1
|
Hakala S, Hämäläinen A, Sandelin S, Giannareas N, Närvä E. Detection of Cancer Stem Cells from Patient Samples. Cells 2025; 14:148. [PMID: 39851576 PMCID: PMC11764358 DOI: 10.3390/cells14020148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/26/2025] Open
Abstract
The existence of cancer stem cells (CSCs) in various tumors has become increasingly clear in addition to their prominent role in therapy resistance, metastasis, and recurrence. For early diagnosis, disease progression monitoring, and targeting, there is a high demand for clinical-grade methods for quantitative measurement of CSCs from patient samples. Despite years of active research, standard measurement of CSCs has not yet reached clinical settings, especially in the case of solid tumors. This is because detecting this plastic heterogeneous population of cells is not straightforward. This review summarizes various techniques, highlighting their benefits and limitations in detecting CSCs from patient samples. In addition, methods designed to detect CSCs based on secreted and niche-associated signaling factors are reviewed. Spatial and single-cell methods for analyzing patient tumor tissues and noninvasive techniques such as liquid biopsy and in vivo imaging are discussed. Additionally, methods recently established in laboratories, preclinical studies, and clinical assays are covered. Finally, we discuss the characteristics of an ideal method as we look toward the future.
Collapse
Affiliation(s)
| | | | | | | | - Elisa Närvä
- Institute of Biomedicine and FICAN West Cancer Centre Laboratory, University of Turku and Turku University Hospital, FI-20520 Turku, Finland; (S.H.); (A.H.); (S.S.); (N.G.)
| |
Collapse
|
2
|
Safi R, Menéndez P, Pol A. Lipid droplets provide metabolic flexibility for cancer progression. FEBS Lett 2024; 598:1301-1327. [PMID: 38325881 DOI: 10.1002/1873-3468.14820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 02/09/2024]
Abstract
A hallmark of cancer cells is their remarkable ability to efficiently adapt to favorable and hostile environments. Due to a unique metabolic flexibility, tumor cells can grow even in the absence of extracellular nutrients or in stressful scenarios. To achieve this, cancer cells need large amounts of lipids to build membranes, synthesize lipid-derived molecules, and generate metabolic energy in the absence of other nutrients. Tumor cells potentiate strategies to obtain lipids from other cells, metabolic pathways to synthesize new lipids, and mechanisms for efficient storage, mobilization, and utilization of these lipids. Lipid droplets (LDs) are the organelles that collect and supply lipids in eukaryotes and it is increasingly recognized that the accumulation of LDs is a new hallmark of cancer cells. Furthermore, an active role of LD proteins in processes underlying tumorigenesis has been proposed. Here, by focusing on three major classes of LD-resident proteins (perilipins, lipases, and acyl-CoA synthetases), we provide an overview of the contribution of LDs to cancer progression and discuss the role of LD proteins during the proliferation, invasion, metastasis, apoptosis, and stemness of cancer cells.
Collapse
Affiliation(s)
- Rémi Safi
- Josep Carreras Leukemia Research Institute, Barcelona, Spain
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Pablo Menéndez
- Josep Carreras Leukemia Research Institute, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Spain
- Consorcio Investigación Biomédica en Red de Cancer, CIBER-ONC, ISCIII, Barcelona, Spain
- Spanish Network for Advanced Cell Therapies (TERAV), Barcelona, Spain
| | - Albert Pol
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Spain
| |
Collapse
|
3
|
Zaghmi A, Aybay E, Jiang L, Shang M, Steinmetz‐Späh J, Wermeling F, Kogner P, Korotkova M, Östling P, Jakobsson P, Seashore‐Ludlow B, Larsson K. High-content screening of drug combinations of an mPGES-1 inhibitor in multicellular tumor spheroids leads to mechanistic insights into neuroblastoma chemoresistance. Mol Oncol 2024; 18:317-335. [PMID: 37519014 PMCID: PMC10850797 DOI: 10.1002/1878-0261.13502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/09/2023] [Accepted: 07/28/2023] [Indexed: 08/01/2023] Open
Abstract
High-throughput drug screening enables the discovery of new anticancer drugs. Although monolayer cell cultures are commonly used for screening, their limited complexity and translational efficiency require alternative models. Three-dimensional cell cultures, such as multicellular tumor spheroids (MCTS), mimic tumor architecture and offer promising opportunities for drug discovery. In this study, we developed a neuroblastoma MCTS model for high-content drug screening. We also aimed to decipher the mechanisms underlying synergistic drug combinations in this disease model. Several agents from different therapeutic categories and with different mechanisms of action were tested alone or in combination with selective inhibition of prostaglandin E2 by pharmacological inhibition of microsomal prostaglandin E synthase-1 (mPGES-1). After a systematic investigation of the sensitivity of individual agents and the effects of pairwise combinations, GFP-transfected MCTS were used in a confirmatory screen to validate the hits. Finally, inhibitory effects on multidrug resistance proteins were examined. In summary, we demonstrate how MCTS-based high-throughput drug screening has the potential to uncover effective drug combinations and provide insights into the mechanism of synergy between an mPGES-1 inhibitor and chemotherapeutic agents.
Collapse
Affiliation(s)
- Ahlem Zaghmi
- Rheumatology Unit, Department of Medicine, SolnaKarolinska Institutet, Karolinska University HospitalStockholmSweden
| | - Erdem Aybay
- Rheumatology Unit, Department of Medicine, SolnaKarolinska Institutet, Karolinska University HospitalStockholmSweden
| | - Long Jiang
- Rheumatology Unit, Department of Medicine, SolnaKarolinska Institutet, Karolinska University HospitalStockholmSweden
| | - Mingmei Shang
- Rheumatology Unit, Department of Medicine, SolnaKarolinska Institutet, Karolinska University HospitalStockholmSweden
| | - Julia Steinmetz‐Späh
- Rheumatology Unit, Department of Medicine, SolnaKarolinska Institutet, Karolinska University HospitalStockholmSweden
| | - Fredrik Wermeling
- Rheumatology Unit, Department of Medicine, SolnaKarolinska Institutet, Karolinska University HospitalStockholmSweden
| | - Per Kogner
- Childhood Cancer Research Unit, Department of Women's and Children's HealthKarolinska InstitutetStockholmSweden
| | - Marina Korotkova
- Rheumatology Unit, Department of Medicine, SolnaKarolinska Institutet, Karolinska University HospitalStockholmSweden
| | - Päivi Östling
- Department of Oncology‐Pathology, Science for Life LaboratoryKarolinska InstitutetStockholmSweden
| | - Per‐Johan Jakobsson
- Rheumatology Unit, Department of Medicine, SolnaKarolinska Institutet, Karolinska University HospitalStockholmSweden
| | - Brinton Seashore‐Ludlow
- Department of Oncology‐Pathology, Science for Life LaboratoryKarolinska InstitutetStockholmSweden
| | - Karin Larsson
- Rheumatology Unit, Department of Medicine, SolnaKarolinska Institutet, Karolinska University HospitalStockholmSweden
| |
Collapse
|
4
|
Zhang D, Tang D, Liu PT, Tao L, Lu LM. Isolation of tumor stem-like cells from primary laryngeal squamous cell carcinoma cells (FD-LS-6). Hum Cell 2024; 37:323-336. [PMID: 37759147 DOI: 10.1007/s13577-023-00984-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023]
Abstract
The development of efficient treatments for laryngeal squamous cell carcinoma (LSCC) is hindered by the lack of applicable tumor cell lines and animal models of the disease, especially those related to cancer stem-like cells (CSCs). CSCs play critical roles in tumor propagation and pathogenesis whereas no CSCs lines have been developed to date. In this study, we establish an LSCC cell line (FD-LS-6) from primary LSCC tumor tissue (not experienced single-cell cloning) and adapted a culturing condition for the expansion of potential stem cells (EPSCs) to isolate CSCs from FD-LS-6. We successfully derived novel CSCs and named them as LSCC sphere-forming cells (LSCSCs) which were subsequently characterized for their CSC properties. We showed that LSCSCs shared many properties of CSCs, including CSC marker, robust self-renewal capacity, tumorigenesis ability, potential to generate other cell types such as adipocytes and osteoblasts, and resistance to chemotherapy. Compared to parental cells, LSCSCs were significantly more potent in forming tumors in vivo in mice and more resistant to chemotherapy. LSCSCs have higher expressions of epithelial-mesenchymal transition proteins and chemotherapy resistance factors, and exhibit an activated COX2/PEG2 signaling pathway. Altogether, our work establishes the first CSCs of LSCC (FD-LS-6) and provides a tool to study tumorigenesis and metastasis of LSCC and help the development of anticancer therapies.
Collapse
Affiliation(s)
- Duo Zhang
- Department of Otolaryngology-HNS, Eye, Ear, Nose and Throat Hospital, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Fudan University School of Medicine, 83 Fenyang Road, Shanghai, 200031, China
- Department of Pudong Hospital, Fudan University School of Medicine, 2800 Gongwei Road, Shanghai, 201300, China
| | - Di Tang
- Department of Otolaryngology-HNS, Eye, Ear, Nose and Throat Hospital, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Fudan University School of Medicine, 83 Fenyang Road, Shanghai, 200031, China
- Department of Pudong Hospital, Fudan University School of Medicine, 2800 Gongwei Road, Shanghai, 201300, China
| | - Pen-Tao Liu
- School of Biomedical Sciences, Stem Cell and Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 5 Sassoon Road, Hong Kong, China
- Centre for Translational Stem Cell Biology, Science and Technology Park, 6-8 Harbour Road, Hong Kong, China
| | - Lei Tao
- Department of Otolaryngology-HNS, Eye, Ear, Nose and Throat Hospital, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Fudan University School of Medicine, 83 Fenyang Road, Shanghai, 200031, China.
- Department of Pudong Hospital, Fudan University School of Medicine, 2800 Gongwei Road, Shanghai, 201300, China.
| | - Li-Ming Lu
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China.
| |
Collapse
|
5
|
Fyfe J, Casari I, Manfredi M, Falasca M. Role of lipid signalling in extracellular vesicles-mediated cell-to-cell communication. Cytokine Growth Factor Rev 2023; 73:20-26. [PMID: 37648617 DOI: 10.1016/j.cytogfr.2023.08.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023]
Abstract
Lipid signalling plays a crucial role in extracellular vesicle (EV)-mediated cell-to-cell communication. Extracellular vesicles are small membrane-bound structures released by various cell types into the extracellular environment. They include exosomes, microvesicles, and apoptotic bodies. These vesicles contain a variety of bioactive molecules, including proteins, nucleic acids (such as miRNAs and mRNAs), and lipids. Lipids are important components of EVs and are involved in various aspects of their biogenesis, cargo sorting, and functional effects on target cells. In this review, we will discuss how lipid signalling is involved in EV-mediated cell-to-cell communication. In summary, lipid signalling is intricately involved in extracellular vesicle-mediated cell-to-cell communication. The lipid composition of EVs influences their biogenesis, cargo sorting, interactions with target cells, and functional effects on recipient cells. Understanding the role of lipids in EV-mediated communication is essential for deciphering the mechanisms underlying intercellular signalling and developing potential therapeutic strategies based on EVs.
Collapse
Affiliation(s)
- Jordan Fyfe
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Ilaria Casari
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Marcello Manfredi
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Marco Falasca
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia.
| |
Collapse
|
6
|
Mukherjee S, Dhar R, Jonnalagadda S, Gorai S, Nag S, Kar R, Mukerjee N, Mukherjee D, Vatsa R, Arikketh D, Krishnan A, Gundamaraju R, Jha SK, Alexiou A, Papadakis M. Exosomal miRNAs and breast cancer: a complex theranostics interlink with clinical significance. Biomarkers 2023; 28:502-518. [PMID: 37352015 DOI: 10.1080/1354750x.2023.2229537] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/17/2023] [Indexed: 06/25/2023]
Abstract
Breast cancer (BC) remains the most challenging global health crisis of the current decade, impacting a large population of females annually. In the field of cancer research, the discovery of extracellular vesicles (EVs), specifically exosomes (a subpopulation of EVs), has marked a significant milestone. In general, exosomes are released from all active cells but tumour cell-derived exosomes (TDXs) have a great impact (TDXs miRNAs, proteins, lipid molecules) on cancer development and progression. TDXs regulate multiple events in breast cancer such as tumour microenvironment remodelling, immune cell suppression, angiogenesis, metastasis (EMT-epithelial mesenchymal transition, organ-specific metastasis), and therapeutic resistance. In BC, early detection is the most challenging event, exosome-based BC screening solved the problem. Exosome-based BC treatment is a sign of the transforming era of liquid biopsy, it is also a promising therapeutic tool for breast cancer. Exosome research goes to closer precision oncology via a single exosome profiling approach. Our hope is that this review will serve as motivation for researchers to explore the field of exosomes and develop an efficient, and affordable theranostics approach for breast cancer.
Collapse
Affiliation(s)
- Sayantanee Mukherjee
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Rajib Dhar
- Department of Genetic Engineering, Cancer and Stem Cell Biology Laboratory, SRM Institute of Science and Technology, Kattankulathur, India
| | | | - Sukhamoy Gorai
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Sagnik Nag
- Department of Biotechnology, School of Biosciences & Technology, Vellore Institute of Technology (VIT), Vellore, India
| | - Rishav Kar
- Department of Medical Biotechnology, Ramakrishna Mission Vivekananda Educational and Research Institute, Belur Math,India
| | - Nobendu Mukerjee
- Department of Microbiology, West Bengal State University, Kolkata, India
- Department of Health Sciences, Novel Global Community Educational Foundation, Australia
| | | | - Rishabh Vatsa
- Department of Microbiology, Vels Institute of Science, Technology and Advanced Studies, Chennai, India
| | - Devi Arikketh
- Department of Genetic Engineering, Cancer and Stem Cell Biology Laboratory, SRM Institute of Science and Technology, Kattankulathur, India
| | - Anand Krishnan
- Department of Chemical Pathology, School of Pathology, University of the Free State, Bloemfontein, South Africa
| | - Rohit Gundamaraju
- ER Stress and Mucosal Immunology Laboratory, School of Health Sciences, University of Tasmania, Launceston, Australia
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India
- Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Dehradun, India
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, Australia
- AFNP Med, Wien, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Wuppertal, Germany
| |
Collapse
|
7
|
Gurunathan S, Kim JH. Graphene Oxide Enhances Biogenesis and Release of Exosomes in Human Ovarian Cancer Cells. Int J Nanomedicine 2022; 17:5697-5731. [PMID: 36466784 PMCID: PMC9717435 DOI: 10.2147/ijn.s385113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/04/2022] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Exosomes, which are nanovesicles secreted by almost all the cells, mediate intercellular communication and are involved in various physiological and pathological processes. We aimed to investigate the effects of graphene oxide (GO) on the biogenesis and release of exosomes in human ovarian cancer (SKOV3) cells. METHODS Exosomes were isolated using ultracentrifugation and ExoQuick and characterized by various analytical techniques. The expression levels of exosome markers were analyzed via quantitative reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay. RESULTS Graphene oxide (10-50 μg/mL), cisplatin (2-10 μg/mL), and C6-ceramide (5-25 μM) inhibited the cell viability, proliferation, and cytotoxicity in a dose-dependent manner. We observed that graphene oxide (GO), cisplatin (CIS), and C6-Ceramide (C6-Cer) stimulated acetylcholine esterase and neutral sphingomyelinase activity, total exosome protein concentration, and exosome counts associated with increased level of apoptosis, oxidative stress and endoplasmic reticulum stress. In contrast, GW4869 treatment inhibits biogenesis and release of exosomes. We observed that the human ovarian cancer cells secreted exosomes with typical cup-shaped morphology and surface protein biomarkers. The expression levels of TSG101, CD9, CD63, and CD81 were significantly higher in GO-treated cells than in control cells. Further, cytokine and chemokine levels were significantly higher in exosomes isolated from GO-treated SKOV3 cells than in those isolated from control cells. SKOV3 cells pre-treated with N-acetylcysteine or GW4869 displayed a significant reduction in GO-induced exosome biogenesis and release. Furthermore, endocytic inhibitors decrease exosome biogenesis and release by impairing endocytic pathways. CONCLUSION This study identifies GO as a potential tool for targeting the exosome pathway and stimulating exosome biogenesis and release. We believe that the knowledge acquired in this study can be potentially extended to other exosome-dominated pathologies and model systems. Furthermore, these nanoparticles can provide a promising means to enhance exosome production in SKOV3 cells.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Jin Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| |
Collapse
|
8
|
Aguirre RS, Kulkarni A, Becker MW, Lei X, Sarkar S, Ramanadham S, Phelps EA, Nakayasu ES, Sims EK, Mirmira RG. Extracellular vesicles in β cell biology: Role of lipids in vesicle biogenesis, cargo, and intercellular signaling. Mol Metab 2022; 63:101545. [PMID: 35817393 PMCID: PMC9294332 DOI: 10.1016/j.molmet.2022.101545] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) is a complex autoimmune disorder whose pathogenesis involves an intricate interplay between β cells of the pancreatic islet, other islet cells, and cells of the immune system. Direct intercellular communication within the islet occurs via cell surface proteins and indirect intercellular communication has traditionally been seen as occurring via secreted proteins (e.g., endocrine hormones and cytokines). However, recent literature suggests that extracellular vesicles (EVs) secreted by β cells constitute an additional and biologically important mechanism for transmitting signals to within the islet. SCOPE OF REVIEW This review summarizes the general mechanisms of EV formation, with a particular focus on how lipids and lipid signaling pathways influence their formation and cargo. We review the implications of EV release from β cells for T1D pathogenesis, how EVs and their cargo might be leveraged as biomarkers of this process, and how EVs might be engineered as a therapeutic candidate to counter T1D outcomes. MAJOR CONCLUSIONS Islet β cells have been viewed as initiators and propagators of the cellular circuit giving rise to autoimmunity in T1D. In this context, emerging literature suggests that EVs may represent a conduit for communication that holds more comprehensive messaging about the β cells from which they arise. As the field of EV biology advances, it opens the possibility that intervening with EV formation and cargo loading could be a novel disease-modifying approach in T1D.
Collapse
Affiliation(s)
| | - Abhishek Kulkarni
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, IL, USA
| | - Matthew W. Becker
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Xiaoyong Lei
- Department of Cell, Developmental, and Integrative Biology & The Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Soumyadeep Sarkar
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Sasanka Ramanadham
- Department of Cell, Developmental, and Integrative Biology & The Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Edward A. Phelps
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Ernesto S. Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Emily K. Sims
- Department of Pediatrics and the Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Raghavendra G. Mirmira
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, IL, USA,Corresponding author. 900 E. 57th St., KCBD 8130, Chicago, IL, 60637, USA.
| |
Collapse
|
9
|
Walker OL, Dahn ML, Power Coombs MR, Marcato P. The Prostaglandin E2 Pathway and Breast Cancer Stem Cells: Evidence of Increased Signaling and Potential Targeting. Front Oncol 2022; 11:791696. [PMID: 35127497 PMCID: PMC8807694 DOI: 10.3389/fonc.2021.791696] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/27/2021] [Indexed: 12/24/2022] Open
Abstract
Culprits of cancer development, metastasis, and drug resistance, cancer stem cells (CSCs) are characterized by specific markers, active developmental signaling pathways, metabolic plasticity, increased motility, invasiveness, and epithelial-mesenchymal transition. In breast cancer, these cells are often more prominent in aggressive disease, are amplified in drug-resistant tumors, and contribute to recurrence. For breast cancer, two distinct CSC populations exist and are typically defined by CD44+/CD24- cell surface marker expression or increased aldehyde dehydrogenase (ALDH) activity. These CSC populations share many of the same properties but also exhibit signaling pathways that are more active in CD44+/CD24- or ALDH+ populations. Understanding these CSC populations and their shared or specific signaling pathways may lead to the development of novel therapeutic strategies that will improve breast cancer patient outcomes. Herein, we review the current evidence and assess published patient tumor datasets of sorted breast CSC populations for evidence of heightened prostaglandin E2 (PGE2) signaling and activity in these breast CSC populations. PGE2 is a biologically active lipid mediator and in cancer PGE2 promotes tumor progression and poor patient prognosis. Overall, the data suggests that PGE2 signaling is important in propagating breast CSCs by enhancing inherent tumor-initiating capacities. Development of anti-PGE2 signaling therapeutics may be beneficial in inhibiting tumor growth and limiting breast CSC populations.
Collapse
Affiliation(s)
| | | | - Melanie R. Power Coombs
- Pathology, Dalhousie University, Halifax, NS, Canada
- Biology, Acadia University, Wolfville, NS, Canada
| | - Paola Marcato
- Pathology, Dalhousie University, Halifax, NS, Canada
- Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- *Correspondence: Paola Marcato,
| |
Collapse
|
10
|
Wang X, Sun C, Huang X, Li J, Fu Z, Li W, Yin Y. The Advancing Roles of Exosomes in Breast Cancer. Front Cell Dev Biol 2021; 9:731062. [PMID: 34790660 PMCID: PMC8591197 DOI: 10.3389/fcell.2021.731062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Breast cancer (BC) develops from breast tissue and is the most common aggressive malignant tumor in women worldwide. Although advanced treatment strategies have been applied and reduced current mortality rates, BC control remains unsatisfactory. It is essential to elucidate the underlying molecular mechanisms to assist clinical options. Exosomes are a type of extracellular vesicles and mediate cellular communications by delivering various biomolecules (oncogenes, oncomiRs, proteins, and even pharmacological compounds). These bioactive molecules can be transferred to change the transcriptome of target cells and influence tumor-related signaling pathways. Extensive studies have implicated exosomes in BC biology, including therapeutic resistance and the surrounding microenvironment. This review focuses on discussing the functions of exosomes in tumor treatment resistance, invasion and metastasis of BC. Moreover, we will also summarize multiple interactions between exosomes and the BC tumor microenvironment. Finally, we propose promising clinical applications of exosomes in BC.
Collapse
Affiliation(s)
- Xi Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Chunxiao Sun
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiang Huang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ziyi Fu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Maternity and Child Medical Institute, Obstetrics and Gynecology Hospital, Nanjing Medical University, Nanjing, China
| | - Wei Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yongmei Yin
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
11
|
Abstract
Cancer therapy, such as chemotherapy, induces tumor cell death (“debris”), which can stimulate metastasis. Chemotherapy-generated debris upregulates soluble epoxide hydrolase (sEH) and the prostaglandin E2 receptor 4 (EP4), which triggers a macrophage-derived storm of proinflammatory and proangiogenic lipid autacoid and cytokine mediators. Although sEH inhibitors and EP4 antagonists are in clinical development for multiple inflammatory diseases, their combined role in cancer is unknown. Here, we show that the synergistic antitumor activity of sEH and EP4 inhibition suppresses hepato-pancreatic tumor growth, without overt toxicity, via macrophage phagocytosis of debris and counterregulation of a debris-stimulated cytokine storm. Thus, stimulating the resolution of inflammation via combined inhibition of sEH and EP4 may be an approach for preventing metastatic progression driven by cancer therapy. Cancer therapy reduces tumor burden via tumor cell death (“debris”), which can accelerate tumor progression via the failure of inflammation resolution. Thus, there is an urgent need to develop treatment modalities that stimulate the clearance or resolution of inflammation-associated debris. Here, we demonstrate that chemotherapy-generated debris stimulates metastasis by up-regulating soluble epoxide hydrolase (sEH) and the prostaglandin E2 receptor 4 (EP4). Therapy-induced tumor cell debris triggers a storm of proinflammatory and proangiogenic eicosanoid-driven cytokines. Thus, targeting a single eicosanoid or cytokine is unlikely to prevent chemotherapy-induced metastasis. Pharmacological abrogation of both sEH and EP4 eicosanoid pathways prevents hepato-pancreatic tumor growth and liver metastasis by promoting macrophage phagocytosis of debris and counterregulating a protumorigenic eicosanoid and cytokine storm. Therefore, stimulating the clearance of tumor cell debris via combined sEH and EP4 inhibition is an approach to prevent debris-stimulated metastasis and tumor growth.
Collapse
|
12
|
Gómez-Valenzuela F, Escobar E, Pérez-Tomás R, Montecinos VP. The Inflammatory Profile of the Tumor Microenvironment, Orchestrated by Cyclooxygenase-2, Promotes Epithelial-Mesenchymal Transition. Front Oncol 2021; 11:686792. [PMID: 34178680 PMCID: PMC8222670 DOI: 10.3389/fonc.2021.686792] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 05/13/2021] [Indexed: 12/11/2022] Open
Abstract
The tumor microenvironment (TME) corresponds to a complex and dynamic interconnection between the extracellular matrix and malignant cells and their surrounding stroma composed of immune and mesenchymal cells. The TME has constant cellular communication through cytokines that sustain an inflammatory profile, which favors tumor progression, angiogenesis, cell invasion, and metastasis. Although the epithelial-mesenchymal transition (EMT) represents a relevant metastasis-initiating event that promotes an invasive phenotype in malignant epithelial cells, its relationship with the inflammatory profile of the TME is poorly understood. Previous evidence strongly suggests that cyclooxygenase-2 (COX-2) overexpression, a pro-inflammatory enzyme related to chronic unresolved inflammation, is associated with common EMT-signaling pathways. This review article summarizes how COX-2 overexpression, within the context of the TME, orchestrates the EMT process and promotes initial metastatic-related events.
Collapse
Affiliation(s)
- Fernán Gómez-Valenzuela
- Department of Hematology-Oncology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Enrico Escobar
- Department of Oral Pathology and Medicine, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Ricardo Pérez-Tomás
- Department of Pathology and Experimental Therapy - Bellvitge, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Viviana P Montecinos
- Department of Hematology-Oncology, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
13
|
Brunel A, Bégaud G, Auger C, Durand S, Battu S, Bessette B, Verdier M. Autophagy and Extracellular Vesicles, Connected to rabGTPase Family, Support Aggressiveness in Cancer Stem Cells. Cells 2021; 10:1330. [PMID: 34072080 PMCID: PMC8227744 DOI: 10.3390/cells10061330] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 12/22/2022] Open
Abstract
Even though cancers have been widely studied and real advances in therapeutic care have been made in the last few decades, relapses are still frequently observed, often due to therapeutic resistance. Cancer Stem Cells (CSCs) are, in part, responsible for this resistance. They are able to survive harsh conditions such as hypoxia or nutrient deprivation. Autophagy and Extracellular Vesicles (EVs) secretion are cellular processes that help CSC survival. Autophagy is a recycling process and EVs secretion is essential for cell-to-cell communication. Their roles in stemness maintenance have been well described. A common pathway involved in these processes is vesicular trafficking, and subsequently, regulation by Rab GTPases. In this review, we analyze the role played by Rab GTPases in stemness status, either directly or through their regulation of autophagy and EVs secretion.
Collapse
|
14
|
Jiang Y, Zhuo X, Mao C. G Protein-coupled Receptors in Cancer Stem Cells. Curr Pharm Des 2020; 26:1952-1963. [DOI: 10.2174/1381612826666200305130009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/10/2020] [Indexed: 12/19/2022]
Abstract
G protein-coupled receptors (GPCRs) are highly expressed on a variety of tumour tissues while several
GPCR exogenous ligands become marketed pharmaceuticals. In recent decades, cancer stem cells (CSCs) become
widely investigated drug targets for cancer therapy but the underlying mechanism is still not fully elucidated.
There are vigorous participations of GPCRs in CSCs-related signalling and functions, such as biomarkers for
CSCs, activation of Wnt, Hedgehog (HH) and other signalling to facilitate CSCs progressions. This relationship
can not only uncover a novel molecular mechanism for GPCR-mediated cancer cell functions but also assist our
understanding of maintaining and modulating CSCs. Moreover, GPCR antagonists and monoclonal antibodies
could be applied to impair CSCs functions and consequently attenuate tumour growth, some of which have been
undergoing clinical studies and are anticipated to turn into marketed anticancer drugs. Therefore, this review
summarizes and provides sufficient evidences on the regulation of GPCR signalling in the maintenance, differentiation
and pluripotency of CSCs, suggesting that targeting GPCRs on the surface of CSCs could be potential
therapeutic strategies for cancer therapy.
Collapse
Affiliation(s)
- Yuhong Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Xin Zhuo
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Canquan Mao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| |
Collapse
|
15
|
Ching MM, Reader J, Fulton AM. Eicosanoids in Cancer: Prostaglandin E 2 Receptor 4 in Cancer Therapeutics and Immunotherapy. Front Pharmacol 2020; 11:819. [PMID: 32547404 PMCID: PMC7273839 DOI: 10.3389/fphar.2020.00819] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/19/2020] [Indexed: 12/17/2022] Open
Abstract
The cyclooxygenase-2 (COX-2) enzyme is frequently overexpressed in epithelial malignancies including those of the breast, prostate, lung, kidney, ovary, and liver and elevated expression is associated with worse outcomes. COX-2 catalyzes the metabolism of arachidonic acid to prostaglandins. The COX-2 product prostaglandin E2 (PGE2) binds to four G-protein-coupled EP receptors designated EP1-EP4. EP4 is commonly upregulated in cancer and supports cell proliferation, migration, invasion, and metastasis through activation of multiple signaling pathways including ERK, cAMP/PKA, PI3K/AKT, and NF-κB. EP4 antagonists inhibit metastasis in preclinical models. Cancer stem cells, that underlie therapy resistance and disease relapse, are driven by the expression of EP4. Resistance to several chemotherapies is reversed in the presence of EP4 antagonists. In addition to tumor cell-autonomous roles of EP4, many EP4-positive host cells play a role in tumor behavior. Endothelial cell-EP4 supports tumor angiogenesis and lymphangiogenesis. Natural Killer (NK) cells are critical to the mechanism by which systemically administered EP4 antagonists inhibit metastasis. PGE2 acts on EP4 expressed on the NK cell to inhibit tumor target cell killing, cytokine production, and chemotactic activity. Myeloid-derived suppressor cells (MDSCs), that inhibit the development of cytotoxic T cells, are induced by PGE2 acting on myeloid-expressed EP2 and EP4 receptors. Inhibition of MDSC-EP4 leads to maturation of effector T cells and suppresses the induction of T regulatory cells. A number of EP4 antagonists have proven useful in dissecting these mechanisms. There is growing evidence that EP4 antagonism, particularly in combination with either chemotherapy, endocrine therapy, or immune-based therapies, should be investigated further as a promising novel approach to cancer therapy. Several EP4 antagonists have now progressed to early phase clinical trials and we eagerly await the results of those studies.
Collapse
Affiliation(s)
- Mc Millan Ching
- Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jocelyn Reader
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Baltimore, MD, United States
| | - Amy M. Fulton
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Baltimore, MD, United States
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, United States
- Baltimore Veterans Administration Medical Center, Baltimore, MD, United States
| |
Collapse
|
16
|
Sheng J, Sun H, Yu FB, Li B, Zhang Y, Zhu YT. The Role of Cyclooxygenase-2 in Colorectal Cancer. Int J Med Sci 2020; 17:1095-1101. [PMID: 32410839 PMCID: PMC7211146 DOI: 10.7150/ijms.44439] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/14/2020] [Indexed: 12/15/2022] Open
Abstract
Colorectal cancer is the third common cancer in this world, accounting for more than 1 million cases each year. However, detailed etiology and mechanism of colorectal cancer have not been fully understood. For example, cyclooxygenase-2 (COX-2) and its product prostaglandin E2 (PGE2) have been closely linked to its occurrence, progression and prognosis. However, the mechanisms on how COX-2 and PGE2-mediate the pathogenesis of colorectal cancer are obscure. In this review, we have summarized recent advances in studies of pathogenesis and control in colorectal cancer to assist further advances in the research for the cure of the cancer. In addition, the knowledge gained may also guide the audiences for reduction of the risk and control of this deadly disease.
Collapse
Affiliation(s)
- Juan Sheng
- Department of Gastroenterology, the Second People's Hospital of Yunnan Province, Kunming, Yunnan 650021, China
| | - Hong Sun
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Fu-Bing Yu
- Department of Gastroenterology, the Second People's Hospital of Yunnan Province, Kunming, Yunnan 650021, China
| | - Bo Li
- Department of General Surgery, The Second People's Hospital of Yunnan Province, Kunming, Yunnan 650021, China
| | - Yuan Zhang
- Tissue Tech Inc, Miami, Florida 33032, USA
| | | |
Collapse
|
17
|
COX-2 Signaling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1277:87-104. [PMID: 33119867 DOI: 10.1007/978-3-030-50224-9_6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tumorigenesis is a multistep, complicated process, and many studies have been completed over the last few decades to elucidate this process. Increasingly, many studies have shifted focus toward the critical role of the tumor microenvironment (TME), which consists of cellular players, cell-cell communications, and extracellular matrix (ECM). In the TME, cyclooxygenase-2 (COX-2) has been found to be a key molecule mediating the microenvironment changes. COX-2 is an inducible form of the enzyme that converts arachidonic acid into the signal transduction molecules (thromboxanes and prostaglandins). COX-2 is frequently expressed in many types of cancers and has been closely linked to its occurrence, progression, and prognosis. For example, COX-2 has been shown to (1) regulate tumor cell growth, (2) promote tissue invasion and metastasis, (3) inhibit apoptosis, (4) suppress antitumor immunity, and (5) promote sustainable angiogenesis. In this chapter, we summarize recent advances of studies that have evaluated COX-2 signaling in TME.
Collapse
|
18
|
Reader J, Harper AK, Legesse T, Staats PN, Goloubeva O, Rao GG, Fulton A, Roque DM. EP4 and Class III β-Tubulin Expression in Uterine Smooth Muscle Tumors: Implications for Prognosis and Treatment. Cancers (Basel) 2019; 11:cancers11101590. [PMID: 31635323 PMCID: PMC6826612 DOI: 10.3390/cancers11101590] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/10/2019] [Accepted: 10/12/2019] [Indexed: 02/07/2023] Open
Abstract
The microtubule-stabilizing agent docetaxel in combination with gemcitabine represents one of the most effective regimens against the aggressive gynecologic tumor leiomyosarcoma (LMS). Upregulation of class III β-tubulin has previously been shown to confer taxane resistance in a variety of human cancers. Prostaglandin E2 receptor EP4 is linked to progression of a variety of human cancers and may represent a novel target for tumor inhibition in LMS. We evaluated the hypotheses that EP4 and class III β-tubulin have increased expression in LMS in comparison to normal myometrium or benign tumors and that expression of class III β-tubulin correlates with resistance to taxanes and poor clinical outcome. Gene expression was examined using TCGA data and correlated with clinicopathologic outcome which demonstrated that class III β-tubulin is more highly expressed in more aggressive sarcomas with EP4 being widely expressed in all subtypes of sarcoma. Immunohistochemistry for EP4 and class III β-tubulin was performed on patients with LMS, leiomyomatosis/STUMP, leiomyoma, and normal myometrium. Expression of EP4 and class III β-tubulin were characterized for cell lines SK-UT-1, SK-UT-1B, and PHM-41 and these cell lines were treated with docetaxel alone and in combination with EP4 inhibitors. In taxane-resistant cell lines that overexpress class III β-tubulin and EP4, treatment with EP4 inhibitor resulted in at least 2-fold sensitization to docetaxel. Expression of class III β-tubulin and EP4 in LMS may identify patients at risk of resistance to standard chemotherapies and candidates for augmentation of therapy through EP4 inhibition.
Collapse
Affiliation(s)
- Jocelyn Reader
- Division of Gynecologic Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA.
| | - Amy K Harper
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Teklu Legesse
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Paul N Staats
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Olga Goloubeva
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Gautam G Rao
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA.
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Amy Fulton
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA.
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
- Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201, USA.
| | - Dana M Roque
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA.
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
19
|
Liu Y, Jiang Q, Liu X, Lin X, Tang Z, Liu C, Zhou J, Zhao M, Li X, Cheng Z, Li L, Xie Y, Liu Z, Fang W. Cinobufotalin powerfully reversed EBV-miR-BART22-induced cisplatin resistance via stimulating MAP2K4 to antagonize non-muscle myosin heavy chain IIA/glycogen synthase 3β/β-catenin signaling pathway. EBioMedicine 2019; 48:386-404. [PMID: 31594754 PMCID: PMC6838365 DOI: 10.1016/j.ebiom.2019.08.040] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 08/16/2019] [Accepted: 08/19/2019] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) is an Epstein-Barr virus (EBV)-related tumor. The role of EBV-encoding miR-BART22 is still unclear in NPC. This study aimed to identify the detailed mechanisms by which EBV-miR-BART22 functions as a tumor-promoting factor and evaluate the action of cinobufotalin in treating EBV-miR-BART22-overexpressing NPC cells. METHODS Using real-time PCR, western blotting, immunohistochemistry, and In situ hybridization, we detected the expression of miR-BART22 and MAP2K4 in tissues and cells, as well as evaluated their clinical relevance in NPC patients. The effects of miR-BART22 on cell metastasis, stemness and DDP chemoresistance were examined by sphere formation assay, side population analysis, transwell, boyden, in vivo xenograft tumor mouse model et al. Western blotting, immunofluorescence staining, luciferase reporter assay, ChIP, EMSA and Co-IP assay et al. were performed to explore the detailed molecular mechanism of EBV-miR-BART22 in NPC. Finally, we estimated the effects and molecular basis of Cinobufotalin on EBV-miR-BART22-overexpressing NPC cells in vitro and in vivo assays. FINDINGS We observed that EBV-miR-BART22 not only promoted tumor stemness and metastasis, but also enhanced the resistance to Cisplatin (DDP) in vitro and in vivo. Mechanistic analysis indicated that EBV-miR-BART22 directly targeted the MAP2K4 and upregulated non-muscle myosin heavy chain IIA (MYH9) expression by PI3K/AKT/c-Jun-induced transcription. Further, MYH9 interacted with glycogen synthase 3β(GSK3β) protein and induced its ubiquitin degradation by activating PI3K/AKT/c-Jun-induced ubiquitin transcription and the latter combined with increased TRAF6 E3 ligase, which further bound to GSK3β protein. Reductions in the GSK3β protein thus promoted β-catenin expression and nuclear translocation, which induced tumor stemness and the epithelial-to-mesenchymal transition (EMT) signals. Furthermore, we observed that cinobufotalin, a new chemically synthesized compound, significantly suppressed EBV-miR-BART22-induced DDP chemoresistance by upregulating MAP2K4 to suppress MYH9/GSK3β/β-catenin and its downstream tumor stemness and EMT signals in NPC. Finally, clinical data revealed that increased miR-BART22 and reduced MAP2K4 expression caused the poor prognoses of NPC patients. INTERPRETATION Our study provides a novel mechanism that cinobufotalin reversed the DDP chemoresistance and EMT induced by EBV-miR-BART22 in NPC.
Collapse
Affiliation(s)
- Yiyi Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Qingping Jiang
- Cancer Institute, School of Basic Medical Science, Southern Medical University, Guangzhou, China; Department of Pathology, Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiong Liu
- Cancer Institute, School of Basic Medical Science, Southern Medical University, Guangzhou, China; Department of Otolaryngology, Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Xian Lin
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - ZiBo Tang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Chen Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jin Zhou
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Mengyang Zhao
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xin Li
- Shenzhen Key Laboratory of Viral Oncology, the Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Zhao Cheng
- Shenzhen Key Laboratory of Viral Oncology, the Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, China; Department of Pediatric Otorhinolaryngology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Libo Li
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yingying Xie
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Zhen Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China; Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China.
| | - Weiyi Fang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
20
|
Irey EA, Lassiter CM, Brady NJ, Chuntova P, Wang Y, Knutson TP, Henzler C, Chaffee TS, Vogel RI, Nelson AC, Farrar MA, Schwertfeger KL. JAK/STAT inhibition in macrophages promotes therapeutic resistance by inducing expression of protumorigenic factors. Proc Natl Acad Sci U S A 2019; 116:12442-12451. [PMID: 31147469 PMCID: PMC7056941 DOI: 10.1073/pnas.1816410116] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Tumor-associated macrophages contribute to tumor progression and therapeutic resistance in breast cancer. Within the tumor microenvironment, tumor-derived factors activate pathways that modulate macrophage function. Using in vitro and in vivo models, we find that tumor-derived factors induce activation of the Janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3) pathway in macrophages. We also demonstrate that loss of STAT3 in myeloid cells leads to enhanced mammary tumorigenesis. Further studies show that macrophages contribute to resistance of mammary tumors to the JAK/STAT inhibitor ruxolitinib in vivo and that ruxolitinib-treated macrophages produce soluble factors that promote resistance of tumor cells to JAK inhibition in vitro. Finally, we demonstrate that STAT3 deletion and JAK/STAT inhibition in macrophages increases expression of the protumorigenic factor cyclooxygenase-2 (COX-2), and that COX-2 inhibition enhances responsiveness of tumors to ruxolitinib. These findings define a mechanism through which macrophages promote therapeutic resistance and highlight the importance of understanding the impact of targeted therapies on the tumor microenvironment.
Collapse
Affiliation(s)
- Emily A Irey
- Microbiology, Immunology and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, MN 55455
| | - Chelsea M Lassiter
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455
| | - Nicholas J Brady
- Microbiology, Immunology and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, MN 55455
| | - Pavlina Chuntova
- Microbiology, Immunology and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, MN 55455
| | - Ying Wang
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455
| | - Todd P Knutson
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455
- University of Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455
| | - Christine Henzler
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455
- University of Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455
| | - Thomas S Chaffee
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455
| | - Rachel I Vogel
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
- Department of Obstetrics, Gynecology and Women's Health, Division of Gynecologic Oncology, University of Minnesota, Minneapolis, MN 55455
| | - Andrew C Nelson
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
| | - Michael A Farrar
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455
| | - Kathryn L Schwertfeger
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455;
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
21
|
Liu J, Chang B, Li Q, Xu L, Liu X, Wang G, Wang Z, Wang L. Redox-Responsive Dual Drug Delivery Nanosystem Suppresses Cancer Repopulation by Abrogating Doxorubicin-Promoted Cancer Stemness, Metastasis, and Drug Resistance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801987. [PMID: 31139556 PMCID: PMC6446919 DOI: 10.1002/advs.201801987] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/09/2019] [Indexed: 05/15/2023]
Abstract
Chemotherapy is a major therapeutic option for cancer patients. However, its effectiveness is challenged by chemodrugs' intrinsic pathological interactions with residual cancer cells. While inducing cancer cell death, chemodrugs enhance cancer stemness, invasiveness, and drug resistance of remaining cancer cells through upregulating cyclooxygenase-2/prostaglandin-E2 (COX-2/PGE2) signaling, therefore facilitating cancer repopulation and relapse. Toward tumor eradication, it is necessary to improve chemotherapy by abrogating these chemotherapy-induced effects. Herein, redox-responsive, celecoxib-modified mesoporous silica nanoparticles with poly(β-cyclodextrin) wrapping (MSCPs) for sealing doxorubicin (DOX) are synthesized. Celecoxib, an FDA-approved COX-2 inhibitor, is employed as a structural and functional element to confer MSCPs with redox-responsiveness and COX-2/PGE2 inhibitory activity. MSCPs efficiently codeliver DOX and celecoxib into the tumor location, minimizing systemic toxicity. Importantly, through blocking chemotherapy-activated COX-2/PGE2 signaling, MSCPs drastically enhance DOX's antitumor activity by suppressing enhancement of cancer stemness and invasiveness as well as drug resistance induced by DOX-based chemotherapy in vitro. This is also remarkably achieved in three preclinical tumor models in vivo. DOX-loaded MSCPs effectively inhibit tumor repopulation by blocking COX-2/PGE2 signaling, which eliminates DOX-induced expansion of cancer stem-like cells, distant metastasis, and acquired drug resistance. Thus, this drug delivery nanosystem is capable of effectively suppressing tumor repopulation and has potential clinical translational value.
Collapse
Affiliation(s)
- Jia Liu
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Bingcheng Chang
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Qilin Li
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Luming Xu
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Xingxin Liu
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Guobin Wang
- Department of Gastrointestinal SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Zheng Wang
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Department of Gastrointestinal SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Lin Wang
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| |
Collapse
|
22
|
Chen S, Lin M, Tsai J, He P, Luo W, Herschman H, Li H. EP 4 Antagonist-Elicited Extracellular Vesicles from Mesenchymal Stem Cells Rescue Cognition/Learning Deficiencies by Restoring Brain Cellular Functions. Stem Cells Transl Med 2019; 8:707-723. [PMID: 30891948 PMCID: PMC6591556 DOI: 10.1002/sctm.18-0284] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/20/2019] [Indexed: 12/25/2022] Open
Abstract
Adult brains have limited regenerative capacity. Consequently, both brain damage and neurodegenerative diseases often cause functional impairment for patients. Mesenchymal stem cells (MSCs), one type of adult stem cells, can be isolated from various adult tissues. MSCs have been used in clinical trials to treat human diseases and the therapeutic potentials of the MSC‐derived secretome and extracellular vesicles (EVs) have been under investigation. We found that blocking the prostaglandin E2/prostaglandin E2 receptor 4 (PGE2/EP4) signaling pathway in MSCs with EP4 antagonists increased EV release and promoted the sorting of specific proteins, including anti‐inflammatory cytokines and factors that modify astrocyte function, blood–brain barrier integrity, and microglial migration into the damaged hippocampus, into the EVs. Systemic administration of EP4 antagonist‐elicited MSC EVs repaired deficiencies of cognition, learning and memory, inhibited reactive astrogliosis, attenuated extensive inflammation, reduced microglial infiltration into the damaged hippocampus, and increased blood–brain barrier integrity when administered to mice following hippocampal damage. stem cells translational medicine2019
Collapse
Affiliation(s)
- Shih‐Yin Chen
- Institute of Cellular and System MedicineNational Health Research InstitutesMiaoliTaiwan, Republic of China
| | - Meng‐Chieh Lin
- Institute of Cellular and System MedicineNational Health Research InstitutesMiaoliTaiwan, Republic of China
| | - Jia‐Shiuan Tsai
- Institute of Cellular and System MedicineNational Health Research InstitutesMiaoliTaiwan, Republic of China
| | - Pei‐Lin He
- Institute of Cellular and System MedicineNational Health Research InstitutesMiaoliTaiwan, Republic of China
| | - Wen‐Ting Luo
- Institute of Cellular and System MedicineNational Health Research InstitutesMiaoliTaiwan, Republic of China
| | - Harvey Herschman
- Department of Molecular & Medical PharmacologyUniversity of California, Los AngelesLos AngelesCaliforniaUSA
- Department of Biological ChemistryUniversity of California, Los AngelesLos AngelesCaliforniaUSA
- Molecular Biology InstituteUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | - Hua‐Jung Li
- Institute of Cellular and System MedicineNational Health Research InstitutesMiaoliTaiwan, Republic of China
| |
Collapse
|