCLUSION The result of this study suggests that BLV infection is statistically associated with Breast cancer.
Collapse
Affiliation(s)
| | | | - Sayed-Hamidreza Mozhgani
- Department of Microbiology and Virology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
- Non-communicable Disease Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
2
|
Dhurve G, Behera SR, Kodetham G, Siddavattam D. Outer membrane vesicles of Acinetobacter baumannii DS002 carry circular DNA similar to bovine meat and milk factors (BMMFs) and SPHINX 2.36 and probably play a role in interdomain lateral gene transfer. Microbiol Spectr 2024; 12:e0081724. [PMID: 39101807 PMCID: PMC11370262 DOI: 10.1128/spectrum.00817-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/20/2024] [Indexed: 08/06/2024] Open
Abstract
The discovery of Replication Competent Circular DNA molecules in mammalian cells and tissues is being linked to debilitating diseases, such as multiple sclerosis (MS), bovine spongiform encephalopathy (BSE), and colorectal cancer (CRC). These circular DNA molecules, otherwise known as bovine meat and milk factors (BMMFs) and Slow Progressive Hidden INfections of variable (X) latency (SPHINX), bear significant (80%) sequence similarity with the plasmids of Acinetobacter baumannii strains. Nanostructures, such as bacterial outer membrane vesicles (OMVs) serve as vehicles for transporting biomolecular cargo and have the potential to facilitate interkingdom lateral mobility of DNA. Strengthening the proposed hypothesis, this study demonstrates that OMVs derived from A. baumannii DS002 carrying four plasmids and genome (pTS236) of phage, AbDs1, successfully reached different parts of the body, including the central nervous system, following the injection of fluorescein isothiocyanate (FITC)-labeled OMVs into experimental mice. Out of the four OMV-associated plasmids, three (pTS4586, pTS9900, and pTS134338) were identified within the lumen, and the fourth one (pTS11291) was found on the surface of OMVs. In addition to the indigenous plasmids, the phage-encoded protein, Orf96, anchored on the surface of the OMVs by establishing a strong interaction with the OMV-associated porin, OmpA. Intriguingly, a subset of labeled OMVs, when incubated with Neuro2A cells, translocated across the membrane and reached to the cytoplasmic space of the cells. Collectively, the experimental evidence presented herein underscores the promising potential of OMVs as vehicles for delivering molecular cargo containing plasmids and phage genomes to diverse mammalian tissues and cells. IMPORTANCE Several independent studies have demonstrated the existence of replication competent circular DNA molecules of bacterial and viral origin in mammalian cells and tissues. However, studies about their origin and lateral mobility to mammalian cells are scarce. Our work describes the existence of circular DNA, similar to that of DNA molecules identified in mammalian cells, OMVs derived from soil isolate of A. baumannii DS002. Furthermore, the work also provides visual evidence that demonstrates the passage of labeled OMVs to different organs of experimental mice within hours after intravenously administering OMVs into experimental mice. Some of the labeled OMVs have even crossed the membrane of Neuro2A, suggesting the existence of interkingdom horizontal mobility between bacteria and mammals.
Collapse
Affiliation(s)
- Ganeshwari Dhurve
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Sandhya Rani Behera
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Gopinath Kodetham
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Dayananda Siddavattam
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| |
Collapse
|
3
|
Brantley KD, Tamimi RM. The association between infectious agents and breast cancer: a review of the epidemiologic evidence. Breast Cancer Res Treat 2024; 207:235-252. [PMID: 38971906 DOI: 10.1007/s10549-024-07388-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 05/22/2024] [Indexed: 07/08/2024]
Abstract
PURPOSE Several viruses have been casually linked to human cancers, including cervical, nasopharyngeal, liver, sarcoma, and Merkel cell carcinomas. However, the etiologic contribution of viral infections to breast cancer, the number one incident cancer among women worldwide, is not well established. Among studies exploring associations of viruses with breast cancer, potential linkages have been identified between breast cancer and five viruses: beta retrovirus, (i.e., mouse mammary tumor virus), human papillomavirus, Epstein Barr virus. bovine leukemia virus, and human cytomegalovirus. METHODS In this review, we provide a comprehensive evaluation of epidemiological ecologic, case-control, case-only, and cohort studies investigating these associations. We discuss results from several existing reviews and meta-analyses, evaluate epidemiological studies published in the past five years, and assess the relationship between these viruses and breast tumor clinicopathological factors. RESULTS The strongest epidemiological evidence for a viral role in breast cancer exists for MMTV and HPV, though limitations include lack of prospective studies for MMTV and potential detection bias in HPV studies. Viral detection challenges have limited studies of EBV and HCMV. Fewer studies have evaluated BLV, and though it has been associated with higher risk of breast cancer, sample sizes are quite small. CONCLUSION: While epidemiologic evidence exists for an association between these five viruses and breast cancer, various methodological issues and lack of prospective studies preclude robust conclusions. Future research should prioritize establishing a temporal relationship between infection and disease, minimizing misclassification of detection assays, and further exploring the influence of co-infections.
Collapse
Affiliation(s)
- Kristen D Brantley
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MS, USA.
| | - Rulla M Tamimi
- Department of Population Health Sciences, Weill Cornell Medicine, New York, USA
| |
Collapse
|
4
|
Nikitina E, Burk‐Körner A, Wiesenfarth M, Alwers E, Heide D, Tessmer C, Ernst C, Krunic D, Schrotz‐King P, Chang‐Claude J, von Winterfeld M, Herpel E, Brobeil A, Brenner H, Heikenwalder M, Hoffmeister M, Kopp‐Schneider A, Bund T. Bovine meat and milk factor protein expression in tumor-free mucosa of colorectal cancer patients coincides with macrophages and might interfere with patient survival. Mol Oncol 2024; 18:1076-1092. [PMID: 36811271 PMCID: PMC11076986 DOI: 10.1002/1878-0261.13390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/05/2022] [Accepted: 02/03/2023] [Indexed: 02/24/2023] Open
Abstract
Bovine milk and meat factors (BMMFs) are plasmid-like DNA molecules isolated from bovine milk and serum, as well as the peritumor of colorectal cancer (CRC) patients. BMMFs have been proposed as zoonotic infectious agents and drivers of indirect carcinogenesis of CRC, inducing chronic tissue inflammation, radical formation and increased levels of DNA damage. Data on expression of BMMFs in large clinical cohorts to test an association with co-markers and clinical parameters were not previously available and were therefore assessed in this study. Tissue sections with paired tumor-adjacent mucosa and tumor tissues of CRC patients [individual cohorts and tissue microarrays (TMAs) (n = 246)], low-/high-grade dysplasia (LGD/HGD) and mucosa of healthy donors were used for immunohistochemical quantification of the expression of BMMF replication protein (Rep) and CD68/CD163 (macrophages) by co-immunofluorescence microscopy and immunohistochemical scoring (TMA). Rep was expressed in the tumor-adjacent mucosa of 99% of CRC patients (TMA), was histologically associated with CD68+/CD163+ macrophages and was increased in CRC patients when compared to healthy controls. Tumor tissues showed only low stromal Rep expression. Rep was expressed in LGD and less in HGD but was strongly expressed in LGD/HGD-adjacent tissues. Albeit not reaching statistical significance, incidence curves for CRC-specific death were increased for higher Rep expression (TMA), with high tumor-adjacent Rep expression being linked to the highest incidence of death. BMMF Rep expression might represent a marker and early risk factor for CRC. The correlation between Rep and CD68 expression supports a previous hypothesis that BMMF-specific inflammatory regulations, including macrophages, are involved in the pathogenesis of CRC.
Collapse
Affiliation(s)
- Ekaterina Nikitina
- Division of Episomal‐persistent DNA in Cancer‐ and Chronic DiseasesGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Amelie Burk‐Körner
- Division of Episomal‐persistent DNA in Cancer‐ and Chronic DiseasesGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Manuel Wiesenfarth
- Division of BiostatisticsGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Elizabeth Alwers
- Division of Clinical Epidemiology and Aging ResearchGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Danijela Heide
- Division of Chronic Inflammation and CancerGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Claudia Tessmer
- Monoclonal Antibody Unit of the Genomics and Proteomics Core FacilityGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Claudia Ernst
- Division of Episomal‐persistent DNA in Cancer‐ and Chronic DiseasesGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Damir Krunic
- Light Microscopy FacilityGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Petra Schrotz‐King
- Division of Preventive OncologyGerman Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT)HeidelbergGermany
| | - Jenny Chang‐Claude
- Unit of Genetic EpidemiologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Cancer Epidemiology Group, University Medical Center Hamburg‐EppendorfUniversity Cancer Center HamburgHamburgGermany
| | - Moritz von Winterfeld
- Institute of PathologyUniversity Hospital HeidelbergGermany
- Pathologie RosenheimGermany
| | - Esther Herpel
- Institute of PathologyUniversity Hospital HeidelbergGermany
- Tissue Bank of the National Center for Tumor Diseases (NCT) HeidelbergGermany
| | - Alexander Brobeil
- Institute of PathologyUniversity Hospital HeidelbergGermany
- Tissue Bank of the National Center for Tumor Diseases (NCT) HeidelbergGermany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging ResearchGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Division of Preventive OncologyGerman Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT)HeidelbergGermany
- German Cancer ConsortiumGerman Cancer Research CenterHeidelbergGermany
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and CancerGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging ResearchGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | | | - Timo Bund
- Division of Episomal‐persistent DNA in Cancer‐ and Chronic DiseasesGerman Cancer Research Center (DKFZ)HeidelbergGermany
| |
Collapse
|
5
|
Mobaraki G, Shi S, Smits KM, Severens K, Lommen K, Rennspiess D, Chteinberg E, Winnepenninckx V, Samarska I, Klufah F, zur Hausen A. Bovine Meat and Milk Factor-like Sequences Are Frequently Detected in Renal Cell Carcinoma Tissues. Cancers (Basel) 2024; 16:1746. [PMID: 38730698 PMCID: PMC11083248 DOI: 10.3390/cancers16091746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/14/2024] [Accepted: 04/18/2024] [Indexed: 05/13/2024] Open
Abstract
Previous studies have indicated a potential role of diet in the pathogenesis of renal cell carcinoma (RCC). Recently, circular bovine meat and milk factor (BMMF) DNAs have been identified in peritumoral tissues of human colon and breast cancers. Here, we investigated the prevalence of the DNA of these novel human pathogenic infectious agents in RCC and adjacent peritumoral renal tissues. DNA was extracted from formalin-fixed and paraffin-embedded (FFPE) RCC and peritumoral kidney tissues, including a test (n = 11) and a validation (n = 152) collection. BMMF1 and BMMF2 consensus primers were designed to screen for the presence of BMMF1- and BMMF2-like DNA. In addition, BMMF-specific PCR was performed on selected cases to test for the presence of additional regions of BMMF1 and BMMF2 genomes. A reference collection of hepatocellular carcinomas (HCCs; n = 60) and adjacent peritumoral liver tissues (n = 50) was also included. Our results demonstrated that BMMF1 and BMMF2 DNAs are frequently found in human RCC tissues and are particularly more prevalent in peritumoral kidney tissues. Of note, BMMF1 and BMMF2 genotype heterogeneity was higher in peritumoral kidney tissues compared to RCC tissues. This is the first study to directly test human FFPE tissues for BMMF1- and BMMF2-like DNA using consensus PCR and demonstrate BMMF DNA in neoplastic and peritumoral kidney tissues. The findings are in line with the recently proposed indirect etiopathogenetic role of BMMFs in, e.g., colorectal carcinogenesis. Follow-up studies are needed to explore the potential role of BMMFs in the etiopathogenesis of RCC.
Collapse
Affiliation(s)
- Ghalib Mobaraki
- Department of Pathology, GROW—Institute for Oncology & Reproduction, Maastricht University Medical Centre+, 6229 HX Maastricht, The Netherlands; (G.M.); (S.S.); (K.M.S.); (K.S.); (K.L.); (D.R.); (V.W.); (I.S.); (F.K.)
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Shuai Shi
- Department of Pathology, GROW—Institute for Oncology & Reproduction, Maastricht University Medical Centre+, 6229 HX Maastricht, The Netherlands; (G.M.); (S.S.); (K.M.S.); (K.S.); (K.L.); (D.R.); (V.W.); (I.S.); (F.K.)
| | - Kim M. Smits
- Department of Pathology, GROW—Institute for Oncology & Reproduction, Maastricht University Medical Centre+, 6229 HX Maastricht, The Netherlands; (G.M.); (S.S.); (K.M.S.); (K.S.); (K.L.); (D.R.); (V.W.); (I.S.); (F.K.)
| | - Kim Severens
- Department of Pathology, GROW—Institute for Oncology & Reproduction, Maastricht University Medical Centre+, 6229 HX Maastricht, The Netherlands; (G.M.); (S.S.); (K.M.S.); (K.S.); (K.L.); (D.R.); (V.W.); (I.S.); (F.K.)
| | - Kim Lommen
- Department of Pathology, GROW—Institute for Oncology & Reproduction, Maastricht University Medical Centre+, 6229 HX Maastricht, The Netherlands; (G.M.); (S.S.); (K.M.S.); (K.S.); (K.L.); (D.R.); (V.W.); (I.S.); (F.K.)
| | - Dorit Rennspiess
- Department of Pathology, GROW—Institute for Oncology & Reproduction, Maastricht University Medical Centre+, 6229 HX Maastricht, The Netherlands; (G.M.); (S.S.); (K.M.S.); (K.S.); (K.L.); (D.R.); (V.W.); (I.S.); (F.K.)
| | - Emil Chteinberg
- Institute of Human Genetics, Ulm University Medical Center, 89081 Ulm, Germany
| | - Véronique Winnepenninckx
- Department of Pathology, GROW—Institute for Oncology & Reproduction, Maastricht University Medical Centre+, 6229 HX Maastricht, The Netherlands; (G.M.); (S.S.); (K.M.S.); (K.S.); (K.L.); (D.R.); (V.W.); (I.S.); (F.K.)
| | - Iryna Samarska
- Department of Pathology, GROW—Institute for Oncology & Reproduction, Maastricht University Medical Centre+, 6229 HX Maastricht, The Netherlands; (G.M.); (S.S.); (K.M.S.); (K.S.); (K.L.); (D.R.); (V.W.); (I.S.); (F.K.)
| | - Faisal Klufah
- Department of Pathology, GROW—Institute for Oncology & Reproduction, Maastricht University Medical Centre+, 6229 HX Maastricht, The Netherlands; (G.M.); (S.S.); (K.M.S.); (K.S.); (K.L.); (D.R.); (V.W.); (I.S.); (F.K.)
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Al-Baha University, Al Baha 65528, Saudi Arabia
| | - Axel zur Hausen
- Department of Pathology, GROW—Institute for Oncology & Reproduction, Maastricht University Medical Centre+, 6229 HX Maastricht, The Netherlands; (G.M.); (S.S.); (K.M.S.); (K.S.); (K.L.); (D.R.); (V.W.); (I.S.); (F.K.)
| |
Collapse
|
6
|
Amato S, Ramsey J, Ahern TP, Rovnak J, Barlow J, Weaver D, Eyasu L, Singh R, Cintolo-Gonzalez J. Exploring the presence of bovine leukemia virus among breast cancer tumors in a rural state. Breast Cancer Res Treat 2023; 202:325-334. [PMID: 37517027 DOI: 10.1007/s10549-023-07061-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 05/31/2023] [Indexed: 08/01/2023]
Abstract
PURPOSE The bovine leukemia virus (BLV) is a deltaretrovirus that causes malignant lymphoma and lymphosarcomas in cattle globally and has high prevalence among large scale U.S. dairy herds. Associations between presence of BLV DNA in human mammary tissue and human breast cancer incidence have been reported. We sought to estimate the prevalence of BLV DNA in breast cancer tissue samples in a rural state with an active dairy industry. METHODS We purified genomic DNA from 56 fresh-frozen breast cancer tissue samples (51 tumor samples, 5 samples representing adjacent normal breast tissue) banked between 2016 and 2019. Using nested PCR assays, multiple BLV tax sequence primers and primers for the long terminal repeat (LTR) were used to detect BLV DNA in tissue samples and known positive control samples, including the permanently infected fetal lamb kidney cell line (FLK-BLV) and blood from BLV positive cattle. RESULTS The median age of patients from which samples were obtained at the time of treatment was 60 (40-93) and all were female. Ninety percent of patients had invasive ductal carcinoma. The majority were poorly differentiated (60%). On PCR assay, none of the tumor samples tested positive for BLV DNA, despite having consistent signals in positive controls. CONCLUSION We did not find BLV DNA in fresh-frozen breast cancer tumors from patients presenting to a hospital in Vermont. Our findings suggest a low prevalence of BLV in our patient population and a need to reevaluate the association between BLV and human breast cancer.
Collapse
Affiliation(s)
- Stas Amato
- Department of General Surgery, University of Vermont Medical Center, Burlington, VT, USA
- Department of Surgery, Larner College of Medicine, University of Vermont, 89 Beaumont Ave., B227, Burlington, VT, 05405, USA
| | - Jon Ramsey
- Department of Biochemistry, University of Vermont, Burlington, VT, USA
| | - Thomas P Ahern
- Department of Surgery, Larner College of Medicine, University of Vermont, 89 Beaumont Ave., B227, Burlington, VT, 05405, USA
| | - Joel Rovnak
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - John Barlow
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT, USA
| | - Donald Weaver
- Department of Pathology, University of Vermont Medical Center, Burlington, VT, USA
| | - Lud Eyasu
- Department of Surgery, Larner College of Medicine, University of Vermont, 89 Beaumont Ave., B227, Burlington, VT, 05405, USA
| | - Rohit Singh
- Division of Hematology/Oncology, Department of Medicine, University of Vermont Medical Center, Burlington, VT, USA
| | - Jessica Cintolo-Gonzalez
- Department of General Surgery, University of Vermont Medical Center, Burlington, VT, USA.
- Department of Surgery, Larner College of Medicine, University of Vermont, 89 Beaumont Ave., B227, Burlington, VT, 05405, USA.
| |
Collapse
|
7
|
Shrifteylik A, Maiolini M, Dufault M, Austin DL, Subhadra B, Lamichhane P, Deshmukh RR. A Current Review on the Role of Prebiotics in Colorectal Cancer. BIOLOGICS 2023; 3:209-231. [DOI: 10.3390/biologics3030012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Colorectal cancer (CRC) is one of the leading causes of death in the United States and worldwide. Recent evidence has corroborated a strong correlation between poor diet and the development of CRC, and further research is being conducted to investigate the association between intestinal microbiome and the development of cancer. New studies have established links with certain foods and synthetic food compounds that may be effective in reducing the risk for carcinogenesis by providing protection against cancer cell proliferation and antagonizing oncogenic pathways. Prebiotics are gaining popularity as studies have demonstrated chemo-preventive as well as anticancer potential of prebiotics. This paper aims to discuss the wide definition and scope of prebiotics by reviewing the studies that provide insights into their effects on human health in the context of colorectal cancer.
Collapse
Affiliation(s)
- Anna Shrifteylik
- School of Pharmacy, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | | | - Matthew Dufault
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA
| | - Daniel L. Austin
- School of Pharmacy, Lake Erie College of Osteopathic Medicine, Erie, PA 16509, USA
| | | | | | | |
Collapse
|
8
|
Habermann D, Klempt M, Franz CMAP. Identification and Characterization of Novel SPHINX/BMMF-like DNA Sequences Isolated from Non-Bovine Foods. Genes (Basel) 2023; 14:1307. [PMID: 37510212 PMCID: PMC10378824 DOI: 10.3390/genes14071307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Sixteen novel circular rep-encoding DNA sequences with high sequence homologies to previously described SPHINX and BMMF sequences were isolated for the first time from non-bovine foods (pork, wild boar, chicken meat, Alaska pollock, pangasius, black tiger shrimp, apple, carrot, and sprouts from alfalfa, radish, and broccoli). The phylogenetic analysis of the full-length circular genomes grouped these together with previously described representatives of SPHINX/BMMF group 1 and 2 sequences (eight in each group). The characterization of genome lengths, genes present, and conserved structures confirmed their relationship to the known SPHINX/BMMF sequences. Further analysis of iteron-like tandem repeats of SPHINX/BMMF group 1-related genomes revealed a correlation with both full-length sequence tree branches as well as Rep protein sequence tree branches and was able to differentiate subtypes of SPHINX/BMMF group 1 members. For the SPHINX/BMMF group 2 members, a distinct grouping of sequences into two clades (A and B) with subgroups could be detected. A deeper investigation of potential functional regions upstream of the rep gene of the new SPHINX/BMMF group 2 sequences revealed homologies to the dso and sso regions of known plasmid groups that replicate via the rolling circle mechanism. Phylogenetic analyses were accomplished by a Rep protein sequence analysis of different ssDNA viruses, pCRESS, and plasmids with the known replication mechanism, as this yielded deeper insights into the relationship of SPHINX/BMMF group 1 and 2 Rep proteins. A clear relation of these proteins to the Rep proteins of plasmids could be confirmed. Interestingly, for SPHINX/BMMF group 2 members, the relationship to rolling circle replication plasmids could also be verified. Furthermore, a relationship of SPHINX/BMMF group 1 Rep proteins to theta-replicating plasmid Reps is discussed.
Collapse
Affiliation(s)
- Diana Habermann
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute for Nutrition and Food, Hermann-Weigmann-Straße 1, 24103 Kiel, Germany
| | - Martin Klempt
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute for Nutrition and Food, Hermann-Weigmann-Straße 1, 24103 Kiel, Germany
| | - Charles M A P Franz
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute for Nutrition and Food, Hermann-Weigmann-Straße 1, 24103 Kiel, Germany
| |
Collapse
|
9
|
Melnik BC, Stadler R, Weiskirchen R, Leitzmann C, Schmitz G. Potential Pathogenic Impact of Cow’s Milk Consumption and Bovine Milk-Derived Exosomal MicroRNAs in Diffuse Large B-Cell Lymphoma. Int J Mol Sci 2023; 24:ijms24076102. [PMID: 37047075 PMCID: PMC10094152 DOI: 10.3390/ijms24076102] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/05/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
Epidemiological evidence supports an association between cow’s milk consumption and the risk of diffuse large B-cell lymphoma (DLBCL), the most common non-Hodgkin lymphoma worldwide. This narrative review intends to elucidate the potential impact of milk-related agents, predominantly milk-derived exosomes (MDEs) and their microRNAs (miRs) in lymphomagenesis. Upregulation of PI3K-AKT-mTORC1 signaling is a common feature of DLBCL. Increased expression of B cell lymphoma 6 (BCL6) and suppression of B lymphocyte-induced maturation protein 1 (BLIMP1)/PR domain-containing protein 1 (PRDM1) are crucial pathological deviations in DLBCL. Translational evidence indicates that during the breastfeeding period, human MDE miRs support B cell proliferation via epigenetic upregulation of BCL6 (via miR-148a-3p-mediated suppression of DNA methyltransferase 1 (DNMT1) and miR-155-5p/miR-29b-5p-mediated suppression of activation-induced cytidine deaminase (AICDA) and suppression of BLIMP1 (via MDE let-7-5p/miR-125b-5p-targeting of PRDM1). After weaning with the physiological termination of MDE miR signaling, the infant’s BCL6 expression and B cell proliferation declines, whereas BLIMP1-mediated B cell maturation for adequate own antibody production rises. Because human and bovine MDE miRs share identical nucleotide sequences, the consumption of pasteurized cow’s milk in adults with the continued transfer of bioactive bovine MDE miRs may de-differentiate B cells back to the neonatal “proliferation-dominated” B cell phenotype maintaining an increased BLC6/BLIMP1 ratio. Persistent milk-induced epigenetic dysregulation of BCL6 and BLIMP1 expression may thus represent a novel driving mechanism in B cell lymphomagenesis. Bovine MDEs and their miR cargo have to be considered potential pathogens that should be removed from the human food chain.
Collapse
|
10
|
Melnik BC, John SM, Carrera-Bastos P, Cordain L, Leitzmann C, Weiskirchen R, Schmitz G. The Role of Cow's Milk Consumption in Breast Cancer Initiation and Progression. Curr Nutr Rep 2023; 12:122-140. [PMID: 36729355 PMCID: PMC9974716 DOI: 10.1007/s13668-023-00457-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2022] [Indexed: 02/03/2023]
Abstract
PURPOSE OF REVIEW This review evaluates cow milk's impact on breast carcinogenesis by linking recent epidemiological evidence and new insights into the molecular signaling of milk and its constituents in breast cancer (BCa) pathogenesis. RECENT FINDINGS Recent prospective cohort studies support the association between cow's milk consumption and the risk of estrogen receptor-α-positive (ER+) BCa. Milk is a complex biological fluid that increases systemic insulin-like growth factor 1 (IGF-1), insulin and estrogen signaling, and interacting hormonal promoters of BCa. Further potential oncogenic components of commercial milk include exosomal microRNAs (miR-148a-3p, miR-21-5p), bovine meat and milk factors, aflatoxin M1, bisphenol A, pesticides, and micro- and nanoplastics. Individuals with BRCA1 loss-of-function mutations and FTO and IGF1 gain-of-function polymorphisms enhancing IGF-1/mTORC1 signaling may be at increased risk for milk-induced ER+ BCa. Recent prospective epidemiological and pathobiochemical studies identify commercial milk consumption as a critical risk factor of ER+ BCa. Large meta-analyses gathering individuals of different ethnic origins with milk derived from dairy cows of varying genetic backgrounds and diverse feeding procedures as well as missing data on thermal processing of milk (pasteurization versus ultra-heat treatment) make multi-national meta-analyses unsuitable for BCa risk estimations in susceptible populations. Future studies are required that consider all vulnerable periods of breast carcinogenesis to cow's milk exposure, beginning during the perinatal period and puberty, since these are the most critical periods of mammary gland morphogenesis. Notwithstanding the need for better studies including detailed information on milk processing and vulnerable periods of human breast carcinogenesis, the available evidence suggests that dietary guidelines on milk consumption may have to be reconsidered.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076, Osnabrück, Germany.
| | - Swen Malte John
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076, Osnabrück, Germany
- Institute for Interdisciplinary Dermatological Prevention and Rehabilitation (iDerm) at the University of Osnabrück, Lower-Saxonian Institute of Occupational Dermatology (NIB), Osnabrück, Germany
| | - Pedro Carrera-Bastos
- Center for Primary Health Care Research, Lund University/Region Skåne, Skåne University Hospital, 205 02, Malmö, Sweden
- Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670, Madrid, Spain
- Centro de Estudios Avanzados en Nutrición (CEAN), 11007, Cádiz, Spain
| | | | - Claus Leitzmann
- Institute of Nutrition, University of Giessen, 35390, Giessen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074, Aachen, Germany
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, University of Regensburg, D-93053, Regensburg, Germany
| |
Collapse
|
11
|
Azzola LG, Fankhauser N, Srinivasan M. Influence of the vegan, vegetarian and omnivore diet on the oral health status in adults: a systematic review and meta-analysis. Evid Based Dent 2023; 24:43-44. [PMID: 36894675 DOI: 10.1038/s41432-023-00853-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/23/2022] [Indexed: 03/11/2023]
Abstract
OBJECTIVE This systematic review aimed to evaluate the influence of the nature of diet (vegan, vegetarian, and omnivore) on the oral health status in adults. METHODS This systematic review and meta-analysis was performed using the PRISMA guidelines. Electronic databases [PubMed, Embase, CENTRAL], online search engines (Google Scholar), research portals, and hand searches were performed systematically to identify studies. The last literature search was performed February 1st, 2021. Studies were included if they reported on the influence of the nature of diet on the oral health status (oral hygiene, periodontal health, dental status, and salivary function) in adults, by two investigators. Inter-investigator reliability was evaluated using Kappa (κ) statistics. PROSPERO registration number: CRD42020211567. RESULTS Twenty-two studies were included for data extraction and final analysis. The meta-analysis revealed that the bleeding on probing measure was higher in omnivores (Z = -4.057, p < 0.0001; 95% CI: -0.684, -0.238; I2 = 0.0%) and the overall periodontal health was significantly better in vegan/vegetarians than omnivores (Z = -2.632, p = 0.008; 95% CI: -0.274, -0.073; I2 = 29.7%). Vegan/vegetarians demonstrated more dental erosion (Z = 3.325, p = 0.001; 95% CI: 0.170, 0.659; I2 = 0.0%). In adults over 60 years old, the prevalence of caries was higher in omnivores (Z = 3.244, p = 0.001; 95% CI: 0.092, 0.371; I2 = 0.0%), while complete edentulism was more prevalent in vegetarians (Z = -4.147, p < 0.0001; 95% CI: -0.550, -0.197; I2 = 0.0%). CONCLUSIONS This review reveals that adults on an omnivore diet may be associated with a higher risk for periodontal problems and dental caries, while vegetarians/vegans may be associated with a higher risk for dental erosion.
Collapse
Affiliation(s)
- Luana Giò Azzola
- Clinic of General, Special Care and Geriatric Dentistry, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032, Zürich, Switzerland
| | - Nicolas Fankhauser
- Clinic of General, Special Care and Geriatric Dentistry, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032, Zürich, Switzerland
| | - Murali Srinivasan
- Clinic of General, Special Care and Geriatric Dentistry, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032, Zürich, Switzerland.
| |
Collapse
|
12
|
Pohl S, Habermann D, Link EK, Fux R, Boldt CL, Franz CM, Hölzel C, Klempt M. Detection of DNA sequences attributed to bovine meat and milk factors (BMMF/SPHINX) in food-related samples. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Vitamins as Possible Cancer Biomarkers: Significance and Limitations. Nutrients 2021; 13:nu13113914. [PMID: 34836171 PMCID: PMC8622959 DOI: 10.3390/nu13113914] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/11/2022] Open
Abstract
The Western-style diet, which is common in developed countries and spreading into developing countries, is unbalanced in many respects. For instance, micronutrients (vitamins A, B complex, C, D, E, and K plus iron, zinc, selenium, and iodine) are generally depleted in Western food (causing what is known as ‘hidden hunger’), whereas some others (such as phosphorus) are added beyond the daily allowance. This imbalance in micronutrients can induce cellular damage that can increase the risk of cancer. Interestingly, there is a large body of evidence suggesting a strong correlation between vitamin intake as well as vitamin blood concentrations with the occurrence of certain types of cancer. The direction of association between the concentration of a given vitamin and cancer risk is tumor specific. The present review summarized the literature regarding vitamins and cancer risk to assess whether these could be used as diagnostic or prognostic markers, thus confirming their potential as biomarkers. Despite many studies that highlight the importance of monitoring vitamin blood or tissue concentrations in cancer patients and demonstrate the link between vitamin intake and cancer risk, there is still an urgent need for more data to assess the effectiveness of vitamins as biomarkers in the context of cancer. Therefore, this review aims to provide a solid basis to support further studies on this promising topic.
Collapse
|
14
|
Marawan MA, Alouffi A, El Tokhy S, Badawy S, Shirani I, Dawood A, Guo A, Almutairi MM, Alshammari FA, Selim A. Bovine Leukaemia Virus: Current Epidemiological Circumstance and Future Prospective. Viruses 2021; 13:v13112167. [PMID: 34834973 PMCID: PMC8618541 DOI: 10.3390/v13112167] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/23/2021] [Accepted: 10/24/2021] [Indexed: 11/23/2022] Open
Abstract
Bovine leukaemia virus (BLV) is a deltaretrovirus that is closely related to human T-cell leukaemia virus types 1 and 2 (HTLV-1 and -2). It causes enzootic bovine leukosis (EBL), which is the most important neoplastic disease in cattle. Most BLV-infected cattle are asymptomatic, which potentiates extremely high shedding rates of the virus in many cattle populations. Approximately 30% of them show persistent lymphocytosis that has various clinical outcomes; only a small proportion of animals (less than 5%) exhibit signs of EBL. BLV causes major economic losses in the cattle industry, especially in dairy farms. Direct costs are due to a decrease in animal productivity and in cow longevity; indirect costs are caused by restrictions that are placed on the import of animals and animal products from infected areas. Most European regions have implemented an efficient eradication programme, yet BLV prevalence remains high worldwide. Control of the disease is not feasible because there is no effective vaccine against it. Therefore, detection and early diagnosis of the disease are essential in order to diminish its spreading and the economic losses it causes. This review comprises an overview of bovine leukosis, which highlights the epidemiology of the disease, diagnostic tests that are used and effective control strategies.
Collapse
Affiliation(s)
- Marawan A. Marawan
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agriculture University, Wuhan 430070, China; (I.S.); (A.D.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt;
- Correspondence: (M.A.M.); (A.G.); (A.S.)
| | - Abdulaziz Alouffi
- King Abdulaziz City for Science and Technology, Riyadh 12354, Saudi Arabia;
- The Chair of Vaccines Research for Infectious Diseases, King Saud University, Riyadh 11495, Saudi Arabia;
| | - Suleiman El Tokhy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta 31111, Egypt;
| | - Sara Badawy
- Department of Pathology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt;
- Natural Reference Laboratory of Veterinary Drug Residues (HZAU), MAO Key Laboratory for Detection of Veterinary Drug Residues Huazhong Agricultural University, Wuhan 430070, China
| | - Ihsanullah Shirani
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agriculture University, Wuhan 430070, China; (I.S.); (A.D.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Para-Clinic Department, Faculty of Veterinary Medicine, Jalalabad 2601, Afghanistan
| | - Ali Dawood
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agriculture University, Wuhan 430070, China; (I.S.); (A.D.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Infectious Diseases, Medicine Department, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Egypt
| | - Aizhen Guo
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agriculture University, Wuhan 430070, China; (I.S.); (A.D.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: (M.A.M.); (A.G.); (A.S.)
| | - Mashal M. Almutairi
- The Chair of Vaccines Research for Infectious Diseases, King Saud University, Riyadh 11495, Saudi Arabia;
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 22334, Saudi Arabia
| | - Fahdah Ayed Alshammari
- College of Sciences and Literature Microbiology, Nothern Border University, Arar 73211, Saudi Arabia;
| | - Abdelfattah Selim
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt;
- Correspondence: (M.A.M.); (A.G.); (A.S.)
| |
Collapse
|
15
|
Analysis of chronic inflammatory lesions of the colon for BMMF Rep antigen expression and CD68 macrophage interactions. Proc Natl Acad Sci U S A 2021; 118:2025830118. [PMID: 33723077 PMCID: PMC8000208 DOI: 10.1073/pnas.2025830118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Bovine meat and milk factors (BMMF) are routinely found in bovine sera and dairy products, predominantly of Eurasian dairy cattle. BMMF DNA and proteins are demonstrated in tissues of colon cancer patients, specifically interstitial macrophages of peritumor tissues. BMMF represent plasmid-like, zoonotic infectious agents with an indirect role in cancer formation by inducing chronic inflammation leading to oxidative stress and DNA mutation in nearby replicating cells, which may develop into polyps as progenitors for colon cancer. Detection of BMMF during long latency periods prior to symptoms developing allows for specific preventive and early therapeutic measures. Detection of BMMF might offer a prognostic tool for prediction of patient survival, preventive approaches, and therapy success. Consumption of Eurasian bovine meat and milk has been associated with cancer development, in particular with colorectal cancer (CRC). In addition, zoonotic infectious agents from bovine products were proposed to cause colon cancer (zur Hausen et al., 2009). Bovine meat and milk factors (BMMF) are small episomal DNA molecules frequently isolated from bovine sera and milk products, and recently, also from colon cancer (de Villiers et al., 2019). BMMF are bioactive in human cells and were proposed to induce chronic inflammation in precancerous tissue leading to increased radical formation: for example, reactive oxygen and reactive nitrogen species and elevated levels of DNA mutations in replicating cells, such as cancer progenitor cells (zur Hausen et al., 2018). Mouse monoclonal antibodies against the replication (Rep) protein of H1MSB.1 (BMMF1) were used to analyze BMMF presence in different cohorts of CRC peritumor and tumor tissues and cancer-free individuals by immunohistochemistry and Western blot. BMMF DNA was isolated by laser microdissection from immunohistochemistry-positive tissue regions. We found BMMF Rep protein present specifically in close vicinity of CD68+ macrophages in the interstitial lamina propria adjacent to CRC tissues, suggesting the presence of local chronic inflammation. BMMF1 (modified H1MSB.1) DNA was isolated from the same tissue regions. Rep and CD68+ detection increased significantly in peritumor cancer tissues when compared to tissues of cancer-free individuals. This strengthens previous postulations that BMMF function as indirect carcinogens by inducing chronic inflammation and DNA damage in replicating cells, which represent progress to progenitor cells for adenoma (polyps) formation and cancer.
Collapse
|
16
|
Abstract
Abstract We have considered viruses and their contribution to breast cancer. Mouse mammary tumour virus The prevalence of mouse mammary tumour virus (MMTV) is 15-fold higher in human breast cancer than in normal and benign human breast tissue controls. Saliva is the most plausible means of transmission. MMTV has been identified in dogs, cats, monkeys, mice and rats. The causal mechanisms include insertional oncogenesis and mutations in the protective enzyme ABOBEC3B. Human papilloma virus The prevalence of high risk human papilloma viruses (HPV) is frequently six fold higher in breast cancer than in normal and benign breast tissue controls. Women who develop HPV associated cervical cancer are at higher than normal risk of developing HPV associated breast cancer. Koilocytes have been identified in breast cancers which is an indication of HPV oncogenicity. The causal mechanisms of HPVs in breast cancer appear to differ from cervical cancer. Sexual activity is the most common form of HPV transmission. HPVs are probably transmitted from the cervix to the breast by circulating extra cellular vesicles. Epstein Barr virus The prevalence of Epstein Barr virus (EBV) is five fold higher in breast cancer than in normal and benign breast tissue controls. EBV is mostly transmitted from person to person via saliva. EBV infection predisposes breast epithelial cells to malignant transformation through activation of HER2/HER3 signalling cascades. EBV EBNA genes contribute to tumour growth and metastasis and have the ability to affect the mesenchymal transition of cells. Bovine leukemia virus Bovine leukemia virus (BLV) infects beef and dairy cattle and leads to various cancers. The prevalence of BLV is double in human breast cancers compared to controls. Breast cancer is more prevalent in red meat eating and cow’s milk consuming populations. BLV may be transmitted to humans from cattle by the consumption of red meat and cow’s milk. Conclusion The evidence that MMTV, high risk HPVs and EBVs have causal roles in human breast cancer is compelling. The evidence with respect to BLV is more limited but it is likely to also have a causal role in human breast cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s13027-021-00366-3.
Collapse
Affiliation(s)
- James S Lawson
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia.
| | - Wendy K Glenn
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|
17
|
Circular Rep-Encoding Single-Stranded DNA Sequences in Milk from Water Buffaloes ( Bubalus arnee f. bubalis). Viruses 2021; 13:v13061088. [PMID: 34200389 PMCID: PMC8228113 DOI: 10.3390/v13061088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/26/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
Isolation and characterization of circular replicase-encoding single-stranded (ss) DNA from animal, plant and environmental samples are rapidly evolving in virology. We detected 21 circular DNA elements, including one genomoviral sequence, in individual milk samples from domesticated Asian water buffaloes (Bubalus arnee f. bubalis). Most of the obtained genomes are related to Sphinx 1.76 and Sphinx 2.36 sequences and share a high degree of similarity to recently published circular DNAs—named BMMF (bovine meat and milk factors)—that have been isolated from commercial milk, as well as from bovine serum. Characteristic features such as rep genes, tandem repeats and inverted repeats were detected. These BMMF have recently been found to be present in taurine-type dairy cattle breeds descending from the aurochs (Bos primigenius). Importantly, the occurrence of BMMF has been linked to the higher incidence of colorectal and breast cancer in North America and Western Europe compared with Asia. This is the first report of circular ssDNA detected in milk from the domesticated form of the wild Asian water buffalo (B. arnee) belonging to the subfamily Bovinae. This novelty should be taken into account in view of the above-mentioned cancer hypothesis.
Collapse
|
18
|
Abstract
This review provides epidemiological and translational evidence for milk and dairy intake as critical risk factors in the pathogenesis of hepatocellular carcinoma (HCC). Large epidemiological studies in the United States and Europe identified total dairy, milk and butter intake with the exception of yogurt as independent risk factors of HCC. Enhanced activity of mechanistic target of rapamycin complex 1 (mTORC1) is a hallmark of HCC promoted by hepatitis B virus (HBV) and hepatitis C virus (HCV). mTORC1 is also activated by milk protein-induced synthesis of hepatic insulin-like growth factor 1 (IGF-1) and branched-chain amino acids (BCAAs), abundant constituents of milk proteins. Over the last decades, annual milk protein-derived BCAA intake increased 3 to 5 times in Western countries. In synergy with HBV- and HCV-induced secretion of hepatocyte-derived exosomes enriched in microRNA-21 (miR-21) and miR-155, exosomes of pasteurized milk as well deliver these oncogenic miRs to the human liver. Thus, milk exosomes operate in a comparable fashion to HBV- or HCV- induced exosomes. Milk-derived miRs synergistically enhance IGF-1-AKT-mTORC1 signaling and promote mTORC1-dependent translation, a meaningful mechanism during the postnatal growth phase, but a long-term adverse effect promoting the development of HCC. Both, dietary BCAA abundance combined with oncogenic milk exosome exposure persistently overstimulate hepatic mTORC1. Chronic alcohol consumption as well as type 2 diabetes mellitus (T2DM), two HCC-related conditions, increase BCAA plasma levels. In HCC, mTORC1 is further hyperactivated due to RAB1 mutations as well as impaired hepatic BCAA catabolism, a metabolic hallmark of T2DM. The potential HCC-preventive effect of yogurt may be caused by lactobacilli-mediated degradation of BCAAs, inhibition of branched-chain α-ketoacid dehydrogenase kinase via production of intestinal medium-chain fatty acids as well as degradation of milk exosomes including their oncogenic miRs. A restriction of total animal protein intake realized by a vegetable-based diet is recommended for the prevention of HCC.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Osnabrück, Germany
| |
Collapse
|
19
|
Rombouts C, Van Meulebroek L, De Spiegeleer M, Goethals S, Van Hecke T, De Smet S, De Vos WH, Vanhaecke L. Untargeted Metabolomics Reveals Elevated L-Carnitine Metabolism in Pig and Rat Colon Tissue Following Red Versus White Meat Intake. Mol Nutr Food Res 2021; 65:e2000463. [PMID: 33550692 DOI: 10.1002/mnfr.202000463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/29/2020] [Indexed: 12/12/2022]
Abstract
SCOPE The consumption of red and processed meat, and not white meat, associates with the development of various Western diseases such as colorectal cancer and type 2 diabetes. This work aims at unraveling novel meat-associated mechanisms that are involved in disease development. METHODS AND RESULTS A non-hypothesis driven strategy of untargeted metabolomics is applied to assess colon tissue from rats (fed a high dose of beef vs. white meat) and from pigs (fed red/processed meat vs. white meat), receiving a realistic human background diet. An increased carnitine metabolism is observed, which is reflected by higher levels of acylcarnitines and 3-dehydroxycarnitine (rats and pigs) and trimethylamine-N-oxide (rats). While 3-dehydroxycarnitine is higher in HT29 cells, incubated with colonic beef digests, acylcarnitine levels are reduced. This suggests an altered response from colon cancer cell line towards meat-induced oxidative stress. Moreover, metabolic differences between rat and pigs are observed in N-glycolylneuraminic acid incorporation, prostaglandin, and fatty acid synthesis. CONCLUSION This study demonstrates elevated (acyl)carnitine metabolism in colon tissue of animals that follow a red meat-based diet, providing mechanistic insights that may aid in explaining the nutritional-physiological correlation between red/processed meat and Western diseases.
Collapse
Affiliation(s)
- Caroline Rombouts
- Department of Veterinary Public Health and Food Safety, Laboratory of Chemical Analysis, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Lieven Van Meulebroek
- Department of Veterinary Public Health and Food Safety, Laboratory of Chemical Analysis, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Margot De Spiegeleer
- Department of Veterinary Public Health and Food Safety, Laboratory of Chemical Analysis, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Sophie Goethals
- Department of Veterinary Public Health and Food Safety, Laboratory of Chemical Analysis, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
- Department of Animal Sciences and Aquatic Ecology, Laboratory for Animal Nutrition and Animal Product Quality, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Thomas Van Hecke
- Department of Animal Sciences and Aquatic Ecology, Laboratory for Animal Nutrition and Animal Product Quality, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Stefaan De Smet
- Department of Animal Sciences and Aquatic Ecology, Laboratory for Animal Nutrition and Animal Product Quality, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Winnok H De Vos
- Department of Molecular Biotechnology, Cell Systems & Imaging, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
- Department of Veterinary Sciences, Laboratory of Cell Biology and Histology, Faculty of Veterinary Medicine, University of Antwerp, Campus Drie Eiken Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Lynn Vanhaecke
- Department of Veterinary Public Health and Food Safety, Laboratory of Chemical Analysis, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
- School of Biological Sciences, Queen's University Belfast, Lisburn Road 97, Belfast, UK
| |
Collapse
|
20
|
Gao A, Kouznetsova VL, Tsigelny IF. Bovine leukemia virus relation to human breast cancer: Meta-analysis. Microb Pathog 2020; 149:104417. [PMID: 32731009 PMCID: PMC7384413 DOI: 10.1016/j.micpath.2020.104417] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 12/20/2022]
Abstract
Bovine leukemia virus (BLV) is a virus that infects cattle around the world and is very similar to the human T-cell leukemia virus (HTLV), which causes adult T-cell leukemia/lymphoma (ATL). Recently, presence of BLV DNA and protein was demonstrated in commercial bovine products and in humans. BLV DNA is generally found at higher rates in humans who have or will develop breast cancer, according to research done with subjects from several countries. These findings have led to a hypothesis that BLV transmission plays a role in breast cancer oncogenesis in humans. Here we summarize the current knowledge in the field.
Collapse
Affiliation(s)
| | | | - Igor F Tsigelny
- Department of Neurosciences, UC San Diego, USA; CureMatch Inc, USA.
| |
Collapse
|
21
|
de Villiers EM, Gunst K, Chakraborty D, Ernst C, Bund T, Zur Hausen H. A specific class of infectious agents isolated from bovine serum and dairy products and peritumoral colon cancer tissue. Emerg Microbes Infect 2019; 8:1205-1218. [PMID: 31409221 PMCID: PMC6713099 DOI: 10.1080/22221751.2019.1651620] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The in silico analyses of 109 replication-competent genomic DNA sequences isolated from cow milk and its products (97 in the bovine meat and milk factors 2 group – BMMF2, and additional 4 in BMMF1) seems to place these in a specific class of infectious agents spanning between bacterial plasmid and circular ssDNA viruses. Satellite-type small plasmids with partial homology to larger genomes, were also isolated in both groups. A member of the BMMF1 group H1MBS.1 was recovered in a distinctly modified form from colon tissue by laser microdissection. Although the evolutionary origin is unknown, it draws the attention to the existence of a hitherto unrecognized, broad spectrum of potential pathogens. Indirect hints to the origin and structure of our isolates, as well as to their replicative behaviour, result from parallels drawn to the Hepatitis deltavirus genome structure and replication.
Collapse
Affiliation(s)
- Ethel-Michele de Villiers
- a Episomal-Persistent DNA in Cancer- and Chronic Diseases, Deutsches Krebsforschungszentrum , Heidelberg , Germany
| | - Karin Gunst
- a Episomal-Persistent DNA in Cancer- and Chronic Diseases, Deutsches Krebsforschungszentrum , Heidelberg , Germany
| | - Deblina Chakraborty
- a Episomal-Persistent DNA in Cancer- and Chronic Diseases, Deutsches Krebsforschungszentrum , Heidelberg , Germany
| | - Claudia Ernst
- a Episomal-Persistent DNA in Cancer- and Chronic Diseases, Deutsches Krebsforschungszentrum , Heidelberg , Germany
| | - Timo Bund
- a Episomal-Persistent DNA in Cancer- and Chronic Diseases, Deutsches Krebsforschungszentrum , Heidelberg , Germany
| | - Harald Zur Hausen
- a Episomal-Persistent DNA in Cancer- and Chronic Diseases, Deutsches Krebsforschungszentrum , Heidelberg , Germany
| |
Collapse
|
22
|
|
23
|
Zur Hausen H, Bund T, de Villiers EM. Infectious Agents in Bovine Red Meat and Milk and Their Potential Role in Cancer and Other Chronic Diseases. Curr Top Microbiol Immunol 2019; 407:83-116. [PMID: 28349283 DOI: 10.1007/82_2017_3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Red meat and dairy products have frequently been suggested to represent risk factors for certain cancers, chronic neurodegenerative diseases, and autoimmune and cardiovascular disorders. This review summarizes the evidence and investigates the possible involvement of infectious factors in these diseases. The isolation of small circular single-stranded DNA molecules from serum and dairy products of Eurasian Aurochs (Bos taurus)-derived cattle, obviously persisting as episomes in infected cells, provides the basis for further investigations. Gene expression of these agents in human cells has been demonstrated, and frequent infection of humans is implicated by the detection of antibodies in a high percentage of healthy individuals. Epidemiological observations suggest their relationship to the development multiple sclerosis, to heterophile antibodies, and to N-glycolylneuraminic acid (Neu5Gc) containing cell surface receptors.
Collapse
Affiliation(s)
- Harald Zur Hausen
- Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| | - Timo Bund
- Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | | |
Collapse
|
24
|
Kilic T, Popov AN, Burk-Körner A, Koromyslova A, zur Hausen H, Bund T, Hansman GS. Structural analysis of a replication protein encoded by a plasmid isolated from a multiple sclerosis patient. Acta Crystallogr D Struct Biol 2019; 75:498-504. [PMID: 31063152 PMCID: PMC6503762 DOI: 10.1107/s2059798319003991] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/23/2019] [Indexed: 12/15/2022] Open
Abstract
Bovine meat and milk factors (BMMFs) are circular, single-stranded episomal DNAs that have been detected in bovine meat and milk products. BMMFs are thought to have roles in human malignant and degenerative diseases. BMMFs encode a replication initiator protein (Rep) that is actively transcribed and translated in human cells. In this study, a Rep WH1 domain encoded on a BMMF (MSBI1.176) isolated from a multiple sclerosis human brain sample was determined to 1.53 Å resolution using X-ray crystallography. The overall structure of the MSBI1.176 WH1 domain was remarkably similar to other Rep structures, despite having a low (28%) amino-acid sequence identity. The MSBI1.176 WH1 domain contained elements common to other Reps, including five α-helices, five β-strands and a hydrophobic pocket. These new findings suggest that the MSBI1.176 Rep might have comparable roles and functions to other known Reps of different origins.
Collapse
Affiliation(s)
- Turgay Kilic
- Schaller Research Group at the University of Heidelberg, Heidelberg, Germany
- Department of Infectious Diseases, Virology, University of Heidelberg, Heidelberg, Germany
| | - Alexander N. Popov
- Structural Biology Group, European Synchrotron Radiation Facility (ESRF), Grenoble, France
| | - Amelie Burk-Körner
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Biosciences Faculty, University of Heidelberg, Heidelberg, Germany
| | - Anna Koromyslova
- Schaller Research Group at the University of Heidelberg, Heidelberg, Germany
- Department of Infectious Diseases, Virology, University of Heidelberg, Heidelberg, Germany
| | | | - Timo Bund
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Grant S. Hansman
- Schaller Research Group at the University of Heidelberg, Heidelberg, Germany
- Department of Infectious Diseases, Virology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
25
|
Deng TS. Biological clocks, some clock-related diseases, and medicinal plants. Psych J 2019; 7:197-205. [PMID: 30561856 DOI: 10.1002/pchj.263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/10/2018] [Accepted: 11/05/2018] [Indexed: 12/26/2022]
Abstract
Progress in chronobiology thus far has been built on botanical field investigation records, experiments on the development of biological clocks, open questions, established rules, and molecular mechanisms. In this review, three clock-related diseases, namely cancer, Alzheimer's disease (AD), and depression, are discussed. Evidence-based mechanisms of action of active compounds, namely epigallocatechin-3-gallate (EGCG), curcumin, and melatonin, from three medicinal plants, Camellia sinensis K., Curcuma longa L., and Hypericum perforatum L., respectively, as potential therapies against cancer, AD, and depression, respectively, have been explained. Feedback loops of basic inputs and application outputs of various studies will lead to the development of chronobiology for applications in time-keeping, disease prevention, and control, and future agricultural practices.
Collapse
Affiliation(s)
- Tzu-Shing Deng
- Department of Agronomy, National Chung-Hsing University, Taichung, Taiwan
| |
Collapse
|
26
|
Melnik BC, Schmitz G. Exosomes of pasteurized milk: potential pathogens of Western diseases. J Transl Med 2019; 17:3. [PMID: 30602375 PMCID: PMC6317263 DOI: 10.1186/s12967-018-1760-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 12/21/2018] [Indexed: 12/16/2022] Open
Abstract
Milk consumption is a hallmark of western diet. According to common believes, milk consumption has beneficial effects for human health. Pasteurization of cow's milk protects thermolabile vitamins and other organic compounds including bioactive and bioavailable exosomes and extracellular vesicles in the range of 40-120 nm, which are pivotal mediators of cell communication via systemic transfer of specific micro-ribonucleic acids, mRNAs and regulatory proteins such as transforming growth factor-β. There is compelling evidence that human and bovine milk exosomes play a crucial role for adequate metabolic and immunological programming of the newborn infant at the beginning of extrauterine life. Milk exosomes assist in executing an anabolic, growth-promoting and immunological program confined to the postnatal period in all mammals. However, epidemiological and translational evidence presented in this review indicates that continuous exposure of humans to exosomes of pasteurized milk may confer a substantial risk for the development of chronic diseases of civilization including obesity, type 2 diabetes mellitus, osteoporosis, common cancers (prostate, breast, liver, B-cells) as well as Parkinson's disease. Exosomes of pasteurized milk may represent new pathogens that should not reach the human food chain.
Collapse
Affiliation(s)
- Bodo C. Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Am Finkenhügel 7A, 49076 Osnabrück, Germany
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, University of Regensburg, Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| |
Collapse
|
27
|
Zur Hausen H, Bund T, de Villiers EM. Specific nutritional infections early in life as risk factors for human colon and breast cancers several decades later. Int J Cancer 2018; 144:1574-1583. [PMID: 30246328 DOI: 10.1002/ijc.31882] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/06/2018] [Accepted: 09/17/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Harald Zur Hausen
- Division Episomal-Persistent DNA in Cancer- and Chronic Diseases, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Timo Bund
- Division Episomal-Persistent DNA in Cancer- and Chronic Diseases, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Ethel-Michele de Villiers
- Division Episomal-Persistent DNA in Cancer- and Chronic Diseases, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| |
Collapse
|
28
|
Hur SJ, Jo C, Yoon Y, Jeong JY, Lee KT. Controversy on the correlation of red and processed meat consumption with colorectal cancer risk: an Asian perspective. Crit Rev Food Sci Nutr 2018; 59:3526-3537. [PMID: 29999423 DOI: 10.1080/10408398.2018.1495615] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
This study aimed to investigate the relationship between meat intake and colorectal cancer risk from an Asian, particularly Korean, perspective. A report by the International Agency for Research on Cancer (IARC) published in 2015 concluded that intake of processed and red meat increases the risk of developing colorectal cancer. We conducted an in-depth analysis of prospective, retrospective, case-control and cohort studies, systematic review articles, and IARC monograph reports, which revealed that the IARC/WHO report weighted the results of studies based in Western countries more and that the correlation between intake of processed meat products and colorectal cancer incidence in Asians is not clearly supported. Among 73 epidemiological studies, approximately 76% were conducted in Western countries, whereas only 15% of studies were conducted in Asia. Furthermore, most studies conducted in Asia showed that processed meat consumption is not related to the onset of cancer. Moreover, there have been no reports showing significant correlation between various factors that directly or indirectly affect colorectal cancer incidence, including processed meat products types, raw meat types, or cooking methods. Further epidemiological studies taking each country's food culture into consideration are required to reliably elucidate the effects of processed meat product intake, especially on cancer incidence.
Collapse
Affiliation(s)
- Sun Jin Hur
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Korea
| | - Cheorun Jo
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Yohan Yoon
- Department of Food and Nutrition, Sookmyung Womens' University, Seoul, Korea
| | - Jong Youn Jeong
- School of Food Biotechnology & Nutrition, Kyungsung University, Busan, Korea
| | - Keun Taik Lee
- Department of Food Processing and Distribution, Gangneung-Wonju National University, Gangneung, Korea
| |
Collapse
|
29
|
Expression and replication of virus-like circular DNA in human cells. Sci Rep 2018; 8:2851. [PMID: 29434270 PMCID: PMC5809378 DOI: 10.1038/s41598-018-21317-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 02/02/2018] [Indexed: 02/07/2023] Open
Abstract
The consumption of bovine milk and meat is considered a risk factor for colon- and breast cancer formation, and milk consumption has also been implicated in an increased risk for developing Multiple Sclerosis (MS). A number of highly related virus-like DNAs have been recently isolated from bovine milk and sera and from a brain sample of a MS patient. As a genetic activity of these Acinetobacter-related bovine milk and meat factors (BMMFs) is unknown in eukaryotes, we analyzed their expression and replication potential in human HEK293TT cells. While all analyzed BMMFs show transcriptional activity, the MS brain isolate MSBI1.176, sharing homology with a transmissible spongiform encephalopathy-associated DNA molecule, is transcribed at highest levels. We show expression of a replication-associated protein (Rep), which is highly conserved among all BMMFs, and serological tests indicate a human anti-Rep immune response. While the cow milk isolate CMI1.252 is replication-competent in HEK293TT cells, replication of MSBI1.176 is complemented by CMI1.252, pointing at an interplay during the establishment of persistence in human cells. Transcriptome profiling upon BMMF expression identified host cellular gene expression changes related to cell cycle progression and cell viability control, indicating potential pathways for a pathogenic involvement of BMMFs.
Collapse
|
30
|
Lawson JS, Salmons B, Glenn WK. Oncogenic Viruses and Breast Cancer: Mouse Mammary Tumor Virus (MMTV), Bovine Leukemia Virus (BLV), Human Papilloma Virus (HPV), and Epstein-Barr Virus (EBV). Front Oncol 2018; 8:1. [PMID: 29404275 PMCID: PMC5786831 DOI: 10.3389/fonc.2018.00001] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/03/2018] [Indexed: 12/18/2022] Open
Abstract
Background Although the risk factors for breast cancer are well established, namely female gender, early menarche and late menopause plus the protective influence of early pregnancy, the underlying causes of breast cancer remain unknown. The development of substantial recent evidence indicates that a handful of viruses may have a role in breast cancer. These viruses are mouse mammary tumor virus (MMTV), bovine leukemia virus (BLV), human papilloma viruses (HPVs), and Epstein–Barr virus (EBV-also known as human herpes virus type 4). Each of these viruses has documented oncogenic potential. The aim of this review is to inform the scientific and general community about this recent evidence. The evidence MMTV and human breast cancer—the evidence is detailed and comprehensive but cannot be regarded as conclusive. BLV and human breast cancer—the evidence is limited. However, in view of the emerging information about BLV in human breast cancer, it is prudent to encourage the elimination of BLV in cattle, particularly in the dairy industry. HPVs and breast cancer—the evidence is substantial but not conclusive. The availability of effective preventive vaccines is a major advantage and their use should be encouraged. EBV and breast cancer—the evidence is also substantial but not conclusive. Currently, there are no practical means of either prevention or treatment. Although there is evidence of genetic predisposition, and cancer in general is a culmination of events, there is no evidence that inherited genetic traits are causal. Conclusion The influence of oncogenic viruses is currently the major plausible hypothesis for a direct cause of human breast cancer.
Collapse
Affiliation(s)
- James S Lawson
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | | | - Wendy K Glenn
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
31
|
Lawson JS, Glenn WK. Multiple oncogenic viruses are present in human breast tissues before development of virus associated breast cancer. Infect Agent Cancer 2017; 12:55. [PMID: 29075317 PMCID: PMC5644159 DOI: 10.1186/s13027-017-0165-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/09/2017] [Indexed: 02/07/2023] Open
Abstract
Background Multiple oncogenic viruses including, mouse mammary tumor virus, bovine leukemia virus, human papilloma virus, and Epstein Barr virus, have been identified as separate infectious pathogens in human breast cancer. Here we demonstrate that these four viruses may be present in normal and benign breast tissues 1 to 11 years before the development of same virus breast cancer in the same patients. Methods We combined the data we developed during investigations of the individual four oncogenic viruses and breast cancer. Patients who had benign breast biopsies 1–11 years prior to developing breast cancer were identified by pathology reports from a large Australian pathology service (Douglas Hanly Moir Pathology). Archival formalin fixed specimens from these patients were collected. The same archival specimens were used for (i) investigations of mouse mammary tumour virus (also known as human mammary tumour virus) conducted at the Icahn School of Medicine at Mount Sinai, New York and at the University of Pisa, Italy, (ii) bovine leukemia virus conducted at the University of California at Berkeley,(iii) human papilloma virus and Epstein Barr virus conducted at the University of New South Wales, Sydney, Australia. Seventeen normal breast tissues from cosmetic breast surgery conducted on Australian patients were used as controls. These patients were younger than those with benign and later breast cancer. Results Standard and in situ polymerase chain reaction (PCR) methods were used to identify the four viruses. The detailed methods are outlined in the separate publications.: mouse mammary tumor virus, human papilloma virus and Epstein Barr virus (Infect Agent Cancer 12:1, 2017, PLoS One 12:e0179367, 2017, Front Oncol 5:277, 2015, PLoS One 7:e48788, 2012). Epstein Barr virus and human papilloma virus were identified in the same breast cancer cells by in situ PCR. Mouse mammary tumour virus was identified in 6 (24%) of 25 benign breast specimens and in 9 (36%) of 25 breast cancer specimens which subsequently developed in the same patients. Bovine leukemia virus was identified in 18 (78%) of 23 benign breast specimens and in 20 (91%) of 22 subsequent breast cancers in the same patients. High risk human papilloma viruses were identified in 13 (72%) of 17 benign breast specimens and in 13 (76%) of 17 subsequent breast cancers in the same patients. Epstein Barr virus was not identified in any benign breast specimens but was identified in 3 (25%) of 12 subsequent breast cancers in the same patients. Mouse mammary tumour virus 3 (18%), bovine leukemia virus 6 (35%), high risk human papilloma virus 3 (18%) and Epstein Barr virus 5 (29%) were identified in 17 normal control breast specimens. Conclusions These findings add to the evidence that multiple oncogenic viruses have potential roles in human breast cancer. This is an important observation because evidence of prior infection before the development of disease is a key criterion when assessing causation.
Collapse
Affiliation(s)
- James S Lawson
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, 2052 Australia.,School of BABS, University of NSW, Sydney, NSW 2110 Australia
| | - Wendy K Glenn
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, 2052 Australia
| |
Collapse
|
32
|
Isolation of Two Virus-Like Circular DNAs from Commercially Available Milk Samples. GENOME ANNOUNCEMENTS 2017; 5:5/17/e00266-17. [PMID: 28450523 PMCID: PMC5408121 DOI: 10.1128/genomea.00266-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Epidemiological data indicate a potential relationship between milk and dairy product consumption and the incidence of breast cancer, as well as neurodegenerative diseases. We report the isolation of two novel circular DNA molecules isolated from commercially available milk.
Collapse
|
33
|
Denner J. Xenotransplantation - A special case of One Health. One Health 2017; 3:17-22. [PMID: 28616498 PMCID: PMC5454160 DOI: 10.1016/j.onehlt.2017.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/25/2017] [Accepted: 02/07/2017] [Indexed: 12/20/2022] Open
Abstract
The chronic shortage of human transplants to treat tissue and organ failure has led to the development of xenotransplantation, the transplantation of cells, tissues and organs from another species to human recipients. For a number of reasons, pigs are best suited as donor animals. Successful, routine xenotransplantation would have an enormous impact on the health of the human population, including the young, who sometimes require a replacement organ or islet cells, but especially the elderly, who more often suffer the consequences of organ failure. The first form of xenotransplantation applied to humans is the use of pig islet cells to treat insulin-dependent diabetes, a procedure that will have a significant economic impact. However, although xenotransplantation using pig cells, tissues and organs may save and prolong the lives of patients, it may also be associated with the transmission of porcine microorganisms to the recipient, eventually resulting in emerging infectious diseases. For this reason, the health of both the donor animals and the human recipients represents a special and sensitive case of the One Health concept. Basic research leading to strategies how to prevent transmission of porcine microorganisms by selection of virus-free animals, treatment of donor pigs by antiviral drugs, vaccines, colostrum deprivation, early weaning, Caesarean delivery, embryo transfer and/or gene editing should be undertaken to supply an increasing number of potential recipients with urgently required transplants. The methods developed for the detection and elimination of porcine microorganisms in the context of xenotransplantation will also contribute to an improvement in the health of pig populations in general and an increase in the quality of meat products. At present, there is evidence for transmission of porcine viruses to humans eating pork and having contact with pigs, however the impact of these viruses on public health is still unknown.
Collapse
Affiliation(s)
- Joachim Denner
- Corresponding author at: Robert Koch Institute, Nordufer 20, D-13353 Berlin, Germany.Robert Koch InstituteNordufer 20BerlinD-13353Germany
| |
Collapse
|
34
|
Alisson-Silva F, Kawanishi K, Varki A. Human risk of diseases associated with red meat intake: Analysis of current theories and proposed role for metabolic incorporation of a non-human sialic acid. Mol Aspects Med 2016; 51:16-30. [PMID: 27421909 DOI: 10.1016/j.mam.2016.07.002] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/06/2016] [Accepted: 07/07/2016] [Indexed: 02/08/2023]
Abstract
One of the most consistent epidemiological associations between diet and human disease risk is the impact of red meat consumption (beef, pork, and lamb, particularly in processed forms). While risk estimates vary, associations are reported with all-cause mortality, colorectal and other carcinomas, atherosclerotic cardiovascular disease, type II diabetes, and possibly other inflammatory processes. There are many proposed explanations for these associations, some long discussed in the literature. Attempts to explain the effects of red meat consumption have invoked various red meat-associated agents, including saturated fat, high salt intake, Trimethylamine-N-oxide (TMAO) generation by microbiota, and environmental pollutants contaminating red meat, none of which are specific for red meat. Even the frequently mentioned polycyclic aromatic carcinogens arising from high temperature cooking methods are not red meat specific, as these are also generated by grilling poultry or fish, as well as by other forms of cooking. The traditional explanations that appear to be more red meat specific invoke the impact of N-nitroso compounds, heme iron, and the potential of heme to catalyze endogenous nitrosation. However, heme can be denatured by cooking, high levels of plasma hemopexin will block its tissue delivery, and much higher amounts of heme likely originate from red blood cell breakdown in vivo. Therefore, red meat-derived heme could only contribute to colorectal carcinoma risk, via direct local effects. Also, none of these mechanisms explain the apparent human propensity i.e., other carnivores have not been reported at high risk for all these diseases. A more recently proposed hypothesis involves infectious agents in beef from specific dairy cattle as agents of colorectal cancer. We have also described another mechanistic explanation for the human propensity for risk of red-meat associated diseases that is consistent with most observations: metabolic incorporation of a non-human sialic acid N-glycolylneuraminic acid (Neu5Gc) into the tissues of red meat consumers and the subsequent interaction with inflammation-provoking antibodies against this "xenoautoantigen". Overall, we conclude that while multiple mechanisms are likely operative, many proposed theories to date are not specific for red meat, and that the viral and xenoautoantigen theories deserve further consideration. Importantly, there are potential non-toxic dietary antidotes, if the xenoautoantigen theory is indeed correct.
Collapse
Affiliation(s)
- Frederico Alisson-Silva
- Glycobiology Research and Training Center (GRTC), Center for Academic Research and Training in Anthropogeny (CARTA), Departments of Medicine and Cellular & Molecular Medicine, UC San Diego, La Jolla, CA 92093-0687, USA
| | - Kunio Kawanishi
- Glycobiology Research and Training Center (GRTC), Center for Academic Research and Training in Anthropogeny (CARTA), Departments of Medicine and Cellular & Molecular Medicine, UC San Diego, La Jolla, CA 92093-0687, USA
| | - Ajit Varki
- Glycobiology Research and Training Center (GRTC), Center for Academic Research and Training in Anthropogeny (CARTA), Departments of Medicine and Cellular & Molecular Medicine, UC San Diego, La Jolla, CA 92093-0687, USA.
| |
Collapse
|
35
|
Munro AC, Houldcroft C. Human cancers and mammalian retroviruses: should we worry about bovine leukemia virus? Future Virol 2016. [DOI: 10.2217/fvl.16.5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Andrew C Munro
- School of Clinical Medicine, University of Cambridge, Long Road, Cambridge, CB2 0SP, UK
| | | |
Collapse
|
36
|
Dairy Product, Calcium Intake and Lung Cancer Risk: A Systematic Review with Meta-Analysis. Sci Rep 2016; 6:20624. [PMID: 26877260 PMCID: PMC4753428 DOI: 10.1038/srep20624] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/08/2016] [Indexed: 12/23/2022] Open
Abstract
The effects of dairy products on human health have been studied for years. However, the relationship between dairy products as well as calcium intake and the risk of lung cancer is still inconclusive. A total of 32 studies regarding this association were identified from the PubMed and Web of Science databases through April 1, 2015, including 12 cohort studies and 20 case-control studies. After pooling the results of individual studies, the summary RRs (relative risks) of lung cancer for the highest versus lowest intake were 1.05 (95%CI: 0.84–1.31) and 1.08 (95%CI: 0.80–1.46) for total dairy products and milk, respectively. The results on the consumption of cheese, yogurt and low-fat milk were also negative, and the RRs for total and dietary calcium intakes were 0.99 (95%CI: 0.70–1.38) and 0.85 (95%CI: 0.63–1.13), respectively. After stratifying by potential confounders, the results remained consistent in most subgroup analyses. Our study indicates that intake of dairy products or calcium was not statistically associated with the risk of lung cancer. This negative finding provides a conclusive answer to the disease association issue based on current evidence, and suggests that further efforts should be made to find other nutritional risk factors for lung cancer.
Collapse
|
37
|
Melnik BC. Milk: an epigenetic amplifier of FTO-mediated transcription? Implications for Western diseases. J Transl Med 2015; 13:385. [PMID: 26691922 PMCID: PMC4687119 DOI: 10.1186/s12967-015-0746-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/04/2015] [Indexed: 12/14/2022] Open
Abstract
Single-nucleotide polymorphisms within intron 1 of the FTO (fat mass and obesity-associated) gene are associated with enhanced FTO expression, increased body weight, obesity and type 2 diabetes mellitus (T2DM). The N6-methyladenosine (m6A) demethylase FTO plays a pivotal regulatory role for postnatal growth and energy expenditure. The purpose of this review is to provide translational evidence that links milk signaling with FTO-activated transcription of the milk recipient. FTO-dependent demethylation of m6A regulates mRNA splicing required for adipogenesis, increases the stability of mRNAs, and affects microRNA (miRNA) expression and miRNA biosynthesis. FTO senses branched-chain amino acids (BCAAs) and activates the nutrient sensitive kinase mechanistic target of rapamycin complex 1 (mTORC1), which plays a key role in translation. Milk provides abundant BCAAs and glutamine, critical components increasing FTO expression. CpG hypomethylation in the first intron of FTO has recently been associated with T2DM. CpG methylation is generally associated with gene silencing. In contrast, CpG demethylation generally increases transcription. DNA de novo methylation of CpG sites is facilitated by DNA methyltransferases (DNMT) 3A and 3B, whereas DNA maintenance methylation is controlled by DNMT1. MiRNA-29s target all DNMTs and thus reduce DNA CpG methylation. Cow´s milk provides substantial amounts of exosomal miRNA-29s that reach the systemic circulation and target mRNAs of the milk recipient. Via DNMT suppression, milk exosomal miRNA-29s may reduce the magnitude of FTO methylation, thereby epigenetically increasing FTO expression in the milk consumer. High lactation performance with increased milk yield has recently been associated with excessive miRNA-29 expression of dairy cow mammary epithelial cells (DCMECs). Notably, the galactopoietic hormone prolactin upregulates the transcription factor STAT3, which induces miRNA-29 expression. In a retrovirus-like manner milk exosomes may transfer DCMEC-derived miRNA-29s and bovine FTO mRNA to the milk consumer amplifying FTO expression. There is compelling evidence that obesity, T2DM, prostate and breast cancer, and neurodegenerative diseases are all associated with increased FTO expression. Maximization of lactation performance by veterinary medicine with enhanced miRNA-29s and FTO expression associated with increased exosomal miRNA-29 and FTO mRNA transfer to the milk consumer may represent key epigenetic mechanisms promoting FTO/mTORC1-mediated diseases of civilization.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Sedanstrasse 115, 49090, Osnabrück, Germany.
| |
Collapse
|
38
|
|
39
|
Hausen HZ. HPV vaccines for cervical cancer: past, present and future. Future Virol 2015. [DOI: 10.2217/fvl.15.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|