1
|
Chen Z, Zhou J, Liu Y, Ni H, Zhou B. Targeting MAGI2-AS3-modulated Akt-dependent ATP-binding cassette transporters as a possible strategy to reverse temozolomide resistance in temozolomide-resistant glioblastoma cells. Drug Dev Res 2023; 84:1482-1495. [PMID: 37551766 DOI: 10.1002/ddr.22101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/09/2023]
Abstract
Drug resistance is a major impediment to the successful treatment of glioma. This study aimed to elucidate the effects and mechanisms of the long noncoding RNA membrane-associated guanylate kinase inverted-2 antisense RNA 3 (MAGI2-AS3) on temozolomide (TMZ) resistance in glioma cells. MAGI2-AS3 expression in TMZ-resistant glioblastoma (GBM) cells was analyzed using the Gene Expression Omnibus data set GSE113510 and quantitative real-time PCR (qRT-PCR). Cell viability and TMZ half-maximal inhibitory concentration values were determined using the MTT assay. Apoptosis and cell cycle distribution were evaluated using flow cytometry. The expression of multidrug resistance 1 (MDR1), ATP-binding cassette superfamily G member 2 (ABCG2), protein kinase B (Akt), and phosphorylated Akt was detected using qRT-PCR and/or western blot analysis. MAGI2-AS3 was expressed at low levels in TMZ-resistant GBM cells relative to that in their parental cells. MAGI2-AS3 re-expression alleviated TMZ resistance in TMZ-resistant GBM cells. MAGI2-AS3 overexpression also accelerated TMZ-induced apoptosis and G2/M phase arrest. Mechanistically, MAGI2-AS3 overexpression reduced MDR1 and ABCG2 expression and inhibited the Akt pathway, whereas Akt overexpression abrogated the reduction in MDR1 and ABCG2 expression induced by MAGI2-AS3. Moreover, activation of the Akt pathway inhibited the effects of MAGI2-AS3 on TMZ resistance. MAGI2-AS3 inhibited tumor growth and enhanced the suppressive effect of TMZ on glioma tumorigenesis in vivo. In conclusion, MAGI2-AS3 reverses TMZ resistance in glioma cells by inactivating the Akt pathway.
Collapse
Affiliation(s)
- Zhongjun Chen
- Department of Neurosurgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an, Jiangsu, China
| | - Jingmin Zhou
- Emergency Department, The Fifth People's Hospital of Huai'an, Huai'an, Jiangsu, China
| | - Yu Liu
- Department of Neurosurgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an, Jiangsu, China
| | - Hongzao Ni
- Department of Neurosurgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an, Jiangsu, China
| | - Botao Zhou
- Department of Neurosurgery, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
2
|
Jastrząb P, Narejko K, Car H, Wielgat P. Cell Membrane Sialome: Sialic Acids as Therapeutic Targets and Regulators of Drug Resistance in Human Cancer Management. Cancers (Basel) 2023; 15:5103. [PMID: 37894470 PMCID: PMC10604966 DOI: 10.3390/cancers15205103] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
A cellular sialome is a physiologically active and dynamically changing component of the cell membrane. Sialylation plays a crucial role in tumor progression, and alterations in cellular sialylation patterns have been described as modulators of chemotherapy effectiveness. However, the precise mechanisms through which altered sialylation contributes to drug resistance in cancer are not yet fully understood. This review focuses on the intricate interplay between sialylation and cancer treatment. It presents the role of sialic acids in modulating cell-cell interactions, the extracellular matrix (ECM), and the immunosuppressive processes within the context of cancer. The issue of drug resistance is also discussed, and the mechanisms that involve transporters, the tumor microenvironment, and metabolism are analyzed. The review explores drugs and therapeutic approaches that may induce modifications in sialylation processes with a primary focus on their impact on sialyltransferases or sialidases. Despite advancements in cellular glycobiology and glycoengineering, an interdisciplinary effort is required to decipher and comprehend the biological characteristics and consequences of altered sialylation. Additionally, understanding the modulatory role of sialoglycans in drug sensitivity is crucial to applying this knowledge in clinical practice for the benefit of cancer patients.
Collapse
Affiliation(s)
- Patrycja Jastrząb
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15-274 Bialystok, Poland; (P.J.); (K.N.); (H.C.)
| | - Karolina Narejko
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15-274 Bialystok, Poland; (P.J.); (K.N.); (H.C.)
| | - Halina Car
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15-274 Bialystok, Poland; (P.J.); (K.N.); (H.C.)
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland
| | - Przemyslaw Wielgat
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15-274 Bialystok, Poland; (P.J.); (K.N.); (H.C.)
| |
Collapse
|
3
|
Yin L, Zhang Q, Xie S, Cheng Z, Li R, Zhu H, Yu Q, Yuan H, Wang C, Peng H, Zhang G. HDAC inhibitor chidamide overcomes drug resistance in chronic myeloid leukemia with the T315i mutation through the Akt-autophagy pathway. Hum Cell 2023; 36:1564-1577. [PMID: 37222919 DOI: 10.1007/s13577-023-00919-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 05/16/2023] [Indexed: 05/25/2023]
Abstract
Currently, therapy for Chronic Myeloid Leukemia (CML) patients with the T315I mutation is a major challenge in clinical practice due to its high degree of resistance to first- and second-generation Tyrosine Kinase Inhibitors (TKIs). Chidamide, a Histone Deacetylase Inhibitor (HDACi) drug, is currently used to treat peripheral T-cell lymphoma. In this study, we investigated the anti-leukemia effects of chidamide on the CML cell lines Ba/F3 P210 and Ba/F3 T315I and primary tumor cells from CML patients with the T315I mutation. The underlying mechanism was investigated, and we found that chidamide could inhibit Ba/F3 T315I cells at G0/G1 phase. Signaling pathway analysis showed that chidamide induced H3 acetylation, downregulated pAKT expression and upregulated pSTAT5 expression in Ba/F3 T315I cells. Additionally, we found that the antitumor effect of chidamide could be exerted by regulating the crosstalk between apoptosis and autophagy. When chidamide was used in combination with imatinib or nilotinib, the antitumor effects were enhanced compared with chidamide alone in Ba/F3 T315I and Ba/F3 P210 cells. Therefore, we conclude that chidamide may overcome T315I mutation-related drug resistance in CML patients and works efficiently if used in combination with TKIs.
Collapse
MESH Headings
- Humans
- Histone Deacetylase Inhibitors/pharmacology
- Histone Deacetylase Inhibitors/therapeutic use
- Proto-Oncogene Proteins c-akt/genetics
- Drug Resistance, Neoplasm/genetics
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Mutation
- Autophagy/genetics
- Apoptosis/genetics
- Cell Line, Tumor
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Cell Proliferation
Collapse
Affiliation(s)
- Le Yin
- Division of Hematology, Second Xiang-Ya Hospital, Central South University, No.139th Renmin Middle Road, Changsha, 410011, Hunan, China
- Institute of Molecular Hematology, Central South University, Changsha, China
- Hunan Engineering Research Center of Cell Immunotherapy for Hematopoietic Malignancies, Changsha, China
| | - Qingyang Zhang
- Division of Hematology, Second Xiang-Ya Hospital, Central South University, No.139th Renmin Middle Road, Changsha, 410011, Hunan, China
- Hunan Engineering Research Center of Cell Immunotherapy for Hematopoietic Malignancies, Changsha, China
| | - Sisi Xie
- Division of Hematology, Second Xiang-Ya Hospital, Central South University, No.139th Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Zhao Cheng
- Division of Hematology, Second Xiang-Ya Hospital, Central South University, No.139th Renmin Middle Road, Changsha, 410011, Hunan, China
- Institute of Molecular Hematology, Central South University, Changsha, China
- Hunan Engineering Research Center of Cell Immunotherapy for Hematopoietic Malignancies, Changsha, China
| | - Ruijuan Li
- Division of Hematology, Second Xiang-Ya Hospital, Central South University, No.139th Renmin Middle Road, Changsha, 410011, Hunan, China
- Hunan Engineering Research Center of Cell Immunotherapy for Hematopoietic Malignancies, Changsha, China
| | - Hongkai Zhu
- Division of Hematology, Second Xiang-Ya Hospital, Central South University, No.139th Renmin Middle Road, Changsha, 410011, Hunan, China
- Hunan Engineering Research Center of Cell Immunotherapy for Hematopoietic Malignancies, Changsha, China
| | - Qian Yu
- Division of Hematology, Second Xiang-Ya Hospital, Central South University, No.139th Renmin Middle Road, Changsha, 410011, Hunan, China
- Hunan Engineering Research Center of Cell Immunotherapy for Hematopoietic Malignancies, Changsha, China
| | - Huan Yuan
- Division of Hematology, Second Xiang-Ya Hospital, Central South University, No.139th Renmin Middle Road, Changsha, 410011, Hunan, China
- Institute of Molecular Hematology, Central South University, Changsha, China
- Hunan Engineering Research Center of Cell Immunotherapy for Hematopoietic Malignancies, Changsha, China
| | - Canfei Wang
- Division of Hematology, Second Xiang-Ya Hospital, Central South University, No.139th Renmin Middle Road, Changsha, 410011, Hunan, China.
- Hunan Engineering Research Center of Cell Immunotherapy for Hematopoietic Malignancies, Changsha, China.
| | - Hongling Peng
- Division of Hematology, Second Xiang-Ya Hospital, Central South University, No.139th Renmin Middle Road, Changsha, 410011, Hunan, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, Changsha, 410011, Hunan, China.
- Institute of Molecular Hematology, Central South University, Changsha, China.
- Hunan Engineering Research Center of Cell Immunotherapy for Hematopoietic Malignancies, Changsha, China.
| | - Guangsen Zhang
- Division of Hematology, Second Xiang-Ya Hospital, Central South University, No.139th Renmin Middle Road, Changsha, 410011, Hunan, China
- Institute of Molecular Hematology, Central South University, Changsha, China
- Hunan Engineering Research Center of Cell Immunotherapy for Hematopoietic Malignancies, Changsha, China
| |
Collapse
|
4
|
Shih PC, Chen HP, Hsu CC, Lin CH, Ko CY, Hsueh CW, Huang CY, Chu TH, Wu CC, Ho YC, Nguyen NUN, Huang SC, Fang CC, Tzou SJ, Wu YJ, Chen TY, Chang CF, Lee YK. Long-term DEHP/MEHP exposure promotes colorectal cancer stemness associated with glycosylation alterations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121476. [PMID: 36997141 DOI: 10.1016/j.envpol.2023.121476] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 06/19/2023]
Abstract
Plasticizers are considered as environmental pollution released from medical devices and increased potential oncogenic risks in clinical therapy. Our previous studies have shown that long-term exposure to di-ethylhexyl phthalate (DEHP)/mono-ethylhexyl phthalate (MEHP) promotes chemotherapeutic drug resistance in colorectal cancer. In this study, we investigated the alteration of glycosylation in colorectal cancer following long-term plasticizers exposure. First, we determined the profiles of cell surface N-glycomes by using mass spectrometry and found out the alterations of α2,8-linkages glycans. Next, we analyzed the correlation between serum DEHP/MEHP levels and ST8SIA6 expression from matched tissues in total 110 colorectal cancer patients. Moreover, clinical specimens and TCGA database were used to analyze the expression of ST8SIA6 in advanced stage of cancer. Finally, we showed that ST8SIA6 regulated stemness in vitro and in vivo. Our results revealed long-term DEHP/MEHP exposure significantly caused cancer patients with poorer survival outcome and attenuated the expression of ST8SIA6 in cancer cells and tissue samples. As expected, silencing of ST8SIA6 promoted cancer stemness and tumorigenicity by upregulating stemness-associated proteins. In addition, the cell viability assay showed enhanced drug resistance in ST8SIA6 silencing cells treated with irinotecan. Besides, ST8SIA6 was downregulated in the advanced stage and positively correlated with tumor recurrence in colorectal cancer. Our results imply that ST8SIA6 potentially plays an important role in oncogenic effects with long-term phthalates exposure.
Collapse
Affiliation(s)
- Pei-Chun Shih
- Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Hsin-Pao Chen
- Division of Colon and Rectal Surgery, Department of Surgery, E-DA Hospital, I-Shou University, Kaohsiung 82445, Taiwan; School of Medicine, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan
| | - Ching-Cheng Hsu
- Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; Department of Internal Medicine, Division of Cardiology, The University of Texas Southwestern Medical Center, Dallas TX 75390, USA
| | - Chung-Hsien Lin
- Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Chou-Yuan Ko
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan; Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Chao-Wen Hsueh
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan; Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Cheng-Yi Huang
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; Department of Pathology, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan
| | - Tian-Huei Chu
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; Medical Laboratory, Medical Education and Research Center, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan
| | - Cheng-Chun Wu
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan
| | - Yu-Cheng Ho
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan
| | - Ngoc Uyen Nhi Nguyen
- Department of Internal Medicine, Division of Cardiology, The University of Texas Southwestern Medical Center, Dallas TX 75390, USA
| | - Shih-Chung Huang
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; Division of Cardiology, Department of Medicine, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan; Medical Laboratory, Medical Education and Research Center, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan
| | | | - Shiow-Jyu Tzou
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; Department of Nursing, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan; Medical Laboratory, Medical Education and Research Center, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan
| | - Yueh-Jung Wu
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan
| | - Tung-Yuan Chen
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan
| | - Chuan-Fa Chang
- Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yung-Kuo Lee
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; Medical Laboratory, Medical Education and Research Center, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan.
| |
Collapse
|
5
|
Yang H, Xu F, Chen Y, Tian Z. Structural N-glycoproteomics characterization of cell-surface N-glycosylation of MCF-7/ADR cancer stem cells. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1219:123647. [PMID: 36870092 DOI: 10.1016/j.jchromb.2023.123647] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023]
Abstract
Breast cancer is responsible for the highest mortality all over the world. Cancer stem cells (CSCs) along with epithelial mesenchymal transition (EMT) are identified as a driver of cancer which are responsible for cancer metastasis and drug resistance. Several signaling pathways are associated with drug resistance. Additionally, glycosyltransferases regulate different types of glycosylation which are involved in drug resistance. To the end, it is urgent to figure out the knowledge on cell-surface altered N-glycosylation and putative markers. Here, differential cell-surface intact N-glycopeptides in adriamycin (ADR)-resistant michigan breast cancer foundation-7 stem cells (MCF-7/ADR CSCs) relative to ADR-sensitive MCF-7 CSCs were analyzed with site- and structure-specific quantitative N-glycoproteomics. The intact N-glycopeptides and differentially expressed intact N-glycopeptides (DEGPs) were determined and quantified via intact N-glycopeptide search engine GPSeeker. Totally, 4777 intact N-glycopeptides were identified and N-glycan sequence structures among 2764 IDs were distinguished from their isomers by structure-diagnostic fragment ions. Among 1717 quantified intact N-glycopeptides, 104 DEGPs were determined (fold change ≥ 1.5 and p value < 0.05). Annotation of protein-protein interaction and biological processes among others of DEGPs were finally carried out; down-regulated intact N-glycopeptide with bisecting GlcNAc from p38-interacting protein and up-regulated intact N-glycopeptide with β1,6-branching N-glycan from integrin beta-5 were found.
Collapse
Affiliation(s)
- Hailun Yang
- School of Chemical Science & Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, China
| | - Feifei Xu
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yun Chen
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.
| | - Zhixin Tian
- School of Chemical Science & Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, China.
| |
Collapse
|
6
|
Nag S, Mandal A, Joshi A, Jain N, Srivastava RS, Singh S, Khattri A. Sialyltransferases and Neuraminidases: Potential Targets for Cancer Treatment. Diseases 2022; 10:diseases10040114. [PMID: 36547200 PMCID: PMC9777960 DOI: 10.3390/diseases10040114] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/06/2022] [Accepted: 11/16/2022] [Indexed: 11/29/2022] Open
Abstract
Cancers are the leading cause of death, causing around 10 million deaths annually by 2020. The most common cancers are those affecting the breast, lungs, colon, and rectum. However, it has been noted that cancer metastasis is more lethal than just cancer incidence and accounts for more than 90% of cancer deaths. Thus, early detection and prevention of cancer metastasis have the capability to save millions of lives. Finding novel biomarkers and targets for screening, determination of prognosis, targeted therapies, etc., are ways of doing so. In this review, we propose various sialyltransferases and neuraminidases as potential therapeutic targets for the treatment of the most common cancers, along with a few rare ones, on the basis of existing experimental and in silico data. This compilation of available cancer studies aiming at sialyltransferases and neuraminidases will serve as a guide for scientists and researchers working on possible targets for various cancers and will also provide data about the existing drugs which inhibit the action of these enzymes.
Collapse
Affiliation(s)
- Sagorika Nag
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Abhimanyu Mandal
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Aryaman Joshi
- Department of Chemical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Neeraj Jain
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Ravi Shanker Srivastava
- Department of Pharmacology, Career Institute of Medical Sciences & Hospital, Lucknow 226020, India
| | - Sanjay Singh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Arun Khattri
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
- Correspondence: ; Tel.: +91-70-6811-1755
| |
Collapse
|
7
|
Oksa L, Mäkinen A, Nikkilä A, Hyvärinen N, Laukkanen S, Rokka A, Haapaniemi P, Seki M, Takita J, Kauko O, Heinäniemi M, Lohi O. Arginine Methyltransferase PRMT7 Deregulates Expression of RUNX1 Target Genes in T-Cell Acute Lymphoblastic Leukemia. Cancers (Basel) 2022; 14:2169. [PMID: 35565298 PMCID: PMC9101393 DOI: 10.3390/cancers14092169] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/21/2022] [Accepted: 04/23/2022] [Indexed: 02/05/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy with no well-established prognostic biomarkers. We examined the expression of protein arginine methyltransferases across hematological malignancies and discovered high levels of PRMT7 mRNA in T-ALL, particularly in the mature subtypes of T-ALL. The genetic deletion of PRMT7 by CRISPR-Cas9 reduced the colony formation of T-ALL cells and changed arginine monomethylation patterns in protein complexes associated with the RNA and DNA processing and the T-ALL pathogenesis. Among them was RUNX1, whose target gene expression was consequently deregulated. These results suggest that PRMT7 plays an active role in the pathogenesis of T-ALL.
Collapse
Affiliation(s)
- Laura Oksa
- Tampere Center for Child, Adolescent, and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, FI-33520 Tampere, Finland; (A.M.); (A.N.); (N.H.); (S.L.); (O.L.)
| | - Artturi Mäkinen
- Tampere Center for Child, Adolescent, and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, FI-33520 Tampere, Finland; (A.M.); (A.N.); (N.H.); (S.L.); (O.L.)
- Fimlab Laboratories, Department of Pathology, Tampere University Hospital, FI-33520 Tampere, Finland
| | - Atte Nikkilä
- Tampere Center for Child, Adolescent, and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, FI-33520 Tampere, Finland; (A.M.); (A.N.); (N.H.); (S.L.); (O.L.)
| | - Noora Hyvärinen
- Tampere Center for Child, Adolescent, and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, FI-33520 Tampere, Finland; (A.M.); (A.N.); (N.H.); (S.L.); (O.L.)
| | - Saara Laukkanen
- Tampere Center for Child, Adolescent, and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, FI-33520 Tampere, Finland; (A.M.); (A.N.); (N.H.); (S.L.); (O.L.)
| | - Anne Rokka
- Turku Bioscience Center, University of Turku and Åbo Akademi University, FI-20014 Turku, Finland; (A.R.); (P.H.); (O.K.)
| | - Pekka Haapaniemi
- Turku Bioscience Center, University of Turku and Åbo Akademi University, FI-20014 Turku, Finland; (A.R.); (P.H.); (O.K.)
| | - Masafumi Seki
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-17165 Solna, Sweden;
| | - Junko Takita
- Graduate School of Medicine, Kyoto University, Kyoto JP-606-8501, Japan;
| | - Otto Kauko
- Turku Bioscience Center, University of Turku and Åbo Akademi University, FI-20014 Turku, Finland; (A.R.); (P.H.); (O.K.)
| | - Merja Heinäniemi
- The Institute of Biomedicine, University of Eastern Finland, FI-70211 Kuopio, Finland;
| | - Olli Lohi
- Tampere Center for Child, Adolescent, and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, FI-33520 Tampere, Finland; (A.M.); (A.N.); (N.H.); (S.L.); (O.L.)
- Tays Cancer Center, Tampere University Hospital, FI-33520 Tampere, Finland
| |
Collapse
|
8
|
Stelcer E, Komarowska H, Jopek K, Żok A, Iżycki D, Malińska A, Szczepaniak B, Komekbai Z, Karczewski M, Wierzbicki T, Suchorska W, Ruchała M, Ruciński M. Biological response of adrenal carcinoma and melanoma cells to mitotane treatment. Oncol Lett 2022; 23:120. [PMID: 35261634 PMCID: PMC8855164 DOI: 10.3892/ol.2022.13240] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 12/02/2021] [Indexed: 11/09/2022] Open
Abstract
A previous case report described an adrenal incidentaloma initially misdiagnosed as adrenocortical carcinoma (ACC), which was treated with mitotane. The final diagnosis was metastatic melanoma of unknown primary origin. However, the patient developed rapid disease progression after mitotane withdrawal, suggesting a protective role for mitotane in a non-adrenal-derived tumor. The aim of the present study was to determine the biological response of primary melanoma cells obtained from that patient, and that of other established melanoma and ACC cell lines, to mitotane treatment using a proliferation assay, flow cytometry, quantitative PCR and microarrays. Although mitotane inhibited the proliferation of both ACC and melanoma cells, its role in melanoma treatment appears to be limited. Flow cytometry analysis and transcriptomic studies indicated that the ACC cell line was highly responsive to mitotane treatment, while the primary melanoma cells showed a moderate response in vitro. Mitotane modified the activity of several key biological processes, including ‘mitotic nuclear division’, ‘DNA repair’, ‘angiogenesis’ and ‘negative regulation of ERK1 and ERK2 cascade’. Mitotane administration led to elevated levels of DNA double-strand breaks, necrosis and apoptosis. The present study provides a comprehensive insight into the biological response of mitotane-treated cells at the molecular level. Notably, the present findings offer new knowledge on the effects of mitotane on ACC and melanoma cells.
Collapse
Affiliation(s)
- Ewelina Stelcer
- Department of Histology and Embryology, Poznan University of Medical Sciences, 61‑001 Poznan, Poland
| | - Hanna Komarowska
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60‑355 Poznan, Poland
| | - Karol Jopek
- Department of Histology and Embryology, Poznan University of Medical Sciences, 61‑001 Poznan, Poland
| | - Agnieszka Żok
- Division of Philosophy of Medicine and Bioethics, Department of Social Sciences and Humanities, Poznan University of Medical Sciences, 60‑806 Poznan, Poland
| | - Dariusz Iżycki
- Department of Cancer Immunology, Poznan University of Medical Sciences, 61‑866 Poznan, Poland
| | - Agnieszka Malińska
- Department of Histology and Embryology, Poznan University of Medical Sciences, 61‑001 Poznan, Poland
| | - Beata Szczepaniak
- Department of Histology and Embryology, Poznan University of Medical Sciences, 61‑001 Poznan, Poland
| | - Zhanat Komekbai
- Department of Histology, West Kazakhstan Marat Ospanov Medical University, Aktobe 030019, Kazakhstan
| | - Marek Karczewski
- Department of General and Transplantation Surgery, Poznan University of Medical Sciences, 60‑355 Poznan, Poland
| | - Tomasz Wierzbicki
- Department of General, Endocrinological and Gastroenterological Surgery, Poznan University of Medical Sciences, 60‑355 Poznan, Poland
| | - Wiktoria Suchorska
- Radiobiology Laboratory, Greater Poland Cancer Centre, 61‑866 Poznan, Poland
| | - Marek Ruchała
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60‑355 Poznan, Poland
| | - Marcin Ruciński
- Department of Histology and Embryology, Poznan University of Medical Sciences, 61‑001 Poznan, Poland
| |
Collapse
|
9
|
Hugonnet M, Singh P, Haas Q, von Gunten S. The Distinct Roles of Sialyltransferases in Cancer Biology and Onco-Immunology. Front Immunol 2021; 12:799861. [PMID: 34975914 PMCID: PMC8718907 DOI: 10.3389/fimmu.2021.799861] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/02/2021] [Indexed: 12/24/2022] Open
Abstract
Aberrant glycosylation is a key feature of malignant transformation. Hypersialylation, the enhanced expression of sialic acid-terminated glycoconjugates on the cell surface, has been linked to immune evasion and metastatic spread, eventually by interaction with sialoglycan-binding lectins, including Siglecs and selectins. The biosynthesis of tumor-associated sialoglycans involves sialyltransferases, which are differentially expressed in cancer cells. In this review article, we provide an overview of the twenty human sialyltransferases and their roles in cancer biology and immunity. A better understanding of the individual contribution of select sialyltransferases to the tumor sialome may lead to more personalized strategies for the treatment of cancer.
Collapse
Affiliation(s)
- Marjolaine Hugonnet
- Institute of Pharmacology, University of Bern, Bern, Switzerland
- Bern Center for Precision Medicine (BCPM), University of Bern, Bern, Switzerland
| | - Pushpita Singh
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Quentin Haas
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Stephan von Gunten
- Institute of Pharmacology, University of Bern, Bern, Switzerland
- Bern Center for Precision Medicine (BCPM), University of Bern, Bern, Switzerland
| |
Collapse
|
10
|
Patel KD, De M, Jethva DD, Rathod BS, Patel PS. Alterations in Sialylation Patterns are Significantly Associated with Imatinib Mesylate Resistance in Chronic Myeloid Leukemia. Arch Med Res 2021; 53:51-58. [PMID: 34275666 DOI: 10.1016/j.arcmed.2021.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/24/2021] [Accepted: 06/02/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND AND AIM The study examined sialylation changes for their potential predictive value in assessment of imatinib mesylate (IM) resistance, alone and/or with BCR-ABL1 transcript variants among chronic myeloid leukemia (CML) cases. METHODS A total of 98 CML cases (un-treated cases, IM non-responders and IM responders) were enrolled in the study. Total sialic acid (TSA) and total protein (TP) levels were estimated spectrophotometrically, the expression profiles of BCR-ABL1, ST3GAL1 and ST3GAL2 were evaluated using qRT-PCR assays and BCR-ABL1 transcript variants were identified through subjecting PCR products to agarose gel electrophoresis. RESULTS The results manifested increase in e14a2 transcript and decrease in co-expression of both transcripts (e13a2 and e14a2) in IM non-responders than un-treated CML cases. Notably, TSA/TP ratio was higher, whereas ST3GAL1 and ST3GAL2 expressions were lower in un-treated CML cases and IM non-responders as against IM responders. Further, ST3GAL2 expression was lower in un-treated CML cases than IM non-responders. Receiver operating characteristic curves also proved their discriminatory efficiencies. Decisively, the rise in TSA levels and the fall in ST3GAL1 and ST3GAL2 levels were evidently related to CML progression and clinical indicators of treatment failure (high BCR-ABL1 ratio, high WBC count, high platelet count and low Hb levels). The alterations in TSA, ST3GAL1 and ST3GAL2 levels were remarkably associated with each other. CONCLUSIONS The altered levels of TSA, ST3GAL1 and ST3GAL2 are, to a significant extent, associated with IM resistance in CML, which have clinical relevance in treatment monitoring and IM resistance treatment.
Collapse
Affiliation(s)
- Kinjal D Patel
- Cancer Biology Department, The Gujarat Cancer and Research Institute, Civil Hospital Campus, Asarwa, Ahmedabad, Gujarat, India
| | - Maitri De
- Cancer Biology Department, The Gujarat Cancer and Research Institute, Civil Hospital Campus, Asarwa, Ahmedabad, Gujarat, India
| | - Disha D Jethva
- Cancer Biology Department, The Gujarat Cancer and Research Institute, Civil Hospital Campus, Asarwa, Ahmedabad, Gujarat, India
| | - Bharati S Rathod
- Cancer Biology Department, The Gujarat Cancer and Research Institute, Civil Hospital Campus, Asarwa, Ahmedabad, Gujarat, India
| | - Prabhudas S Patel
- Cancer Biology Department, The Gujarat Cancer and Research Institute, Civil Hospital Campus, Asarwa, Ahmedabad, Gujarat, India.
| |
Collapse
|
11
|
Sun X, Zhan M, Sun X, Liu W, Meng X. C1GALT1 in health and disease. Oncol Lett 2021; 22:589. [PMID: 34149900 PMCID: PMC8200938 DOI: 10.3892/ol.2021.12850] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/18/2021] [Indexed: 12/20/2022] Open
Abstract
O-linked glycosylation (O-glycosylation) and N-linked glycosylation (N-glycosylation) are the two most important forms of protein glycosylation, which is an important post-translational modification. The regulation of protein function involves numerous mechanisms, among which protein glycosylation is one of the most important. Core 1 synthase glycoprotein-N-acetylgalactosamine 3-β-galactosyltransferase 1 (C1GALT1) serves an important role in the regulation of O-glycosylation and is an essential enzyme for synthesizing the core 1 structure of mucin-type O-glycans. Furthermore, C1GALT1 serves a vital role in a number of biological functions, such as angiogenesis, platelet production and kidney development. Impaired C1GALT1 expression activity has been associated with different types of human diseases, including inflammatory or immune-mediated diseases, and cancer. O-glycosylation exists in normal tissues, as well as in tumor tissues. Previous studies have revealed that changes in the level of glycosyltransferase in different types of cancer may be used as potential therapeutic targets. Currently, numerous studies have reported the dual role of C1GALT1 in tumors (carcinogenesis and cancer suppression). The present review reports the role of C1GALT1 in normal development and human diseases. Since the mechanism and regulation of C1GALT1 and O-glycosylation remain elusive, further studies are required to elucidate their effects on development and disease.
Collapse
Affiliation(s)
- Xiaojie Sun
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Mengru Zhan
- Department of Hepatobiliary and Pancreatic Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xun Sun
- Department of Pathology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Wanqi Liu
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xiangwei Meng
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
12
|
Ehx G, Larouche JD, Durette C, Laverdure JP, Hesnard L, Vincent K, Hardy MP, Thériault C, Rulleau C, Lanoix J, Bonneil E, Feghaly A, Apavaloaei A, Noronha N, Laumont CM, Delisle JS, Vago L, Hébert J, Sauvageau G, Lemieux S, Thibault P, Perreault C. Atypical acute myeloid leukemia-specific transcripts generate shared and immunogenic MHC class-I-associated epitopes. Immunity 2021; 54:737-752.e10. [PMID: 33740418 DOI: 10.1016/j.immuni.2021.03.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 10/24/2020] [Accepted: 02/26/2021] [Indexed: 12/11/2022]
Abstract
Acute myeloid leukemia (AML) has not benefited from innovative immunotherapies, mainly because of the lack of actionable immune targets. Using an original proteogenomic approach, we analyzed the major histocompatibility complex class I (MHC class I)-associated immunopeptidome of 19 primary AML samples and identified 58 tumor-specific antigens (TSAs). These TSAs bore no mutations and derived mainly (86%) from supposedly non-coding genomic regions. Two AML-specific aberrations were instrumental in the biogenesis of TSAs, intron retention, and epigenetic changes. Indeed, 48% of TSAs resulted from intron retention and translation, and their RNA expression correlated with mutations of epigenetic modifiers (e.g., DNMT3A). AML TSA-coding transcripts were highly shared among patients and were expressed in both blasts and leukemic stem cells. In AML patients, the predicted number of TSAs correlated with spontaneous expansion of cognate T cell receptor clonotypes, accumulation of activated cytotoxic T cells, immunoediting, and improved survival. These TSAs represent attractive targets for AML immunotherapy.
Collapse
Affiliation(s)
- Grégory Ehx
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Jean-David Larouche
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Chantal Durette
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Jean-Philippe Laverdure
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Leslie Hesnard
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Krystel Vincent
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Marie-Pierre Hardy
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Catherine Thériault
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Caroline Rulleau
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
| | - Joël Lanoix
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Eric Bonneil
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Albert Feghaly
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Anca Apavaloaei
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Nandita Noronha
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Céline M Laumont
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Jean-Sébastien Delisle
- Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada; Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada; Division of Hematology, Maisonneuve-Rosemont Hospital, Montreal, QC H1T 2M4, Canada
| | - Luca Vago
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Josée Hébert
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada; Division of Hematology, Maisonneuve-Rosemont Hospital, Montreal, QC H1T 2M4, Canada
| | - Guy Sauvageau
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada; Division of Hematology, Maisonneuve-Rosemont Hospital, Montreal, QC H1T 2M4, Canada
| | - Sébastien Lemieux
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Pierre Thibault
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Chemistry, Université de Montréal, Montreal, QC H3C 3J7, Canada.
| | - Claude Perreault
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada.
| |
Collapse
|
13
|
Wielgat P, Wawrusiewicz-Kurylonek N, Czarnomysy R, Rogowski K, Bielawski K, Car H. The Paired Siglecs in Brain Tumours Therapy: The Immunomodulatory Effect of Dexamethasone and Temozolomide in Human Glioma In Vitro Model. Int J Mol Sci 2021; 22:ijms22041791. [PMID: 33670244 PMCID: PMC7916943 DOI: 10.3390/ijms22041791] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 12/14/2022] Open
Abstract
The paired sialic acid-binding immunoglobulin like lectins (Siglecs) are characterized by similar cellular distribution and ligand recognition but opposing signalling functions attributed to different intracellular sequences. Since sialic acid—Siglec axis are known to control immune homeostasis, the imbalance between activatory and inhibitory mechanisms of glycan-dependent immune control is considered to promote pathology. The role of sialylation in cancer is described, however, its importance in immune regulation in gliomas is not fully understood. The experimental and clinical observation suggest that dexamethasone (Dex) and temozolomide (TMZ), used in the glioma management, alter the immunity within the tumour microenvironment. Using glioma-microglia/monocytes transwell co-cultures, we investigated modulatory action of Dex/TMZ on paired Siglecs. Based on real-time PCR and flow cytometry, we found changes in SIGLEC genes and their products. These effects were accompanied by altered cytokine profile and immune cells phenotype switching measured by arginases expression. Additionally, the exposure to Dex or TMZ increased the binding of inhibitory Siglec-5 and Siglec-11 fusion proteins to glioma cells. Our study suggests that the therapy-induced modulation of the interplay between sialoglycans and paired Siglecs, dependently on patient’s phenotype, is of particular signification in the immune surveillance in the glioma management and may be useful in glioma patient’s therapy plan verification.
Collapse
Affiliation(s)
- Przemyslaw Wielgat
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15-274 Bialystok, Poland;
- Correspondence: ; Tel.: +48-85-7450-647
| | | | - Robert Czarnomysy
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilińskiego 1, 15-089 Bialystok, Poland; (R.C.); (K.B.)
| | - Karol Rogowski
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland;
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilińskiego 1, 15-089 Bialystok, Poland; (R.C.); (K.B.)
| | - Halina Car
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15-274 Bialystok, Poland;
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland;
| |
Collapse
|
14
|
Investigation of a new oxazolidine derivative in human resistance acute leukemia cells: deciphering its mechanism of action by label-free proteomic. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:1153-1166. [PMID: 33475759 DOI: 10.1007/s00210-020-02024-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 11/10/2020] [Indexed: 10/22/2022]
Abstract
The present study aimed to evaluate the mechanism of action of the antineoplastic activity of an oxazolidine derivative, LPSF/NB-3 (5-(4-cloro-benzilideno)-3-etil-2-tioxo-oxazolidin-4-ona). Cytotoxicity assays were performed in peripheral blood mononuclear cells (PBMCs) and resistant acute leukemia cell line (HL-60/MX1) by the MTT method. LPSF/NB-3 exhibited cytotoxicity in HL-60/MX1, but it was not toxic to healthy cells in the highest dose tested (100 μM). The protein extract of HL-60/MX1 cells treated with LPSF/NB-3 was subjected to proteomic analysis using two-dimensional chromatography coupled to mass spectrometry. We could identify a total of 2652 proteins, in which 633 were statistically modulated. Within the group of protein considered for the quantitative analysis with the established criteria, 262 were differentially expressed, 146 with increased expression and 116 with decreased expression in the sample treated with LPSF/NB-3 compared to the control. The following differentially expressed pathways were found: involving regulation of the cytoskeleton, DNA damage, and transduce cellular signals. Networks that were highlighted are related to the immune system. The ELISA technique was used to assess the immunomodulatory potential of LPSF/NB-3 in PBMCs. We observed significant decrease of IFNγ (p < 0.01) and dose-response pattern of the cytokines IL-6, IL-17A, IL-22, and IL-10. Therefore, results suggest that LPSF/NB-3 appears to modulate important pathways, including cell cycle and immune system regulatory pathways.
Collapse
|
15
|
Kori M, Aydin B, Gulfidan G, Beklen H, Kelesoglu N, Caliskan Iscan A, Turanli B, Erzik C, Karademir B, Arga KY. The Repertoire of Glycan Alterations and Glycoproteins in Human Cancers. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 25:139-168. [PMID: 33404348 DOI: 10.1089/omi.2020.0210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cancer as the leading cause of death worldwide has many issues that still need to be addressed. Since the alterations on the glycan compositions or/and structures (i.e., glycosylation, sialylation, and fucosylation) are common features of tumorigenesis, glycomics becomes an emerging field examining the structure and function of glycans. In the past, cancer studies heavily relied on genomics and transcriptomics with relatively little exploration of the glycan alterations and glycoprotein biomarkers among individuals and populations. Since glycosylation of proteins increases their structural complexity by several orders of magnitude, glycome studies resulted in highly dynamic biomarkers that can be evaluated for cancer diagnosis, prognosis, and therapy. Glycome not only integrates our genetic background with past and present environmental factors but also offers a promise of more efficient patient stratification compared with genetic variations. Therefore, studying glycans holds great potential for better diagnostic markers as well as developing more efficient treatment strategies in human cancers. While recent developments in glycomics and associated technologies now offer new possibilities to achieve a high-throughput profiling of glycan diversity, we aim to give an overview of the current status of glycan research and the potential applications of the glycans in the scope of the personalized medicine strategies for cancer.
Collapse
Affiliation(s)
- Medi Kori
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Busra Aydin
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Gizem Gulfidan
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Hande Beklen
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Nurdan Kelesoglu
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Ayşegul Caliskan Iscan
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey.,Department of Pharmacy, Istinye University, Istanbul, Turkey
| | - Beste Turanli
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Can Erzik
- Department of Medical Biology and School of Medicine, Marmara University, Istanbul, Turkey
| | - Betul Karademir
- Department of Biochemistry, School of Medicine, Marmara University, Istanbul, Turkey.,Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, Istanbul, Turkey
| | - Kazim Yalcin Arga
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| |
Collapse
|
16
|
Chen Z, Huang J, Feng Y, Li Z, Jiang Y. Profiling of specific long non-coding RNA signatures identifies ST8SIA6-AS1 AS a novel target for breast cancer. J Gene Med 2021; 23:e3286. [PMID: 33037712 DOI: 10.1002/jgm.3286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 09/24/2020] [Accepted: 09/26/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Breast cancer is the most commonly diagnosed cancer among women and is also the leading cause of cancer death for which the treatment and methods of diagnosis remain unsatisfied. Long non-coding RNA (lncRNA) plays an important role in the occurrence and development of tumors, including breast cancer. We aimed to seek new and efficient treatment targets by analyzing the lncRNA expression profiles of breast cancer. METHODS A competitive endogenous RNA microarray was used to investigate the profiles of differentially expressed lncRNAs. Quantitative real-time polymerase chain reaction analysis (qRT-PCR) validated the top differentially expressed lncRNAs in 107 pairs of breast cancer tissues and adjacent normal tissues. cis- and trans-regulation mRNAs of lncRNAs were used to perform enrichment analysis. Cell function assays were used to explore the functions of ST8SIA6-AS1. RESULTS Seven lncRNAs, comprising ST8SIA6-AS1, lnc-HIST1H2BJ-5:1, lnc-PRICKLE2-3:2, RP1-86C11.7, RP11-15F12.1, ZNF670-ZNF695 and lnc-STRN3-12:1, were shown to be significantly up-regulated in breast cancer. lncRNA ST8SIA6-AS1 was associated with TNM staging and Ki-67 index. The cell function assays showed that ST8SIA6-AS1 can promote the proliferation, migration and invasion of breast cancer cells. The functions of ST8SIA6-AS1 were explored and the competing endogenous RNA mode showed that miR-4252 was a potential candidate. Its target genes were further predicted. The lncRNA-protein mode showed three potential candidate RNA binding proteins: NONO, QKI and RBMX. CONCLUSIONS lncRNA ST8SIA6-AS1 can promote the proliferation, migration and invasion of breast cancer cells. By hypothesizing two different functional modes of ST8SIA6-AS1, we found lncRNA ST8SIA6-AS1 may contribute to breast cancer progression through miR-4252 or interacting with RNA binding proteins: NONO, QKI and RBMX.
Collapse
Affiliation(s)
- Zhanghan Chen
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jie Huang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yanling Feng
- Department of Pathology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Zehuan Li
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ying Jiang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of General Surgery, Xiamen Branch, Zhongshan Hospital, Fudan University, Fujian, China
| |
Collapse
|
17
|
Su H, Wang M, Pang X, Guan F, Li X, Cheng Y. When Glycosylation Meets Blood Cells: A Glance of the Aberrant Glycosylation in Hematological Malignancies. Rev Physiol Biochem Pharmacol 2021; 180:85-117. [PMID: 34031738 DOI: 10.1007/112_2021_60] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Among neoplasia-associated epigenetic alterations, changes in cellular glycosylation have recently received attention as a key component of hematological malignancy progression. Alterations in glycosylation appear to not only directly impact cell growth and survival, but also alter the adhesion of tumor cells and their interactions with the microenvironment, facilitating cancer-induced immunomodulation and eventual metastasis. Changes in glycosylation arise from altered expression of glycosyltransferases, enzymes that catalyze the transfer of saccharide moieties to a wide range of acceptor substrates, such as proteins, lipids, and other saccharides in the endoplasmic reticulum (ER) and Golgi apparatus. Novel glycan structures in hematological malignancies represent new targets for the diagnosis and treatment of blood diseases. This review summarizes studies of the aberrant expression of glycans commonly found in hematological malignancies and their potential mechanisms and defines the specific roles of glycans as drivers or passengers in the development of hematological malignancies.
Collapse
Affiliation(s)
- Huining Su
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Mimi Wang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xingchen Pang
- Key Laboratory of Resource Biology and Biotechnology Western China, College of Life Science, Northwest University, Xi'an, China
| | - Feng Guan
- Key Laboratory of Resource Biology and Biotechnology Western China, College of Life Science, Northwest University, Xi'an, China
| | - Xiang Li
- Key Laboratory of Resource Biology and Biotechnology Western China, College of Life Science, Northwest University, Xi'an, China.
| | - Ying Cheng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
18
|
Läubli H, Kawanishi K, George Vazhappilly C, Matar R, Merheb M, Sarwar Siddiqui S. Tools to study and target the Siglec-sialic acid axis in cancer. FEBS J 2020; 288:6206-6225. [PMID: 33251699 DOI: 10.1111/febs.15647] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/18/2020] [Accepted: 11/23/2020] [Indexed: 12/16/2022]
Abstract
Siglecs are widely expressed on leucocytes and bind to ubiquitously presented glycans containing sialic acids (sialoglycans). Most Siglecs carry an immunoreceptor tyrosine-based inhibition motif (ITIM) and elicit an inhibitory intracellular signal upon ligand binding. A few Siglec receptors can, however, recruit immunoreceptor tyrosine-based activation motif (ITAM)-containing factors, which activate cells. The role of hypersialylation (the enhanced expression of sialoglycans) has recently been explored in cancer progression. Mechanistic studies have shown that hypersialylation on cancer cells can engage inhibitory Siglecs on the surface of immune cells and induce immunosuppression. These recent studies strongly suggest that the Siglec-sialic acid axis can act as a potential target for cancer immunotherapy. Moreover, the use of new tools and techniques is facilitating these studies. In this review, we summarise techniques used to study Siglecs, including different mouse models, monoclonal antibodies, Siglec fusion proteins, and sialoglycan arrays. Furthermore, we discuss the recent major developments in the study of Siglecs in cancer immunosuppression, tools, and techniques used in targeting the Siglec-sialic acid axis and the possibility of clinical intervention.
Collapse
Affiliation(s)
- Heinz Läubli
- Laboratory for Cancer Immunotherapy, Department of Biomedicine, and Medical Oncology, Department of Internal Medicine, University Hospital Basel, Switzerland
| | - Kunio Kawanishi
- Kidney and Vascular Pathology, University of Tsukuba, Ibaraki, Japan
| | | | - Rachel Matar
- Department of Biotechnology, American University of Ras Al Khaimah (AURAK), UAE
| | - Maxime Merheb
- Department of Biotechnology, American University of Ras Al Khaimah (AURAK), UAE
| | | |
Collapse
|
19
|
Genome-wide association study reveals two novel risk alleles for incident obstructive sleep apnea in the EPISONO cohort. Sleep Med 2020; 66:24-32. [DOI: 10.1016/j.sleep.2019.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 08/02/2019] [Accepted: 08/07/2019] [Indexed: 01/25/2023]
|
20
|
Li M, Meng F, Lu Q. Expression Profile Screening and Bioinformatics Analysis of circRNA, LncRNA, and mRNA in Acute Myeloid Leukemia Drug-Resistant Cells. Turk J Haematol 2019; 37:104-110. [PMID: 31818729 PMCID: PMC7236419 DOI: 10.4274/tjh.galenos.2019.2019.0312] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Objective: Acute myeloid leukemia (AML) is a highly heterogeneous hematological malignancy, and drug resistance and relapse are key factors in the failure of leukemia treatment. Studies have increasingly shown that circRNA and LncRNA play important roles in the development of tumors, but their roles remain unclear in the mechanism of AML resistance. Materials and Methods: Resistant AML cell line HL-60/ADM (adriamycin, ADM) was constructed and circRNA, LncRNA, and mRNA expression profiles were screened followed by high-throughput sequencing. Bioinformatics analysis was then carried out, and the circRNA-miRNA ceRNA network was constructed and confirmed using qRT-PCR analysis. Results: A total of 1824 circRNAs, 2414 LncRNAs, and 5346 mRNAs were screened for differentially expressed genes. Enrichment analysis was performed utilizing Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes, which mainly involved protein domain specific binding, transforming growth factor-β (TGF-β) receptor, and cellular metabolism. The mTOR signaling pathway, MAPK signaling pathway, RAP1 signaling pathway, and Akt signaling pathway were closely related to drug resistance. Conclusion: Our study provides a systematic outlook on the potential function of ncRNA in the molecular mechanisms of resistant AML cells. Hsa-circ-0000978 and hsa-circ-0000483 might serve as potential prognostic biomarkers and therapeutic targets of AML resistance.
Collapse
Affiliation(s)
- Meiling Li
- Zhongshan Hospital Affiliated to Xiamen University, Department of Hematology, Xiamen, China,The Third Affiliated Hospital of Guizhou Medical University, Department of Hematology and Rheumatology, Duyun, China
| | - Fuxue Meng
- The Third Affiliated Hospital of Guizhou Medical University, Department of Hematology and Rheumatology, Duyun, China
| | - Quanyi Lu
- Zhongshan Hospital Affiliated to Xiamen University, Department of Hematology, Xiamen, China
| |
Collapse
|
21
|
Effect of expression alteration in flanking genes on phenotypes of St8sia2-deficient mice. Sci Rep 2019; 9:13634. [PMID: 31541165 PMCID: PMC6754417 DOI: 10.1038/s41598-019-50006-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 08/28/2019] [Indexed: 12/31/2022] Open
Abstract
ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 2 (ST8SIA2) synthesizes polysialic acid (PSA), which is essential for brain development. Although previous studies reported that St8sia2-deficient mice that have a mixed 129 and C57BL/6 (B6) genetic background showed mild and variable phenotypes, the reasons for this remain unknown. We hypothesized that this phenotypic difference is caused by diversity in the expression or function of flanking genes of St8sia2. A genomic polymorphism and gene expression analysis in the flanking region revealed reduced expression of insulin-like growth factor 1 receptor (Igf1r) on the B6 background than on that of the 129 strain. This observation, along with the finding that administration of an IGF1R agonist during pregnancy increased litter size, suggests that the decreased expression of Igf1r associated with ST8SIA2 deficiency caused lethality. This study demonstrates the importance of gene expression level in the flanking regions of a targeted null allele having an effect on phenotype.
Collapse
|
22
|
Liu X, Mai H, Jiang H, Xing Z, Peng D, Kong Y, Zhu C, Chen Y. FAM168A participates in the development of chronic myeloid leukemia via BCR-ABL1/AKT1/NFκB pathway. BMC Cancer 2019; 19:679. [PMID: 31291942 PMCID: PMC6617578 DOI: 10.1186/s12885-019-5898-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 07/02/2019] [Indexed: 11/10/2022] Open
Abstract
Background Although the prognosis of chronic myeloid leukemia (CML) has dramatically improved, the pathogenesis of CML remains elusive. Studies have shown that sustained phosphorylation of AKT1 plays a crucial role in the proliferation of CML cells. Evidence indicates that in tongue cancer cells, FAM168A, also known as tongue cancer resistance-associated protein (TCRP1), can directly bind to AKT1 and regulate AKT1/NFκB signaling pathways. This study aimed to investigate the role of FAM168A in regulation of AKT1/NFκB signaling pathway and cell cycle in CML. Methods FAM168A interference was performed, and the expression and phosphorylation of FAM168A downstream proteins were measured in K562 CML cell line. The possible roles of FAM168A in the proliferation of CML cells were investigated using in vitro cell culture, in vivo animal models and clinical specimens. Results We found that the expression of FAM168A significantly increased in the peripheral blood mononuclear cells of CML patients, compared with normal healthy controls. FAM168A interference did not change AKT1 protein expression, but significantly decreased AKT1 phosphorylation, significantly increased IκB-α protein level, and significantly reduced nuclear NFκB protein level. Moreover, there was a significant increase of G2/M phase cells and Cyclin B1 level. Immunoprecipitation results showed that FAM168A interacts with breakpoint cluster region (BCR) -Abelson murine leukemia (ABL1) fusion protein and AKT1, respectively. Animal experiments confirmed that FAM168A interference prolonged the survival and reduced the tumor formation in mice inoculated with K562 cells. The results of clinical specimens showed that FAM168A expression and AKT1 phosphorylation were significantly elevated in CML patients. Conclusion This study demonstrates that FAM168A may act as a linker protein that binds to BCR-ABL1 and AKT1, which further mediates the downstream signaling pathways in CML. Our findings demonstrate that FAM168A may be involved in the regulation of AKT1/NFκB signaling pathway and cell cycle in CML. Electronic supplementary material The online version of this article (10.1186/s12885-019-5898-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaorong Liu
- Clinical laboratory, Shenzhen Children's Hospital, No. 7019, Yitian Road, Shenzhen, Guangdong, 518038, People's Republic of China
| | - Huirong Mai
- Division of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, Guangdong, 518038, People's Republic of China
| | - Hanfang Jiang
- Clinical laboratory, Shenzhen Children's Hospital, No. 7019, Yitian Road, Shenzhen, Guangdong, 518038, People's Republic of China
| | - Zhihao Xing
- Clinical laboratory, Shenzhen Children's Hospital, No. 7019, Yitian Road, Shenzhen, Guangdong, 518038, People's Republic of China
| | - Dong Peng
- Clinical laboratory, Shenzhen Children's Hospital, No. 7019, Yitian Road, Shenzhen, Guangdong, 518038, People's Republic of China
| | - Yuan Kong
- Clinical laboratory, Shenzhen Children's Hospital, No. 7019, Yitian Road, Shenzhen, Guangdong, 518038, People's Republic of China
| | - Chunqing Zhu
- Clinical laboratory, Shenzhen Children's Hospital, No. 7019, Yitian Road, Shenzhen, Guangdong, 518038, People's Republic of China
| | - Yunsheng Chen
- Clinical laboratory, Shenzhen Children's Hospital, No. 7019, Yitian Road, Shenzhen, Guangdong, 518038, People's Republic of China.
| |
Collapse
|
23
|
Li Y, Guo Y, Feng Z, Bergan R, Li B, Qin Y, Zhao L, Zhang Z, Shi M. Involvement of the PI3K/Akt/Nrf2 Signaling Pathway in Resveratrol-Mediated Reversal of Drug Resistance in HL-60/ADR Cells. Nutr Cancer 2019; 71:1007-1018. [PMID: 31032633 DOI: 10.1080/01635581.2019.1578387] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Yongjun Li
- Department of Clinical Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yukai Guo
- Department of Clinical Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zhuang Feng
- Legacy Health and Cascade Pathology Services, Portland, Oregon, USA
| | - Raymond Bergan
- Division of Hematology/Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Bo Li
- Department of Emergency, Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang, Hebei, China
| | - Yongliang Qin
- Department of Clinical Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Lianmei Zhao
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zhenzhen Zhang
- Division of Hematology/Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Min Shi
- Department of Clinical Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
24
|
Rodrigues E, Macauley MS. Hypersialylation in Cancer: Modulation of Inflammation and Therapeutic Opportunities. Cancers (Basel) 2018; 10:cancers10060207. [PMID: 29912148 PMCID: PMC6025361 DOI: 10.3390/cancers10060207] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 02/06/2023] Open
Abstract
Cell surface glycosylation is dynamic and often changes in response to cellular differentiation under physiological or pathophysiological conditions. Altered glycosylation on cancers cells is gaining attention due its wide-spread occurrence across a variety of cancer types and recent studies that have documented functional roles for aberrant glycosylation in driving cancer progression at various stages. One change in glycosylation that can correlate with cancer stage and disease prognosis is hypersialylation. Increased levels of sialic acid are pervasive in cancer and a growing body of evidence demonstrates how hypersialylation is advantageous to cancer cells, particularly from the perspective of modulating immune cell responses. Sialic acid-binding receptors, such as Siglecs and Selectins, are well-positioned to be exploited by cancer hypersialylation. Evidence is also mounting that Siglecs modulate key immune cell types in the tumor microenvironment, particularly those responsible for maintaining the appropriate inflammatory environment. From these studies have come new and innovative ways to block the effects of hypersialylation by directly reducing sialic acid on cancer cells or blocking interactions between sialic acid and Siglecs or Selectins. Here we review recent works examining how cancer cells become hypersialylated, how hypersialylation benefits cancer cells and tumors, and proposed therapies to abrogate hypersialylation of cancer.
Collapse
Affiliation(s)
- Emily Rodrigues
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada.
| | - Matthew S Macauley
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada.
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2G2, Canada.
| |
Collapse
|
25
|
Zhao L, Li Y, Song X, Zhou H, Li N, Miao Y, Jia L. Upregulation of miR-181c inhibits chemoresistance by targeting ST8SIA4 in chronic myelocytic leukemia. Oncotarget 2018; 7:60074-60086. [PMID: 27527856 PMCID: PMC5312369 DOI: 10.18632/oncotarget.11054] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 07/10/2016] [Indexed: 12/02/2022] Open
Abstract
Chemotherapy resistance frequently drives tumor progression. Increased expression of ST8SIA4 has been reported in diverse carcinomas and highly correlates with leukemia multidrug resistance (MDR). MicroRNAs (miRNA) are widely recognized as key players in cancer progression and drug resistance. Here, to explore whether miRNA modulates the sensitivity of chronic myelocytic leukemia (CML) to chemotherapeutic agents and regulates ST8SIA4 expression, we analyzed the complete miRNA expression profile and found a subset of miRNAs specifically dysregulated in adriamycin-resistant CML cell line K562/ADR and its parent cell line K562. Compared with three pairs of CML cell lines and 38 clinical samples of peripheral blood mononuclear cells (PBMC) of CML patients, miR-181c expression was down-regulated in drug-resistant cell lines and CML/MDR samples. Altered expression levels of miR-181c influenced the MDR phenotypes of K562 and K562/ADR. Reporter-gene assay showed that miR-181c directly targeted and inhibited the ST8SIA4 expression, as well as miR-181c was inversely correlated with the levels of ST8SIA4 expression in CML cell lines and samples. Moreover, ST8SIA4 could reverse the effect of miR-181c on drug resistance in K562 and K562/ADR cells in vitro. Upregulation of miR-181c sensitized K562/ADR cells to adriamycin in vivo through directly suppressing ST8SIA4 expression. Further investigation showed that miR-181c mediated the activity of phosphoinositide-3 kinase (PI3K)/AKT signal pathway, and inhibition of PI3K/Akt in K562 cells counteracted miR-181c-mediated MDR phenotype. These data revealed an important role for miR-181c in the regulation of chemoresistance in CML, and suggested the potential application of miR-181c in drug resistance treatment.
Collapse
Affiliation(s)
- Lifen Zhao
- College of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning Province, China
| | - Yan Li
- Department of Clinical Laboratory, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Xiaobo Song
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| | - Huimin Zhou
- Department of Microbiology, Dalian Medical University, Dalian, Liaoning Province, China
| | - Nana Li
- College of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning Province, China
| | - Yuan Miao
- College of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning Province, China
| | - Li Jia
- College of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning Province, China
| |
Collapse
|
26
|
Altered O-glycosylation is associated with inherent radioresistance and malignancy of human laryngeal carcinoma. Exp Cell Res 2017; 362:302-310. [PMID: 29179977 DOI: 10.1016/j.yexcr.2017.11.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 01/20/2023]
Abstract
Radioresistance (inherent or acquired) remains a major obstacle affecting the clinical outcome of radiotherapy for laryngeal carcinoma. Results from our laboratory and other groups suggest that aberrant glycosylation contributes to cancer acquired radioresistance. However, the role of glycosylation in inherent radioresistance of laryngeal carcinoma has not been fully uncovered. In this study, we investigated the glycan profiling of the inherent radioresistant (Hep-2max) and radiosensitive (Hep-2min) cell lines using lectin microarray analysis. The results revealed that the radioresistant cell line Hep-2max presented higher core 1-type O-glycans than the sensitive one. Further analysis of the O-glycan regulation by benzyl-α-GalNAc application in Hep-2max cells showed partial inhibition of the O-glycan biosynthesis and increased radiosensitivity. In addition, core 1 β1, 3-galactosyltransferase (C1GALT1) overexpression in Hep-2min cells enhanced cell migration, invasion, and radioresistance. Conversely, knockdown of C1GALT1 in Hep-2max cells was able to suppress these malignant phenotypes. Moreover, mechanistic investigations showed that C1GALT1 modified the O-glycans on integrin β1 and regulated its activity. The glycosylation-mediated radioresistance was further inhibited by anti-integrin β1 blocking antibody. Importantly, we also observed that core 1-type O-glycans expression was correlated with advanced tumor stage, metastasis, and poor survival of laryngeal carcinoma patients. These findings suggest that altered O-glycosylation can lead to the inherent radioresistance and progression, and therefore may be important for enhancing the efficacy of radiotherapy in laryngeal carcinoma.
Collapse
|
27
|
Zhou H, Li Y, Liu B, Shan Y, Li Y, Zhao L, Su Z, Jia L. Downregulation of miR-224 and let-7i contribute to cell survival and chemoresistance in chronic myeloid leukemia cells by regulating ST3GAL IV expression. Gene 2017; 626:106-118. [DOI: 10.1016/j.gene.2017.05.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 04/30/2017] [Accepted: 05/11/2017] [Indexed: 12/24/2022]
|
28
|
Shan Y, Liu Y, Zhao L, Liu B, Li Y, Jia L. MicroRNA-33a and let-7e inhibit human colorectal cancer progression by targeting ST8SIA1. Int J Biochem Cell Biol 2017; 90:48-58. [PMID: 28751193 DOI: 10.1016/j.biocel.2017.07.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 07/12/2017] [Accepted: 07/23/2017] [Indexed: 01/27/2023]
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer mortality worldwide. Aberrant sialylation is crucially involved in the progression of various types of cancer. MicroRNAs (miRNAs) have been broadly studied in cancer. MicroRNA-33a (miR-33a) and Has-let-7e (let-7e) are non-coding RNA that can reduce cell motility and viability in cancer. In this study, miR-33a and let-7e levels were confirmed to be significantly down-regulated in CRC samples (n=32) and drug resistant cell line (HCT-8/5-FU) compared with those in the matched adjacent tissues and drug sensitivity cell line (HCT-8). ST8SIA1 was highly expressed in CRC tissues and HCT-8/5-FU cells, which was negatively correlated with miR-33a/let-7e expression. Luciferase reporter assays confirmed that both miR-33a and let-7e bound to the 3'-untranslated (3'-UTR) region of ST8SIA1. Inhibiting miR-33a/let-7e expression in CRC cells increased endogenous ST8SIA1 mRNA and protein levels. MiR-33a/let-7e knockdown promoted chemoresistance, proliferation, invasion, angiogenesis in vitro, and tumor growth in vivo. Whereas, ectopic expression of miR-33a/let-7e suppressed chemoresistance, proliferation, invasion and angiogenesis in CRC cell lines. ST8SIA1 knockdown mimicked the tumor suppressive effect of miR-33a/let-7e on CRC cells, while restoration of ST8SIA1 abolished the tumor suppressive effect of miR-33a/let-7e on CRC cells. Taken together, altered expression of miR-33a/let-7e was correlated with ST8SIA1 level, which might contribute to CRC progression. The miR-33a/let-7e-ST8SIA1 axis could be a therapeutic target for CRC patients.
Collapse
Affiliation(s)
- Yujia Shan
- College of Laboratory Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Yuejian Liu
- College of Laboratory Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Lifen Zhao
- College of Laboratory Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Bing Liu
- College of Laboratory Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Yang Li
- College of Laboratory Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Li Jia
- College of Laboratory Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China.
| |
Collapse
|
29
|
Politano G, Logrand F, Brancaccio M, Di Carlo S. In-silico cardiac aging regulatory model including microRNA post-transcriptional regulation. Methods 2017; 124:57-68. [DOI: 10.1016/j.ymeth.2017.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/26/2017] [Accepted: 06/02/2017] [Indexed: 12/28/2022] Open
|
30
|
Chen JR, Jia XH, Wang H, Yi YJ, Li YJ. With no interaction, knockdown of Apollon and MDR1 reverse the multidrug resistance of human chronic myelogenous leukemia K562/ADM cells. Oncol Rep 2017; 37:2735-2742. [PMID: 28358418 DOI: 10.3892/or.2017.5535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 09/22/2016] [Indexed: 11/06/2022] Open
Abstract
Chemotherapy is the main treatment method for patients with chronic myeloid leukemia (CML) and has achieved marked results. However, the acquisition of multidrug resistance (MDR) has seriously affected the quality of life and survival rate of patients. The overexpression of the inhibitors of apoptosis proteins (IAPs) and the adenosine triphosphate (ATP)-dependent binding cassette (ABC) transporters are the two main causes of MDR. Apollon and MDR1 are the most important and representative members, respectively, among the IAPs and ABC transporters. In the present study, we investigated the role of Apollon and MDR1 in chemotherapy resistance and their mechanism of interaction. We respectively knocked down the expression of Apollon and MDR1 using short hairpin RNA (shRNA) in adriamycin (ADM) resistant human CML K562 cells and examined the drug sensitivity, the consequences with regard to ADM accumulation and the alterations in the expression of Apollon and MDR1. The expression levels of Apollon and MDR1 mRNA were higher in the K562/ADM cells compared with the parental K562 cells as determined by reverse transcription‑polymerase chain reaction (RT-PCR). The plasmids of Apollon and MDR1 shRNA were respectively stably transfected into K562/ADM cells using Lipofectamine 2000. The transfection efficiency was detected by fluorescence microscopy. Cell Counting Kit-8 (CCK-8) assay revealed that Apollon or MDR1 knockdown significantly increased the chemosensitivity of the K562/ADM cells to ADM. Flow cytometric assay revealed that K562/ADM/shMDR1 cells exhibited a significantly increased intracellular accumulation of ADM, and that changes were not found in the K562/ADM/shApollon cells. Compared with the parental K562/ADM cells, a significantly decreased expression of Apollon mRNA and protein was determined in the K562/ADM/shApollon cells without affecting the expression of MDR1 as determined by RT-PCR and western blotting. Likewise, the expression levels of MDR1 mRNA and protein also markedly downregulated in the K562/ADM/shMDR1 cells had no effect on Apollon expression. Collectively, our findings demonstrated, for the first time, that downregulation of Apollon or MDR1 through stable transfection with the Apollon- or MDR1-targeting shRNA induced MDR reversal through respective inhibition of Apollon or MDR1 expression and function. However, the reversal mechanism of Apollon and MDR1 revealed no direct interaction with each other.
Collapse
Affiliation(s)
- Jie-Ru Chen
- Department of Pediatrics, The Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong 256603, P.R. China
| | - Xiu-Hong Jia
- Department of Pediatrics, The Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong 256603, P.R. China
| | - Hong Wang
- Department of Pediatrics, The Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong 256603, P.R. China
| | - Ying-Jie Yi
- Department of Pediatrics, The Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong 256603, P.R. China
| | - You-Jie Li
- Department of Biochemistry and Molecular Biology, Key Laboratory of Tumour Molecular Biology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| |
Collapse
|
31
|
Reversal effects of local anesthetics on P-glycoprotein-mediated cancer multidrug resistance. Anticancer Drugs 2017; 28:243-249. [DOI: 10.1097/cad.0000000000000455] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
32
|
Huang X, Qi L, Lu W, Yang G, Chen Y, Zhang R, Rao J, Ji D, Huang R, Chen G. miRNA-301a induces apoptosis of chronic myelogenous leukemia cells by directly targeting TIMP2/ERK1/2 and AKT pathways. Oncol Rep 2017; 37:945-952. [PMID: 28035415 DOI: 10.3892/or.2016.5330] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 11/28/2016] [Indexed: 11/06/2022] Open
Abstract
We investigated the biological functions and mechanism of miRNA‑301a on apoptosis in chronic myelogenous leukemia (CML). The expression of miRNA‑301a in patient with CML cells was higher than the expression of normal patients. Overall survival (OS) of chronic granulocytic leukemia cell patient with low miRNA‑301 expression was superior to that of CML patient with high miRNA‑301 expression. Moreover, the upregulation of miRNA‑301a increased cell proliferation, inhibited apoptosis and caspase-3 and -9 activity of K562 cells. Next, the upregulation of miRNA‑301a suppressed Bax/Bcl-2 rate and TIMP2 protein expression, increased phosphorylation-ERK1/2 and decreased phosphorylation-AKT protein expression of K562 cells. Furthermore, si‑TIMP2 expression enhanced the upregulation of miRNA‑301a on the promotion of cell proliferation, inhibition of apoptosis and caspase-3 and -9 activity, suppression of Bax/Bcl-2 rate, increasing phosphorylation-ERK1/2 and decreasing phosphorylation-AKT protein expression of K562 cells. Taken together, our results clearly suggested that miRNA‑301a induces apoptosis of CML cells by directly targeting the TIMP2/ERK1/2 and AKT pathways.
Collapse
MESH Headings
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Blotting, Western
- Case-Control Studies
- Cell Proliferation
- Flow Cytometry
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- MicroRNAs/genetics
- Mitogen-Activated Protein Kinase 1/antagonists & inhibitors
- Mitogen-Activated Protein Kinase 1/genetics
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/antagonists & inhibitors
- Mitogen-Activated Protein Kinase 3/genetics
- Mitogen-Activated Protein Kinase 3/metabolism
- Neoplasm Staging
- Phosphorylation
- Prognosis
- Proto-Oncogene Proteins c-akt/antagonists & inhibitors
- Proto-Oncogene Proteins c-akt/genetics
- Proto-Oncogene Proteins c-akt/metabolism
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Survival Rate
- Tissue Inhibitor of Metalloproteinase-2/antagonists & inhibitors
- Tissue Inhibitor of Metalloproteinase-2/genetics
- Tissue Inhibitor of Metalloproteinase-2/metabolism
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Xianbao Huang
- Department of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Ling Qi
- Department of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wei Lu
- Department of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Gangping Yang
- Department of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yan Chen
- Department of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Rongyan Zhang
- Department of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jia Rao
- Department of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Dexiang Ji
- Department of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Ruibin Huang
- Department of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Guoan Chen
- Department of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
33
|
Wang X, Zhang Y, Lin H, Liu Y, Tan Y, Lin J, Gao F, Lin S. Alpha2,3-sialyltransferase III knockdown sensitized ovarian cancer cells to cisplatin-induced apoptosis. Biochem Biophys Res Commun 2017; 482:758-763. [DOI: 10.1016/j.bbrc.2016.11.107] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 11/18/2016] [Indexed: 12/17/2022]
|
34
|
Shi G, Du Y, Li Y, An Y, He Z, Lin Y, Zhang R, Yan X, Zhao J, Yang S, Brendan PNK, Liu F. Cell Recognition Molecule L1 Regulates Cell Surface Glycosylation to Modulate Cell Survival and Migration. Int J Med Sci 2017; 14:1276-1283. [PMID: 29104485 PMCID: PMC5666562 DOI: 10.7150/ijms.20479] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 09/12/2017] [Indexed: 01/14/2023] Open
Abstract
Background: Cell recognition molecule L1 (L1) plays an important role in cancer cell differentiation, proliferation, migration and survival, but its mechanism remains unclear. Methodology/Principal: Our previous study has demonstrated that L1 enhanced cell survival and migration in neural cells by regulating cell surface glycosylation. In the present study, we show that L1 affected cell migration and survival in CHO (Chinese hamster ovary) cell line by modulation of sialylation and fucosylation at the cell surface via the PI3K (phosphoinositide 3-kinase) and Erk (extracellularsignal-regulated kinase) signaling pathways. Flow cytometry analysis indicated that L1 modulated cell surface sialylation and fucosylation in CHO cells. Activated L1 upregulated the protein expressions of ST6Gal1 (β-galactoside α-2,6-sialyltransferase 1) and FUT9 (Fucosyltransferase 9) in CHO cells. Furthermore, activated L1 promoted CHO cells migration and survival as shown by transwell assay and MTT assay. Inhibitors of sialylation and fucosylation blocked L1-induced cell migration and survival, while decreasing FUT9 and ST6Gal1 expressions via the PI3K-dependent and Erk-dependent signaling pathways. Conclusion : L1 modulated cell migration and survival by regulation of cell surface sialylation and fucosylation via the PI3K-dependent and Erk-dependent signaling pathways.
Collapse
Affiliation(s)
- Gang Shi
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, China
| | - Yue Du
- Dalian Medical University, Dalian, Liaoning 116044, China
| | - Yali Li
- National University Hospital, Singapore 119074, Singapore
| | - Yue An
- Department of Clinical Laboratory, the Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116027, China
| | - Zhenwei He
- Department of Neurology, Forth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110000, China
| | - Yingwei Lin
- Department of Clinical Laboratory, the Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116027, China
| | - Rui Zhang
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, China
| | - Xiaofei Yan
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, China
| | - Jianfeng Zhao
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, China
| | - Shihua Yang
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, China
| | | | - Fang Liu
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, China
| |
Collapse
|
35
|
Ma X, Dong W, Su Z, Zhao L, Miao Y, Li N, Zhou H, Jia L. Functional roles of sialylation in breast cancer progression through miR-26a/26b targeting ST8SIA4. Cell Death Dis 2016; 7:e2561. [PMID: 28032858 PMCID: PMC5260976 DOI: 10.1038/cddis.2016.427] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/12/2016] [Accepted: 11/15/2016] [Indexed: 01/12/2023]
Abstract
Sialylation is one of the altered glycosylation patterns associated with cancer progression. In this study, we investigated the N-glycan profiles of breast cancer patients and cell lines to reveal sialylation associated with breast cancer progression, and provided new evidences of miRNA-mediated sialylation. MALDI-TOF MS analysis revealed that N-glycans found in breast cancer tissues and breast cancer cell MDA-MB-231 featured increased levels of sialylation compared with adjacent tissues and normal breast epithelial cell MCF-10A. The expressional profiles of 20 sialyltransferase genes were then analyzed and found significantly different comparing breast cancer samples with adjacent tissues, and two breast cancer cell lines MDA-MB-231 and MCF-7 with different metastatic potential and MCF-10A cells. Tumor tissues and highly metastatic breast cancer cell line MDA-MB-231 exhibited higher levels of ST8SIA4. Knocking down ST8SIA4 in breast cancer cell lines significantly inhibited their malignant behaviors including cell proliferation and invasion in a sialyltransferase-dependent manner. By applying bioinformatic approaches for the prediction of miRNA targeting 3′-UTR of ST8SIA4, we identified ST8SIA4 as one of the miR-26a/26b-targeted genes. Further data analysis revealed the inversely related expression of ST8SIA4 and miR-26a/26b in breast cancer cells, tumor tissues and corresponding adjacent tissues. The ability of miR-26a/26b to interact specifically with and regulate the 3′-UTR of ST8SIA4 was demonstrated via a luciferase reporter assay. The forced expression of miR-26a/26b was able to induce a decrease of ST8SIA4 level and also to affect breast cancer cells progression, while altered expression of ST8SIA4 in breast cancer cells modulated progression upon transfection with miR-26a/26b mimics or inhibiter. Taken together, these results indicate that changes in the glycosylation patterns and sialylation levels may be useful markers of the progression of breast cancer, as well as miR-26a/26b may be widely involved in the regulation of sialylation machinery by targeting ST8SIA4.
Collapse
Affiliation(s)
- Xiaolu Ma
- College of Laboratory Medicine, Dalian Medical University, Dalian, China.,Department of Clinical Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Weijie Dong
- Department of Biochemistry, Dalian Medical University, Dalian, China
| | - Zhen Su
- Graduate School, Dalian Medical University, Dalian, China
| | - Lifen Zhao
- College of Laboratory Medicine, Dalian Medical University, Dalian, China
| | - Yuan Miao
- College of Laboratory Medicine, Dalian Medical University, Dalian, China
| | - Nana Li
- College of Laboratory Medicine, Dalian Medical University, Dalian, China
| | - Huimin Zhou
- Department of Microbiology, Dalian Medical University, Dalian, China
| | - Li Jia
- College of Laboratory Medicine, Dalian Medical University, Dalian, China
| |
Collapse
|
36
|
Wang H, Li Q, Tang S, Li M, Feng A, Qin L, Liu Z, Wang X. The role of long noncoding RNA HOTAIR in the acquired multidrug resistance to imatinib in chronic myeloid leukemia cells. Hematology 2016; 22:208-216. [DOI: 10.1080/10245332.2016.1258152] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
|
37
|
Wang H, Jia XH, Chen JR, Yi YJ, Wang JY, Li YJ, Xie SY. HOXB4 knockdown reverses multidrug resistance of human myelogenous leukemia K562/ADM cells by downregulating P-gp, MRP1 and BCRP expression via PI3K/Akt signaling pathway. Int J Oncol 2016; 49:2529-2537. [PMID: 27779650 DOI: 10.3892/ijo.2016.3738] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 10/14/2016] [Indexed: 11/06/2022] Open
Abstract
Multidrug resistance (MDR) plays a pivotal role in human chronic myelogenous leukemia (CML) chemotherapy failure. MDR is mainly associated with the overexpression of drug efflux transporters of the ATP-binding cassette (ABC) proteins. Phosphoinositide 3-kinase (PI3K)/Akt signaling cascade is involved in the MDR phenotype and is correlated with multidrug resistance 1 (MDR1)/P-glycoprotein (P-gp), multidrug resistance-associated protein 1 (MRP1) and breast cancer resistance protein (BCRP) expression in many human malignancies. Homeobox (HOX) B4, a member of the HOX gene family, has been reported to be correlated with occurrence, development, poor prognosis and drug resistance of human leukemia. In the present study, HOXB4 expression was analyzed in K562 cell line and its MDR subline K562/ADM. Compared with K562 cells, drug-resistant K562/ADM cells demonstrated evidently higher HOXB4 expression. In addition, we firstly investigated the reversal effect of HOXB4 deletion on K562/ADM cells and the underlying mechanism. The Cell Counting kit-8 (CCK-8) and flow cytometry assays showed that knockdown of HOXB4 enhanced chemosensitivity and decreased drug efflux in K562/ADM cells. Moreover, HOXB4 knockout led to downregulation of P-gp, MRP1 and BCRP expression and PI3K/Akt signaling activity, suggesting that repression of HOXB4 might be a key point to reverse MDR of K562/ADM cells.
Collapse
Affiliation(s)
- Hong Wang
- Department of Pediatrics, The Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong 256603, P.R. China
| | - Xiu-Hong Jia
- Department of Pediatrics, The Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong 256603, P.R. China
| | - Jie-Ru Chen
- Department of Pediatrics, The Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong 256603, P.R. China
| | - Ying-Jie Yi
- Department of Pediatrics, The Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong 256603, P.R. China
| | - Jian-Yong Wang
- Department of Pediatrics, The Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong 256603, P.R. China
| | - You-Jie Li
- Department of Biochemistry and Molecular Biology, Key Laboratory of Tumour Molecular Biology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Shu-Yang Xie
- Department of Biochemistry and Molecular Biology, Key Laboratory of Tumour Molecular Biology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| |
Collapse
|
38
|
Szabo R, Skropeta D. Advancement of Sialyltransferase Inhibitors: Therapeutic Challenges and Opportunities. Med Res Rev 2016; 37:219-270. [DOI: 10.1002/med.21407] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 07/14/2016] [Accepted: 08/03/2016] [Indexed: 01/06/2023]
Affiliation(s)
- Rémi Szabo
- School of Chemistry; University of Wollongong; Wollongong NSW 2522 Australia
| | - Danielle Skropeta
- School of Chemistry; University of Wollongong; Wollongong NSW 2522 Australia
- Centre for Medical & Molecular Bioscience; University of Wollongong; Wollongong NSW 2522 Australia
| |
Collapse
|
39
|
Wang H, Jia XH, Chen JR, Wang JY, Li YJ. Osthole shows the potential to overcome P-glycoprotein‑mediated multidrug resistance in human myelogenous leukemia K562/ADM cells by inhibiting the PI3K/Akt signaling pathway. Oncol Rep 2016; 35:3659-68. [PMID: 27109742 DOI: 10.3892/or.2016.4730] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 01/08/2016] [Indexed: 11/06/2022] Open
Abstract
P-glycoprotein (P-gp)-mediated multidrug resistance (MDR) has been reported to play a pivotal role in tumor chemotherapy failure. Study after study has illustrated that the phosphoinositide 3-kinase (PI3K)/Akt signaling cascade is involved in the MDR phenotype and is correlated with P-gp expression in many human malignancies. In the present study, osthole, an O-methylated coumarin, exhibited potent reversal capability of MDR in myelogenous leukemia K562/ADM cells. Simultaneously, the uptake and efflux of Rhodamine-123 (Rh-123) and the accumulation of doxorubicin assays combined with flow cytometric analysis suggested that osthole could increase intracellular drug accumulation. Furthermore, osthole decreased the expression of multidrug resistance gene 1 (MDR1) at both the mRNA and protein levels. Further experiments elucidated that osthole could suppress P-gp expression by inhibiting the PI3K/Akt signaling pathway which might be the main mechanism accounting for the reversal potential of osthole in the MDR in K562/ADM cells. In conclusion, osthole combats MDR and could be a promising candidate for the development of novel MDR reversal modulators.
Collapse
Affiliation(s)
- Hong Wang
- Department of Pediatrics, The Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong 256603, P.R. China
| | - Xiu-Hong Jia
- Department of Pediatrics, The Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong 256603, P.R. China
| | - Jie-Ru Chen
- Department of Pediatrics, The Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong 256603, P.R. China
| | - Jian-Yong Wang
- Department of Pediatrics, The Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong 256603, P.R. China
| | - You-Jie Li
- Department of Biochemistry and Molecular Biology, Key Laboratory of Tumour Molecular Biology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| |
Collapse
|
40
|
CHEN JIERU, JIA XIUHONG, WANG HONG, YI YINGJIE, WANG JIANYONG, LI YOUJIE. Timosaponin A-III reverses multi-drug resistance in human chronic myelogenous leukemia K562/ADM cells via downregulation of MDR1 and MRP1 expression by inhibiting PI3K/Akt signaling pathway. Int J Oncol 2016; 48:2063-70. [DOI: 10.3892/ijo.2016.3423] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 02/14/2016] [Indexed: 11/06/2022] Open
|