1
|
Naik K, Vanina AS, Srivastava SK, Sychev AV, Postnikov EB, Parmar AS. Structural and Rheological Properties of a Fish Collagen-Based Hydrogel Considered as a Brain Tissue Phantom. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:6124-6131. [PMID: 40014621 DOI: 10.1021/acs.langmuir.4c05066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Hydrogels have gained attention as phantoms of soft materials mimicking properties of the brain tissue aimed at creating adjustable physical media for studying rheological models, training models for surgeons, tissue substitutes used in the process of surgical treatment of neurological diseases, and testing personal protective gears. In this work, we report the results of exploring the shear rheological properties of a material synthesized on the basis of fish collagen and discuss its relevance to the properties of biological samples under similar experimental conditions. It is shown that the stress-strain relations and the storage and loss moduli of the artificial and biological materials exhibit high similarity under amplitude shear sweep as well as responses to low-frequency oscillatory perturbations. The respective rheological models and perspectives for the use of this hydrogel material are discussed.
Collapse
Affiliation(s)
- Kaustubh Naik
- Biophysics and Nanotechnology Laboratory, Department of Physics, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Anastasia S Vanina
- Research Center for Condensed Matter Physics, Kursk State University, Radishcheva st. 33, Kursk 305000, Russia
| | - Saurabh Kumar Srivastava
- Biophysics and Nanotechnology Laboratory, Department of Physics, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Alexander V Sychev
- Research Center for Condensed Matter Physics, Kursk State University, Radishcheva st. 33, Kursk 305000, Russia
| | - Eugene B Postnikov
- Theoretical Physics Department, Kursk State University, Radishcheva st. 33, Kursk 305000, Russia
- Institute of Physics, Saratov State University, Astrakhanskaya St. 83, Saratov 410012, Russia
| | - Avanish Singh Parmar
- Biophysics and Nanotechnology Laboratory, Department of Physics, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
- Centre for Biomaterials and Tissue Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
2
|
Di Lisa D, Andolfi A, Masi G, Uras G, Ferrari PF, Martinoia S, Pastorino L. Impact of perfusion on neuronal development in human derived neuronal networks. APL Bioeng 2024; 8:046102. [PMID: 39364213 PMCID: PMC11446581 DOI: 10.1063/5.0221911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/18/2024] [Indexed: 10/05/2024] Open
Abstract
Advanced in vitro models of the brain have evolved in recent years from traditional two-dimensional (2D) ones, based on rodent derived cells, to three-dimensional (3D) ones, based on human neurons derived from induced pluripotent stem cells. To address the dynamic changes of the tissue microenvironment, bioreactors are used to control the in vitro microenvironment for viability, repeatability, and standardization. However, in neuronal tissue engineering, bioreactors have primarily been used for cell expansion purposes, while microfluidic systems have mainly been employed for culturing organoids. In this study, we explored the use of a commercial perfusion bioreactor to control the culture microenvironment of neuronal cells in both 2D and 3D cultures. Namely, neurons differentiated from human induced pluripotent stem cells (iNeurons) were cultured in 2D under different constant flow rates for 72 h. The impact of different flow rates on early-stage neuronal development and synaptogenesis was assessed by morphometric characterization and synaptic analysis. Based on these results, two involving variable flow rates were developed and applied again in 2D culture. The most effective protocol, in terms of positive impact on neuronal development, was then used for a preliminary study on the application of dynamic culturing conditions to neuronal cells in 3D. To this purpose, both iNeurons, co-cultured with astrocytes, and the human neuroblastoma cells SH-SY5Y were embedded into a hydrogel and maintained under perfusion for up to 28 days. A qualitative evaluation by immunocytochemistry and confocal microscopy was carried out to assess cell morphology and the formation of a 3D neuronal network.
Collapse
Affiliation(s)
| | - Andrea Andolfi
- DIBRIS, Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Via Opera Pia 13, 16145 Genoa, Italy
| | - Giacomo Masi
- DIBRIS, Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Via Opera Pia 13, 16145 Genoa, Italy
| | | | | | | | | |
Collapse
|
3
|
Vanina AS, Lavrova AI, Safonov DA, Sychev AV, Proskurkin IS, Postnikov EB. Mimicking Marker Spread After Disruption of the Blood-Brain Barrier with a Collagen-Based Hydrogel Phantom. Biomimetics (Basel) 2024; 9:667. [PMID: 39590239 PMCID: PMC11591774 DOI: 10.3390/biomimetics9110667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/13/2024] [Accepted: 10/20/2024] [Indexed: 11/28/2024] Open
Abstract
Recent studies of the spread of substances penetrating the disrupted blood-brain barrier have revealed that the spread in the parenchyma surrounding a vessel has a complex character. In particular, a flow-like motion occurred for a short time that exhibits a smooth transition to diffusional spread. To address the possible physical background of such behavior, we created a system formed by a hydrogel medium with a channel filled by a marker solution, which can serve as a physical model mimicking the process of a substance passively spreading to the brain's parenchyma when the blood-brain barrier is disrupted. The key result obtained in this work consists of the conclusion that the above-mentioned two-stage character of the spread process discovered in a previous biophysical experiment on the blood-brain opening in a living mouse may originate from the specificity of transport in porous soft matter with relaxation. We propose a mathematical model based on the extended Cattaneo equation, which reproduces our experimental data; determines the crossover time coinciding with that found in the biological system; and, therefore, provides a means of interpretation of this phenomenon.
Collapse
Affiliation(s)
- Anastasia S. Vanina
- Research Center for Condensed Matter Physics, Kursk State University, Radishcheva St. 33, Kursk 305000, Russia; (A.S.V.)
| | - Anastasia I. Lavrova
- Saint-Petersburg State Research Institute of Phthisiopulmonology, Lygovsky Av. 2-4, Saint-Petersburg 191036, Russia
- Centre for Nonlinear Chemistry, Immanuel Kant Baltic Federal University, Nevskogo St. 14, Kaliningrad 236041, Russia
| | - Dmitry A. Safonov
- Centre for Nonlinear Chemistry, Immanuel Kant Baltic Federal University, Nevskogo St. 14, Kaliningrad 236041, Russia
| | - Alexander V. Sychev
- Research Center for Condensed Matter Physics, Kursk State University, Radishcheva St. 33, Kursk 305000, Russia; (A.S.V.)
| | - Ivan S. Proskurkin
- Centre for Nonlinear Chemistry, Immanuel Kant Baltic Federal University, Nevskogo St. 14, Kaliningrad 236041, Russia
| | - Eugene B. Postnikov
- Department of Theoretical Physics, Kursk State University, Radishcheva St. 33, Kursk 305000, Russia
- Institute of Physics, Saratov State University, Astrakhanskaya St. 83, Saratov 410012, Russia
| |
Collapse
|
4
|
Alcaide D, Alric B, Cacheux J, Nakano S, Doi K, Shinohara M, Kondo M, Bancaud A, Matsunaga YT. Laminin and hyaluronan supplementation of collagen hydrogels enhances endothelial function and tight junction expression on three-dimensional cylindrical microvessel-on-a-chip. Biochem Biophys Res Commun 2024; 724:150234. [PMID: 38865812 DOI: 10.1016/j.bbrc.2024.150234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024]
Abstract
Vasculature-on-chip (VoC) models have become a prominent tool in the study of microvasculature functions because of their cost-effective and ethical production process. These models typically use a hydrogel in which the three-dimensional (3D) microvascular structure is embedded. Thus, VoCs are directly impacted by the physical and chemical cues of the supporting hydrogel. Endothelial cell (EC) response in VoCs is critical, especially in organ-specific vasculature models, in which ECs exhibit specific traits and behaviors that vary between organs. Many studies customize the stimuli ECs perceive in different ways; however, customizing the hydrogel composition accordingly to the target organ's extracellular matrix (ECM), which we believe has great potential, has been rarely investigated. We explored this approach to organ-specific VoCs by fabricating microvessels (MVs) with either human umbilical vein ECs or human brain microvascular ECs in a 3D cylindrical VoC using a collagen hydrogel alone or one supplemented with laminin and hyaluronan, components found in the brain ECM. We characterized the physical properties of these hydrogels and analyzed the barrier properties of the MVs. Barrier function and tight junction (ZO-1) expression improved with the addition of laminin and hyaluronan in the composite hydrogel.
Collapse
Affiliation(s)
- Daniel Alcaide
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan; Department of Bioengineering, School of Engineering, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan; LIMMS, CNRS-IIS UMI 2820, The University of Tokyo, Tokyo, 153-8505, Japan
| | - Baptiste Alric
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan; LIMMS, CNRS-IIS UMI 2820, The University of Tokyo, Tokyo, 153-8505, Japan
| | - Jean Cacheux
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan; LIMMS, CNRS-IIS UMI 2820, The University of Tokyo, Tokyo, 153-8505, Japan; Centre de Recherches en Cancérologie de Toulouse, Inserm, CNRS, Université Paul Sabatier, Université de Toulouse, 31037, Toulouse, France
| | - Shizuka Nakano
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan; Department of Bioengineering, School of Engineering, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Kotaro Doi
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Marie Shinohara
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan; Department of Bioengineering, School of Engineering, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Makoto Kondo
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Aurelien Bancaud
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan; LIMMS, CNRS-IIS UMI 2820, The University of Tokyo, Tokyo, 153-8505, Japan; LAAS-CNRS, CNRS UPR8001, 7 Avenue du Colonel Roche, 31400, Toulouse, France.
| | - Yukiko T Matsunaga
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan; Department of Bioengineering, School of Engineering, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan; LIMMS, CNRS-IIS UMI 2820, The University of Tokyo, Tokyo, 153-8505, Japan.
| |
Collapse
|
5
|
Evans AD, Pournoori N, Saksala E, Oommen OP. Glycosaminoglycans' for brain health: Harnessing glycosaminoglycan based biomaterials for treating central nervous system diseases and in-vitro modeling. Biomaterials 2024; 309:122629. [PMID: 38797120 DOI: 10.1016/j.biomaterials.2024.122629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/06/2024] [Accepted: 05/19/2024] [Indexed: 05/29/2024]
Abstract
Dysfunction of the central nervous system (CNS) following traumatic brain injuries (TBI), spinal cord injuries (SCI), or strokes remains challenging to address using existing medications and cell-based therapies. Although therapeutic cell administration, such as stem cells and neuronal progenitor cells (NPCs), have shown promise in regenerative properties, they have failed to provide substantial benefits. However, the development of living cortical tissue engineered grafts, created by encapsulating these cells within an extracellular matrix (ECM) mimetic hydrogel scaffold, presents a promising functional replacement for damaged cortex in cases of stroke, SCI, and TBI. These grafts facilitate neural network repair and regeneration following CNS injuries. Given that natural glycosaminoglycans (GAGs) are a major constituent of the CNS, GAG-based hydrogels hold potential for the next generation of CNS healing therapies and in vitro modeling of CNS diseases. Brain-specific GAGs not only offer structural and biochemical signaling support to encapsulated neural cells but also modulate the inflammatory response in lesioned brain tissue, facilitating host integration and regeneration. This review briefly discusses different roles of GAGs and their related proteoglycan counterparts in healthy and diseases brain and explores current trends and advancements in GAG-based biomaterials for treating CNS injuries and modeling diseases. Additionally, it examines injectable, 3D bioprintable, and conductive GAG-based scaffolds, highlighting their clinical potential for in vitro modeling of patient-specific neural dysfunction and their ability to enhance CNS regeneration and repair following CNS injury in vivo.
Collapse
Affiliation(s)
- Austin D Evans
- Bioengineering and Nanomedicine Group, Faculty of Medicine and Health Technologies, Tampere University, 33720, Tampere, Finland
| | - Negin Pournoori
- Bioengineering and Nanomedicine Group, Faculty of Medicine and Health Technologies, Tampere University, 33720, Tampere, Finland
| | - Emmi Saksala
- Bioengineering and Nanomedicine Group, Faculty of Medicine and Health Technologies, Tampere University, 33720, Tampere, Finland
| | - Oommen P Oommen
- Bioengineering and Nanomedicine Group, Faculty of Medicine and Health Technologies, Tampere University, 33720, Tampere, Finland; School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, UK.
| |
Collapse
|
6
|
Gurung SK, Shevde LA, Rao SS. Laminin I mediates resistance to lapatinib in HER2-positive brain metastatic breast cancer cells in vitro. Biochem Biophys Res Commun 2024; 720:150142. [PMID: 38788545 DOI: 10.1016/j.bbrc.2024.150142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024]
Abstract
The role of extracellular matrix (ECM) prevalent in the brain metastatic breast cancer (BMBC) niche in mediating cancer cell growth, survival, and response to therapeutic agents is not well understood. Emerging evidence suggests a vital role of ECM of the primary breast tumor microenvironment (TME) in tumor progression and survival. Possibly, the BMBC cells are also similarly influenced by the ECM of the metastatic niche; therefore, understanding the effect of the metastatic ECM on BMBC cells is imperative. Herein, we assessed the impact of various ECM components (i.e., Tenascin C, Laminin I, Collagen I, Collagen IV, and Fibronectin) on brain metastatic human epidermal growth factor receptor 2 (HER2)-positive and triple negative breast cancer (TNBC) cell lines in vitro. The highly aggressive TNBC cell line was minimally affected by ECM components exhibiting no remarkable changes in viability and morphology. On the contrary, amongst various ECM components tested, the HER2-positive cell line was significantly affected by Laminin I with higher viability and demonstrated a distinct spread morphology. In addition, HER2-positive BMBC cells exhibited resistance to Lapatinib in presence of Laminin I. Mechanistically, Laminin I-induced resistance to Lapatinib was mediated in part by phosphorylation of Erk 1/2 and elevated levels of Vimentin. Laminin I also significantly enhanced the migratory potential and replicative viability of HER2-positive BMBC cells. In sum, our findings show that presence of Laminin I in the TME of BMBC cells imparts resistance to targeted therapeutic agent Lapatinib, while increasing the possibility of its dispersal and clonogenic survival.
Collapse
Affiliation(s)
- Sumiran Kumar Gurung
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Lalita A Shevde
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Shreyas S Rao
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, 35487, USA.
| |
Collapse
|
7
|
Schneider L, Schneider R, Hamza E, Wehner S. Extracellular matrix substrates differentially influence enteric glial cell homeostasis and immune reactivity. Front Immunol 2024; 15:1401751. [PMID: 39119341 PMCID: PMC11306135 DOI: 10.3389/fimmu.2024.1401751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/02/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction Enteric glial cells are important players in the control of motility, intestinal barrier integrity and inflammation. During inflammation, they switch into a reactive phenotype enabling them to release inflammatory mediators, thereby shaping the inflammatory environment. While a plethora of well-established in vivo models exist, cell culture models necessary to decipher the mechanistic pathways of enteric glial reactivity are less well standardized. In particular, the composition of extracellular matrices (ECM) can massively affect the experimental outcome. Considering the growing number of studies involving primary enteric glial cells, a better understanding of their homeostatic and inflammatory in vitro culture conditions is needed. Methods We examined the impact of different ECMs on enteric glial culture purity, network morphology and immune responsiveness. Therefore, we used immunofluorescence and brightfield microscopy, as well as 3' bulk mRNA sequencing. Additionally, we compared cultured cells with in vivo enteric glial transcriptomes isolated from Sox10iCreERT2Rpl22HA/+ mice. Results We identified Matrigel and laminin as superior over other coatings, including poly-L-ornithine, different lysines, collagens, and fibronectin, gaining the highest enteric glial purity and most extended glial networks expressing connexin-43 hemichannels allowing intercellular communication. Transcriptional analysis revealed strong similarities between enteric glia on Matrigel and laminin with enrichment of gene sets supporting neuronal differentiation, while cells on poly-L-ornithine showed enrichment related to cell proliferation. Comparing cultured and in vivo enteric glial transcriptomes revealed a 50% overlap independent of the used coating substrates. Inflammatory activation of enteric glia by IL-1β treatment showed distinct coating-dependent gene expression signatures, with an enrichment of genes related to myeloid and epithelial cell differentiation on Matrigel and laminin coatings, while poly-L-ornithine induced more gene sets related to lymphocyte differentiation. Discussion Together, changes in morphology, differentiation and immune activation of primary enteric glial cells proved a strong effect of the ECM. We identified Matrigel and laminin as pre-eminent substrates for murine enteric glial cultures. These new insights will help to standardize and improve enteric glial culture quality and reproducibility between in vitro studies in the future, allowing a better comparison of their functional role in enteric neuroinflammation.
Collapse
Affiliation(s)
| | | | | | - Sven Wehner
- Department of Surgery, Medical Faculty, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
8
|
Sade O, Boneberg R, Weiss Y, Beldjilali-Labro M, Leichtmann-Bardoogo Y, Talpir I, Gottfried I, Ashery U, Rauti R, Maoz BM. Super-Resolution-Chip: an in-vitro platform that enables super-resolution microscopy of co-cultures and 3D systems. BIOMEDICAL OPTICS EXPRESS 2023; 14:5223-5237. [PMID: 37854575 PMCID: PMC10581794 DOI: 10.1364/boe.498038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/06/2023] [Accepted: 08/12/2023] [Indexed: 10/20/2023]
Abstract
The development of organs-on-a-chip platforms has revolutionized in-vitro cellular culture by allowing cells to be grown in an environment that better mimics human physiology. However, there is still a challenge in integrating those platforms with advanced imaging technology. This is extremely important when we want to study molecular changes and subcellular processes on the level of a single molecule using super-resolution microscopy (SRM), which has a resolution beyond the diffraction limit of light. Currently, existing platforms that include SRM have certain limitations, either as they only support 2D monocultures, without flow or as they demand a lot of production and handling. In this study, we developed a Super-Res-Chip platform, consisting of a 3D-printed chip and a porous membrane, that could be used to co-culture cells in close proximity either in 2D or in 3D while allowing SRM on both sides of the membrane. To demonstrate the functionality of the device, we co-cultured in endothelial and epithelial cells and used direct stochastic optical reconstruction microscopy (dSTORM) to investigate how glioblastoma cells affect the expression of the gap-junction protein Connexin43 in endothelial cells grown in 2D and in 3D. Cluster analysis of Connexin43 distribution revealed no difference in the number of clusters, their size, or radii, but did identify differences in their density. Furthermore, the spatial resolution was high also when the cells were imaged through the membrane (20-30 nm for x-y) and 10-20 nm when imaged directly both for 2D and 3D conditions. Overall, this chip allows to characterize of complex cellular processes on a molecular scale in an easy manner and improved the capacity for imaging in a single molecule resolution complex cellular organization.
Collapse
Affiliation(s)
- Ofir Sade
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ronja Boneberg
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Yifat Weiss
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 69978, Israel
| | | | | | - Itay Talpir
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Irit Gottfried
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Uri Ashery
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Rossana Rauti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, 61029, Italy
| | - Ben M Maoz
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, 69978, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 69978, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 69978, Israel
| |
Collapse
|
9
|
Patil V, Bohara R, Krishna Kanala V, McMahon S, Pandit A. Models and approaches to comprehend and address glial inflammation following spinal cord injury. Drug Discov Today 2023; 28:103722. [PMID: 37482236 DOI: 10.1016/j.drudis.2023.103722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/10/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
Spinal cord injury (SCI) culminates in chronic inflammation and glial scar formation driven by the activation of microglia and astrocytes. Current anti-inflammatory strategies to treat glial activation associated with SCI have several limitations. Existing in vitro and ex vivo models studying molecular mechanisms associated with inflammation focus only on the acute phase. However, the progression of glial cell-derived inflammation over the acute-to-chronic phases has not been assessed. Understanding this progression will help establish a framework for evaluating therapeutic strategies. Additionally, new models could be useful as high-throughput screening (HTS) platforms. This review aims to highlight currently available models and future methods that could facilitate screening of novel therapeutics for SCI.
Collapse
Affiliation(s)
- Vaibhav Patil
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland
| | - Raghvendra Bohara
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland
| | - Vijaya Krishna Kanala
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland
| | - Siobhan McMahon
- Anatomy, School of Medicine, University of Galway, Galway, Ireland
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland.
| |
Collapse
|
10
|
Saleh BM, Pourmostafa A, Patrawalla NY, Kishore V. Xeno-Free Biomimetic ECM Model for Investigation of Matrix Composition and Stiffness on Astrocyte Cell Response. J Funct Biomater 2023; 14:jfb14050256. [PMID: 37233366 DOI: 10.3390/jfb14050256] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/27/2023] [Accepted: 05/03/2023] [Indexed: 05/27/2023] Open
Abstract
Astrocytes, highly specialized glial cells, play a critical role in neuronal function. Variations in brain extracellular matrix (ECM) during development and disease can significantly alter astrocyte cell function. Age-related changes in ECM properties have been linked to neurodegenerative diseases such as Alzheimer's disease. The goal of this study was to develop hydrogel-based biomimetic ECM models with varying stiffness and evaluate the effects of ECM composition and stiffness on astrocyte cell response. Xeno-free ECM models were synthesized by combining varying ratios of human collagen and thiolated hyaluronic acid (HA) crosslinked with polyethylene glycol diacrylate. Results showed that modulating ECM composition yielded hydrogels with varying stiffnesses that match the stiffness of the native brain ECM. Collagen-rich hydrogels swell more and exhibit greater stability. Higher metabolic activity and greater cell spreading was observed in hydrogels with lower HA. Soft hydrogels trigger astrocyte activation indicated by greater cell spreading, high GFAP expression and low ALDH1L1 expression. This work presents a baseline ECM model to investigate the synergistic effects of ECM composition and stiffness on astrocytes, which could be further developed to identify key ECM biomarkers and formulate new therapies to alleviate the impact of ECM changes on the onset and progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Bayan M Saleh
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA
| | - Ayda Pourmostafa
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA
| | - Nashaita Y Patrawalla
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA
| | - Vipuil Kishore
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA
| |
Collapse
|
11
|
Rizzo R, Petelinšek N, Bonato A, Zenobi‐Wong M. From Free-Radical to Radical-Free: A Paradigm Shift in Light-Mediated Biofabrication. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205302. [PMID: 36698304 PMCID: PMC10015869 DOI: 10.1002/advs.202205302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/25/2022] [Indexed: 06/17/2023]
Abstract
In recent years, the development of novel photocrosslinking strategies and photoactivatable materials has stimulated widespread use of light-mediated biofabrication techniques. However, despite great progress toward more efficient and biocompatible photochemical strategies, current photoresins still rely on photoinitiators (PIs) producing radical-initiating species to trigger the so-called free-radical crosslinking/polymerization. In the context of bioprinting, where cells are encapsulated in the bioink, the presence of radicals raises concerns of potential cytotoxicity. In this work, a universal, radical-free (RF) photocrosslinking strategy to be used for light-based technologies is presented. Leveraging RF uncaging mechanisms and Michael addition, cell-laden constructs are photocrosslinked by means of one- and two-photon excitation with high biocompatibility. A hydrophilic coumarin-based group is used to cage a universal RF photocrosslinker based on 4-arm-PEG-thiol (PEG4SH). Upon light exposure, thiols are uncaged and react with an alkene counterpart to form a hydrogel. RF photocrosslinker is shown to be highly stable, enabling potential for off-the-shelf products. While PI-based systems cause a strong upregulation of reactive oxygen species (ROS)-associated genes, ROS are not detected in RF photoresins. Finally, optimized RF photoresin is successfully exploited for high resolution two-photon stereolithography (2P-SL) using remarkably low polymer concentration (<1.5%), paving the way for a shift toward radical-free light-based bioprinting.
Collapse
Affiliation(s)
- Riccardo Rizzo
- Tissue Engineering + Biofabrication LaboratoryDepartment of Health Sciences & TechnologyETH ZürichOtto‐Stern‐Weg 7Zürich8093Switzerland
| | - Nika Petelinšek
- Tissue Engineering + Biofabrication LaboratoryDepartment of Health Sciences & TechnologyETH ZürichOtto‐Stern‐Weg 7Zürich8093Switzerland
| | - Angela Bonato
- Tissue Engineering + Biofabrication LaboratoryDepartment of Health Sciences & TechnologyETH ZürichOtto‐Stern‐Weg 7Zürich8093Switzerland
| | - Marcy Zenobi‐Wong
- Tissue Engineering + Biofabrication LaboratoryDepartment of Health Sciences & TechnologyETH ZürichOtto‐Stern‐Weg 7Zürich8093Switzerland
| |
Collapse
|
12
|
Rouleau N, Murugan NJ, Kaplan DL. Functional bioengineered models of the central nervous system. NATURE REVIEWS BIOENGINEERING 2023; 1:252-270. [PMID: 37064657 PMCID: PMC9903289 DOI: 10.1038/s44222-023-00027-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/16/2023] [Indexed: 02/10/2023]
Abstract
The functional complexity of the central nervous system (CNS) is unparalleled in living organisms. Its nested cells, circuits and networks encode memories, move bodies and generate experiences. Neural tissues can be engineered to assemble model systems that recapitulate essential features of the CNS and to investigate neurodevelopment, delineate pathophysiology, improve regeneration and accelerate drug discovery. In this Review, we discuss essential structure-function relationships of the CNS and examine materials and design considerations, including composition, scale, complexity and maturation, of cell biology-based and engineering-based CNS models. We highlight region-specific CNS models that can emulate functions of the cerebral cortex, hippocampus, spinal cord, neural-X interfaces and other regions, and investigate a range of applications for CNS models, including fundamental and clinical research. We conclude with an outlook to future possibilities of CNS models, highlighting the engineering challenges that remain to be overcome.
Collapse
Affiliation(s)
- Nicolas Rouleau
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, Ontario Canada
- Department of Biomedical Engineering, Tufts University, Medford, MA USA
| | - Nirosha J. Murugan
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, Ontario Canada
- Department of Biomedical Engineering, Tufts University, Medford, MA USA
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA USA
| |
Collapse
|
13
|
Castillo Ransanz L, Van Altena PFJ, Heine VM, Accardo A. Engineered cell culture microenvironments for mechanobiology studies of brain neural cells. Front Bioeng Biotechnol 2022; 10:1096054. [PMID: 36588937 PMCID: PMC9794772 DOI: 10.3389/fbioe.2022.1096054] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
The biomechanical properties of the brain microenvironment, which is composed of different neural cell types, the extracellular matrix, and blood vessels, are critical for normal brain development and neural functioning. Stiffness, viscoelasticity and spatial organization of brain tissue modulate proliferation, migration, differentiation, and cell function. However, the mechanical aspects of the neural microenvironment are largely ignored in current cell culture systems. Considering the high promises of human induced pluripotent stem cell- (iPSC-) based models for disease modelling and new treatment development, and in light of the physiological relevance of neuromechanobiological features, applications of in vitro engineered neuronal microenvironments should be explored thoroughly to develop more representative in vitro brain models. In this context, recently developed biomaterials in combination with micro- and nanofabrication techniques 1) allow investigating how mechanical properties affect neural cell development and functioning; 2) enable optimal cell microenvironment engineering strategies to advance neural cell models; and 3) provide a quantitative tool to assess changes in the neuromechanobiological properties of the brain microenvironment induced by pathology. In this review, we discuss the biological and engineering aspects involved in studying neuromechanobiology within scaffold-free and scaffold-based 2D and 3D iPSC-based brain models and approaches employing primary lineages (neural/glial), cell lines and other stem cells. Finally, we discuss future experimental directions of engineered microenvironments in neuroscience.
Collapse
Affiliation(s)
- Lucía Castillo Ransanz
- Department of Child and Adolescence Psychiatry, Amsterdam Neuroscience, Emma Children’s Hospital, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Pieter F. J. Van Altena
- Department of Precision and Microsystems Engineering, Delft University of Technology, Delft, Netherlands
| | - Vivi M. Heine
- Department of Child and Adolescence Psychiatry, Amsterdam Neuroscience, Emma Children’s Hospital, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Department of Complex Trait Genetics, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Angelo Accardo
- Department of Precision and Microsystems Engineering, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
14
|
Castiglione H, Vigneron PA, Baquerre C, Yates F, Rontard J, Honegger T. Human Brain Organoids-on-Chip: Advances, Challenges, and Perspectives for Preclinical Applications. Pharmaceutics 2022; 14:2301. [PMID: 36365119 PMCID: PMC9699341 DOI: 10.3390/pharmaceutics14112301] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 09/26/2023] Open
Abstract
There is an urgent need for predictive in vitro models to improve disease modeling and drug target identification and validation, especially for neurological disorders. Cerebral organoids, as alternative methods to in vivo studies, appear now as powerful tools to decipher complex biological processes thanks to their ability to recapitulate many features of the human brain. Combining these innovative models with microfluidic technologies, referred to as brain organoids-on-chips, allows us to model the microenvironment of several neuronal cell types in 3D. Thus, this platform opens new avenues to create a relevant in vitro approach for preclinical applications in neuroscience. The transfer to the pharmaceutical industry in drug discovery stages and the adoption of this approach by the scientific community requires the proposition of innovative microphysiological systems allowing the generation of reproducible cerebral organoids of high quality in terms of structural and functional maturation, and compatibility with automation processes and high-throughput screening. In this review, we will focus on the promising advantages of cerebral organoids for disease modeling and how their combination with microfluidic systems can enhance the reproducibility and quality of these in vitro models. Then, we will finish by explaining why brain organoids-on-chips could be considered promising platforms for pharmacological applications.
Collapse
Affiliation(s)
- Héloïse Castiglione
- NETRI, 69007 Lyon, France
- Sup’Biotech/CEA-IBFJ-SEPIA, Bâtiment 60, 18 Route du Panorama, 94260 Fontenay-aux-Roses, France
| | - Pierre-Antoine Vigneron
- Sup’Biotech/CEA-IBFJ-SEPIA, Bâtiment 60, 18 Route du Panorama, 94260 Fontenay-aux-Roses, France
- Sup’Biotech, Ecole D’ingénieurs, 66 Rue Guy Môquet, 94800 Villejuif, France
| | | | - Frank Yates
- Sup’Biotech/CEA-IBFJ-SEPIA, Bâtiment 60, 18 Route du Panorama, 94260 Fontenay-aux-Roses, France
- Sup’Biotech, Ecole D’ingénieurs, 66 Rue Guy Môquet, 94800 Villejuif, France
| | | | | |
Collapse
|
15
|
Transport in the Brain Extracellular Space: Diffusion, but Which Kind? Int J Mol Sci 2022; 23:ijms232012401. [PMID: 36293258 PMCID: PMC9604357 DOI: 10.3390/ijms232012401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022] Open
Abstract
The mechanisms of transport of substances in the brain parenchyma have been a hot topic in scientific discussion in the past decade. This discussion was triggered by the proposed glymphatic hypothesis, which assumes a directed flow of cerebral fluid within the parenchyma, in contrast to the previous notion that diffusion is the main mechanism. However, when discussing the issue of “diffusion or non-diffusion”, much less attention was given to the question that diffusion itself can have a different character. In our opinion, some of the recently published results do not fit into the traditional understanding of diffusion. In this regard, we outline the relevant new theoretical approaches on transport processes in complex random media such as concepts of diffusive diffusivity and time-dependent homogenization, which expands the understanding of the forms of transport of substances based on diffusion.
Collapse
|
16
|
Barberio C, Saez J, Withers A, Nair M, Tamagnini F, Owens RM. Conducting Polymer-ECM Scaffolds for Human Neuronal Cell Differentiation. Adv Healthc Mater 2022; 11:e2200941. [PMID: 35904257 DOI: 10.1002/adhm.202200941] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/23/2022] [Indexed: 01/28/2023]
Abstract
3D cell culture formats more closely resemble tissue architecture complexity than 2D systems, which are lacking most of the cell-cell and cell-microenvironment interactions of the in vivo milieu. Scaffold-based systems integrating natural biomaterials are extensively employed in tissue engineering to improve cell survival and outgrowth, by providing the chemical and physical cues of the natural extracellular matrix (ECM). Using the freeze-drying technique, porous 3D composite scaffolds consisting of poly(3,4-ethylene-dioxythiophene) doped with polystyrene sulfonate (PEDOT:PSS), containing ECM components (i.e., collagen, hyaluronic acid, and laminin) are engineered for hosting neuronal cells. The resulting scaffolds exhibit a highly porous microstructure and good conductivity, determined by scanning electron microscopy and electrochemical impedance spectroscopy, respectively. These supports boast excellent mechanical stability and water uptake capacity, making them ideal candidates for cell infiltration. SH-SY5Y human neuroblastoma cells show enhanced cell survival and proliferation in the presence of ECM compared to PEDOT:PSS alone. Whole-cell patch-clamp recordings acquired from differentiated SHSY5Y cells in the scaffolds demonstrate that ECM constituents promote neuronal differentiation in situ. These findings reinforce the usability of 3D conducting supports as engineered highly biomimetic and functional in vitro tissue-like platforms for drug or disease modeling.
Collapse
Affiliation(s)
- Chiara Barberio
- Bioelectronic Systems and Technology group, Department of Chemical Engineering and Biotechnology, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Janire Saez
- Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, 01006, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, E-48011, Spain
| | - Aimee Withers
- Bioelectronic Systems and Technology group, Department of Chemical Engineering and Biotechnology, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Malavika Nair
- Cambridge Centre for Medical Materials, Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK
| | - Francesco Tamagnini
- University of Reading, School of Pharmacy, Hopkins Building, Reading, RG6 6LA, UK
| | - Roisin M Owens
- Bioelectronic Systems and Technology group, Department of Chemical Engineering and Biotechnology, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| |
Collapse
|
17
|
Li Y, Wong IY, Guo M. Reciprocity of Cell Mechanics with Extracellular Stimuli: Emerging Opportunities for Translational Medicine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107305. [PMID: 35319155 PMCID: PMC9463119 DOI: 10.1002/smll.202107305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/20/2022] [Indexed: 06/14/2023]
Abstract
Human cells encounter dynamic mechanical cues in healthy and diseased tissues, which regulate their molecular and biophysical phenotype, including intracellular mechanics as well as force generation. Recent developments in bio/nanomaterials and microfluidics permit exquisitely sensitive measurements of cell mechanics, as well as spatiotemporal control over external mechanical stimuli to regulate cell behavior. In this review, the mechanobiology of cells interacting bidirectionally with their surrounding microenvironment, and the potential relevance for translational medicine are considered. Key fundamental concepts underlying the mechanics of living cells as well as the extracelluar matrix are first introduced. Then the authors consider case studies based on 1) microfluidic measurements of nonadherent cell deformability, 2) cell migration on micro/nano-topographies, 3) traction measurements of cells in three-dimensional (3D) matrix, 4) mechanical programming of organoid morphogenesis, as well as 5) active mechanical stimuli for potential therapeutics. These examples highlight the promise of disease diagnosis using mechanical measurements, a systems-level understanding linking molecular with biophysical phenotype, as well as therapies based on mechanical perturbations. This review concludes with a critical discussion of these emerging technologies and future directions at the interface of engineering, biology, and medicine.
Collapse
Affiliation(s)
- Yiwei Li
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei, 430074, China
| | - Ian Y Wong
- School of Engineering, Center for Biomedical Engineering, Joint Program in Cancer Biology, Brown University, 184 Hope St Box D, Providence, RI, 02912, USA
| | - Ming Guo
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
18
|
Di Lisa D, Muzzi L, Pepe S, Dellacasa E, Frega M, Fassio A, Martinoia S, Pastorino L. On the way back from 3D to 2D: Chitosan promotes adhesion and development of neuronal networks onto culture supports. Carbohydr Polym 2022; 297:120049. [DOI: 10.1016/j.carbpol.2022.120049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/25/2022] [Accepted: 08/25/2022] [Indexed: 11/25/2022]
|
19
|
Huang B, He Y, Rofaani E, Liang F, Huang X, Shi J, Wang L, Yamada A, Peng J, Chen Y. Automatic differentiation of human induced pluripotent stem cells toward synchronous neural networks on an arrayed monolayer of nanofiber membrane. Acta Biomater 2022; 150:168-180. [PMID: 35907558 DOI: 10.1016/j.actbio.2022.07.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/01/2022] [Accepted: 07/21/2022] [Indexed: 11/01/2022]
Abstract
Automatic differentiation of human-induced pluripotent stem cells (hiPSCs) facilitates the generation of cortical neural networks and studies of brain functions. Here, we present a method of directed differentiation of hiPSCs with a substrate made of a honeycomb microframe and a monolayer of crosslinked gelatin nanofibers in the form of an array of nanofiber membranes. Neural precursor cells (NPCs) were firstly derived from hiPSCs and then placed on the nanofiber membranes for automatically controlled neural differentiation over a long period. Due to the strong modulation of the substrate stiffness and permeability, most cells were found in the center area of the honeycomb compartments, giving rise to regular and inter-connected cortical neural clusters. More importantly, the neural activities of the clusters were synchronized proving the reliability of the method. Our results showed that the self-organization, as well as the neural activities of differentiating neural cells, were more efficient in the nanofiber membrane compared to the types of the substrate such as glass and nanofiber-covered glass. In addition to the inherent advantages such as manpower saving and fewer risks of contamination and human error, automatic differentiation avoided undesired shaking which might have critical effects on the formation of synchronous neural clusters. STATEMENT OF SIGNIFICANCE: : Synchronization of cortical neural activities is essential for information processing and human cognition. By automated differentiation of human induced pluripotent stem cells on arrayed monolayer of nanofiber membrane, synchronous neural clusters could be formed. Such an approach would allow creating a variety of neural networks with regular and interconnected clusters for systematic studies of human cortical functions.
Collapse
Affiliation(s)
- Boxin Huang
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Yong He
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Elrade Rofaani
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Feng Liang
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Xiaochen Huang
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Jian Shi
- MesoBioTech, 231 Rue Saint-Honoré, 75001, Paris, France
| | - Li Wang
- MesoBioTech, 231 Rue Saint-Honoré, 75001, Paris, France
| | - Ayako Yamada
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Juan Peng
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.
| | - Yong Chen
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.
| |
Collapse
|
20
|
Mechanical Properties of the Extracellular Environment of Human Brain Cells Drive the Effectiveness of Drugs in Fighting Central Nervous System Cancers. Brain Sci 2022; 12:brainsci12070927. [PMID: 35884733 PMCID: PMC9313046 DOI: 10.3390/brainsci12070927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 12/04/2022] Open
Abstract
The evaluation of nanomechanical properties of tissues in health and disease is of increasing interest to scientists. It has been confirmed that these properties, determined in part by the composition of the extracellular matrix, significantly affect tissue physiology and the biological behavior of cells, mainly in terms of their adhesion, mobility, or ability to mutate. Importantly, pathophysiological changes that determine disease development within the tissue usually result in significant changes in tissue mechanics that might potentially affect the drug efficacy, which is important from the perspective of development of new therapeutics, since most of the currently used in vitro experimental models for drug testing do not account for these properties. Here, we provide a summary of the current understanding of how the mechanical properties of brain tissue change in pathological conditions, and how the activity of the therapeutic agents is linked to this mechanical state.
Collapse
|
21
|
Hammel JH, Zatorski JM, Cook SR, Pompano RR, Munson JM. Engineering in vitro immune-competent tissue models for testing and evaluation of therapeutics. Adv Drug Deliv Rev 2022; 182:114111. [PMID: 35031388 PMCID: PMC8908413 DOI: 10.1016/j.addr.2022.114111] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/16/2021] [Accepted: 01/07/2022] [Indexed: 12/13/2022]
Abstract
Advances in 3D cell culture, microscale fluidic control, and cellular analysis have enabled the development of more physiologically-relevant engineered models of human organs with precise control of the cellular microenvironment. Engineered models have been used successfully to answer fundamental biological questions and to screen therapeutics, but these often neglect key elements of the immune system. There are immune elements in every tissue that contribute to healthy and diseased states. Including immune function will be essential for effective preclinical testing of therapeutics for inflammatory and immune-modulated diseases. In this review, we first discuss the key components to consider in designing engineered immune-competent models in terms of physical, chemical, and biological cues. Next, we review recent applications of models of immunity for screening therapeutics for cancer, preclinical evaluation of engineered T cells, modeling autoimmunity, and screening vaccine efficacy. Future work is needed to further recapitulate immune responses in engineered models for the most informative therapeutic screening and evaluation.
Collapse
Affiliation(s)
- Jennifer H. Hammel
- Fralin Biomedical Research Institute and Department of Biomedical Engineering and Mechanics, Virginia Tech, Roanoke, Virginia 24016, USA
| | - Jonathan M. Zatorski
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Sophie R. Cook
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Rebecca R. Pompano
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA,Department of Biomedical Engineering, University of Virginia; Charlottesville, Virginia 22904, USA,Carter Immunology Center and UVA Cancer Center, University of Virginia School of Medicine, Charlottesville, Virginia 22903
| | - Jennifer M. Munson
- Fralin Biomedical Research Institute and Department of Biomedical Engineering and Mechanics, Virginia Tech, Roanoke, Virginia 24016, USA
| |
Collapse
|
22
|
Ozgun A, Lomboni D, Arnott H, Staines WA, Woulfe J, Variola F. Biomaterial-based strategies for in vitro neural models. Biomater Sci 2022; 10:1134-1165. [PMID: 35023513 DOI: 10.1039/d1bm01361k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In vitro models have been used as a complementary tool to animal studies in understanding the nervous system's physiological mechanisms and pathological disorders, while also serving as platforms to evaluate the safety and efficiency of therapeutic candidates. Following recent advances in materials science, micro- and nanofabrication techniques and cell culture systems, in vitro technologies have been rapidly gaining the potential to bridge the gap between animal and clinical studies by providing more sophisticated models that recapitulate key aspects of the structure, biochemistry, biomechanics, and functions of human tissues. This was made possible, in large part, by the development of biomaterials that provide cells with physicochemical features that closely mimic the cellular microenvironment of native tissues. Due to the well-known material-driven cellular response and the importance of mimicking the environment of the target tissue, the selection of optimal biomaterials represents an important early step in the design of biomimetic systems to investigate brain structures and functions. This review provides a comprehensive compendium of commonly used biomaterials as well as the different fabrication techniques employed for the design of neural tissue models. Furthermore, the authors discuss the main parameters that need to be considered to develop functional platforms not only for the study of brain physiological functions and pathological processes but also for drug discovery/development and the optimization of biomaterials for neural tissue engineering.
Collapse
Affiliation(s)
- Alp Ozgun
- Department of Mechanical Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Canada. .,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - David Lomboni
- Department of Mechanical Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Canada. .,Ottawa-Carleton Institute for Biomedical Engineering (OCIBME), Ottawa, Canada
| | - Hallie Arnott
- Department of Mechanical Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Canada. .,Ottawa-Carleton Institute for Biomedical Engineering (OCIBME), Ottawa, Canada
| | - William A Staines
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - John Woulfe
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada.,The Ottawa Hospital, Ottawa, Canada
| | - Fabio Variola
- Department of Mechanical Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Canada. .,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada.,Ottawa-Carleton Institute for Biomedical Engineering (OCIBME), Ottawa, Canada.,The Ottawa Hospital, Ottawa, Canada.,Children's Hospital of Eastern Ontario (CHEO), Ottawa, Canada
| |
Collapse
|
23
|
Wang L, Zhang D, Ren Y, Guo S, Li J, Ma S, Yao M, Guan F. Injectable hyaluronic acid hydrogel loaded with BMSC and NGF for traumatic brain injury treatment. Mater Today Bio 2022; 13:100201. [PMID: 35024600 PMCID: PMC8733324 DOI: 10.1016/j.mtbio.2021.100201] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/21/2021] [Accepted: 12/29/2021] [Indexed: 12/16/2022] Open
Abstract
Injectable hydrogel has the advantage to fill the defective area and thereby shows promise as therapeutic implant or cell/drug delivery vehicle for tissue repair. In this study, an injectable hyaluronic acid hydrogel in situ dual-enzymatically cross-linked by galactose oxidase (GalOx) and horseradish peroxidase (HRP) was synthesized and optimized, and the therapeutic effect of this hydrogel encapsulated with bone mesenchymal stem cells (BMSC) and nerve growth factors (NGF) for traumatic brain injury (TBI) mice was investigated. Results from in vitro experiments showed that either tyramine-modified hyaluronic acid hydrogels (HT) or NGF loaded HT hydrogels (HT/NGF) possessed good biocompatibility. More importantly, the HT hydrogels loaded with BMSC and NGF could facilitate the survival and proliferation of endogenous neural cells probably by neurotrophic factors release and neuroinflammation regulation, and consequently improved the neurological function recovery and accelerated the repair process in a C57BL/6 TBI mice model. All these findings highlight that this injectable, BMSC and NGF-laden HT hydrogel has enormous potential for TBI and other tissue repair therapy.
Collapse
Affiliation(s)
| | | | - Yikun Ren
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, PR China
| | - Shen Guo
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, PR China
| | - Jinrui Li
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, PR China
| | - Shanshan Ma
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, PR China
| | - Minghao Yao
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, PR China
| | - Fangxia Guan
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, PR China
| |
Collapse
|
24
|
Walczak PA, Perez-Esteban P, Bassett DC, Hill EJ. Modelling the central nervous system: tissue engineering of the cellular microenvironment. Emerg Top Life Sci 2021; 5:507-517. [PMID: 34524411 PMCID: PMC8589431 DOI: 10.1042/etls20210245] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/16/2021] [Accepted: 08/27/2021] [Indexed: 12/30/2022]
Abstract
With the increasing prevalence of neurodegenerative diseases, improved models of the central nervous system (CNS) will improve our understanding of neurophysiology and pathogenesis, whilst enabling exploration of novel therapeutics. Studies of brain physiology have largely been carried out using in vivo models, ex vivo brain slices or primary cell culture from rodents. Whilst these models have provided great insight into complex interactions between brain cell types, key differences remain between human and rodent brains, such as degree of cortical complexity. Unfortunately, comparative models of human brain tissue are lacking. The development of induced Pluripotent Stem Cells (iPSCs) has accelerated advancement within the field of in vitro tissue modelling. However, despite generating accurate cellular representations of cortical development and disease, two-dimensional (2D) iPSC-derived cultures lack an entire dimension of environmental information on structure, migration, polarity, neuronal circuitry and spatiotemporal organisation of cells. As such, researchers look to tissue engineering in order to develop advanced biomaterials and culture systems capable of providing necessary cues for guiding cell fates, to construct in vitro model systems with increased biological relevance. This review highlights experimental methods for engineering of in vitro culture systems to recapitulate the complexity of the CNS with consideration given to previously unexploited biophysical cues within the cellular microenvironment.
Collapse
Affiliation(s)
- Paige A. Walczak
- College of Health and Life Sciences, School of Biosciences, Aston University, Birmingham, U.K
| | - Patricia Perez-Esteban
- College of Health and Life Sciences, School of Biosciences, Aston University, Birmingham, U.K
| | - David C. Bassett
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Birmingham, U.K
| | - Eric James Hill
- College of Health and Life Sciences, School of Biosciences, Aston University, Birmingham, U.K
| |
Collapse
|
25
|
Neves ER, Harley BAC, Pedron S. Microphysiological systems to study tumor-stroma interactions in brain cancer. Brain Res Bull 2021; 174:220-229. [PMID: 34166771 PMCID: PMC8324563 DOI: 10.1016/j.brainresbull.2021.06.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/17/2021] [Accepted: 06/15/2021] [Indexed: 12/15/2022]
Abstract
Brain tumors still lack effective treatments, and the mechanisms of tumor progression and therapeutic resistance are unclear. Multiple parameters affect cancer prognosis (e.g., type and grade, age, location, size, and genetic mutations) and election of suitable treatments is based on preclinical models and clinical data. However, most candidate drugs fail in human trials due to inefficacy. Cell lines and tissue culture plates do not provide physiologically relevant environments, and animal models are not able to adequately mimic characteristics of disease in humans. Therefore, increasing technological advances are focusing on in vitro and computational modeling to increase the throughput and predicting capabilities of preclinical systems. The extensive use of these therapeutic agents requires a more profound understanding of the tumor-stroma interactions, including neural tissue, extracellular matrix, blood-brain barrier, astrocytes and microglia. Microphysiological brain tumor models offer physiologically relevant vascularized 'minitumors' that can help deciphering disease mechanisms, accelerating the drug discovery and predicting patient's response to anticancer treatments. This article reviews progress in tumor-on-a-chip platforms that are designed to comprehend the particular roles of stromal cells in the brain tumor microenvironment.
Collapse
Affiliation(s)
- Edward R Neves
- Department of Chemical and Biomolecular Engineering, Carl R Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Brendan A C Harley
- Department of Chemical and Biomolecular Engineering, Carl R Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Sara Pedron
- Department of Chemical and Biomolecular Engineering, Carl R Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
26
|
Abstract
The blood-brain barrier (BBB) is one of the most selective endothelial barriers. An understanding of its cellular, morphological, and biological properties in health and disease is necessary to develop therapeutics that can be transported from blood to brain. In vivo models have provided some insight into these features and transport mechanisms adopted at the brain, yet they have failed as a robust platform for the translation of results into clinical outcomes. In this article, we provide a general overview of major BBB features and describe various models that have been designed to replicate this barrier and neurological pathologies linked with the BBB. We propose several key parameters and design characteristics that can be employed to engineer physiologically relevant models of the blood-brain interface and highlight the need for a consensus in the measurement of fundamental properties of this barrier.
Collapse
Affiliation(s)
- Cynthia Hajal
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Baptiste Le Roi
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Roger D Kamm
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Ben M Maoz
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
27
|
Rauti R, Ess A, Le Roi B, Kreinin Y, Epshtein M, Korin N, Maoz BM. Transforming a well into a chip: A modular 3D-printed microfluidic chip. APL Bioeng 2021; 5:026103. [PMID: 33948527 PMCID: PMC8084581 DOI: 10.1063/5.0039366] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/08/2021] [Indexed: 02/06/2023] Open
Abstract
Organ-on-a-Chip platforms provide rich opportunities to observe interactions between different cell types under in vivo-like conditions, i.e., in the presence of flow. Yet, the costs and know-how required for the fabrication and implementation of these platforms restrict their accessibility. This study introduces and demonstrates a novel Insert-Chip: a microfluidic device that provides the functionality of an Organ-on-a-Chip platform, namely, the capacity to co-culture cells, expose them to flow, and observe their interactions-yet can easily be integrated into standard culture systems (e.g., well plates or multi-electrode arrays). The device is produced using stereolithograpy 3D printing and is user-friendly and reusable. Moreover, its design features overcome some of the measurement and imaging challenges characterizing standard Organ-on-a-Chip platforms. We have co-cultured endothelial and epithelial cells under flow conditions to demonstrate the functionality of the device. Overall, this novel microfluidic device is a promising platform for the investigation of biological functions, cell-cell interactions, and response to therapeutics.
Collapse
Affiliation(s)
- Rossana Rauti
- Department of Biomedical Engineering, Tel Aviv
University, Tel Aviv 6997801, Israel
| | - Adi Ess
- Sagol School of Neuroscience, Tel Aviv
University, Tel Aviv 6997801, Israel
| | - Baptiste Le Roi
- Department of Biomedical Engineering, Tel Aviv
University, Tel Aviv 6997801, Israel
| | - Yevgeniy Kreinin
- Department of Biomedical Engineering, Technion Israel
Institute of Technology, Haifa 32000, Israel
| | - Mark Epshtein
- Department of Biomedical Engineering, Technion Israel
Institute of Technology, Haifa 32000, Israel
| | - Netanel Korin
- Department of Biomedical Engineering, Technion Israel
Institute of Technology, Haifa 32000, Israel
| | - Ben M. Maoz
- Author to whom correspondence should be addressed:
| |
Collapse
|
28
|
Zilberman A, Cornelison RC. Microphysiological models of the central nervous system with fluid flow. Brain Res Bull 2021; 174:72-83. [PMID: 34029679 DOI: 10.1016/j.brainresbull.2021.05.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/08/2021] [Accepted: 05/17/2021] [Indexed: 12/11/2022]
Abstract
There are over 1,000 described neurological and neurodegenerative disorders affecting nearly 100 million Americans - roughly one third of the U.S. population. Collectively, treatment of neurological conditions is estimated to cost $800 billion every year. Lowering this societal burden will require developing better model systems in which to study these diverse disorders. Microphysiological systems are promising tools for modeling healthy and diseased neural tissues to study mechanisms and treatment of neuropathology. One major benefit of microphysiological systems is the ability to incorporate biophysical forces, namely the forces derived from biological fluid flow. Fluid flow in the central nervous system (CNS) is a complex but important element of physiology, and pathologies as diverse as traumatic or ischemic injury, cancer, neurodegenerative disease, and natural aging have all been found to alter flow pathways. In this review, we summarize recent advances in three-dimensional microphysiological systems for studying the biology and therapy of CNS disorders and highlight the ability and growing need to incorporate biological fluid flow in these miniaturized model systems.
Collapse
Affiliation(s)
- Aleeza Zilberman
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, United States
| | - R Chase Cornelison
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, United States.
| |
Collapse
|
29
|
Holloway PM, Willaime-Morawek S, Siow R, Barber M, Owens RM, Sharma AD, Rowan W, Hill E, Zagnoni M. Advances in microfluidic in vitro systems for neurological disease modeling. J Neurosci Res 2021; 99:1276-1307. [PMID: 33583054 DOI: 10.1002/jnr.24794] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/21/2020] [Accepted: 12/19/2020] [Indexed: 12/19/2022]
Abstract
Neurological disorders are the leading cause of disability and the second largest cause of death worldwide. Despite significant research efforts, neurology remains one of the most failure-prone areas of drug development. The complexity of the human brain, boundaries to examining the brain directly in vivo, and the significant evolutionary gap between animal models and humans, all serve to hamper translational success. Recent advances in microfluidic in vitro models have provided new opportunities to study human cells with enhanced physiological relevance. The ability to precisely micro-engineer cell-scale architecture, tailoring form and function, has allowed for detailed dissection of cell biology using microphysiological systems (MPS) of varying complexities from single cell systems to "Organ-on-chip" models. Simplified neuronal networks have allowed for unique insights into neuronal transport and neurogenesis, while more complex 3D heterotypic cellular models such as neurovascular unit mimetics and "Organ-on-chip" systems have enabled new understanding of metabolic coupling and blood-brain barrier transport. These systems are now being developed beyond MPS toward disease specific micro-pathophysiological systems, moving from "Organ-on-chip" to "Disease-on-chip." This review gives an outline of current state of the art in microfluidic technologies for neurological disease research, discussing the challenges and limitations while highlighting the benefits and potential of integrating technologies. We provide examples of where such toolsets have enabled novel insights and how these technologies may empower future investigation into neurological diseases.
Collapse
Affiliation(s)
- Paul M Holloway
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | | | - Richard Siow
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Melissa Barber
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Róisín M Owens
- Department Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Anup D Sharma
- New Orleans BioInnovation Center, AxoSim Inc., New Orleans, LA, USA
| | - Wendy Rowan
- Novel Human Genetics Research Unit, GSK R&D, Stevenage, UK
| | - Eric Hill
- School of Life and Health sciences, Aston University, Birmingham, UK
| | - Michele Zagnoni
- Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK
| |
Collapse
|
30
|
Modulatory properties of extracellular matrix glycosaminoglycans and proteoglycans on neural stem cells behavior: Highlights on regenerative potential and bioactivity. Int J Biol Macromol 2021; 171:366-381. [PMID: 33422514 DOI: 10.1016/j.ijbiomac.2021.01.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/01/2021] [Accepted: 01/02/2021] [Indexed: 12/25/2022]
Abstract
Despite the poor regenerative capacity of the adult central nervous system (CNS) in mammals, two distinct regions, subventricular zone (SVZ) and the subgranular zone (SGZ), continue to generate new functional neurons throughout life which integrate into the pre-existing neuronal circuitry. This process is not fixed but highly modulated, revealing many intrinsic and extrinsic mechanisms by which this performance can be optimized for a given environment. The capacity for self-renewal, proliferation, migration, and multi-lineage potency of neural stem cells (NSCs) underlines the necessity of controlling stem cell fate. In this context, the native and local microenvironment plays a critical role, and the application of this highly organized architecture in the CNS has been considered as a fundamental concept in the generation of new effective therapeutic strategies in tissue engineering approaches. The brain extracellular matrix (ECM) is composed of biomacromolecules, including glycosaminoglycans, proteoglycans, and glycoproteins that provide various biological actions through biophysical and biochemical signaling pathways. Herein, we review predominantly the structure and function of the mentioned ECM composition and their regulatory impact on multiple and diversity of biological functions, including neural regeneration, survival, migration, differentiation, and final destiny of NSCs.
Collapse
|
31
|
Jensen G, Holloway JL, Stabenfeldt SE. Hyaluronic Acid Biomaterials for Central Nervous System Regenerative Medicine. Cells 2020; 9:E2113. [PMID: 32957463 PMCID: PMC7565873 DOI: 10.3390/cells9092113] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 12/16/2022] Open
Abstract
Hyaluronic acid (HA) is a primary component of the brain extracellular matrix and functions through cellular receptors to regulate cell behavior within the central nervous system (CNS). These behaviors, such as migration, proliferation, differentiation, and inflammation contribute to maintenance and homeostasis of the CNS. However, such equilibrium is disrupted following injury or disease leading to significantly altered extracellular matrix milieu and cell functions. This imbalance thereby inhibits inherent homeostatic processes that support critical tissue health and functionality in the CNS. To mitigate the damage sustained by injury/disease, HA-based tissue engineering constructs have been investigated for CNS regenerative medicine applications. HA's effectiveness in tissue healing and regeneration is primarily attributed to its impact on cell signaling and the ease of customizing chemical and mechanical properties. This review focuses on recent findings to highlight the applications of HA-based materials in CNS regenerative medicine.
Collapse
Affiliation(s)
- Gregory Jensen
- Chemical Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85224, USA;
| | - Julianne L. Holloway
- Chemical Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85224, USA;
| | - Sarah E. Stabenfeldt
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
32
|
Bae M, Yi HG, Jang J, Cho DW. Microphysiological Systems for Neurodegenerative Diseases in Central Nervous System. MICROMACHINES 2020; 11:E855. [PMID: 32947879 PMCID: PMC7570039 DOI: 10.3390/mi11090855] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/13/2020] [Accepted: 09/14/2020] [Indexed: 12/19/2022]
Abstract
Neurodegenerative diseases are among the most severe problems in aging societies. Various conventional experimental models, including 2D and animal models, have been used to investigate the pathogenesis of (and therapeutic mechanisms for) neurodegenerative diseases. However, the physiological gap between humans and the current models remains a hurdle to determining the complexity of an irreversible dysfunction in a neurodegenerative disease. Therefore, preclinical research requires advanced experimental models, i.e., those more physiologically relevant to the native nervous system, to bridge the gap between preclinical stages and patients. The neural microphysiological system (neural MPS) has emerged as an approach to summarizing the anatomical, biochemical, and pathological physiology of the nervous system for investigation of neurodegenerative diseases. This review introduces the components (such as cells and materials) and fabrication methods for designing a neural MPS. Moreover, the review discusses future perspectives for improving the physiological relevance to native neural systems.
Collapse
Affiliation(s)
- Mihyeon Bae
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Chungam-ro, Nam-gu, Pohang 37673, Korea;
| | - Hee-Gyeong Yi
- Department of Rural and Biosystems Engineering, College of Agricultural Sciences, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea
| | - Jinah Jang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Chungam-ro, Nam-gu, Pohang 37673, Korea;
- Department of Creative IT Engineering, Pohang University of Science and Technology (POSTECH), 77 Chungam-ro, Nam-gu, Pohang 37673, Korea
- Institute of Convergence Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Dong-Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Chungam-ro, Nam-gu, Pohang 37673, Korea;
- Institute of Convergence Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| |
Collapse
|
33
|
Afflerbach AK, Kiri MD, Detinis T, Maoz BM. Mesenchymal Stem Cells as a Promising Cell Source for Integration in Novel In Vitro Models. Biomolecules 2020; 10:E1306. [PMID: 32927777 PMCID: PMC7565384 DOI: 10.3390/biom10091306] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023] Open
Abstract
The human-relevance of an in vitro model is dependent on two main factors-(i) an appropriate human cell source and (ii) a modeling platform that recapitulates human in vivo conditions. Recent years have brought substantial advancements in both these aspects. In particular, mesenchymal stem cells (MSCs) have emerged as a promising cell source, as these cells can differentiate into multiple cell types, yet do not raise the ethical and practical concerns associated with other types of stem cells. In turn, advanced bioengineered in vitro models such as microfluidics, Organs-on-a-Chip, scaffolds, bioprinting and organoids are bringing researchers ever closer to mimicking complex in vivo environments, thereby overcoming some of the limitations of traditional 2D cell cultures. This review covers each of these advancements separately and discusses how the integration of MSCs into novel in vitro platforms may contribute enormously to clinical and fundamental research.
Collapse
Affiliation(s)
- Ann-Kristin Afflerbach
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel; (A.-K.A.); (M.D.K.); (T.D.)
- Faculty of Biosciences, Universität Heidelberg, 69120 Heidelberg, Germany
| | - Mark D. Kiri
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel; (A.-K.A.); (M.D.K.); (T.D.)
| | - Tahir Detinis
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel; (A.-K.A.); (M.D.K.); (T.D.)
| | - Ben M. Maoz
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel; (A.-K.A.); (M.D.K.); (T.D.)
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|