1
|
Chan KHA, O WY, Jiang JJ, Cui JF, Wong MK. Consecutive chirality transfer: efficient synthesis of chiral C,O-chelated BINOL/gold(iii) complexes for asymmetric catalysis and chiral resolution of disubstituted BINOLs. Chem Sci 2024:d4sc04221b. [PMID: 39323523 PMCID: PMC11420890 DOI: 10.1039/d4sc04221b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024] Open
Abstract
A novel approach for efficient synthesis of chiral C,O-chelated BINOL/gold(iii) complexes by diastereomeric resolution using enantiopure BINOL as a chiral resolving agent was demonstrated. The BINOL/gold(iii) diastereomers with different solubility were separated by simple filtration, providing optically pure BINOL/gold(iii) complexes with up to >99 : 1 dr. By combining this with an efficient BINOL ligand dissociation process, a simple and column-free method for chiral resolution of racemic gold(iii) dichloride complexes on a gram scale was established, affording their enantiopure forms in good yields. Conversely, the resolved enantiopure gold(iii) dichloride complexes could serve as chiral resolving agents to resolve disubstituted BINOL derivatives, achieving both BINOLs and gold(iii) complexes in good to excellent yields (overall 77-96% and 76-95%, respectively) with a high optical purity of up to 99% ee. Through a consecutive chirality transfer process, the chiral information from an inexpensive chiral source was transferred to highly valuable gold(iii) complexes, followed by sterically bulky BINOL derivatives. This work would open a new synthetic strategy facilitating the development of structurally diverse chiral gold(iii) complexes and gold(iii)-mediated chiral resolution of BINOL derivatives. In addition, this new class of C,O-chelated BINOL/gold(iii) complexes achieved asymmetric carboalkoxylation of ortho-alkynylbenzaldehydes with an excellent enantioselectivity of up to 99% ee.
Collapse
Affiliation(s)
- Kwok-Heung Aries Chan
- State Key Laboratory of Chemical Biology and Drug Discovery, Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University Hung Hom Hong Kong China
| | - Wa-Yi O
- State Key Laboratory of Chemical Biology and Drug Discovery, Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University Hung Hom Hong Kong China
| | - Jia-Jun Jiang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Hung Hom Hong Kong China
| | - Jian-Fang Cui
- School of Science and Engineering, The Chinese University of Hong Kong Shenzhen Guangdong 518172 China
| | - Man-Kin Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University Hung Hom Hong Kong China
| |
Collapse
|
2
|
Rodríguez-Franco C, Roldán-Molina E, Aguirre-Medina A, Fernández R, Hornillos V, Lassaletta JM. Catalytic Atroposelective Synthesis of C-N Axially Chiral Aminophosphines via Dynamic Kinetic Resolution. Angew Chem Int Ed Engl 2024; 63:e202409524. [PMID: 38923738 DOI: 10.1002/anie.202409524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
A ruthenium-catalyzed reductive amination via asymmetric transfer hydrogenation (ATH) has been used to perform an efficient dynamic kinetic resolution (DKR) of N-aryl 2-formyl pyrroles decorated with a phosphine moiety positioned at the ortho' position. The strategy relies on the labilization of the stereogenic axis in the substrate facilitated by a transient Lewis acid-base interaction (LABI) between the carbonyl carbon and the phosphorus center. The reaction features broad substrate scope of aliphatic amines and N-aryl pyrrole scaffolds, and proceeds under very mild conditions to afford P,N atropisomers in good to high yields and excellent enantioselectivities (up to 99 % ee) for both diphenyl and dicyclohexylphosphino derivatives.
Collapse
Affiliation(s)
- Carlos Rodríguez-Franco
- Instituto Investigaciones Químicas (CSIC-US), Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/ Américo Vespucio 49, 41092, Sevilla, Spain
| | - Esther Roldán-Molina
- Instituto Investigaciones Químicas (CSIC-US), Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/ Américo Vespucio 49, 41092, Sevilla, Spain
| | - Alberto Aguirre-Medina
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/ Prof. García González 1, 41012, Sevilla, Spain
| | - Rosario Fernández
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/ Prof. García González 1, 41012, Sevilla, Spain
| | - Valentín Hornillos
- Instituto Investigaciones Químicas (CSIC-US), Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/ Américo Vespucio 49, 41092, Sevilla, Spain
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/ Prof. García González 1, 41012, Sevilla, Spain
| | - José M Lassaletta
- Instituto Investigaciones Químicas (CSIC-US), Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/ Américo Vespucio 49, 41092, Sevilla, Spain
| |
Collapse
|
3
|
Mechrouk V, Bissessar D, Egly J, Parmentier J, Bellemin-Laponnaz S. Synthesis and Characterization of Transition Metal Complexes Supported by Phosphorus Ligands Obtained Using Hydrophosphination of Cyclic Internal Alkenes. Molecules 2024; 29:3946. [PMID: 39203024 PMCID: PMC11356854 DOI: 10.3390/molecules29163946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
The design and study of rich, bulky phosphorus ligands is a key area of research for homogeneous catalysis. Here, we describe an original strategy using a hydrophosphination reaction to produce phosphines of interest for coordination chemistry and homogenous catalysis. In particular, the phosphine obtained by reacting diphenylphosphine with acenaphthylene (ligand 2) gives a ligand that adopts an unusual spatial geometry. The coordination chemistry of the ligand has been investigated with Au(I), Ag(I), Cu(I), and Pd(II), for which a complete characterization could be made, particularly in X-ray diffraction studies. The reactivity of some of these complexes has been demonstrated, particularly in Pd-catalyzed cross-coupling reactions and Au-catalyzed hydroaminations and in the hydration of alkynes.
Collapse
Affiliation(s)
| | | | | | | | - Stéphane Bellemin-Laponnaz
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg-CNRS UMR7504, 23 rue du Loess, BP 43, CEDEX 2, 67034 Strasbourg, France
| |
Collapse
|
4
|
Pérez-Sánchez JC, Herrera RP, Gimeno MC. The Potential of Self-Activating Au(I) Complexes in Gold Catalysis. Chemistry 2024; 30:e202401825. [PMID: 38818661 DOI: 10.1002/chem.202401825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/01/2024]
Abstract
Gold catalysis has emerged as a groundbreaking field in synthetic chemistry, revolutionizing numerous organic transformations. Despite the significant achieved advancements, the mechanistic understanding behind many gold-catalyzed reactions remains elusive. This Concept article covers the so-called "self-activating" Au(I) complexes, sorting out their pivotal role in gold catalysis. We comment on how Au(I) complexes can undergo self-activation, triggering diverse catalytic transformations without the need for external additives. The most important examples reported so far that underlie the catalytic activity of these species are discussed. This intrinsic reactivity represents a paradigm shift in gold catalysis, offering new avenues for the design of efficient and sustainable catalytic systems. Furthermore, we explore the factors influencing the stability, reactivity, and selectivity of these Au(I) complexes, providing insights into their synthetic utility and potential applications. This area of research not only advances our fundamental understanding of gold catalysis but also paves the way for the development of novel catalytic strategies with broad implications in organic synthesis and the chemical industry.
Collapse
Affiliation(s)
- Juan Carlos Pérez-Sánchez
- Department of Inorganic Chemistry, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/Pedro Cerbuna 12, Zaragoza, 50009, Spain
- Department of Organic Chemistry, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/Pedro Cerbuna 12, Zaragoza, 50009, Spain
| | - Raquel P Herrera
- Department of Organic Chemistry, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/Pedro Cerbuna 12, Zaragoza, 50009, Spain
| | - M Concepción Gimeno
- Department of Inorganic Chemistry, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/Pedro Cerbuna 12, Zaragoza, 50009, Spain
| |
Collapse
|
5
|
Majeed A, Zafar A, Mushtaq Z, Iqbal MA. Advances in gold catalyzed synthesis of quinoid heteroaryls. RSC Adv 2024; 14:21047-21064. [PMID: 38962094 PMCID: PMC11220603 DOI: 10.1039/d4ra03368j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024] Open
Abstract
This review explores recent advancements in synthesizing quinoid heteroaryls, namely quinazoline and quinoline, vital in chemistry due to their prevalence in natural products and pharmaceuticals. It emphasizes the rapid, highly efficient, and economically viable synthesis achieved through gold-catalyzed cascade protocols. By investigating methodologies and reaction pathways, the review underscores exceptional yields attainable in the synthesis of quinoid heteroaryls. It offers valuable insights into accessing these complex structures through efficient synthetic routes. Various strategies, including cyclization, heteroarylation, cycloisomerization, cyclo-condensation, intermolecular and intramolecular cascade reactions, are covered, highlighting the versatility of gold-catalyzed approaches. The comprehensive compilation of different synthetic approaches and elucidation of reaction mechanisms contribute to a deeper understanding of the field. This review paves the way for future advancements in synthesizing quinoid heteroaryls and their applications in drug discovery and materials science.
Collapse
Affiliation(s)
- Adnan Majeed
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad-38000 Pakistan
| | - Ayesha Zafar
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad-38000 Pakistan
| | - Zanira Mushtaq
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad-38000 Pakistan
| | - Muhammad Adnan Iqbal
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad-38000 Pakistan
- Organometallic and Coordination Chemistry Laboratory, University of Agriculture Faisalabad Faisalabad-38000 Pakistan
| |
Collapse
|
6
|
Zhou Y, Wensink NH, Pécharman AF, Miloserdov FM. Synthesis and Reactivity of Ruthenium(BINAP)(PPh 3). Angew Chem Int Ed Engl 2024; 63:e202318684. [PMID: 38334325 DOI: 10.1002/anie.202318684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/10/2024]
Abstract
Ru(BINAP)(PPh3)HCl cleanly reacts with LiCH2TMS to give Ru(BINAP)(PPh3) (1) that has been fully characterized, including by X-ray diffraction (BINAP and TMS stand for (2,2'-bis(diphenylphosphino)-1,1'-binaphthyl and trimethylsilyl respectively). In sharp contrast with other carbonyl-free phosphine complexes of Ru(0), 1 demonstrates a strikingly high thermal stability and no propensity for intramolecular C-H activation (cyclometalation). Yet 1 coordinates acetonitrile and readily exchanges its PPh3 ligand with alkenes and dienes, thus behaving like a "masked" 16-e Ru(0) species. Electron-poor alkenes coordinate more readily than electron-rich ones, which testifies for the nucleophilic character of the Ru(0)-BINAP fragment. While being thermally stable, 1 is highly reactive and is capable of activating C-H and N-H bonds, and even of cleaving an inert N-Et bond. The combination of high reactivity and stability originates from the P,arene-chelation by the BINAP ligand, i.e., the coordinated π-arene stabilizes Ru(0) to prevent cyclometalation, yet it can slide upon substrate coordination, thereby enabling a variety of inert bond activation reactions to occur under mild conditions.
Collapse
Affiliation(s)
- Yifei Zhou
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, Wageningen, 6708 WE, The Netherlands
| | - Niels H Wensink
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, Wageningen, 6708 WE, The Netherlands
| | | | - Fedor M Miloserdov
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, Wageningen, 6708 WE, The Netherlands
| |
Collapse
|
7
|
Wu X, Zhao K, Quintanilla CD, Zhang L. Chiral Bifunctional Phosphine Ligand Enables Asymmetric Trapping of Catalytic Vinyl Gold Carbene Species. J Am Chem Soc 2024; 146:2308-2312. [PMID: 38237566 PMCID: PMC11572411 DOI: 10.1021/jacs.3c10865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Bifunctional ligand-enabled cooperative gold catalysis accelerates nucleophilic attacks and offers a versatile strategy to achieve asymmetric gold catalysis. Distinct from the prior studies employing alkyne/allene as the electrophilic site, this work engages an in situ-generated alkenyl/acyl gold carbene in a ligand-facilitated attack by an alcoholic nucleophile. With an amide-functionalized chiral binaphthylphosphine ligand, γ-alkoxy-α,β-unsaturated imides are formed with excellent enantiomeric excesses. The intermediacy of a carbene species is supported by its alternative access via dediazotization. The reaction tolerates a broad range of alcohols and can accommodate dienynamide substrates, in addition to arylenynamides. This work avails a versatile strategy to enrich gold chemistry and achieve challenging enantioselective gold catalysis via ligand-facilitated enantioselective trapping of reactive intermediates.
Collapse
Affiliation(s)
- Xuan Wu
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93117, United States
| | - Ke Zhao
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93117, United States
| | - Carlos D Quintanilla
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93117, United States
| | - Liming Zhang
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93117, United States
| |
Collapse
|
8
|
Navarro M, Holzapfel M, Campos J. Shape Selectivity in the Gold-Catalyzed Hydration of Alkynes Using a Cavity-Shaped Phosphine. Chempluschem 2023; 88:e202300231. [PMID: 37306244 DOI: 10.1002/cplu.202300231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/13/2023]
Abstract
A cavity-shaped gold(I) complex derived from a bulky tri-(ortho-biaryl)-phosphine ligand shows preferred selectivity towards terminal functionalities in the gold(I)-catalysed hydration of alkynes under mild heating due to a well-defined pocket as catalytic active site. The confinement-induced size-exclusion selectivity investigated for eight alkynes contrasts with other gold(I) complexes bearing bulky phosphine ligands that show reduced selectivity or even similar behaviour towards both internal and terminal alkynes. We also interrogate the potential of gold(III) derivatives for the same catalytic process.
Collapse
Affiliation(s)
- Miquel Navarro
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Sevilla and Consejo Superior de Investigaciones Científicas (CSIC)., Avenida Américo Vespucio 49, 41092, Sevilla, Spain
| | - Markus Holzapfel
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Sevilla and Consejo Superior de Investigaciones Científicas (CSIC)., Avenida Américo Vespucio 49, 41092, Sevilla, Spain
- Institute of Applied Chemistry, Department of Science and Technology, IMC University of Applied Sciences., Krems, 3500, Austria
| | - Jesús Campos
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Sevilla and Consejo Superior de Investigaciones Científicas (CSIC)., Avenida Américo Vespucio 49, 41092, Sevilla, Spain
| |
Collapse
|
9
|
Zuccarello G, Nannini LJ, Arroyo-Bondía A, Fincias N, Arranz I, Pérez-Jimeno AH, Peeters M, Martín-Torres I, Sadurní A, García-Vázquez V, Wang Y, Kirillova MS, Montesinos-Magraner M, Caniparoli U, Núñez GD, Maseras F, Besora M, Escofet I, Echavarren AM. Enantioselective Catalysis with Pyrrolidinyl Gold(I) Complexes: DFT and NEST Analysis of the Chiral Binding Pocket. JACS AU 2023; 3:1742-1754. [PMID: 37388697 PMCID: PMC10301678 DOI: 10.1021/jacsau.3c00159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 07/01/2023]
Abstract
A new generation of chiral gold(I) catalysts based on variations of complexes with JohnPhos-type ligands with a remote C2-symmetric 2,5-diarylpyrrolidine have been synthesized with different substitutions at the top and bottom aryl rings: from replacing the phosphine by a N-heterocyclic carbene (NHC) to increasing the steric hindrance with bis- or tris-biphenylphosphine scaffolds, or by directly attaching the C2-chiral pyrrolidine in the ortho-position of the dialkylphenyl phosphine. The new chiral gold(I) catalysts have been tested in the intramolecular [4+2] cycloaddition of arylalkynes with alkenes and in the atroposelective synthesis of 2-arylindoles. Interestingly, simpler catalysts with the C2-chiral pyrrolidine in the ortho-position of the dialkylphenyl phosphine led to the formation of opposite enantiomers. The chiral binding pockets of the new catalysts have been analyzed by DFT calculations. As revealed by non-covalent interaction plots, attractive non-covalent interactions between substrates and catalysts direct specific enantioselective folding. Furthermore, we have introduced the open-source tool NEST, specifically designed to account for steric effects in cylindrical-shaped complexes, which allows predicting experimental enantioselectivities in our systems.
Collapse
Affiliation(s)
- Giuseppe Zuccarello
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), Barcelona Institute
of Science and Technology, Av. Països Catalans 16, Tarragona 43007, Spain
| | - Leonardo J. Nannini
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), Barcelona Institute
of Science and Technology, Av. Països Catalans 16, Tarragona 43007, Spain
| | - Ana Arroyo-Bondía
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), Barcelona Institute
of Science and Technology, Av. Països Catalans 16, Tarragona 43007, Spain
- Departament
de Química Orgànica i Analítica, Universitat Rovira i Virgili, C/ Marcel·lí Domingo s/n, Tarragona 43007, Spain
| | - Nicolás Fincias
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), Barcelona Institute
of Science and Technology, Av. Països Catalans 16, Tarragona 43007, Spain
| | - Isabel Arranz
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), Barcelona Institute
of Science and Technology, Av. Països Catalans 16, Tarragona 43007, Spain
- Departament
de Química Orgànica i Analítica, Universitat Rovira i Virgili, C/ Marcel·lí Domingo s/n, Tarragona 43007, Spain
| | - Alba H. Pérez-Jimeno
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), Barcelona Institute
of Science and Technology, Av. Països Catalans 16, Tarragona 43007, Spain
- Departament
de Química Orgànica i Analítica, Universitat Rovira i Virgili, C/ Marcel·lí Domingo s/n, Tarragona 43007, Spain
| | - Matthias Peeters
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), Barcelona Institute
of Science and Technology, Av. Països Catalans 16, Tarragona 43007, Spain
| | - Inmaculada Martín-Torres
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), Barcelona Institute
of Science and Technology, Av. Països Catalans 16, Tarragona 43007, Spain
| | - Anna Sadurní
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), Barcelona Institute
of Science and Technology, Av. Països Catalans 16, Tarragona 43007, Spain
| | - Víctor García-Vázquez
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), Barcelona Institute
of Science and Technology, Av. Països Catalans 16, Tarragona 43007, Spain
| | - Yufei Wang
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), Barcelona Institute
of Science and Technology, Av. Països Catalans 16, Tarragona 43007, Spain
| | - Mariia S. Kirillova
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), Barcelona Institute
of Science and Technology, Av. Països Catalans 16, Tarragona 43007, Spain
| | - Marc Montesinos-Magraner
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), Barcelona Institute
of Science and Technology, Av. Països Catalans 16, Tarragona 43007, Spain
| | - Ulysse Caniparoli
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), Barcelona Institute
of Science and Technology, Av. Països Catalans 16, Tarragona 43007, Spain
- Departament
de Química Orgànica i Analítica, Universitat Rovira i Virgili, C/ Marcel·lí Domingo s/n, Tarragona 43007, Spain
| | - Gonzalo D. Núñez
- Departament
de Química Orgànica i Analítica, Universitat Rovira i Virgili, C/ Marcel·lí Domingo s/n, Tarragona 43007, Spain
| | - Feliu Maseras
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), Barcelona Institute
of Science and Technology, Av. Països Catalans 16, Tarragona 43007, Spain
- Departament
de Química Orgànica i Analítica, Universitat Rovira i Virgili, C/ Marcel·lí Domingo s/n, Tarragona 43007, Spain
| | - Maria Besora
- Departament
de Química Orgànica i Analítica, Universitat Rovira i Virgili, C/ Marcel·lí Domingo s/n, Tarragona 43007, Spain
| | - Imma Escofet
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), Barcelona Institute
of Science and Technology, Av. Països Catalans 16, Tarragona 43007, Spain
- Departament
de Química Orgànica i Analítica, Universitat Rovira i Virgili, C/ Marcel·lí Domingo s/n, Tarragona 43007, Spain
| | - Antonio M. Echavarren
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), Barcelona Institute
of Science and Technology, Av. Països Catalans 16, Tarragona 43007, Spain
- Departament
de Química Orgànica i Analítica, Universitat Rovira i Virgili, C/ Marcel·lí Domingo s/n, Tarragona 43007, Spain
| |
Collapse
|
10
|
McCallum T. Heart of gold: enabling ligands for oxidative addition of haloorganics in Au(I)/Au(III) catalysed cross-coupling reactions. Org Biomol Chem 2023; 21:1629-1646. [PMID: 36727215 DOI: 10.1039/d3ob00002h] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The field of Au-catalysis has been an area rich with new discoveries due to the unique properties of the lustrous element. In the past decade, developments in Au(I)/Au(III) cross-coupling methodology have been made possible with the use of external oxidants that facilitate the challenging oxidation of Au(I) to Au(III) in a stable and catalytically competent fashion. Until recently, Au-chemistry was not known to undergo catalytic transformations that feature oxidative addition of haloarenes like those that were made famous by transition metals such as Pd and Ni. The discovery that ligand modification could facilitate the oxidative addition of Au(I) with haloorganics to provide Au(III) intermediates that are competent in other areas of catalysis (i.e. Lewis acid catalysis) has revolutionized this field and has led to the invention of new cross-coupling methodology. The recent advances at the leading edge in the emerging field of Au(I)/Au(III) catalysis under redox-neutral conditions are highlighted.
Collapse
Affiliation(s)
- Terry McCallum
- The Canadian Bank Note Company, Ottawa, Ontario, Canada.
| |
Collapse
|
11
|
Mehara J, Koovakattil Surendran A, van Wieringen T, Setia D, Foroutan-Nejad C, Straka M, Rulíšek L, Roithová J. Cationic Gold(II) Complexes: Experimental and Theoretical Study. Chemistry 2022; 28:e202201794. [PMID: 35946558 DOI: 10.1002/chem.202201794] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Indexed: 01/07/2023]
Abstract
Gold(II) complexes are rare, and their application to the catalysis of chemical transformations is underexplored. The reason is their easy oxidation or reduction to more stable gold(III) or gold(I) complexes, respectively. We explored the thermodynamics of the formation of [AuII (L)(X)]+ complexes (L=ligand, X=halogen) from the corresponding gold(III) precursors and investigated their stability and spectral properties in the IR and visible range in the gas phase. The results show that the best ancillary ligands L for stabilizing gaseous [AuII (L)(X)]+ complexes are bidentate and tridentate ligands with nitrogen donor atoms. The electronic structure and spectral properties of the investigated gold(II) complexes were correlated with quantum chemical calculations. The results show that the molecular and electronic structure of the gold(II) complexes as well as their spectroscopic properties are very similar to those of analogous stable copper(II) complexes.
Collapse
Affiliation(s)
- Jaya Mehara
- Department of Spectroscopy and Catalysis, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ, Nijmegen (The, Netherlands
| | - Adarsh Koovakattil Surendran
- Department of Spectroscopy and Catalysis, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ, Nijmegen (The, Netherlands
| | - Teun van Wieringen
- Department of Spectroscopy and Catalysis, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ, Nijmegen (The, Netherlands
| | - Deeksha Setia
- Department of Spectroscopy and Catalysis, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ, Nijmegen (The, Netherlands
| | - Cina Foroutan-Nejad
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí. 2, 16610, Prague, Czech Republic
| | - Michal Straka
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí. 2, 16610, Prague, Czech Republic
| | - Lubomír Rulíšek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí. 2, 16610, Prague, Czech Republic
| | - Jana Roithová
- Department of Spectroscopy and Catalysis, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ, Nijmegen (The, Netherlands
| |
Collapse
|
12
|
Yu H, Wang ZX. Rhodium(I)-Catalyzed P(III)-Directed Aromatic C–H Acylation with Amides. J Org Chem 2022; 87:14384-14393. [DOI: 10.1021/acs.joc.2c01826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hang Yu
- CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zhong-Xia Wang
- CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
13
|
Lin B, Yang T, Zhang D, Zhou Y, Wu L, Qiu J, Chen G, Che C, Zhang X. Gold‐Catalyzed Desymmetric Lactonization of Alkynylmalonic Acids Enabled by Chiral Bifunctional P,N ligands. Angew Chem Int Ed Engl 2022; 61:e202201739. [DOI: 10.1002/anie.202201739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Bijin Lin
- Department of Chemistry the Grubbs Institute Medi-X Pingshan Southern University of Science and Technology Shenzhen 518055 China
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong China
| | - Tilong Yang
- Department of Chemistry The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong China
| | - Dequan Zhang
- Department of Chemistry the Grubbs Institute Medi-X Pingshan Southern University of Science and Technology Shenzhen 518055 China
| | - Yang Zhou
- Department of Chemistry the Grubbs Institute Medi-X Pingshan Southern University of Science and Technology Shenzhen 518055 China
| | - Liangliang Wu
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong China
| | - Jingfei Qiu
- Department of Chemistry the Grubbs Institute Medi-X Pingshan Southern University of Science and Technology Shenzhen 518055 China
| | - Gen‐Qiang Chen
- Department of Chemistry the Grubbs Institute Medi-X Pingshan Southern University of Science and Technology Shenzhen 518055 China
- Academy for Advanced Interdisciplinary Studies Southern University of Science and Technology Shenzhen 518055 China
| | - Chi‐Ming Che
- Department of Chemistry the Grubbs Institute Medi-X Pingshan Southern University of Science and Technology Shenzhen 518055 China
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong China
| | - Xumu Zhang
- Department of Chemistry the Grubbs Institute Medi-X Pingshan Southern University of Science and Technology Shenzhen 518055 China
| |
Collapse
|
14
|
Navarro M, Alférez MG, de Sousa M, Miranda-Pizarro J, Campos J. Dicoordinate Au(I)-Ethylene Complexes as Hydroamination Catalysts. ACS Catal 2022; 12:4227-4241. [PMID: 35391904 PMCID: PMC8981211 DOI: 10.1021/acscatal.1c05823] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/12/2022] [Indexed: 01/22/2023]
Abstract
A series of gold(I)-ethylene π-complexes containing a family of bulky phosphine ligands has been prepared. The use of these sterically congested ligands is crucial to stabilize the gold(I)-ethylene bond and prevent decomposition, boosting up their catalytic performance in the highly underexplored hydroamination of ethylene. The precatalysts bearing the most sterically demanding phosphines showed the best results reaching full conversion to the hydroaminated products under notably mild conditions (1 bar of ethylene pressure at 60 °C). Kinetic analysis together with density functional theory calculations revealed that the assistance of a second molecule of the nucleophile as a proton shuttle is preferred even when using an extremely congested cavity-shaped Au(I) complex. In addition, we have measured a strong primary kinetic isotopic effect that is consistent with the involvement of X-H bond-breaking events in the protodeauration turnover-limiting step.
Collapse
Affiliation(s)
- Miquel Navarro
- Departamento
de Química Inorgánica and Centro de Innovación
en Química Avanzada (ORFEO-CINQA), Instituto de Investigaciones Químicas (IIQ), Consejo Superior
de Investigaciones Científicas (CSIC) and University of Sevilla, Sevilla 41092, Spain
| | - Macarena G. Alférez
- Departamento
de Química Inorgánica and Centro de Innovación
en Química Avanzada (ORFEO-CINQA), Instituto de Investigaciones Químicas (IIQ), Consejo Superior
de Investigaciones Científicas (CSIC) and University of Sevilla, Sevilla 41092, Spain
| | - Morgane de Sousa
- Departamento
de Química Inorgánica and Centro de Innovación
en Química Avanzada (ORFEO-CINQA), Instituto de Investigaciones Químicas (IIQ), Consejo Superior
de Investigaciones Científicas (CSIC) and University of Sevilla, Sevilla 41092, Spain
| | - Juan Miranda-Pizarro
- Departamento
de Química Inorgánica and Centro de Innovación
en Química Avanzada (ORFEO-CINQA), Instituto de Investigaciones Químicas (IIQ), Consejo Superior
de Investigaciones Científicas (CSIC) and University of Sevilla, Sevilla 41092, Spain
| | - Jesús Campos
- Departamento
de Química Inorgánica and Centro de Innovación
en Química Avanzada (ORFEO-CINQA), Instituto de Investigaciones Químicas (IIQ), Consejo Superior
de Investigaciones Científicas (CSIC) and University of Sevilla, Sevilla 41092, Spain
| |
Collapse
|
15
|
Lin B, Yang T, Zhang D, Zhou Y, Wu L, Qiu J, Chen GQ, Che CM, Zhang X. Gold‐Catalyzed Desymmetric Lactonization of Alkynylmalonic Acids Enabled by Chiral Bifunctional P,N ligands. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Bijin Lin
- Southern University of Science and Technology Department of Chemistry 518000 Shenzhen CHINA
| | - Tilong Yang
- Hong Kong University of Science and Technology School of Science Department of Chemistry Hongkong CHINA
| | - Dequan Zhang
- Southern University of Science and Technology Department of Chemistry CHINA
| | - Yang Zhou
- Southern University of Science and Technology Department of Chemistry CHINA
| | - Liangliang Wu
- Hong Kong University: University of Hong Kong Department of Chemistry CHINA
| | - Jingfei Qiu
- Southern University of Science and Technology Department of Chemistry CHINA
| | - Gen-Qiang Chen
- Southern University of Science and Technology Department of Chemistry CHINA
| | - Chi-Ming Che
- The University of Hong Kong Department of Chemistry CHINA
| | - Xumu Zhang
- Southern University of Science and Technology Chemistry 1088 Xueyuan Avenue 518055 Shenzhen CHINA
| |
Collapse
|
16
|
Franchino A, Martí À, Echavarren AM. H-Bonded Counterion-Directed Enantioselective Au(I) Catalysis. J Am Chem Soc 2022; 144:3497-3509. [PMID: 35138843 PMCID: PMC8895408 DOI: 10.1021/jacs.1c11978] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
A new strategy for
enantioselective transition-metal catalysis
is presented, wherein a H-bond donor placed on the ligand of a cationic
complex allows precise positioning of the chiral counteranion responsible
for asymmetric induction. The successful implementation of this paradigm
is demonstrated in 5-exo-dig and 6-endo-dig cyclizations of 1,6-enynes, combining an achiral phosphinourea
Au(I) chloride complex with a BINOL-derived phosphoramidate Ag(I)
salt and thus allowing the first general use of chiral anions in Au(I)-catalyzed
reactions of challenging alkyne substrates. Experiments with modified
complexes and anions, 1H NMR titrations, kinetic data,
and studies of solvent and nonlinear effects substantiate the key
H-bonding interaction at the heart of the catalytic system. This conceptually
novel approach, which lies at the intersection of metal catalysis,
H-bond organocatalysis, and asymmetric counterion-directed catalysis,
provides a blueprint for the development of supramolecularly assembled
chiral ligands for metal complexes.
Collapse
Affiliation(s)
- Allegra Franchino
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Àlex Martí
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain.,Departament de Química Orgànica i Analítica, Universitat Rovira i Virgili, C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | - Antonio M Echavarren
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain.,Departament de Química Orgànica i Analítica, Universitat Rovira i Virgili, C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| |
Collapse
|
17
|
Escofet I, Zuccarello G, Echavarren AM. Gold-catalyzed enantioselective cyclizations and cycloadditions. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2022. [DOI: 10.1016/bs.adomc.2022.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Zhou S, Xie X, Xu X, Dong S, Hu W, Xu X. An asymmetric oxidative cyclization/Mannich-type addition cascade reaction for direct access to chiral pyrrolidin-3-ones. Chem Commun (Camb) 2021; 57:12171-12174. [PMID: 34726687 DOI: 10.1039/d1cc04830a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient gold and chiral phosphoric acid cooperatively catalyzed enantioselective oxidative cyclization/Mannich-type addition reaction of homopropargyl amides with nitrones has been developed, which provides chiral pyrrolidin-3-ones in high yields with excellent enantioselectivities under mild conditions. This reaction employed stable and readily available alkynes as non-diazo carbene precursors, which provides a 100% atom economy method with high bond formation efficiency.
Collapse
Affiliation(s)
- Su Zhou
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.
| | - Xiongda Xie
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.
| | - Xinxin Xu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.
| | - Shanliang Dong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.
| | - Wenhao Hu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.
| | - Xinfang Xu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
19
|
Zhou S, Li Y, Liu X, Hu W, Ke Z, Xu X. Enantioselective Oxidative Multi-Functionalization of Terminal Alkynes with Nitrones and Alcohols for Expeditious Assembly of Chiral α-Alkoxy-β-amino-ketones. J Am Chem Soc 2021; 143:14703-14711. [PMID: 34463096 DOI: 10.1021/jacs.1c06178] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Catalytic oxidative functionalization of alkynes has emerged as an effective method in synthetic chemistry in recent decades. However, enantioselective transformations via metal carbene intermediates are quite rare due to the lack of robust chiral catalysts, especially in the intermolecular versions. Herein, we report the first asymmetric three-component reaction of commercially available alkynes with nitrones and alcohols, which affords α-alkoxy-β-amino-ketones in good yields with high to excellent enantioselectivity using combined catalysis by an achiral gold complex and a chiral spiro phosphoric acid (CPA). Mechanistically, this atom-economic reaction involves a catalytic alkyne oxidation/ylide formation/Mannich-type addition sequence that uses nitrone as the oxidant and the leaving fragment imine as the electrophile, providing a novel method for multi-functionalization of commercially available terminal alkynes.
Collapse
Affiliation(s)
- Su Zhou
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yinwu Li
- School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiangrong Liu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wenhao Hu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhuofeng Ke
- School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Xinfang Xu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
20
|
Zuccarello G, Escofet I, Caniparoli U, Echavarren AM. New-Generation Ligand Design for the Gold-Catalyzed Asymmetric Activation of Alkynes. Chempluschem 2021; 86:1283-1296. [PMID: 34472729 PMCID: PMC8457203 DOI: 10.1002/cplu.202100232] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/09/2021] [Indexed: 01/01/2023]
Abstract
Gold(I) catalysts are ideal for the activation of alkynes under very mild conditions. However, unlike allenes or alkenes, the triple bond of alkynes cannot be prochiral. In addition, the linear coordination displayed by gold(I) complexes places the chiral ligand far away from the substrate resulting in an inefficient transfer of chiral information. This poses a significant challenge for the achievement of high enantiocontrol in gold(I)-catalyzed reactions of alkynes. Although considerable progress on enantioselective gold(I)-catalyzed transformations has recently been achieved, the asymmetric activation of non-prochiral alkyne-containing small molecules still represents a great challenge. Herein we summarize recent advances in intra- and intermolecular enantioselective gold(I)-catalyzed reactions involving alkynes, discussing new chiral ligand designs that lie at the basis of these developments. We also focus on the mode of action of these catalysts, their possible limitations towards a next-generation of more efficient ligand designs. Finally, square planar chiral gold(III) complexes, which offer an alternative to chiral gold(I) complexes, are also discussed.
Collapse
Affiliation(s)
- Giuseppe Zuccarello
- Institute of Chemical Research of Catalonia (ICIQ)Barcelona Institute of Science and Technology (BIST)Av. Països Catalans 1643007TarragonaSpain
- Departament de Química Orgànica i AnalíticaUniversitat Rovira i Virgili (URV)C/Marcel⋅lí Domingo s/n43007TarragonaSpain
| | - Imma Escofet
- Institute of Chemical Research of Catalonia (ICIQ)Barcelona Institute of Science and Technology (BIST)Av. Països Catalans 1643007TarragonaSpain
- Departament de Química Orgànica i AnalíticaUniversitat Rovira i Virgili (URV)C/Marcel⋅lí Domingo s/n43007TarragonaSpain
| | - Ulysse Caniparoli
- Institute of Chemical Research of Catalonia (ICIQ)Barcelona Institute of Science and Technology (BIST)Av. Països Catalans 1643007TarragonaSpain
- Departament de Química Orgànica i AnalíticaUniversitat Rovira i Virgili (URV)C/Marcel⋅lí Domingo s/n43007TarragonaSpain
| | - Antonio M. Echavarren
- Institute of Chemical Research of Catalonia (ICIQ)Barcelona Institute of Science and Technology (BIST)Av. Països Catalans 1643007TarragonaSpain
- Departament de Química Orgànica i AnalíticaUniversitat Rovira i Virgili (URV)C/Marcel⋅lí Domingo s/n43007TarragonaSpain
| |
Collapse
|
21
|
Abstract
In this contribution, we provide an overview of the main avenues that have emerged in gold coordination chemistry during the last years. The unique properties of gold have motivated research in gold chemistry, and especially regarding the properties and applications of gold compounds in catalysis, medicine, and materials chemistry. The advances in the synthesis and knowledge of gold coordination compounds have been possible with the design of novel ligands becoming relevant motifs that have allowed the preparation of elusive complexes in this area of research. Strong donor ligands with easily modulable electronic and steric properties, such as stable singlet carbenes or cyclometalated ligands, have been decisive in the stabilization of gold(0) species, gold fluoride complexes, gold hydrides, unprecedented π complexes, or cluster derivatives. These new ligands have been important not only from the fundamental structure and bonding studies but also for the synthesis of sophisticated catalysts to improve activity and selectivity of organic transformations. Moreover, they have enabled the facile oxidative addition from gold(I) to gold(III) and the design of a plethora of complexes with specific properties.
Collapse
Affiliation(s)
- Raquel P Herrera
- Laboratorio de Organocatálisis Asimétrica Departamento de Química Orgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - M Concepción Gimeno
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| |
Collapse
|
22
|
Pedrazzani R, An J, Monari M, Bandini M. New Chiral BINOL‐Based Phosphates for Enantioselective [Au(I)]‐Catalyzed Dearomatization of β‐Naphthols with Allenamides. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100166] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Riccardo Pedrazzani
- Dipartimento di Chimica “Giacomo Ciamician” Alma Mater Studiorum – Università di Bologna Via Selmi 2 40126 Bologna Italy
| | - Juzeng An
- Dipartimento di Chimica “Giacomo Ciamician” Alma Mater Studiorum – Università di Bologna Via Selmi 2 40126 Bologna Italy
| | - Magda Monari
- Dipartimento di Chimica “Giacomo Ciamician” Alma Mater Studiorum – Università di Bologna Via Selmi 2 40126 Bologna Italy
| | - Marco Bandini
- Dipartimento di Chimica “Giacomo Ciamician” Alma Mater Studiorum – Università di Bologna Via Selmi 2 40126 Bologna Italy
- Consorzio C.I.N.M.P.I.S. Via Selmi 2 40126 Bologna Italy
| |
Collapse
|
23
|
Miranda-Pizarro J, Luo Z, Moreno JJ, Dickie DA, Campos J, Gunnoe TB. Reductive C-C Coupling from Molecular Au(I) Hydrocarbyl Complexes: A Mechanistic Study. J Am Chem Soc 2021; 143:2509-2522. [PMID: 33544575 PMCID: PMC8479859 DOI: 10.1021/jacs.0c11296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Indexed: 02/07/2023]
Abstract
Organometallic gold complexes are used in a range of catalytic reactions, and they often serve as catalyst precursors that mediate C-C bond formation. In this study, we investigate C-C coupling to form ethane from various phosphine-ligated gem-digold(I) methyl complexes including [Au2(μ-CH3)(PMe2Ar')2][NTf2], [Au2(μ-CH3)(XPhos)2][NTf2], and [Au2(μ-CH3)(tBuXPhos)2][NTf2] {Ar' = C6H3-2,6-(C6H3-2,6-Me)2, C6H3-2,6-(C6H2-2,4,6-Me)2, C6H3-2,6-(C6H3-2,6-iPr)2, or C6H3-2,6-(C6H2-2,4,6-iPr)2; XPhos = 2-dicyclohexylphosphino-2',4',6'-triisopropylbiphenyl; tBuXPhos = 2-di-tert-butylphosphino-2',4',6'-triisopropylbiphenyl; NTf2 = bis(trifluoromethyl sulfonylimide)}. The gem-digold methyl complexes are synthesized through reaction between Au(CH3)L and Au(L)(NTf2) {L = phosphines listed above}. For [Au2(μ-CH3)(XPhos)2][NTf2] and [Au2(μ-CH3)(tBuXPhos)2][NTf2], solid-state X-ray structures have been elucidated. The rate of ethane formation from [Au2(μ-CH3)(PMe2Ar')2][NTf2] increases as the steric bulk of the phosphine substituent Ar' decreases. Monitoring the rate of ethane elimination reactions by multinuclear NMR spectroscopy provides evidence for a second-order dependence on the gem-digold methyl complexes. Using experimental and computational evidence, it is proposed that the mechanism of C-C coupling likely involves (1) cleavage of [Au2(μ-CH3)(PMe2Ar')2][NTf2] to form Au(PR2Ar')(NTf2) and Au(CH3)(PMe2Ar'), (2) phosphine migration from a second equivalent of [Au2(μ-CH3)(PMe2Ar')2][NTf2] aided by binding of the Lewis acidic [Au(PMe2Ar')]+, formed in step 1, to produce [Au2(CH3)(PMe2Ar')][NTf2] and [Au2(PMe2Ar')]+, and (3) recombination of [Au2(CH3)(PMe2Ar')][NTf2] and Au(CH3)(PMe2Ar') to eliminate ethane.
Collapse
Affiliation(s)
- Juan Miranda-Pizarro
- Instituto
de Investigaciones Químicas (IIQ), Departamento de Química
Inorgánica and Centro de Innovación en Química
Avanzada (ORFEO−CINQA), Universidad de Sevilla and Consejo
Superior de Investigaciones Científicas (CSIC), Avenida Américo Vespucio
49, 41092 Sevilla, Spain
| | - Zhongwen Luo
- Department
of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Juan J. Moreno
- Instituto
de Investigaciones Químicas (IIQ), Departamento de Química
Inorgánica and Centro de Innovación en Química
Avanzada (ORFEO−CINQA), Universidad de Sevilla and Consejo
Superior de Investigaciones Científicas (CSIC), Avenida Américo Vespucio
49, 41092 Sevilla, Spain
| | - Diane A. Dickie
- Department
of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Jesús Campos
- Instituto
de Investigaciones Químicas (IIQ), Departamento de Química
Inorgánica and Centro de Innovación en Química
Avanzada (ORFEO−CINQA), Universidad de Sevilla and Consejo
Superior de Investigaciones Científicas (CSIC), Avenida Américo Vespucio
49, 41092 Sevilla, Spain
| | - T. Brent Gunnoe
- Department
of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
24
|
Abstract
Gold phosphine derivatives such as thiolates have been recently proposed as catalysts or catalyst precursors. The relevance of the supramolecular environment on the fine-tuning of the catalytical activity on these compounds incentivizes the use of tools that are convenient to characterize in detail the non-covalent landscape of the systems. Herein, we show the molecular and supramolecular diversity caused by the changes in the fluorination pattern in a family of new XPhos goldfluorothiolate derivatives. Furthermore, we studied the supramolecular interactions around the Au centers using quantum chemical topology tools, in particular the quantum theory of atoms in molecules (QTAIM) and the non-covalent interaction index. Our results give detailed insights into the fluorination effects on the strength of intramolecular and intermolecular interactions in these systems. We have also used QTAIM delocalization indexes to define a novel hapticity indicator. Finally, we assessed the trans influence of the fluorothiolates on the phosphine in terms of the change in the δ 31P-NMR. These results show the feasibility of the use of fluorination in the modulation of the electronic properties of Buchwald phosphine gold(I) compounds, and thereby its potential catalytic activity.
Collapse
|
25
|
Kato M, Ueta Y, Ito S. Gold(I) Complexation of Phosphanoxy-Substituted Phosphaalkenes for Activation-Free LAuCl Catalysis. Chemistry 2021; 27:2469-2475. [PMID: 33078876 DOI: 10.1002/chem.202004281] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/16/2020] [Indexed: 12/31/2022]
Abstract
The phosphanoxy-substituted phosphaalkene bearing the P=C-O-P skeleton can be prepared from diphosphene Mes*P=PMes* (Mes*=2,4,6-tBu3 C6 H2 ), and their use for catalysis is of interest. In this paper, complexation of the phosphanoxy-substituted phosphaalkenes with gold are investigated, and the catalytic activity of the mono- and bis(chlorogold) complexes are subsequently evaluated. Reaction of the P=C-O-P compound with (tht)AuCl (tht=tetrahydrothiophene) showed dominant coordination on the sp3 phosphorus, and complete coordination on the sp2 phosphorus required removal of tetrahydrothiophene. Atoms In Molecules (AIM) analysis based on the X-ray structure of the mono(chlorogold) complex indicated a pseudo coordinating interaction between the gold center and the P=C unit. The bis(chlorogold) complexes displayed conformational isomerism, and catalyzed the cycloisomerization/alkoxycyclization of 1,6-enyne and for hydration of terminal alkyne without activation treatment. Even the mono(chlorogold) complexes catalyzed the alkoxycyclization reactions without a silver co-catalyst, indicating that the alcohols were effective in activating the AuCl unit.
Collapse
Affiliation(s)
- Miki Kato
- Department of Applied Chemistry, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-H113 Ookayama, Meguro-ku, Tokyo, 1528552, Japan
| | - Yasuhiro Ueta
- Department of Applied Chemistry, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-H113 Ookayama, Meguro-ku, Tokyo, 1528552, Japan
| | - Shigekazu Ito
- Department of Applied Chemistry, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-H113 Ookayama, Meguro-ku, Tokyo, 1528552, Japan
| |
Collapse
|
26
|
Abstract
Three- and four-membered rings, widespread motifs in nature and medicinal chemistry, have fascinated chemists ever since their discovery. However, due to energetic considerations, small rings are often difficult to assemble. In this regard, homogeneous gold catalysis has emerged as a powerful tool to construct these highly strained carbocycles. This review aims to provide a comprehensive summary of all the major advances and discoveries made in the gold-catalyzed synthesis of cyclopropanes, cyclopropenes, cyclobutanes, cyclobutenes, and their corresponding heterocyclic or heterosubstituted analogs.
Collapse
Affiliation(s)
- Mauro Mato
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain.,Departament de Quı́mica Analı́tica i Quı́mica Orgànica, Universitat Rovira i Virgili, C/Marcel·li Domingo s/n, 43007 Tarragona, Spain
| | - Allegra Franchino
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain.,Departament de Quı́mica Analı́tica i Quı́mica Orgànica, Universitat Rovira i Virgili, C/Marcel·li Domingo s/n, 43007 Tarragona, Spain
| | - Cristina Garcı A-Morales
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain.,Departament de Quı́mica Analı́tica i Quı́mica Orgànica, Universitat Rovira i Virgili, C/Marcel·li Domingo s/n, 43007 Tarragona, Spain
| | - Antonio M Echavarren
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain.,Departament de Quı́mica Analı́tica i Quı́mica Orgànica, Universitat Rovira i Virgili, C/Marcel·li Domingo s/n, 43007 Tarragona, Spain
| |
Collapse
|
27
|
Affiliation(s)
- Ronald L. Reyes
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Tomohiro Iwai
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Masaya Sawamura
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
28
|
Griebel C, Hodges DD, Yager BR, Liu FL, Zhou W, Makaravage KJ, Zhu Y, Norman SG, Lan R, Day CS, Jones AC. Bisbiphenyl Phosphines: Structure and Synthesis of Gold(I) Alkene π-Complexes with Variable Phosphine Donicity and Enhanced Stability. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00278] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Carolin Griebel
- Department of Chemistry, Wake Forest University, Salem Hall, Box 7486, Winston-Salem, North Carolina 27109, United States
| | - Dwaine D. Hodges
- Department of Chemistry, Wake Forest University, Salem Hall, Box 7486, Winston-Salem, North Carolina 27109, United States
| | - Brock R. Yager
- Department of Chemistry, Wake Forest University, Salem Hall, Box 7486, Winston-Salem, North Carolina 27109, United States
| | - Fred L. Liu
- Department of Chemistry, Wake Forest University, Salem Hall, Box 7486, Winston-Salem, North Carolina 27109, United States
| | - Wentong Zhou
- Department of Chemistry, Wake Forest University, Salem Hall, Box 7486, Winston-Salem, North Carolina 27109, United States
| | - Katarina J. Makaravage
- Department of Chemistry, Wake Forest University, Salem Hall, Box 7486, Winston-Salem, North Carolina 27109, United States
| | - Yuyang Zhu
- Department of Chemistry, Wake Forest University, Salem Hall, Box 7486, Winston-Salem, North Carolina 27109, United States
| | - Skylar G. Norman
- Department of Chemistry, Wake Forest University, Salem Hall, Box 7486, Winston-Salem, North Carolina 27109, United States
| | - Ruichen Lan
- Department of Chemistry, Wake Forest University, Salem Hall, Box 7486, Winston-Salem, North Carolina 27109, United States
| | - Cynthia S. Day
- Department of Chemistry, Wake Forest University, Salem Hall, Box 7486, Winston-Salem, North Carolina 27109, United States
| | - Amanda C. Jones
- Department of Chemistry, Wake Forest University, Salem Hall, Box 7486, Winston-Salem, North Carolina 27109, United States
| |
Collapse
|
29
|
Zhang Z, Cordier M, Dixneuf PH, Soulé JF. Late-Stage Diversification of Biarylphosphines through Rhodium(I)-Catalyzed C–H Bond Alkenylation with Internal Alkynes. Org Lett 2020; 22:5936-5940. [DOI: 10.1021/acs.orglett.0c02023] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Zhuan Zhang
- Univ Rennes, CNRS, ISCR UMR 6226, F-35000 Rennes, France
| | - Marie Cordier
- Univ Rennes, CNRS, ISCR UMR 6226, F-35000 Rennes, France
| | | | | |
Collapse
|
30
|
Castrogiovanni A, Lotter D, Bissegger FR, Sparr C. JoyaPhos: An Atropisomeric Teraryl Monophosphine Ligand. Chemistry 2020; 26:9864-9868. [DOI: 10.1002/chem.202001269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/17/2020] [Indexed: 12/17/2022]
Affiliation(s)
| | - Dominik Lotter
- Department of Chemistry University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| | - Fabian R. Bissegger
- Department of Chemistry University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| | - Christof Sparr
- Department of Chemistry University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| |
Collapse
|