1
|
Fernández-Míguez M, Quiñoá E, Freire F. Thermal Activation of Asymmetry Amplification Effects in Helical Polymer-Metal Complexes. Angew Chem Int Ed Engl 2025; 64:e202503949. [PMID: 40084822 DOI: 10.1002/anie.202503949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/11/2025] [Accepted: 03/11/2025] [Indexed: 03/16/2025]
Abstract
Dynamic helical polymers such as poly(phenylacetylene)s (PPAs) exhibit different asymmetry amplification effects, e.g., helix inversion or screw-sense induction, in the presence of different external stimuli such as temperature, solvents, or metal ions that usually operate independently through interaction with the pendant on the monomer repeating units (m.r.u.). In this work, we will demonstrate that the helical structure of a chiral PPA can be tamed by playing with two different external stimuli such as temperature and metal ions. Thus, when a metal ion salt is delivered to a chloroform solution of a chiral PPA to generate a chiral PPA (m.r.u.)/Mn+ complex in a ratio of 1.0/<0.5 mol/mol, a temperature-responsive material is obtained. Interestingly, when the temperature is lowered to about 278-283 K, the metal ion uncomplexes, which recovers the initial helical structure adopted by the PPA. This complexation-decomplexation between the chiral PPA and the metal ions is fully reversible and triggers different asymmetry amplification effects-helix inversion, screw-sense induction or Sergeants-and-Soldiers (SaS), among others-, allowing the creation of a temperature-responsive helical polymer-metal complex (HPMC) from a metal-responsive helical polymer.
Collapse
Affiliation(s)
- Manuel Fernández-Míguez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Emilio Quiñoá
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Félix Freire
- CINBIO, Departamento de Química Orgánica, Universidade de Vigo, Campus Universitario Lagoas Marcosende, Vigo, 36310, Spain
| |
Collapse
|
2
|
Núñez-Martínez M, Fernández-Míguez M, Quiñoá E, Freire F. Colorimetric detection of oxidizing metal ions using anilide-poly(phenylacetylene)s. NANOSCALE 2025; 17:4439-4443. [PMID: 39865769 DOI: 10.1039/d4nr03662j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Poly(phenylacetylene)s (PPAs) bearing para-substituted anilide pendant groups are sensitive to the presence of oxidizing metal ions such as Cu2+, Hg2+, Fe3+, Au3+ or Ce4+ due to a redox reaction between the anilide-PPA and the metal ion. Using a library of six different PPAs containing diverse chiral pendant groups connected to the PPA backbone through the N (anilide) or C (benzamide) atoms of an amide group used as a linker, it was found that anilide-PPAs are sensitive to oxidizing metal ions. In these polymers, and through a redox reaction, a radical species is delocalized along the polyene backbone, resulting in a color change of the solution from yellow to blue. UV-Vis, ECD, IR, EPR, XPS and computational studies were carried out to demonstrate the electron transfer from PPA to the oxidizing metal once the metal coordinates with the anilide of the polymer.
Collapse
Affiliation(s)
- Manuel Núñez-Martínez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares and Departamento de Química Orgánica Universidade de Santiago de Compostela Santiago de Compostela, Spain.
| | - Manuel Fernández-Míguez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares and Departamento de Química Orgánica Universidade de Santiago de Compostela Santiago de Compostela, Spain.
| | - Emilio Quiñoá
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares and Departamento de Química Orgánica Universidade de Santiago de Compostela Santiago de Compostela, Spain.
| | - Félix Freire
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares and Departamento de Química Orgánica Universidade de Santiago de Compostela Santiago de Compostela, Spain.
| |
Collapse
|
3
|
Chen C, Zhang S. Symmetry Breaking: Case Studies with Organic Cage-Racemates. Acc Chem Res 2025; 58:583-598. [PMID: 39873624 DOI: 10.1021/acs.accounts.4c00754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
ConspectusSymmetry is a pervasive phenomenon spanning diverse fields, from art and architecture to mathematics and science. In the scientific realms, symmetry reveals fundamental laws, while symmetry breaking─the collapse of certain symmetry─is the underlying cause of phenomena. Research on symmetry and symmetry breaking consistently provides valuable insights across disciplines, from parity violation in physics to the origin of homochirality in biology. Chemistry is particularly rich in symmetry breaking studies, encompassing areas such as asymmetric synthesis, chiral resolution, chiral structure assembly, and so on. Across different disciplines, a well-defined methodology is fundamental and necessary to analyze the symmetry or symmetry breaking nature behind the phenomenon, enabling researchers to uncover the underlying principles and mechanisms. Basically, three key points underpin symmetry-related research: the scale-dependency of symmetry/symmetry breaking, the driving force behind symmetry breaking phenomena, and the properties arising from symmetry breaking.This Account will focus on the three aforementioned key points elucidated with organic cages as proof-of-concept models, as organic cages exhibit shape-persistent 3D molecular frameworks, well-defined molecular motion, and a high propensity for crystallization.First, we examine racemization processes of organic cages with dynamic molecular motions to illustrate that symmetry and symmetry breaking are time-scale-dependent. Specifically, the racemization, driven by molecular motion, is influenced by hydrogen bonding and the rigidity of the cage framework, which may or may not be observable within the experimental temporal scale. This determines whether the enantiomeric excess system, namely, the symmetry broken system, can be detected experimentally. We also investigate the hierarchical structures self-assembled by racemic organic cages, demonstrating that symmetry and asymmetry manifest differently across spatial scales, from molecular to supramolecular and macroscopic levels. Second, we discuss the driving force behind spontaneous chiral resolution─a classic symmetry-breaking event during crystallization─from a thermodynamic perspective. We suggest that racemic compounds, compared to conglomerates, are more entropy-favored, explaining their greater prevalence in nature. Spontaneous chiral resolution can take place only when a favorable enthalpy compensates for unfavorable entropy. In conglomerates composed of organic cages, strong intermolecular interactions along the screw axes provide the necessary compensation. Finally, we explore the unique properties that emerge from symmetry-broken molecular packing within crystals of cage racemates, such as second-harmonic generation and piezoelectricity. It turns out that the symmetry operation in molecular packing plays a critical role in determining material properties. By comprehensively analyzing symmetry and symmetry-breaking in organic cage racemates, this Account provides insights into symmetry-related phenomena across scientific disciplines. It also paves the way for designing novel materials with tailored properties for applications in optics, electronics, and beyond.
Collapse
Affiliation(s)
- Chenhao Chen
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shaodong Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
4
|
Sahoo D, Peterca M, Percec V. Unwinding Spherical Helices Increases Entropy and Stability of Frank-Kasper and Body-Centered-Cubic Periodic Arrays To Facilitate Discrimination between Self-Organization Mechanisms. J Am Chem Soc 2024; 146:32298-32304. [PMID: 39556721 DOI: 10.1021/jacs.4c13688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Spherical supramolecular dendrimers including helical, self-organize soft Frank-Kasper, other cubic such as body-centered cubic, and quasicrystal periodic and quasiperiodic arrays. When any of these periodic or quasiperiodic arrays forms immediately above a columnar phase, a supramolecular orientational memory effect was found to discriminate between mechanisms of self-organization of supramolecular spheres and generate unprecedented periodic arrays of helical columns which cannot be constructed by any other methodology. Here, we demonstrate that unwinding spherical helices, via their precursor nonhelical columns, increases the entropy and stability of their periodic and quasiperiodic spherical arrays and places the Frank-Kasper and other cubic phases immediately above the columnar phase. This process is not available in biology where spherical viruses self-organize body-centered cubic lattices. However, this concept reengineers, on increasing temperature, the originally expected position of the periodic and quasiperiodic array versus that of the columnar lattice. This process facilitates discrimination between different self-organization mechanisms of supramolecular spheres and also mediates the emergence of unprecedentedly complex and technologically important periodic arrays of nonhelical columns.
Collapse
Affiliation(s)
- Dipankar Sahoo
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Mihai Peterca
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
5
|
Gallego L, Woods JF, Butti R, Szwedziak P, Vargas Jentzsch A, Rickhaus M. Shape-Assisted Self-Assembly of Hexa-Substituted Carpyridines into 1D Supramolecular Polymers. Angew Chem Int Ed Engl 2024; 63:e202318879. [PMID: 38237056 DOI: 10.1002/anie.202318879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/18/2024] [Indexed: 02/06/2024]
Abstract
The extent of the influence that molecular curvature plays on the self-assembly of supramolecular polymers remains an open question in the field. We began addressing this fundamental question with the introduction of "carpyridines", which are saddle-shaped monomers that can associate with one another through π-π interactions and in which the rotational and translational movements are restricted. The topography displayed by the monomers led, previously, to the assembly of highly ordered 2D materials even in the absence of strong directional interactions such as hydrogen bonding. Here, we introduce a simple strategy to gain control over the dimensionality of the formed structures yielding classical unidimensional polymers. These have been characterized using well-established protocols allowing us to determine and confirm the self-assembly mechanism of both fibers and sheets. The calculated interaction energies are significantly higher than expected for flexible self-assembling units lacking classical "strong" non-covalent interactions. The versatility of this supramolecular unit to assemble into either supramolecular fibers or 2D sheets with strong association energies highlights remarkably well the potential and importance of molecular shape for the design of supramolecular materials and the applications thereof.
Collapse
Affiliation(s)
- Lucía Gallego
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Joseph F Woods
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Rachele Butti
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Piotr Szwedziak
- Centre for Microscopy and Image Analysis, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Andreas Vargas Jentzsch
- SAMS Research Group, University of Strasbourg, Institut Charles Sadron, CNRS, Rue du Loess 23, 67200, Strasbourg, France
| | - Michel Rickhaus
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Department of Organic Chemistry, University of Geneva, 30 quai Ernest-Ansermet, 1205, Geneva, Switzerland
| |
Collapse
|
6
|
Percec V, Sahoo D. From Frank-Kasper, Quasicrystals, and Biological Membrane Mimics to Reprogramming In Vivo the Living Factory to Target the Delivery of mRNA with One-Component Amphiphilic Janus Dendrimers. Biomacromolecules 2024; 25:1353-1370. [PMID: 38232372 DOI: 10.1021/acs.biomac.3c01390] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
This Perspective is dedicated to the 25th Anniversary of Biomacromolecules. It provides a personal view on the developing field of the polymer and biology interface over the 25 years since the journal was launched by the American Chemical Society (ACS). This Perspective is meant to bridge an article published in the first issue of the journal and recent bioinspired developments in the laboratory of the corresponding author. The discovery of supramolecular spherical helices self-organizing into Frank-Kasper and quasicrystals as models of icosahedral viruses, as well as of columnar helical assemblies that mimic rodlike viruses by supramolecular dendrimers, is briefly presented. The transplant of these assemblies from supramolecular dendrimers to block copolymers, giant surfactants, and other self-organized soft matter follows. Amphiphilic self-assembling Janus dendrimers and glycodendrimers as mimics of biological membranes and their glycans are discussed. New concepts derived from them that evolved in the in vivo targeted delivery of mRNA with the simplest one-component synthetic vector systems are introduced. Some synthetic methodologies employed during the synthesis and self-assembly are explained. Unraveling bioinspired applications of novel materials concludes this brief 25th Anniversary Perspective of Biomacromolecules.
Collapse
Affiliation(s)
- Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Dipankar Sahoo
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
7
|
Maity M, Bala I, Kanakala MB, Gupta SP, Yelamaggad CV, Pal SK. Tailoring Chiral Discotic Liquid Crystals: Mesophase Engineering through Alternative Approaches and Chain Lengths. Chem Asian J 2024; 19:e202300936. [PMID: 37988364 DOI: 10.1002/asia.202300936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 11/23/2023]
Abstract
Hydrogen (H)-bonding is crucial in constructing superstructures in chemical (such as chiral discotic liquid crystals (DLCs)) as well as in biological systems due to its specific and directional nature. In this context, we achieved the successful synthesis of two branches of heptazine-based H-bonded complexes using distinct strategies. Hpz*-Es-Cn , we incorporated chiral alkyl tails (Hpz-chiral) onto the central C3 symmetric heptazine core, connected to achiral benzoic acid derivatives (Es-Cn acid) through H-bonding. In Hpz-Es-Cn -acid*, we used an achiral heptazine derivative (Hpz-Es-Cn ) linked to a chiral acid via H-bonding. On the other hand, based on the DSC results, we observed that Hpz*-Es-Cn complexes exhibited three distinct phases, whereas Hpz-Es-Cn -acid* complexes displayed only a single mesophase. In polarized optical microscopy (POM) observations, all the complexes displayed birefringence at room temperature, with the color of the POM images changing as the temperature varied. X-ray diffraction (XRD) studies at lower temperatures confirmed that Hpz*-Es-C8 exhibited the columnar rectangular (Colr ) phase, while Hpz*-Es-C10/12 exhibited the columnar oblique (Colob ) phase. However, all the H-bonded complexes exhibited the columnar hexagonal (Colh ) phase at higher temperatures. The chiroptical spectra recorded by Circular dichroism (CD) highlight the specific observations in the columnar phase of two complexes, Hpz*-Es-C10 and Hpz*-Es-C12 . This behavior has potential applications in various fields, including sensors, displays, and responsive materials.
Collapse
Affiliation(s)
- Madhusudan Maity
- Department of Chemical Science, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, 140306, India
- Knowledge City, Sector 81, SAS Nagar, Manauli, PO 140306, India
| | - Indu Bala
- Department of Chemical Science, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, 140306, India
- Knowledge City, Sector 81, SAS Nagar, Manauli, PO 140306, India
| | | | | | - C V Yelamaggad
- Centre for Nano and Soft Matter Sciences, Bengaluru, 560013, India
| | - Santanu Kumar Pal
- Department of Chemical Science, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, 140306, India
- Knowledge City, Sector 81, SAS Nagar, Manauli, PO 140306, India
| |
Collapse
|
8
|
Veeraprakash B, Shanavas AKJ, Reddy GSM, Lobo NP, Ramanathan KV, Narasimhaswamy T. Molecular Conformations of Shape Anisometrically Variant Mesogens in Liquid Crystalline Phase Studied by 13 C NMR Spectroscopy. Chemphyschem 2023:e202300353. [PMID: 37725408 DOI: 10.1002/cphc.202300353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 09/21/2023]
Abstract
Mesogens that vary in shape anisometry have been investigated by 13 C solid-state NMR in the liquid crystalline phase to inspect the conformations. The molecules examined comprise of (i) rod-like mesogen with three-phenyl ring core and terminal hexyloxy chains, (ii) three-ring core linked to the fourth phenyl ring via a spacer, and (iii) trimesic acid connected to three side arms core units through a spacer. The order parameter (Szz ) values for the phenyl rings of the rod-like mesogen are 0.65-0.68, while the mesogen with a three-ring core linked to a phenyl ring via spacer showed dissimilarity. Consequently, for the core unit phenyl rings, Szz is ~0.70, and the terminal phenyl ring showed a low value of 0.12. For the trimesic acid based mesogen, the Szz value for the side arm phenyl rings is ~0.53, and for the central phenyl ring, a very low value of 0.11 is witnessed. By considering the ordering of the rod-like mesogen as a yardstick and employing the ratios of Szz values of the phenyl rings, the average conformations of other mesogens are arrived. Accordingly, for the trimesic acid based mesogen, a tripod-like conformation instead of λ shape is proposed in the liquid crystalline phase.
Collapse
Affiliation(s)
- Bathini Veeraprakash
- Polymer Science and Technology, CSIR-Central Leather Research Institute, Adyar, Chennai, 600020, India
| | - Abdul K J Shanavas
- Polymer Science and Technology, CSIR-Central Leather Research Institute, Adyar, Chennai, 600020, India
| | - Goddeti S M Reddy
- Polymer Science and Technology, CSIR-Central Leather Research Institute, Adyar, Chennai, 600020, India
| | - Nitin P Lobo
- Centre for Analysis, Testing, Evaluation & Reporting Services (CATERS), CSIR-Central Leather Research Institute, Adyar, Chennai, 600020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | | | - Tanneru Narasimhaswamy
- Polymer Science and Technology, CSIR-Central Leather Research Institute, Adyar, Chennai, 600020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
9
|
Somasundaran SM, Kompella SVK, Mohan T M N, Das S, Abdul Vahid A, Vijayan V, Balasubramanian S, Thomas KG. Structurally Induced Chirality of an Achiral Chromophore on Self-Assembled Nanofibers: A Twist Makes It Chiral. ACS NANO 2023. [PMID: 37220308 DOI: 10.1021/acsnano.3c03892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The surface domains of self-assembled amphiphiles are well-organized and can perform many physical, chemical, and biological functions. Here, we present the significance of chiral surface domains of these self-assemblies in transferring chirality to achiral chromophores. These aspects are probed using l- and d-isomers of alkyl alanine amphiphiles which self-assemble in water as nanofibers, possessing a negative surface charge. When bound on these nanofibers, positively charged cyanine dyes (CY524 and CY600), each having two quinoline rings bridged by conjugated double bonds, show contrasting chiroptical features. Interestingly, CY600 displays a bisignated circular dichroic (CD) signal with mirror-image symmetry, while CY524 is CD silent. Molecular dynamics simulations reveal that the model cylindrical micelles (CM) derived from the two isomers exhibit surface chirality and the chromophores are buried as monomers in mirror-imaged pockets on their surfaces. The monomeric nature of template-bound chromophores and their binding reversibility are established by concentration- and temperature-dependent spectroscopies and calorimetry. On the CM, CY524 displays two equally populated conformers with opposite sense, whereas CY600 is present as two pairs of twisted conformers in each of which one is in excess, due to differences in weak dye-amphiphile hydrogen bonding interactions. Infrared and NMR spectroscopies support these findings. Reduction of electronic conjugation caused by the twist establishes the two quinoline rings as independent entities. On-resonance coupling between the transition dipoles of these units generates bisignated CD signals with mirror-image symmetry. The results presented herein provide insight on the little-known structurally induced chirality of achiral chromophores through transfer of chiral surface information.
Collapse
Affiliation(s)
- Sanoop Mambully Somasundaran
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, India
| | - Srinath V K Kompella
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Nila Mohan T M
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, India
| | - Sudip Das
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Arshad Abdul Vahid
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, India
| | - Vinesh Vijayan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, India
| | - Sundaram Balasubramanian
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - K George Thomas
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, India
| |
Collapse
|
10
|
Lu J, Atochina-Vasserman EN, Maurya DS, Shalihin MI, Zhang D, Chenna SS, Adamson J, Liu M, Shah HUR, Shah H, Xiao Q, Queeley B, Ona NA, Reagan EK, Ni H, Sahoo D, Peterca M, Weissman D, Percec V. Screening Libraries to Discover Molecular Design Principles for the Targeted Delivery of mRNA with One-Component Ionizable Amphiphilic Janus Dendrimers Derived from Plant Phenolic Acids. Pharmaceutics 2023; 15:1572. [PMID: 37376020 DOI: 10.3390/pharmaceutics15061572] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/13/2023] [Accepted: 05/14/2023] [Indexed: 06/29/2023] Open
Abstract
Viral and synthetic vectors to deliver nucleic acids were key to the rapid development of extraordinarily efficient COVID-19 vaccines. The four-component lipid nanoparticles (LNPs), containing phospholipids, PEG-conjugated lipids, cholesterol, and ionizable lipids, co-assembled with mRNA via a microfluidic technology, are the leading nonviral delivery vector used by BioNTech/Pfizer and Moderna to access COVID-19 mRNA vaccines. LNPs exhibit a statistical distribution of their four components when delivering mRNA. Here, we report a methodology that involves screening libraries to discover the molecular design principles required to realize organ-targeted mRNA delivery and mediate activity with a one-component ionizable multifunctional amphiphilic Janus dendrimer (IAJD) derived from plant phenolic acids. IAJDs co-assemble with mRNA into monodisperse dendrimersome nanoparticles (DNPs) with predictable dimensions, via the simple injection of their ethanol solution in a buffer. The precise location of the functional groups in one-component IAJDs demonstrated that the targeted organs, including the liver, spleen, lymph nodes, and lung, are selected based on the hydrophilic region, while activity is associated with the hydrophobic domain of IAJDs. These principles, and a mechanistic hypothesis to explain activity, simplify the synthesis of IAJDs, the assembly of DNPs, handling, and storage of vaccines, and reduce price, despite employing renewable plant starting materials. Using simple molecular design principles will lead to increased accessibility to a large diversity of mRNA-based vaccines and nanotherapeutics.
Collapse
Affiliation(s)
- Juncheng Lu
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Elena N Atochina-Vasserman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Devendra S Maurya
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Muhammad Irhash Shalihin
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Dapeng Zhang
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Srijay S Chenna
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Jasper Adamson
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Matthew Liu
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Habib Ur Rehman Shah
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Honey Shah
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Qi Xiao
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Bryn Queeley
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Nathan A Ona
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Erin K Reagan
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Houping Ni
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Dipankar Sahoo
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Mihai Peterca
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Drew Weissman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| |
Collapse
|
11
|
Percec V, Sahoo D, Adamson J. Stimuli-Responsive Principles of Supramolecular Organizations Emerging from Self-Assembling and Self-Organizable Dendrons, Dendrimers, and Dendronized Polymers. Polymers (Basel) 2023; 15:polym15081832. [PMID: 37111979 PMCID: PMC10142069 DOI: 10.3390/polym15081832] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
All activities of our daily life, of the nature surrounding us and of the entire society and its complex economic and political systems are affected by stimuli. Therefore, understanding stimuli-responsive principles in nature, biology, society, and in complex synthetic systems is fundamental to natural and life sciences. This invited Perspective attempts to organize, to the best of our knowledge, for the first time the stimuli-responsive principles of supramolecular organizations emerging from self-assembling and self-organizable dendrons, dendrimers, and dendronized polymers. Definitions of stimulus and stimuli from different fields of science are first discussed. Subsequently, we decided that supramolecular organizations of self-assembling and self-organizable dendrons, dendrimers, and dendronized polymers may fit best in the definition of stimuli from biology. After a brief historical introduction to the discovery and development of conventional and self-assembling and self-organizable dendrons, dendrimers, and dendronized polymers, a classification of stimuli-responsible principles as internal- and external-stimuli was made. Due to the enormous amount of literature on conventional dendrons, dendrimers, and dendronized polymers as well as on their self-assembling and self-organizable systems we decided to discuss stimuli-responsive principles only with examples from our laboratory. We apologize to all contributors to dendrimers and to the readers of this Perspective for this space-limited decision. Even after this decision, restrictions to a limited number of examples were required. In spite of this, we expect that this Perspective will provide a new way of thinking about stimuli in all fields of self-organized complex soft matter.
Collapse
Affiliation(s)
- Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Dipankar Sahoo
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Jasper Adamson
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
- Chemical Physics Laboratory, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| |
Collapse
|
12
|
Assembling Complex Macromolecules and Self-Organizations of Biological Relevance with Cu(I)-Catalyzed Azide-Alkyne, Thio-Bromo, and TERMINI Double "Click" Reactions. Polymers (Basel) 2023; 15:polym15051075. [PMID: 36904317 PMCID: PMC10007166 DOI: 10.3390/polym15051075] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/17/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
In 2022, the Nobel Prize in Chemistry was awarded to Bertozzi, Meldal, and Sharpless "for the development of click chemistry and biorthogonal chemistry". Since 2001, when the concept of click chemistry was advanced by Sharpless laboratory, synthetic chemists started to envision click reactions as the preferred choice of synthetic methodology employed to create new functions. This brief perspective will summarize research performed in our laboratories with the classic Cu(I)-catalyzed azide-alkyne click (CuAAC) reaction elaborated by Meldal and Sharpless, with the thio-bromo click (TBC) and with the less-used, irreversible TERminator Multifunctional INItiator (TERMINI) dual click (TBC) reactions, the last two elaborated in our laboratory. These click reactions will be used to assemble, by accelerated modular-orthogonal methodologies, complex macromolecules and self-organizations of biological relevance. Self-assembling amphiphilic Janus dendrimers and Janus glycodendrimers together with their biological membrane mimics known as dendrimersomes and glycodendrimersomes as well as simple methodologies to assemble macromolecules with perfect and complex architecture such as dendrimers from commercial monomers and building blocks will be discussed. This perspective is dedicated to the 75th anniversary of Professor Bogdan C. Simionescu, the son of my (VP) Ph.D. mentor, Professor Cristofor I. Simionescu, who as his father, took both science and science administration in his hands, and dedicated his life to handling them in a tandem way, to their best.
Collapse
|
13
|
Zhang D, Xiao Q, Rahimzadeh M, Liu M, Rodriguez-Emmenegger C, Miyazaki Y, Shinoda W, Percec V. Self-Assembly of Glycerol-Amphiphilic Janus Dendrimers Amplifies and Indicates Principles for the Selection of Stereochemistry by Biological Membranes. J Am Chem Soc 2023; 145:4311-4323. [PMID: 36749951 DOI: 10.1021/jacs.3c00389] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The principles for the selection of the stereochemistry of phospholipids of biological membranes remain unclear and continue to be debated. Therefore, any new experiments on this topic may help progress in this field. To address this question, three libraries of constitutional isomeric glycerol-amphiphilic Janus dendrimers (JDs) with nonsymmetric homochiral, racemic, and symmetric achiral branching points were synthesized by an orthogonal-modular-convergent methodology. These JDs amplify self-assembly, and therefore, monodisperse vesicles known as dendrimersomes (DSs) with predictable dimensions programmed by JD concentration were assembled by rapid injection of their ethanol solution into water. DSs of homochiral JD enantiomers, racemic, including mixtures of different enantiomers, and achiral exhibited similar DS size-concentration dependence. However, the number of bilayers of DSs assembled from homochiral, achiral, and racemic JDs determined by cryo-TEM were different. Statistical analysis of the number of bilayers and coarse-grained molecular dynamics simulations demonstrated that homochiral JDs formed predominantly unilamellar DSs. Symmetric achiral JDs assembled only unilamellar DSs while racemic JDs favored multilamellar DSs. Since cell membranes are unilamellar, these results indicate a new rationale for nonsymmetric homochiral vs racemic selection. Simultaneously, these experiments imply that the symmetric achiral lipids forming more stable membrane, probably had been the preferable assemblies of prebiotic cell membranes.
Collapse
Affiliation(s)
- Dapeng Zhang
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Qi Xiao
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
- Institute of Computational Molecular Science, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Mehrnoush Rahimzadeh
- DWI─Leibniz Institute for Interactive Materials, Aachen 52074, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen 52074, Germany
| | - Matthew Liu
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Cesar Rodriguez-Emmenegger
- DWI─Leibniz Institute for Interactive Materials, Aachen 52074, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen 52074, Germany
| | - Yusuke Miyazaki
- Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan
| | - Wataru Shinoda
- Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
14
|
Alaasar M, Cao Y, Liu Y, Liu F, Tschierske C. Switching Chirophilic Self-assembly: From meso-structures to Conglomerates in Liquid and Liquid Crystalline Network Phases of Achiral Polycatenar Compounds. Chemistry 2022; 28:e202201857. [PMID: 35866649 PMCID: PMC10092095 DOI: 10.1002/chem.202201857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Indexed: 11/12/2022]
Abstract
Spontaneous generation of chirality from achiral molecules is a contemporary research topic with numerous implications for technological applications and for the understanding of the development of homogeneous chirality in biosystems. Herein, a series of azobenzene based rod-like molecules with an 3,4,5-trialkylated end and a single n-alkyl chain involving 5 to 20 aliphatic carbons at the opposite end is reported. Depending on the chain length and temperature these achiral molecules self-assemble into a series of liquid and liquid crystalline (LC) helical network phases. A chiral isotropic liquid (Iso1 [ *] ) and a cubic triple network phase with chiral I23 lattice were found for the short chain compounds, whereas non-cubic and achiral cubic phases dominate for the long chain compounds. Among them a mesoscale conglomerate with I23 lattice, a tetragonal phase (Tetbi ) containing one chirality synchronized and one non-synchronized achiral network, an achiral double network meso-structure with Ia3 ‾ $\bar 3$ d space group and an achiral percolated isotropic liquid mesophase (Iso1 ) were found. This sequence is attributed to an increasing strength of chirality synchronization between the networks, combined with a change of the preferred mode of chirophilic self-assembly between the networks, switching from enantiophilic to enantiophobic with decreasing chain length and lowering temperature. These nanostructured and mirror symmetry broken LC phases exist over wide temperature ranges which is of interest for potential applications in chiral and photosensitive functional materials derived from achiral compounds.
Collapse
Affiliation(s)
- Mohamed Alaasar
- Institute of ChemistryMartin-Luther University Halle-WittenbergKurt-Mothes Str. 2D-06120Halle/SaaleGermany
- Department of ChemistryFaculty of ScienceCairo UniversityP.O.12613GizaEgypt
| | - Yu Cao
- Shaanxi International Research Center for Soft MatterState Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi An ShiXi'an710049P. R. China
| | - Yan Liu
- Shaanxi International Research Center for Soft MatterState Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi An ShiXi'an710049P. R. China
- Wanhua Chemical Group Co Ltd.Yantai265505P. R. China
| | - Feng Liu
- Shaanxi International Research Center for Soft MatterState Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi An ShiXi'an710049P. R. China
| | - Carsten Tschierske
- Institute of ChemistryMartin-Luther University Halle-WittenbergKurt-Mothes Str. 2D-06120Halle/SaaleGermany
| |
Collapse
|
15
|
Rodríguez R, Rivadulla‐Cendal E, Fernández‐Míguez M, Fernández B, Maeda K, Quiñoá E, Freire F. Full Control of the Chiral Overpass Effect in Helical Polymers: P/M Screw Sense Induction by Remote Chiral Centers After Bypassing the First Chiral Residue. Angew Chem Int Ed Engl 2022; 61:e202209953. [PMID: 36121741 PMCID: PMC9828504 DOI: 10.1002/anie.202209953] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Indexed: 01/12/2023]
Abstract
In helical polymers, helical sense induction is usually commanded by teleinduction mechanism, where the largest substituent of the chiral residue directly attached to the main chain is the one that commands the helical sense. In this work, different helical structures with different helical senses are induced in a helical polymer [poly-(phenylacetylene)] when the conformational composition of two different dihedral angles of a pendant group with more than two chiral residues is tamed. Thus, while the dihedral angle at chiral residue 1 [(R)- or (S)-alanine], attached to the backbone, produces an extended or bent conformation in the pendant resulting in two scaffolds with different stretching degree, the second dihedral angle at chiral residue 2 [(R)- or (S)-methoxyphenylacetamide] places the substituents of this chiral center in a different spatial orientation, originating opposite helical senses at the polymer that are induced through a total control of the "chiral overpass effect".
Collapse
Affiliation(s)
- Rafael Rodríguez
- Centro Singular de investigación en Química Biolóxica e Materiais Moleculares (CiQUS) e Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
- WPI Nano Life Science Institute (WPI-NanoLSI)Kanazawa UniversityKakuma-machiKanazawa920-1192Japan
| | - Elena Rivadulla‐Cendal
- Centro Singular de investigación en Química Biolóxica e Materiais Moleculares (CiQUS) e Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| | - Manuel Fernández‐Míguez
- Centro Singular de investigación en Química Biolóxica e Materiais Moleculares (CiQUS) e Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| | - Berta Fernández
- Departamento de Química FísicaUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| | - Katsuhiro Maeda
- WPI Nano Life Science Institute (WPI-NanoLSI)Kanazawa UniversityKakuma-machiKanazawa920-1192Japan
- Graduate School of Natural Science and TechnologyKanazawa UniversityKakuma-machiKanazawa920-1192Japan
| | - Emilio Quiñoá
- Centro Singular de investigación en Química Biolóxica e Materiais Moleculares (CiQUS) e Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| | - Félix Freire
- Centro Singular de investigación en Química Biolóxica e Materiais Moleculares (CiQUS) e Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| |
Collapse
|
16
|
Núñez-Martínez M, Quiñoá E, Freire F. Chiroptical and colorimetric switches based on helical polymer-metal nanocomposites prepared via redox metal translocation of helical polymer metal complexes. NANOSCALE 2022; 14:13066-13072. [PMID: 36069960 DOI: 10.1039/d2nr03807b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A helical copoly(phenylacetylene) that follows a dynamic chiral accord effect has been designed to further synthesize dynamic chiral nanocomposites. Its two pendants are benzamides of (L)-methionine methyl ester [(L)-1, 20%] and (L)-alanine methyl ester [(L)-2, 80%], the former being responsible for binding the copolymer to metallic nanoparticles (MNPs, M = Au, Ag) via the thioether. The two chiral comonomers have analogous dynamic behavior, and therefore, the copolymer-poly-[(L)-10.2-co-(L)-20.8]-adopts a preferred helical sense that can be amplified or inverted by stimuli acting simultaneously on both pendants. The formation of nanocomposites can be followed by different sequential chiroptical responses of the copolymer once the helical polymer metal-complexes are formed-M to P helix inversion by the formation of poly-[(L)-10.2-co-(L)-20.8]/Au3+ or poly-[(L)-10.2-co-(L)-20.8]/Ag+-and further reduction with NaBH4 to generate the corresponding nanocomposites-P to M helix inversion by the formation of poly-[(L)-10.2-co-(L)-20.8]-AuNPs (6 nm) and poly-[(L)-10.2-co-(L)-20.8]-AgNPs (5 nm). These nanocomposites exhibit the properties of both components, helix inversion in the PPA and a colorimetric response in the MNPs triggered by metal ions.
Collapse
Affiliation(s)
- Manuel Núñez-Martínez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares and Departamento de Química Orgánica Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
| | - Emilio Quiñoá
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares and Departamento de Química Orgánica Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
| | - Félix Freire
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares and Departamento de Química Orgánica Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
| |
Collapse
|
17
|
Ito K, Taniguchi T, Nishimura T, Maeda K. Well-Controlled Living Polymerization of N-Propargylamides and Their Derivatives by Rhodium Catalysis. Angew Chem Int Ed Engl 2022; 61:e202117234. [PMID: 35199450 DOI: 10.1002/anie.202117234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Indexed: 01/04/2023]
Abstract
A substantially improved method for living polymerization of N-propargylamides and their derivatives has been developed. Rhodium(I) complexes bearing an aryl-substituted 1,3,5-hexatriene chain can work as excellent initiators of the polymerization of such non-conjugated terminal alkynes to give the corresponding cis-stereoregular polymers having a narrow molecular weight distribution. The typical living nature has been confirmed by investigating the effects of initial feed ratios of the monomer to the initiator on the molecular weight of the resulting polymers as well as multistage polymerization. Moreover, we demonstrated that the present method enables functionalization of both polymer chain ends and synthesis of novel block copolymers consisting of poly(N-propargylamide) and poly(phenylacetylene) blocks with a narrow molecular weight distribution.
Collapse
Affiliation(s)
- Kosuke Ito
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Tsuyoshi Taniguchi
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Tatsuya Nishimura
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Katsuhiro Maeda
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan.,Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| |
Collapse
|
18
|
Cao Y, Alaasar M, Zhang L, Zhu C, Tschierske C, Liu F. Supramolecular meso-Trick: Ambidextrous Mirror Symmetry Breaking in a Liquid Crystalline Network with Tetragonal Symmetry. J Am Chem Soc 2022; 144:6936-6945. [PMID: 35394276 DOI: 10.1021/jacs.2c01511] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bicontinuous and multicontinuous network phases are among nature's most complex structures in soft matter systems. Here, a chiral bicontinuous tetragonal phase is reported as a new stable liquid crystalline intermediate phase at the transition between two cubic phases, the achiral double gyroid and the chiral triple network cubic phase with an I23 space group, both formed by dynamic networks of helices. The mirror symmetry of the double gyroid, representing a meso-structure of two enantiomorphic networks, is broken at the transition to this tetragonal phase by retaining uniform helicity only along one network while losing it along the other one. This leads to a conglomerate of enantiomorphic tetragonal space groups, P41212 and P43212. Phase structures and chirality were analyzed by small-angle X-ray scattering (SAXS), grazing-incidence small-angle X-ray scattering (GISAXS), resonant soft X-ray scattering (RSoXS) at the carbon K-edge, and model-dependent SAXS/RSoXS simulation. Our findings not only lead to a new bicontinuous network-type three-dimensional mesophase but also reveal a mechanism of mirror symmetry breaking in soft matter by partial meso-structure racemization at the transition from enantiophilic to enantiophobic interhelical self-assembly.
Collapse
Affiliation(s)
- Yu Cao
- Shaanxi International Research Center for Soft Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, P. R. China.,MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Mohamed Alaasar
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Kurt Mothes Str. 2, Halle (Saale) D-06120, Germany.,Department of Chemistry, Cairo University, Giza 12613, Egypt
| | - Lei Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Chenhui Zhu
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Carsten Tschierske
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Kurt Mothes Str. 2, Halle (Saale) D-06120, Germany
| | - Feng Liu
- Shaanxi International Research Center for Soft Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| |
Collapse
|
19
|
Xu F, Crespi S, Pacella G, Fu Y, Stuart MCA, Zhang Q, Portale G, Feringa BL. Dynamic Control of a Multistate Chiral Supramolecular Polymer in Water. J Am Chem Soc 2022; 144:6019-6027. [PMID: 35341243 PMCID: PMC8991000 DOI: 10.1021/jacs.2c01063] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Indexed: 01/02/2023]
Abstract
Natural systems transfer chiral information across multiple length scales through dynamic supramolecular interaction to accomplish various functions. Inspired by nature, many exquisite artificial supramolecular systems have been developed, in which controlling the supramolecular chirality holds the key to completing specific tasks. However, to achieve precise and non-invasive control and modulation of chirality in these systems remains challenging. As a non-invasive stimulus, light can be used to remotely control the chirality with high spatiotemporal precision. In contrast to common molecular switches, a synthetic molecular motor can act as a multistate chiroptical switch with unidirectional rotation, offering major potential to regulate more complex functions. Here, we present a light-driven molecular motor-based supramolecular polymer, in which the intrinsic chirality is transferred to the nanofibers, and the rotation of molecular motors governs the chirality and morphology of the supramolecular polymer. The resulting supramolecular polymer also exhibits light-controlled multistate aggregation-induced emission. These findings present a photochemically tunable multistate dynamic supramolecular system in water and pave the way for developing molecular motor-driven chiroptical materials.
Collapse
Affiliation(s)
- Fan Xu
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Stefano Crespi
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Gianni Pacella
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Youxin Fu
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Marc C. A. Stuart
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Qi Zhang
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Giuseppe Portale
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Ben L. Feringa
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Key
Laboratory for Advanced Materials and Joint International Research
Laboratory of Precision Chemistry and Molecular Engineering, Feringa
Nobel Prize Scientist Joint Research Center, Frontiers Science Center
for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals,
School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237 Shanghai, China
| |
Collapse
|
20
|
Ito K, Taniguchi T, Nishimura T, Maeda K. Well‐Controlled Living Polymerization of
N
‐Propargylamides and Their Derivatives by Rhodium Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kosuke Ito
- Graduate School of Natural Science and Technology Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan
| | - Tsuyoshi Taniguchi
- Graduate School of Natural Science and Technology Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan
| | - Tatsuya Nishimura
- Graduate School of Natural Science and Technology Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan
| | - Katsuhiro Maeda
- Graduate School of Natural Science and Technology Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan
- Nano Life Science Institute (WPI-NanoLSI) Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan
| |
Collapse
|
21
|
Rybak P, Krowczynski A, Szydlowska J, Pociecha D, Gorecka E. Chiral columns forming a lattice with a giant unit cell. SOFT MATTER 2022; 18:2006-2011. [PMID: 35188168 DOI: 10.1039/d1sm01585k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Mesogenic materials, quinoxaline derivatives with semi-flexible cores, are reported to form a new type of 3D columnar phase with a large crystallographic unit cell and Fddd lattice below the columnar hexagonal phase. The 3D columnar structure is a result of frustration imposed by the arrangement of helical columns of opposite chiralities into a triangular lattice. The studied materials exhibit fluorescence properties that could be easily tuned by modification of the molecular structure; for compounds with the extended π electron conjugated systems the fluorescence is quenched. For molecules with a flexible structure the fluorescence quantum yield reaches 25%. On the other hand, compounds with a more rigid mesogenic core, for which the fluorescence is suppressed, show effective photogeneration of charge carriers. For some materials bi-polar hole and electron transport was observed.
Collapse
Affiliation(s)
- Paulina Rybak
- Department of Chemistry, University of Warsaw, ul. Zwirki i Wigury 101, 02-089 Warsaw, Poland.
| | - Adam Krowczynski
- Department of Chemistry, University of Warsaw, ul. Zwirki i Wigury 101, 02-089 Warsaw, Poland.
| | - Jadwiga Szydlowska
- Department of Chemistry, University of Warsaw, ul. Zwirki i Wigury 101, 02-089 Warsaw, Poland.
| | - Damian Pociecha
- Department of Chemistry, University of Warsaw, ul. Zwirki i Wigury 101, 02-089 Warsaw, Poland.
| | - Ewa Gorecka
- Department of Chemistry, University of Warsaw, ul. Zwirki i Wigury 101, 02-089 Warsaw, Poland.
| |
Collapse
|
22
|
Zhang D, Atochina-Vasserman EN, Lu J, Maurya DS, Xiao Q, Liu M, Adamson J, Ona N, Reagan EK, Ni H, Weissman D, Percec V. The Unexpected Importance of the Primary Structure of the Hydrophobic Part of One-Component Ionizable Amphiphilic Janus Dendrimers in Targeted mRNA Delivery Activity. J Am Chem Soc 2022; 144:4746-4753. [PMID: 35263098 DOI: 10.1021/jacs.2c00273] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Viral and synthetic vectors for delivery of nucleic acids impacted genetic nanomedicine by aiding the rapid development of the extraordinarily efficient Covid-19 vaccines. Access to targeted delivery of nucleic acids is expected to expand the field of nanomedicine beyond most expectations. Both viral and synthetic vectors have advantages and disadvantages. The major advantage of the synthetic vectors is their unlimited synthetic capability. The four-component lipid nanoparticles (LNPs) are the leading nonviral vector for mRNA used by Pfizer and Moderna in Covid-19 vaccines. Their synthetic capacity inspired us to develop a one-component multifunctional sequence-defined ionizable amphiphilic Janus dendrimer (IAJD) delivery system for mRNA. The first experiments on IAJDs provided, through a rational-library design combined with orthogonal-modular accelerated synthesis and sequence control in their hydrophilic part, some of the most active synthetic vectors for the delivery of mRNA to lung. The second experiments employed a similar strategy, generating, by a less complex hydrophilic structure, a library of IAJDs targeting spleen, liver, and lung. Here, we report preliminary studies designing the hydrophobic region of IAJDs by using dissimilar alkyl lengths and demonstrate the unexpectedly important role of the primary structure of the hydrophobic part of IAJDs by increasing up to 90.2-fold the activity of targeted delivery of mRNA to spleen, lymph nodes, liver, and lung. The principles of the design strategy reported here and in previous publications indicate that IAJDs could have a profound impact on the future of genetic nanomedicine.
Collapse
Affiliation(s)
- Dapeng Zhang
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Elena N Atochina-Vasserman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Juncheng Lu
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Devendra S Maurya
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Qi Xiao
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Matthew Liu
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Jasper Adamson
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Nathan Ona
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Erin K Reagan
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Houping Ni
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Drew Weissman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
23
|
Fernández Z, Fernández B, Quiñoá E, Freire F. Merging Supramolecular and Covalent Helical Polymers: Four Helices Within a Single Scaffold. J Am Chem Soc 2021; 143:20962-20969. [PMID: 34860519 PMCID: PMC8679087 DOI: 10.1021/jacs.1c10327] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Indexed: 01/21/2023]
Abstract
Supramolecular and covalent polymers share multiple structural effects such as chiral amplification, helical inversion, sergeants and soldiers, or majority rules, among others. These features are related to the axial helical structure found in both types of materials, which are responsible for their properties. Herein a novel material combining information and characteristics from both fields of helical polymers, supramolecular (oligo(p-phenyleneethynylene) (OPE)) and covalent (poly(acetylene) (PA)), is presented. To achieve this goal, the poly(acetylene) must adopt a dihedral angle between conjugated double bonds (ω1) higher than 165°. In such cases, the tilting degree (Θ) between the OPE units used as pendant groups is close to 11°, like that observed in supramolecular helical arrays of these molecules. Polymerization of oligo[(p-phenyleneethynylene)n]phenylacetylene monomers (n = 1, 2) bearing L-decyl alaninate as the pendant group yielded the desired scaffolds. These polymers adopt a stretched and almost planar polyene helix, where the OPE units are arranged describing a helical structure. As a result, a novel multihelix material was prepared, the ECD spectra of which are dominated by the OPE axial array.
Collapse
Affiliation(s)
- Zulema Fernández
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CiQUS) and Departamento de Química
Orgánica, Universidade de Santiago
de Compostela, 15782 Santiago de Compostela, Spain
| | - Berta Fernández
- Departamento
de Química Física, University
of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Emilio Quiñoá
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CiQUS) and Departamento de Química
Orgánica, Universidade de Santiago
de Compostela, 15782 Santiago de Compostela, Spain
| | - Félix Freire
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CiQUS) and Departamento de Química
Orgánica, Universidade de Santiago
de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
24
|
Percec V, Wang S, Huang N, Partridge BE, Wang X, Sahoo D, Hoffman DJ, Malineni J, Peterca M, Jezorek RL, Zhang N, Daud H, Sung PD, McClure ER, Song SL. An Accelerated Modular-Orthogonal Ni-Catalyzed Methodology to Symmetric and Nonsymmetric Constitutional Isomeric AB 2 to AB 9 Dendrons Exhibiting Unprecedented Self-Organizing Principles. J Am Chem Soc 2021; 143:17724-17743. [PMID: 34637302 DOI: 10.1021/jacs.1c08502] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Five libraries of natural and synthetic phenolic acids containing five AB3, ten constitutional isomeric AB2, one AB4, and one AB5 were previously synthesized and reported by our laboratory in 5 to 11 steps. They were employed to construct seven libraries of self-assembling dendrons, by divergent generational, deconstruction, and combined approaches, enabling the discovery of a diversity of supramolecular assemblies including Frank-Kasper phases, soft quasicrystals, and complex helical organizations, some undergoing deracemization in the crystal state. However, higher substitution patterns within a single dendron were not accessible. Here we report three libraries consisting of 30 symmetric and nonsymmetric constitutional isomeric phenolic acids with unprecedented sequenced patterns, including two AB2, three AB3, eight AB4, five AB5, six AB6, three AB7, two AB8, and one AB9 synthesized by accelerated modular-orthogonal Ni-catalyzed borylation and cross-coupling. A single etherification step with 4-(n-dodecyloxy)benzyl chloride transformed all these phenolic acids, of interest also for other applications, into self-assembling dendrons. Despite this synthetic simplicity, they led to a diversity of unprecedented self-organizing principles: lamellar structures of interest for biological membrane mimics, helical columnar assemblies from rigid-solid angle dendrons forming Tobacco Mosaic Virus-like assemblies, columnar organizations from adaptable-solid angle dendrons forming disordered micellar-like nonhelical columns, columns from supramolecular spheres, five body-centered cubic phases displaying supramolecular orientational memory, rarely encountered in previous libraries forming predominantly Frank-Kasper phases, and two Frank-Kasper phases. Lessons from these self-organizing principles, discovered within a single generation of self-assembling dendrons, may help elaborate design principles for complex helical and nonhelical organizations of synthetic and biological matter.
Collapse
Affiliation(s)
- Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Shitao Wang
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Ning Huang
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Benjamin E Partridge
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Xuefeng Wang
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Dipankar Sahoo
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - David J Hoffman
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Jagadeesh Malineni
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Mihai Peterca
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Ryan L Jezorek
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Na Zhang
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Hina Daud
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Paul D Sung
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Emily R McClure
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Se Lin Song
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|