1
|
Ramezani A, Rahnama M, Mahmoudian F, Shirazi F, Ganji M, Bakhshi S, Khalesi B, Hashemi ZS, Khalili S. Current Understanding of the Exosomes and Their Associated Biomolecules in the Glioblastoma Biology, Clinical Treatment, and Diagnosis. J Neuroimmune Pharmacol 2025; 20:48. [PMID: 40299204 DOI: 10.1007/s11481-025-10204-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 04/08/2025] [Indexed: 04/30/2025]
Abstract
Glioblastoma is the most common and aggressive brain tumor with a low survival rate. Due to its heterogeneous composition, high invasiveness, and frequent recurrence after surgery, treatment success has been limited. In addition, due to the brain's unique immune status and the suppressor tumor microenvironment (TME), glioblastoma treatment has faced more challenges. Exosomes play a critical role in cancer metastasis by regulating cell-cell interactions that promote tumor growth, angiogenesis, metastasis, treatment resistance, and immunological regulation in the tumor microenvironment. This review explores the pivotal role of exosomes in the development of glioblastoma, with a focus on their potential as non-invasive biomarkers for prognosis, early detection and real-time monitoring of disease progression. Notably, exosome-based drug delivery methods hold promise for overcoming the blood-brain barrier (BBB) and developing targeted therapies for glioblastoma. Despite challenges in clinical translation, the potential for personalized exosome = -054321`therapies and the capacity to enhance therapeutic responses in glioblastoma, present intriguing opportunities for improving patient outcomes. It seems that getting a good and current grasp of the role of exosomes in the fight against glioblastoma would properly serve the scientific community to further their understanding of the related potentials of these biological moieties.
Collapse
Affiliation(s)
- Aghdas Ramezani
- Department of Molecular Imaging, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Maryam Rahnama
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Mahmoudian
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Fatemeh Shirazi
- Division of Genetics, Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Sciences and Technologies, University of Isfahan, Isfahan, Iran
| | - Mahmoud Ganji
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Shohreh Bakhshi
- Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahman Khalesi
- Department of Research and Production of Poultry Viral Vaccine, Education and Extension Organization, Razi Vaccine and Serum Research Institute, Agricultural Research, Karaj, 3197619751, Iran
| | - Zahra Sadat Hashemi
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran.
| |
Collapse
|
2
|
Li X, Liu H, Xing P, Li T, Fang Y, Chen S, Dong S. Exosomal circRNAs: Deciphering the novel drug resistance roles in cancer therapy. J Pharm Anal 2025; 15:101067. [PMID: 39957900 PMCID: PMC11830318 DOI: 10.1016/j.jpha.2024.101067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/13/2024] [Accepted: 08/03/2024] [Indexed: 02/18/2025] Open
Abstract
Exosomal circular RNA (circRNAs) are pivotal in cancer biology, and tumor pathophysiology. These stable, non-coding RNAs encapsulated in exosomes participated in cancer progression, tumor growth, metastasis, drug sensitivity and the tumor microenvironment (TME). Their presence in bodily fluids positions them as potential non-invasive biomarkers, revealing the molecular dynamics of cancers. Research in exosomal circRNAs is reshaping our understanding of neoplastic intercellular communication. Exploiting the natural properties of exosomes for targeted drug delivery and disrupting circRNA-mediated pro-tumorigenic signaling can develop new treatment modalities. Therefore, ongoing exploration of exosomal circRNAs in cancer research is poised to revolutionize clinical management of cancer. This emerging field offers hope for significant breakthroughs in cancer care. This review underscores the critical role of exosomal circRNAs in cancer biology and drug resistance, highlighting their potential as non-invasive biomarkers and therapeutic targets that could transform the clinical management of cancer.
Collapse
Affiliation(s)
- Xi Li
- Department of Vascular and Thyroid Surgery, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Hanzhe Liu
- Department of Critical Care Medicine, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, China
| | - Peiyu Xing
- Department of Ophthalmology, China Medical University the Fourth People's Hospital of Shenyang, Shenyang, 110031, China
| | - Tian Li
- School of Basic Medicine, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yi Fang
- Department of Ultrasound, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Shuang Chen
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Siyuan Dong
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, 110001, China
| |
Collapse
|
3
|
Pilotto Heming C, Aran V. The potential of circulating cell-free RNA in CNS tumor diagnosis and monitoring: A liquid biopsy approach. Crit Rev Oncol Hematol 2024; 204:104504. [PMID: 39251048 DOI: 10.1016/j.critrevonc.2024.104504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/20/2024] [Accepted: 09/04/2024] [Indexed: 09/11/2024] Open
Abstract
Early detection of malignancies, through regular cancer screening, has already proven to have potential to increase survival rates. Yet current screening methods rely on invasive, expensive tissue sampling that has hampered widespread use. Liquid biopsy is noninvasive and represents a potential approach to precision oncology, based on molecular profiling of body fluids. Among these, circulating cell-free RNA (cfRNA) has gained attention due to its diverse composition and potential as a sensitive biomarker. This review provides an overview of the processes of cfRNA delivery into the bloodstream and the role of cfRNA detection in the diagnosis of central nervous system (CNS) tumors. Different types of cfRNAs such as microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) have been recognized as potential biomarkers in CNS tumors. These molecules exhibit differential expression patterns in the plasma, cerebrospinalfluid (CSF) and urine of patients with CNS tumors, providing information for diagnosing the disease, predicting outcomes, and assessing treatment effectiveness. Few clinical trials are currently exploring the use of liquid biopsy for detecting and monitoring CNS tumors. Despite obstacles like sample standardization and data analysis, cfRNA shows promise as a tool in the diagnosis and management of CNS tumors, offering opportunities for early detection, personalized therapy, and improved patient outcomes.
Collapse
Affiliation(s)
- Carlos Pilotto Heming
- Programa de Pós-Graduação em Anatomia Patológica, Faculdade de Medicina, Universidade Federal do Rio de Janeiro (UFRJ), Av. Rodolpho Paulo Rocco 225, Rio de Janeiro 21941-905, Brazil; Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Rua do Rezende 156, Rio de Janeiro 20231-092, Brazil
| | - Veronica Aran
- Programa de Pós-Graduação em Anatomia Patológica, Faculdade de Medicina, Universidade Federal do Rio de Janeiro (UFRJ), Av. Rodolpho Paulo Rocco 225, Rio de Janeiro 21941-905, Brazil; Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Rua do Rezende 156, Rio de Janeiro 20231-092, Brazil.
| |
Collapse
|
4
|
Zhang Y, Yu Y, Yuan L, Zhang B. EZH2 Promotes Glioma Cell Proliferation, Invasion, and Migration via Mir-142-3p/KCNQ1OT1/HMGB3 Axis : Running Title: EZH2 Promotes Glioma cell Malignant Behaviors. Mol Neurobiol 2024; 61:8668-8687. [PMID: 38556567 DOI: 10.1007/s12035-024-04080-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/28/2024] [Indexed: 04/02/2024]
Abstract
This study investigates the role and molecular mechanism of EZH2 in glioma cell proliferation, invasion, and migration. EZH2, miR-142-3p, lncRNA KCNQ1OT1, LIN28B, and HMGB3 expressions in glioma tissues and cells were determined using qRT-PCR or Western blot, followed by CCK-8 assay detection of cell viability, Transwell detection of invasion and migration, ChIP analysis of the enrichment of EZH2 and H3K27me3 on miR-142-3p promoter, dual-luciferase reporter assay and RIP validation of the binding of miR-142-3p-KCNQ1OT1 and KCNQ1OT1-LIN28B, and actinomycin D detection of KCNQ1OT1 and HMGB3 mRNA stability. A nude mouse xenograft model and a lung metastasis model were established. EZH2, KCNQ1OT1, LIN28B, and HMGB3 were highly expressed while miR-142-3p was poorly expressed in gliomas. EZH2 silencing restrained glioma cell proliferation, invasion, and migration. EZH2 repressed miR-142-3p expression by elevating the H3K27me3 level. miR-142-3p targeted KCNQ1OT1 expression, and KCNQ1OT1 bound to LIN28B to stabilize HMGB3 mRNA, thereby promoting its protein expression. EZH2 silencing depressed tumor growth and metastasis in nude mice via the miR-142-3p/KCNQ1OT1/HMGB3 axis. In conclusion, EZH2 curbed miR-142-3p expression, thereby relieving the inhibition of KCNQ1OT1 expression by miR-142-3p, enhancing the binding of KCNQ1OT1 to LIN28B, elevating HMGB3 expression, and ultimately accelerating glioma cell proliferation, invasion, and migration.
Collapse
Affiliation(s)
- Yiming Zhang
- Department of Neurosurgery, Beijing Fengtai You'anmen Hospital, Beijing, 100069, China
| | - Yong Yu
- Epilepsy Center, Beijing Fengtai You'anmen Hospital, Beijing, 100069, China
| | - Lei Yuan
- Department of Neurosurgery, PLA Rocket Force Characteristic Medical Center, No. 16, Xin Jie Kou Wai Street, Beijing, 100088, China.
| | - Baozhong Zhang
- Department of Neurosurgery, He Bei Hua Ao Hospital, No. 11, the Changcheng West Street, Zhangjiakou, 075000, Hebei Province, China.
| |
Collapse
|
5
|
Yang L, Niu Z, Ma Z, Wu X, Vong CT, Li G, Feng Y. Exploring the clinical implications and applications of exosomal miRNAs in gliomas: a comprehensive study. Cancer Cell Int 2024; 24:323. [PMID: 39334350 PMCID: PMC11437892 DOI: 10.1186/s12935-024-03507-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Gliomas are aggressive brain tumors associated with poor prognosis and limited treatment options due to their invasive nature and resistance to current therapeutic modalities. Research suggests that exosomal microRNAs have emerged as key players in intercellular communication within the tumor microenvironment, influencing tumor progression and therapeutic responses. Exosomal microRNAs (miRNAs), small non-coding RNAs, are crucial in glioma development, invasion, metastasis, angiogenesis, and immune evasion by binding to target genes. This comprehensive review examines the clinical relevance and implications of exosomal miRNAs in gliomas, highlighting their potential as diagnostic biomarkers, therapeutic targets and prognosis biomarker. Additionally, we also discuss the limitations of current exsomal miRNA treatments and address challenges and propose future directions for leveraging exosomal miRNAs in precision oncology for glioma management.
Collapse
Affiliation(s)
- Liang Yang
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Zhen Niu
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Zhixuan Ma
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Xiaojie Wu
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Chi Teng Vong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
- Macau Centre for Research and Development in Chinese Medicine, University of Macau, Macau, China
| | - Ge Li
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510100, China.
| | - Ying Feng
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.
| |
Collapse
|
6
|
Wang Y, Zhang J, Yang Y, Liu Z, Sun S, Li R, Zhu H, Li T, Zheng J, Li J, Ma L. Circular RNAs in human diseases. MedComm (Beijing) 2024; 5:e699. [PMID: 39239069 PMCID: PMC11374765 DOI: 10.1002/mco2.699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 09/07/2024] Open
Abstract
Circular RNAs (circRNAs) are a unique class of RNA molecules formed through back-splicing rather than linear splicing. As an emerging field in molecular biology, circRNAs have garnered significant attention due to their distinct structure and potential functional implications. A comprehensive understanding of circRNAs' functions and potential clinical applications remains elusive despite accumulating evidence of their involvement in disease pathogenesis. Recent research highlights their significant roles in various human diseases, but comprehensive reviews on their functions and applications remain scarce. This review provides an in-depth examination of circRNAs, focusing first on their involvement in non-neoplastic diseases such as respiratory, endocrine, metabolic, musculoskeletal, cardiovascular, and renal disorders. We then explore their roles in tumors, with particular emphasis on exosomal circular RNAs, which are crucial for cancer initiation, progression, and resistance to treatment. By detailing their biogenesis, functions, and impact on disease mechanisms, this review underscores the potential of circRNAs as diagnostic biomarkers and therapeutic targets. The review not only enhances our understanding of circRNAs' roles in specific diseases and tumor types but also highlights their potential as novel diagnostic and therapeutic tools, thereby paving the way for future clinical investigations and potential therapeutic interventions.
Collapse
Affiliation(s)
- Yuanyong Wang
- Department of Thoracic SurgeryTangdu HospitalAir Force Medical UniversityXi'anChina
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education)The First Department of Thoracic SurgeryPeking University Cancer Hospital and InstitutePeking University School of OncologyBeijingChina
| | - Jin Zhang
- Department of Traditional Chinese MedicineTangdu HospitalAir Force Medical UniversityXi'anChina
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi ProvinceXi'anChina
| | - Yuchen Yang
- Department of Traditional Chinese MedicineTangdu HospitalAir Force Medical UniversityXi'anChina
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi ProvinceXi'anChina
| | - Zhuofeng Liu
- Department of Traditional Chinese MedicineThe Third Affiliated Hospital of Xi'an Medical UniversityXi'anChina
| | - Sijia Sun
- Department of Traditional Chinese MedicineTangdu HospitalAir Force Medical UniversityXi'anChina
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi ProvinceXi'anChina
| | - Rui Li
- Department of EpidemiologySchool of Public HealthAir Force Medical UniversityXi'anChina
| | - Hui Zhu
- Department of AnatomyMedical College of Yan'an UniversityYan'anChina
- Institute of Medical ResearchNorthwestern Polytechnical UniversityXi'anChina
| | - Tian Li
- School of Basic MedicineFourth Military Medical UniversityXi'anChina
| | - Jin Zheng
- Department of Traditional Chinese MedicineTangdu HospitalAir Force Medical UniversityXi'anChina
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi ProvinceXi'anChina
| | - Jie Li
- Department of EndocrineXijing 986 HospitalAir Force Medical UniversityXi'anChina
| | - Litian Ma
- Department of Thoracic SurgeryTangdu HospitalAir Force Medical UniversityXi'anChina
- Department of Traditional Chinese MedicineTangdu HospitalAir Force Medical UniversityXi'anChina
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi ProvinceXi'anChina
- Department of GastroenterologyTangdu HospitalAir Force Medical UniversityXi'anChina
- School of MedicineNorthwest UniversityXi'anChina
| |
Collapse
|
7
|
Hu P, Yan T, Lv S, Ye M, Wu M, Fang H, Xiao B. Exosomal HMGB3 released by glioma cells confers the activation of NLRP3 inflammasome and pyroptosis in tumor-associated macrophages. Tissue Cell 2024; 88:102406. [PMID: 38761792 DOI: 10.1016/j.tice.2024.102406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND Previous evidences has highlighted the pivotal role of NOD-like receptor family pyrin domain-containing 3 (NLRP3)-mediated inflammasomes and pyroptosis activation in driving tumor malignancy and shaping the tumor microenvironment. Herein, we aimed to elucidate the impact of high-mobility group box 3 (HMGB3) released in glioma-derived exosomes on macrophage infiltration in gliomas, NLRP3 inflammasome activation and polarization. METHODS Transcripts and protein levels of HMGB3, and cytokines associated with macrophage phenotypes and pyroptosis were assessed in glioma tissues and cell lines (U251, LN229, T98G, A172) using qRT-PCR and/or Western blot analysis. Exosomes secreted from LN229 and NHA cells were isolated via differential ultracentrifugation and characterized by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and analysis of exosome-related markers. PKH67 staining was employed to examine exosomes uptake by THP-1 differentiated macrophages. Flow cytometry was utilized to assess macrophage pyroptotic rates and polarization-related markers. RESULTS HMGB3 expression was elevated in glioma tissues, serum samples and tumor cell lines. Kaplan-Meier curves revealed a positive correlation between higher HMGB3 expression and poor overall survival and recurrence-free survival. Moreover, glioma tissues with increased HMGB3 expression exhibited significant upregulation of M2 macrophages markers (CD68, CD206, Arg1) and NLRP3 inflammasome components (NLRP3, IL-1β, ASC), suggesting that HMGB3 was closely associated with macrophage infiltration and NLRP3 inflammasome activation. Notably, HMGB3 was found to be enriched in glioma cell- secreted exosomes and could be internalized by macrophages. Knockdown of HMGB3 in glioma cell exosomes could restrain M2 macrophage polarization, NLRP3 inflammasome activation and pyroptosis. CONCLUSION These findings suggested that glioma cells secreted exosomal HMGB3 could facilitate macrophage M2 polarization, pyroptosis and inflammatory infiltration, indicating HMGB3 might be a poor prognosis factor for glioma.
Collapse
Affiliation(s)
- Ping Hu
- Department of Neurosurgery, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province 330006, PR China
| | - Tengfeng Yan
- Department of Neurosurgery, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province 330006, PR China
| | - Shigang Lv
- Department of Neurosurgery, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province 330006, PR China
| | - Minhua Ye
- Department of Neurosurgery, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province 330006, PR China
| | - Miaojing Wu
- Department of Neurosurgery, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province 330006, PR China
| | - Hua Fang
- Department of Neurosurgery, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province 330006, PR China
| | - Bing Xiao
- Department of Neurosurgery, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province 330006, PR China.
| |
Collapse
|
8
|
Zhang B, Zhang H, Wang Z, Cao H, Zhang N, Dai Z, Liang X, Peng Y, Wen J, Zhang X, Zhang L, Luo P, Zhang J, Liu Z, Cheng Q, Peng R. The regulatory role and clinical application prospects of circRNA in the occurrence and development of CNS tumors. CNS Neurosci Ther 2024; 30:e14500. [PMID: 37953502 PMCID: PMC11017455 DOI: 10.1111/cns.14500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/20/2023] [Accepted: 10/03/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND Central nervous system (CNS) tumors originate from the spinal cord or brain. The study showed that even with aggressive treatment, malignant CNS tumors have high mortality rates. However, CNS tumor risk factors and molecular mechanisms have not been verified. Due to the reasons mentioned above, diagnosis and treatment of CNS tumors in clinical practice are currently fraught with difficulties. Circular RNAs (circRNAs), single-stranded ncRNAs with covalently closed continuous structures, are essential to CNS tumor development. Growing evidence has proved the numeral critical biological functions of circRNAs for disease progression: sponging to miRNAs, regulating gene transcription and splicing, interacting with proteins, encoding proteins/peptides, and expressing in exosomes. AIMS This review aims to summarize current progress regarding the molecular mechanism of circRNA in CNS tumors and to explore the possibilities of clinical application based on circRNA in CNS tumors. METHODS We have summarized studies of circRNA in CNS tumors in Pubmed. RESULTS This review summarized their connection with CNS tumors and their functions, biogenesis, and biological properties. Furthermore, we introduced current advances in clinical RNA-related technologies. Then we discussed the diagnostic and therapeutic potential (especially for immunotherapy, chemotherapy, and radiotherapy) of circRNA in CNS tumors in the context of the recent advanced research and application of RNA in clinics. CONCLUSIONS CircRNA are increasingly proven to participate in decveloping CNS tumors. An in-depth study of the causal mechanisms of circRNAs in CNS tomor progression will ultimately advance their implementation in the clinic and developing new strategies for preventing and treating CNS tumors.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Hao Zhang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- Department of Neurosurgery, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- MRC Centre for Regenerative Medicine, Institute for Regeneration and RepairUniversity of EdinburghEdinburghUK
| | - Hui Cao
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaChina
| | - Nan Zhang
- College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Xisong Liang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Yun Peng
- Teaching and Research Section of Clinical NursingXiangya Hospital of Central South UniversityChangshaChina
- Department of Geriatrics, Xiangya HospitalCentral South UniversityChangshaChina
| | - Jie Wen
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Xun Zhang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Peng Luo
- Department of Oncology, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Jian Zhang
- Department of Oncology, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Zaoqu Liu
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Quan Cheng
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Renjun Peng
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| |
Collapse
|
9
|
Fan A, Gao M, Tang X, Jiao M, Wang C, Wei Y, Gong Q, Zhong J. HMGB1/RAGE axis in tumor development: unraveling its significance. Front Oncol 2024; 14:1336191. [PMID: 38529373 PMCID: PMC10962444 DOI: 10.3389/fonc.2024.1336191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/15/2024] [Indexed: 03/27/2024] Open
Abstract
High mobility group protein 1 (HMGB1) plays a complex role in tumor biology. When released into the extracellular space, it binds to the receptor for advanced glycation end products (RAGE) located on the cell membrane, playing an important role in tumor development by regulating a number of biological processes and signal pathways. In this review, we outline the multifaceted functions of the HMGB1/RAGE axis, which encompasses tumor cell proliferation, apoptosis, autophagy, metastasis, and angiogenesis. This axis is instrumental in tumor progression, promoting tumor cell proliferation, autophagy, metastasis, and angiogenesis while inhibiting apoptosis, through pivotal signaling pathways, including MAPK, NF-κB, PI3K/AKT, ERK, and STAT3. Notably, small molecules, such as miRNA-218, ethyl pyruvate (EP), and glycyrrhizin exhibit the ability to inhibit the HMGB1/RAGE axis, restraining tumor development. Therefore, a deeper understanding of the mechanisms of the HMGB1/RAGE axis in tumors is of great importance, and the development of inhibitors targeting this axis warrants further exploration.
Collapse
Affiliation(s)
- Anqi Fan
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Mengxiang Gao
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Xuhuan Tang
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mengya Jiao
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chenchen Wang
- National Demonstration Center for Experimental Basic Medical Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingying Wei
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Quan Gong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, Hubei, China
| | - Jixin Zhong
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
10
|
Li R, Chai L, Lei L, Guo R, Wen X. MiR-671-5p sponging activity of circMMP1 promotes esophageal squamous cancer progression. Thorac Cancer 2023; 14:2924-2933. [PMID: 37635445 PMCID: PMC10569906 DOI: 10.1111/1759-7714.15078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/01/2023] [Accepted: 08/05/2023] [Indexed: 08/29/2023] Open
Abstract
BACKGROUND The aim of this study was to explore the function and mechanism of circular RNA (circRNA) matrix metallopeptidase 1 (circMMP1) in the progression of esophageal squamous cell carcinoma (ESCC). METHODS CircMMP1 expression was detected by quantitative real-time PCR (qRT-PCR), and its relationship with the prognosis of ESCC patients was evaluated by Kaplan-Meier analysis. Cells were transfected using corresponding plasmids, and the cell proliferation activity, migration and invasion capabilities in vitro were assessed. The protein level in tissues and cells was analyzed using western blotting. RNA pulldown, dual-luciferase reporter assay and RNA immunoprecipitation assay were performed in ESCC cells to detect the interaction between circMMP1 and miR-671-5p, or the correlation between miR-671-5p and ANO1. Xenograft tumor experiment was carried out to uncover the function of circMMP1 in vivo. RESULTS The high level of circMMP1 in tumor tissues was associated with poor prognoses of ESCC patients. Knockdown of circMMP1 suppressed ESCC cell proliferation, migration and invasion in vitro. MiR-671-5p was the target of circMMP1 and mediated the inhibition effect of circMMP1 on ESCC cells. CircMMP1 targeted miR-671-5p to regulate ANO1 expression, which was downstream of miR-671-5p. Overexpression of ANO1 weakened tumor-repressive function of circMMP1 knockdown in ESCC cells. Moreover, silencing of circMMP1 impeded ESCC tumor growth in vivo. CONCLUSION Our study provided novel evidence that circMMP1 accelerated ESCC progression by acting as a miR-671-5p sponge to enhance ANO1 expression.
Collapse
Affiliation(s)
- Rong Li
- Department of RadiotherapyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Linyan Chai
- Department of RadiotherapyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Lei Lei
- Department of CardiologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Rong Guo
- Department of Nuclear MedicineThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Xiulin Wen
- Department of NursingThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| |
Collapse
|
11
|
Nag S, Bhattacharya B, Dutta S, Mandal D, Mukherjee S, Anand K, Eswaramoorthy R, Thorat N, Jha SK, Gorai S. Clinical Theranostics Trademark of Exosome in Glioblastoma Metastasis. ACS Biomater Sci Eng 2023; 9:5205-5221. [PMID: 37578350 DOI: 10.1021/acsbiomaterials.3c00212] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Glioblastoma (GBM) is an aggressive type of cancer that has led to the death of a large population. The traditional approach fails to develop a solution for GBM's suffering life. Extensive research into tumor microenvironments (TME) indicates that TME extracellular vesicles (EVs) play a vital role in cancer development and progression. EVs are classified into microvacuoles, apoptotic bodies, and exosomes. Exosomes are the most highlighted domains in cancer research. GBM cell-derived exosomes participate in multiple cancer progression events such as immune suppression, angiogenesis, premetastatic niche formation (PMN), ECM (extracellular matrix), EMT (epithelial-to-mesenchymal transition), metastasis, cancer stem cell development and therapeutic and drug resistance. GBM exosomes also carry the signature of a glioblastoma-related status. The exosome-based GBM examination is part of the new generation of liquid biopsy. It also solved early diagnostic limitations in GBM. Traditional therapeutic approaches do not cross the blood-brain barrier (BBB). Exosomes are a game changer in GBM treatment and it is emerging as a potential platform for effective, efficient, and specific therapeutic development. In this review, we have explored the exosome-GBM interlink, the clinical impact of exosomes on GBM biomarkers, the therapeutics signature of exosomes in GBM, exosome-based research challenges, and future directions in GBM. Therefore, the GBM-derived exosomes offer unique therapeutic opportunities, which are currently under preclinical and clinical testing.
Collapse
Affiliation(s)
- Sagnik Nag
- Department of Biosciences, School of Biosciences & Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Bikramjit Bhattacharya
- Department of Applied Microbiology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Swagata Dutta
- Department of Agricultural and food Engineering, IIT Kharagpur, Kharagpur, West Bengal 721302, India
| | - Debashmita Mandal
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology (MAKAUT), Haringhata, Nadia, West Bengal 741249, India
| | - Sayantanee Mukherjee
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - Krishnan Anand
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein, 9300, South Africa
| | - Rajalakshmanan Eswaramoorthy
- Department of Biomaterials, Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College and Hospitals, Saveetha institute of Medical and Technical sciences (SIMATS) Chennai 600077, India
| | - Nanasaheb Thorat
- Limerick Digital Cancer Research Centre and Department of Physics, Bernal Institute, University of Limerick, Castletroy, Co. Limerick, Limerick V94T9PX, Ireland
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Knowledge Park-III, Institutional Area, Greater Noida 201310, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali 140413, India
- Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India
| | - Sukhamoy Gorai
- Rush University Medical Center, 1620 W Harrison Street, Chicago, Illinois 60612, United States
| |
Collapse
|
12
|
Avgoulas DI, Tasioulis KS, Papi RM, Pantazaki AA. Therapeutic and Diagnostic Potential of Exosomes as Drug Delivery Systems in Brain Cancer. Pharmaceutics 2023; 15:pharmaceutics15051439. [PMID: 37242681 DOI: 10.3390/pharmaceutics15051439] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Cancer is designated as one of the principal causes of mortality universally. Among different types of cancer, brain cancer remains the most challenging one due to its aggressiveness, the ineffective permeation ability of drugs through the blood-brain barrier (BBB), and drug resistance. To overcome the aforementioned issues in fighting brain cancer, there is an imperative need for designing novel therapeutic approaches. Exosomes have been proposed as prospective "Trojan horse" nanocarriers of anticancer theranostics owing to their biocompatibility, increased stability, permeability, negligible immunogenicity, prolonged circulation time, and high loading capacity. This review provides a comprehensive discussion on the biological properties, physicochemical characteristics, isolation methods, biogenesis and internalization of exosomes, while it emphasizes their therapeutic and diagnostic potential as drug vehicle systems in brain cancer, highlighting recent advances in the research field. A comparison of the biological activity and therapeutic effectiveness of several exosome-encapsulated cargo including drugs and biomacromolecules underlines their great supremacy over the non-exosomal encapsulated cargo in the delivery, accumulation, and biological potency. Various studies on cell lines and animals give prominence to exosome-based nanoparticles (NPs) as a promising and alternative approach in the management of brain cancer.
Collapse
Affiliation(s)
- Dimitrios I Avgoulas
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Konstantinos S Tasioulis
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Rigini M Papi
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Anastasia A Pantazaki
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
13
|
Roles of circular RNAs in regulating the development of glioma. J Cancer Res Clin Oncol 2023; 149:979-993. [PMID: 35776196 DOI: 10.1007/s00432-022-04136-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/13/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND Glioma is the most common malignant tumor in the central nervous system. In patients with glioma, the prognosis is poor and median survival is only 12-15 months. With the recent development of sequencing technology, important roles of noncoding RNAs are being discovered in cells, especially those of circular RNAs (circRNAs). Because circRNAs are stable, abundant, and highly conserved, they are regarded as novel biomarkers in the early diagnosis and prognosis of diseases. PURPOSE In this review, roles and mechanisms of circRNAs in the development of glioma are summarized. METHODS This paper collects and reviews relevant PubMed literature. CONCLUSION Several classes of circRNAs are highly expressed in glioma and are associated with malignant biological behaviors of gliomas, including proliferation, migration, invasion, apoptosis, angiogenesis, and drug resistance. Further studies are needed to clarify the roles of circRNAs in glioma and to determine whether it is possible to increase therapeutic effects on tumors through circRNA intervention.
Collapse
|
14
|
Hu T, Peng H, Yang F, Zhang F, He J. Circ_0024108 promotes the progression of esophageal cancer cells. Gen Thorac Cardiovasc Surg 2023:10.1007/s11748-023-01909-8. [PMID: 36757626 DOI: 10.1007/s11748-023-01909-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/18/2023] [Indexed: 02/10/2023]
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is a serious malignant cancer. The treatment effect of ESCC is relatively poor and needs further improvement. According to reports, circular RNAs (circRNAs) actively participate in human carcinogenesis. More explorations are needed about the action of circRNAs in ESCC. METHODS Circ_0024108, miR-488-3p, and USP14 was quantified by a qRT-PCR or immunoblotting method. Cell proliferation evaluation was performed by MTT, EdU, and colony formation assays. Evaluation of cell motility and invasiveness was conducted using wound healing assay and transwell assay. The regulatory mechanism of circ_0024108, miR-488-3p, and USP14 was detected by RNA pull-down assay and dual-luciferase reporter assay. RESULTS Circ_0024108 and USP14 were significantly overexpressed in ESCC, while miR-488-3p was underexpressed. Deficiency of circ_0024108 impeded cell growth, motility, and invasiveness. Circ_0024108 regulated the expression of USP14 in ESCC cells via miR-488-3p. Also, circ_0024108 was present at high levels in serum exosomes from ESCC patients with high specificity and sensitivity. CONCLUSIONS Taken together, circ_0024108 participated in the progress of ESCC through the miR-488-3p/USP14 axis. Circ_0024108 was differentially expressed in serum exosomes. Circ_0024108 might be a potential biomarker for the diagnosis of ESCC.
Collapse
Affiliation(s)
- Tongchen Hu
- Department of Thoracic Surgery, The Affiliated Hospital of Southwest Medical University, No. 25 TaiPing St, Jiangyang District, Luzhou, 646000, Sichuan, People's Republic of China
| | - Huali Peng
- Department of Thoracic Surgery, The People's Hospital of Leshan, Leshan, 614000, Sichuan, China
| | - Fan Yang
- Department of Thoracic Surgery, The People's Hospital of Leshan, Leshan, 614000, Sichuan, China
| | - Fan Zhang
- Department of Thoracic Surgery, The People's Hospital of Leshan, Leshan, 614000, Sichuan, China
| | - Jintao He
- Department of Thoracic Surgery, The Affiliated Hospital of Southwest Medical University, No. 25 TaiPing St, Jiangyang District, Luzhou, 646000, Sichuan, People's Republic of China.
| |
Collapse
|
15
|
Wu X, Shi M, Lian Y, Zhang H. Exosomal circRNAs as promising liquid biopsy biomarkers for glioma. Front Immunol 2023; 14:1039084. [PMID: 37122733 PMCID: PMC10140329 DOI: 10.3389/fimmu.2023.1039084] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 03/30/2023] [Indexed: 05/02/2023] Open
Abstract
Liquid biopsy strategies enable the noninvasive detection of changes in the levels of circulating biomarkers in body fluid samples, providing an opportunity to diagnose, dynamically monitor, and treat a range of diseases, including cancers. Glioma is among the most common forms of intracranial malignancy, and affected patients exhibit poor prognostic outcomes. As such, diagnosing and treating this disease in its early stages is critical for optimal patient outcomes. Exosomal circular RNAs (circRNAs) are involved in both the onset and progression of glioma. Both the roles of exosomes and methods for their detection have received much attention in recent years and the detection of exosomal circRNAs by liquid biopsy has significant potential for monitoring dynamic changes in glioma. The present review provides an overview of the circulating liquid biopsy biomarkers associated with this cancer type and the potential application of exosomal circRNAs as tools to guide the diagnosis, treatment, and prognostic evaluation of glioma patients during disease progression.
Collapse
Affiliation(s)
- Xiaoke Wu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mengmeng Shi
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yajun Lian
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- *Correspondence: Haifeng Zhang, ; Yajun Lian,
| | - Haifeng Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- *Correspondence: Haifeng Zhang, ; Yajun Lian,
| |
Collapse
|
16
|
Deng Y, Xu L, Li Y. Knockdown of circEXOC6 inhibits cell progression and glycolysis by sponging miR-433-3p and mediating FZD6 in glioma. Transl Neurosci 2023; 14:20220294. [PMID: 37554539 PMCID: PMC10404894 DOI: 10.1515/tnsci-2022-0294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND The effect of circular RNA in many human cancers is widely studied. Nevertheless, their specific biological functions and mechanisms in glioma remain unclear. METHODS CircEXOC6, miR-433-3p, and frizzled class receptor 6 (FZD6) mRNA expression levels were measured by quantitative reverse transcription polymerase chain reaction assay. Cell proliferation, migration, invasion, apoptosis, and angiogenesis were tested by colony formation, cell-light 5-ethynyl-2'-deoxyuridine, transwell, and tube formation assays, respectively. Moreover, glucose consumption and lactate production were calculated to evaluate the glycolytic metabolism using the respective kits. Western blot assay was carried out to measure the protein levels of apoptotic markers (Bcl-2 and Bax), glycolytic markers (HK2 and GLUT1), and FZD6. The targeted relationship of miR-433-3p and circEXOC6 or FZD6 was verified by dual-luciferase reporter or RNA immunoprecipitation assays. In vivo, xenograft and immunohistochemistry assay was conducted to discriminate the effect of circEXOC6. RESULTS CircEXOC6 and FZD6 were highly expressed, while miR-433-3p was significantly lowly expressed in glioma tissues or cells. Deficiency of circEXOC6 inhibited cell proliferation, migration, invasion, angiogenesis, and glycolysis, and triggered cell apoptosis ratio in glioma; simultaneously, it could block the growth of tumor in vivo. In addition, miR-433-3p was a target of circEXOC6, and downregulated miR-433-3p could partly weaken the inhibitory effect of circEXOC6 deficiency. Besides, miR-433-3p enrichment inhibited cell progression and glycolysis in glioma, and the effect was reversed by overexpression of FZD6. CONCLUSION Deletion of circEXOC6 restrained cell progression and glycolysis by sponging miR-433-3p and interacting with FZD6, which might provide an underlying target for glioma treatment.
Collapse
Affiliation(s)
- Yu Deng
- Department of Pathology, Jinan People’s Hospital, No. 001 Xuehu Street, Zhangjiawa Street, Laiwu District, Jinan, Shandong, 271100, China
| | - Liu Xu
- Department of Pathology, Jinan People’s Hospital, No. 001 Xuehu Street, Zhangjiawa Street, Laiwu District, Jinan, Shandong, 271100, China
| | - Yuqiang Li
- Department of Pathology, Jinan People’s Hospital, No. 001 Xuehu Street, Zhangjiawa Street, Laiwu District, Jinan, Shandong, 271100, China
| |
Collapse
|
17
|
Yang K, Zhang F, Luo B, Qu Z. CAFs-derived small extracellular vesicles circN4BP2L2 promotes proliferation and metastasis of colorectal cancer via miR-664b-3p/HMGB3 pathway. Cancer Biol Ther 2022; 23:404-416. [PMID: 35722996 PMCID: PMC9225373 DOI: 10.1080/15384047.2022.2072164] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Our previous research has demonstrated that colorectal cancer (CRC) progression was promoted by circN4BP2L2. This study aimed to further explore the mechanism of circN4BP2L2 in the development of CRC from the perspective of small extracellular vesicles (sEVs). Cancer-associated fibroblasts cell (CAFs) and normal fibroblasts cell (NFs) were isolated from CRC tissues and adjacent tissues, respectively. The ultra-centrifugation was used for extraction of their related sEVs. Cell proliferation and apoptosis were analyzed using CCK-8 and flow cytometry, respectively. Transwell assay was conducted to measure cell migration. The tube formation ability was assessed by tube formation assay. The target relationships between circN4BP2L2 and miR-664b-3p, and miR-664b-3p and HMGB3 were validated by dual-luciferase reporter detection. The effect of CAFs-derived sEV (CAFs-sEVs) circN4BP2L2 on CRC was further studied in nude mice. CAFs-exo promoted cell proliferation, migration, tube formation ability, and inhibited apoptosis of CRC cells. CAFs-sEV circN4BP2L2 knockdown reversed the above results. CircN4BP2L2 directly targeted miR-664b-3p, and HMGB3 was targeted by miR-664b-3p. Moreover, subcutaneous tumorigenesis and liver metastasis of nude mice with CRC were repressed by CAFs-sEV circN4BP2L2 knockdown. CAFs-sEV circN4BP2L2 knockdown restrained CRC cell proliferation and migration by regulating miR-664b-3p/HMGB3 pathway.
Collapse
Affiliation(s)
- Keda Yang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Fan Zhang
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Baihua Luo
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Zhan Qu
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
18
|
Wang ZY, Wen ZJ, Xu HM, Zhang Y, Zhang YF. Exosomal noncoding RNAs in central nervous system diseases: biological functions and potential clinical applications. Front Mol Neurosci 2022; 15:1004221. [PMID: 36438184 PMCID: PMC9681831 DOI: 10.3389/fnmol.2022.1004221] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/18/2022] [Indexed: 09/26/2023] Open
Abstract
Central nervous system (CNS) disease is a general term for a series of complex and diverse diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), CNS tumors, stroke, epilepsy, and amyotrophic lateral sclerosis (ALS). Interneuron and neuron-glia cells communicate with each other through their homeostatic microenvironment. Exosomes in the microenvironment have crucial impacts on interneuron and neuron-glia cells by transferring their contents, such as proteins, lipids, and ncRNAs, constituting a novel form of cell-to-cell interaction and communication. Exosomal noncoding RNAs (ncRNAs), including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), circular RNAs (circRNAs), and PIWI-interacting RNAs (piRNAs), regulate physiological functions and maintain CNS homeostasis. Exosomes are regarded as extracellular messengers that transfer ncRNAs between neurons and body fluids due to their ability to cross the blood-brain barrier. This review aims to summarize the current understanding of exosomal ncRNAs in CNS diseases, including prospective diagnostic biomarkers, pathological regulators, therapeutic strategies and clinical applications. We also provide an all-sided discussion of the comparison with some similar CNS diseases and the main limitations and challenges for exosomal ncRNAs in clinical applications.
Collapse
Affiliation(s)
- Zhong-Yu Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Zeng-Jin Wen
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Hai-Ming Xu
- Department of Occupational and Environmental Medicine, School of Public Health and Management, Ningxia Medical University, Yinchuan, China
- The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, Ningxia Medical University, Yinchuan, China
| | - Yu Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yin-Feng Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
19
|
Pasqualetti F, Rizzo M, Franceschi S, Lessi F, Paiar F, Buffa FM. New perspectives in liquid biopsy for glioma patients. Curr Opin Oncol 2022; 34:705-712. [PMID: 36093876 DOI: 10.1097/cco.0000000000000902] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW Gliomas are the most common primary tumors of the central nervous system. They are characterized by a disappointing prognosis and ineffective therapy that has shown no substantial improvements in the past 20 years. The lack of progress in treating gliomas is linked with the inadequacy of suitable tumor samples to plan translational studies and support laboratory developments. To overcome the use of tumor tissue, this commentary review aims to highlight the potential for the clinical application of liquid biopsy (intended as the study of circulating biomarkers in the blood), focusing on circulating tumor cells, circulating DNA and circulating noncoding RNA. RECENT FINDINGS Thanks to the increasing sensitivity of sequencing techniques, it is now possible to analyze circulating nucleic acids and tumor cells (liquid biopsy). SUMMARY Although studies on the use of liquid biopsy are still at an early stage, the potential clinical applications of liquid biopsy in the study of primary brain cancer are many and have the potential to revolutionize the approach to neuro-oncology, and importantly, they offer the possibility of gathering information on the disease at any time during its history.
Collapse
Affiliation(s)
- Francesco Pasqualetti
- Department of Oncology, University of Oxford, Oxford, UK
- Radiation Oncology Unit, Pisa University Hospital
| | - Milena Rizzo
- Noncoding RNA group, Functional Genetics and Genomics Lab, Institute of Clinical Physiology (IFC), CNR, Pisa
| | | | | | | | - Francesca M Buffa
- Department of Oncology, University of Oxford, Oxford, UK
- Department of Computing Sciences, Bocconi University, Milan, Italy
| |
Collapse
|
20
|
Tang J, Chen J, Wang Y, Zhou S. The role of
MiRNA
‐433 in malignant tumors of digestive tract as tumor suppressor. Cancer Rep (Hoboken) 2022; 5:e1694. [PMID: 35976177 PMCID: PMC9458491 DOI: 10.1002/cnr2.1694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/18/2022] [Accepted: 07/27/2022] [Indexed: 12/24/2022] Open
Abstract
Background MicroRNAs (miRNAs) are a class of short non‐coding RNAs with a length of approximate 22 nuclei acids that can be expressed both as an oncogene and tumor suppressor gene in human cancers. MiRNAs can participate in the post‐ transcriptional regulation of gene expression, and regulate the several cancer‐related processes, including proliferation, apoptosis, metastasis, etc. Recent findings Expression of miRNA‐433 has been reported to vary in different tumors and affected by various factors. We have summarized the different previous studies and found that miRNA‐433 can significantly inhibit the growth of the cancer cells not only in malignant tumors of the digestive tract, but also in lung cancer, breast cancer, cervical cancer, ovarian cancer, bladder cancer, renal carcinoma, glioma, retinoblastoma and osteosarcoma. Conclusion When the expression of miRNA‐433 was up‐regulated, the proliferation, metastasis and invasion abilities of the malignant tumor cells were significantly inhibited. At the same time, the potential mechanisms through which miRNA‐433 can suppress the growth and metastasis of the cancer cells were found to be basically the same, and involved modulation of the specific signaling pathways or target genes in the malignant tumors. Overall, it can be concluded that miRNA‐433 can serve as potential and valuable therapeutic target.
Collapse
Affiliation(s)
- Jie Tang
- General Surgery The Second Affiliated Hospital of Bengbu Medical College Bengbu China
| | - Jiawei Chen
- General Surgery The Second Affiliated Hospital of Bengbu Medical College Bengbu China
| | - Yongqiang Wang
- General Surgery The Second Affiliated Hospital of Bengbu Medical College Bengbu China
| | - Shaobo Zhou
- General Surgery The Second Affiliated Hospital of Bengbu Medical College Bengbu China
| |
Collapse
|
21
|
Zhang Y, Yang X, Zhuang Z, Wei M, Meng W, Deng X, Wang Z. The diagnostic value of exosomal circular RNAs in cancer patients: A systematic review and meta-analysis. Cancer Med 2022; 12:1709-1720. [PMID: 35879835 PMCID: PMC9883561 DOI: 10.1002/cam4.5012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/20/2022] [Accepted: 06/10/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Recently, serum exosomal circular RNAs (circRNAs) were applied to discriminate cancer patients from healthy individuals, indicating that exosomal circRNAs have the potential to be novel biomarkers for cancer diagnosis. This study aims to summarize the role of exosomal circRNAs in cancer diagnosis by a meta-analysis. METHODS A comprehensive literature search was conducted up to July 2021 in PubMed, Web of Science, EMBASE, and Cochrane Database. To evaluate the diagnostic value, the sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR), and area under the curve (AUC) were pooled. Threshold effect followed by subgroup analysis and meta-regression were performed to explore the source of heterogeneity. Sensitivity analysis was performed to assess the stability of this meta-analysis model. Fagan plots and likelihood ratio scattergrams were used to explore the potential clinical significance. RESULTS Ten eligible studies with 514 controls and 557 patients were included in this diagnostic meta-analysis. The pooled sensitivity, specificity, PLR, NLR, and DOR were 0.75 (95% CI: 0.65-0.83), 0.84 (95% CI, 0.78-0.89), 5.87 (95% CI, 3.67-9.38), 0.28 (95% CI, 0.19-0.40), and 21.15 (95% CI, 10.25-43.68), respectively. The AUC was 0.89 (95% CI, 0.86-0.91). Sensitivity analysis showed that four studies had an impact on the pooled results and mainly contributed to the heterogeneity. Fagan's nomogram revealed that the prior probability of 20%, the post probability positive, the post probability negative were 59% and 6%, respectively. CONCLUSION Our results suggested that exosomal circRNAs might serve as powerful biomarkers in detecting cancers with high sensitivity and specificity. However, more well-designed and multicenter diagnostic tests are needed to validate our results.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Gastrointestinal Surgery, West China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Xuyang Yang
- Department of Gastrointestinal Surgery, West China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Zixuan Zhuang
- Department of Gastrointestinal Surgery, West China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Mingtian Wei
- Department of Gastrointestinal Surgery, West China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Wenjian Meng
- Department of Gastrointestinal Surgery, West China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Xiangbing Deng
- Department of Gastrointestinal Surgery, West China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Ziqiang Wang
- Department of Gastrointestinal Surgery, West China HospitalSichuan UniversityChengduSichuan ProvinceChina
| |
Collapse
|
22
|
The Exosome Journey: From Biogenesis to Regulation and Function in Cancers. JOURNAL OF ONCOLOGY 2022; 2022:9356807. [PMID: 35898929 PMCID: PMC9313905 DOI: 10.1155/2022/9356807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/01/2022] [Accepted: 06/20/2022] [Indexed: 12/26/2022]
Abstract
Exosomes are a type of small endosomal-derived vesicles ranging from 30 to 150 nm, which can serve as functional mediators in cell-to-cell communication and various physiological and pathological processes. In recent years, exosomes have emerged as crucial mediators of intracellular communication among tumor cells, immune cells, and stromal cells, which can shuttle bioactive molecules, such as proteins, lipids, RNA, and DNA. Exosomes exhibit the high bioavailability, biological stability, targeting specificity, low toxicity, and immune characteristics, suggesting their potentials in the diagnosis and treatment of cancers. They can be applied as an effective tool in the diagnostics, therapeutics, and drug delivery in cancers. This review summarizes the regulation and functions of exosomes in various cancers to augment our understanding of exosomes, which paves the way for parallel advancements in the therapeutic approach of cancers. In this review, we also discuss the challenges and prospects for clinical application of exosome-based diagnostics and therapeutics for cancers.
Collapse
|
23
|
Tang HD, Wang Y, Xie P, Tan SY, Li HF, Shen H, Zhang Z, Lei ZQ, Zhou JH. The Crosstalk Between Immune Infiltration, Circulating Tumor Cells, and Metastasis in Pancreatic Cancer: Identification of HMGB3 From a Multiple Omics Analysis. Front Genet 2022; 13:892177. [PMID: 35754798 PMCID: PMC9213737 DOI: 10.3389/fgene.2022.892177] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/19/2022] [Indexed: 12/27/2022] Open
Abstract
Metastasis is the major cause of death in patients with pancreatic ductal adenocarcinoma (PDAC), and circulating tumor cells (CTCs) play an important role in the development of metastasis. However, few studies have uncovered the metastasis mechanism of PDAC based on CTCs. In this study, the existing bulk RNA-sequencing (bulk RNA-seq) and single-cell sequencing (scRNA-seq) data for CTCs in pancreatic cancer were obtained from the Gene Expression Omnibus (GEO) database. Analysis of tumor-infiltrating immune cells (TIICs) by CIBERSORT showed that the CTCs enriched from the peripheral blood of metastatic PDAC were found to contain a high proportion of T cell regulators (Tregs) and macrophages, while the proportion of dendritic cells (DCs) was lower than that enriched from localized PDAC. Through weighted gene co-expression network analysis (WGCNA) and the result of scRNA-seq, we identified the hub module (265 genes) and 87 marker genes, respectively, which were highly associated with metastasis. The results of functional enrichment analysis indicated that the two gene sets mentioned above are mainly involved in cell adhesion and cytoskeleton and epithelial–mesenchymal transition (EMT). Finally, we found that HMGB3 was the hub gene according to the Venn diagram. The expression of HMGB3 in PDAC was significantly higher than that in normal tissues (protein and mRNA levels). HMGB3 expression was significantly positively correlated with both EMT-related molecules and CTC cluster–related markers. Furthermore, it was also found that HMGB3 mutations were favorably related to tumor-associated immune cells through the TIMER2.0 online tool. We further demonstrated that PDAC patients with higher HMGB3 expression had significantly worse overall survival (OS) in multiple datasets. In summary, our study suggests that HMGB3 is a hub gene associated with EMT in CTCs, the formation of CTC clusters, and infiltration patterns of immune cells favorable for tumor progression and metastasis to distant organs.
Collapse
Affiliation(s)
- Hao-Dong Tang
- Department of Surgery, School of Medicine, Southeast University, Nanjing, China
| | - Yang Wang
- Department of Hepato-Pancreatico-Biliary Surgery, Zhongda Hospital Southeast University, Nanjing, China
| | - Peng Xie
- Department of Surgery, School of Medicine, Southeast University, Nanjing, China
| | - Si-Yuan Tan
- Department of Surgery, School of Medicine, Southeast University, Nanjing, China
| | - Hai-Feng Li
- Department of Surgery, School of Medicine, Southeast University, Nanjing, China
| | - Hao Shen
- Department of Surgery, School of Medicine, Southeast University, Nanjing, China
| | - Zheng Zhang
- Department of Surgery, School of Medicine, Southeast University, Nanjing, China
| | - Zheng-Qing Lei
- Department of Hepato-Pancreatico-Biliary Surgery, Zhongda Hospital Southeast University, Nanjing, China
| | - Jia-Hua Zhou
- Department of Surgery, School of Medicine, Southeast University, Nanjing, China.,Department of Hepato-Pancreatico-Biliary Surgery, Zhongda Hospital Southeast University, Nanjing, China
| |
Collapse
|
24
|
Han Z, Chen H, Guo Z, Shen J, Luo W, Xie F, Wan Y, Wang S, Li J, He J. Circular RNAs and Their Role in Exosomes. Front Oncol 2022; 12:848341. [PMID: 35574355 PMCID: PMC9096127 DOI: 10.3389/fonc.2022.848341] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/01/2022] [Indexed: 12/11/2022] Open
Abstract
As a novel class of endogenous non-coding RNAs discovered in recent years, circular RNAs (circRNAs) are highly conserved and stable covalently closed ring structures with no 5'-end cap or 3'-end poly(A) tail. CircRNAs are formed by reverse splicing, mainly by means of a noose structure or intron complementary pairing. Exosomes are tiny discoid vesicles with a diameter of 40-100 nm that are secreted by cells under physiological and pathological conditions. Exosomes play an important role in cell-cell communication by carrying DNA, microRNAs, mRNAs, proteins and circRNAs. In this review, we summarize the biological functions of circRNAs and exosomes, and further reveal the potential roles of exosomal circRNAs in different diseases, providing a scientific basis for the diagnosis, treatment, and prognosis of a wide variety of diseases.
Collapse
Affiliation(s)
- Zeping Han
- Central Laboratory, Guangzhou Panyu Central Hospital, Guangzhou, China
- Department of Laboratory Medicine, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Huafang Chen
- Department of Laboratory Medicine, Leizhou Center for Disease Control and Prevention, Leizhou, China
| | - Zhonghui Guo
- Central Laboratory, Guangzhou Panyu Central Hospital, Guangzhou, China
- Department of Laboratory Medicine, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Jian Shen
- Central Laboratory, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Wenfeng Luo
- Central Laboratory, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Fangmei Xie
- Central Laboratory, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Yu Wan
- Department of Gastroenterology, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Shengbo Wang
- Department of Gastroenterology, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Jianhao Li
- Department of Cardiology, Central Hospital of Panyu District, Guangzhou, China
| | - Jinhua He
- Central Laboratory, Guangzhou Panyu Central Hospital, Guangzhou, China
- Department of Laboratory Medicine, Guangzhou Panyu Central Hospital, Guangzhou, China
| |
Collapse
|
25
|
Liquid biopsy: early and accurate diagnosis of brain tumor. J Cancer Res Clin Oncol 2022; 148:2347-2373. [PMID: 35451698 DOI: 10.1007/s00432-022-04011-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/01/2022] [Indexed: 12/15/2022]
Abstract
Noninvasive examination is an emerging area in the field of neuro-oncology. Liquid biopsy captures the landscape of genomic alterations of brain tumors and revolutionizes the traditional diagnosis approaches. Rapidly changing sequencing technologies and more affordable prices put the screws on more application of liquid biopsy in clinical settings. In the past few years, extensive application of liquid biopsy has been seen throughout the whole diagnosis and treatment process of brain tumors, including early and accurate detection, characterization and dynamic monitoring. Here, we summarized and compared the most advanced techniques and target molecules or macrostructures related to brain tumor liquid biopsy. We further reviewed and emphasized recent progression in different clinical settings for brain tumors in blood and CSF. The preferred protocol, potential novel biomarkers and future development are discussed in the last part.
Collapse
|
26
|
Yang M, Zheng E, Ni J, Xu X, Jiang X, Zhao G. Circular RNA circFOXO3 facilitate non-small cell lung cancer progression through upregulating HMGB3 via sponging miR-545-3p/miR-506-3p. Tissue Cell 2022; 75:101702. [PMID: 35038619 DOI: 10.1016/j.tice.2021.101702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Circular RNAs (circRNAs) have emerged as a pivotal regulatory element in the progression of human cancers. Being an important member of circRNAs, circFOXO3 has been implicated in tumor invasion or metastasis of non-small cell lung cancer (NSCLC); however, the molecular mechanism underlying this promoting effect remains an enigma. The present study aims to study the function of circFOXO3 and dissect the relevant intracellular network in the progression and metastasis of NSCLC. METHODS Quantitative real time PCR (RT-qPCR) assay and Western blotting were used to quantify the levels of RNAs and proteins respectively. starBase v2.0 and luciferase assay were used to validate the target of circRNAs or miRNAs. Cell Counting Kit-8 (CCK-8) assay was adopted to examine cell viability. Transwell was used to determine cell invasion and migration. Xenograft model was established to detect tumor growth. RESULTS RT-qPCR showed that circFOXO3 was overexpressed in NSCLC cells and tissues. Knockdown of circFOXO3 not only inhibited NSCLC cell proliferation, migration and invasion in vitro but also suppressed tumor growth in vivo. starBase v2.0 and luciferase assay results collectively suggested that circFOXO3 sponged miR-545-3p and miR-506-3p. Dual-inhibition of circFOXO3 and its target miRNAs suppressed the reduction of cell proliferation, migration and invasion induced by siRNA of circFOXO3 (si-circFOXO3), demonstrating that the effect of circFOXO3 on NSCLC was dependent on sponging miR-545-3p and miR-506-3p. Further bioinformatic analysis and biochemistry experiments revealed that miR-545-3p and miR-506-3p regulated the expression of a family member of high-mobility group box, HMGB3. CONCLUSION Here, we show thatcircFOXO3 in NSCLC promotes the proliferation, migration and invasion of NSCLC cells, thereby promoting tumor growth. We further find that circFOXO3 sponges miR-545-3p/miR-506-3p that bind to 3'-UTR of HMGB3 mRNA, which constitutes the major network fulfilling the circFOXO3's promoting effect. Therefore, we proposed that circFOXO3 could be a potential therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Minglei Yang
- Department of Thoracic Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, 41 Northwest Street, Ningbo, Zhejiang 315010, PR China; Department of Thoracic Surgery, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315000, PR China
| | - Enkuo Zheng
- Department of Thoracic Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, 41 Northwest Street, Ningbo, Zhejiang 315010, PR China
| | - Junjun Ni
- Department of Thoracic Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, 41 Northwest Street, Ningbo, Zhejiang 315010, PR China
| | - Xiang Xu
- Department of Thoracic Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, 41 Northwest Street, Ningbo, Zhejiang 315010, PR China
| | - Xu Jiang
- Department of Thoracic Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, 41 Northwest Street, Ningbo, Zhejiang 315010, PR China
| | - Guofang Zhao
- Department of Thoracic Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, 41 Northwest Street, Ningbo, Zhejiang 315010, PR China; Department of Thoracic Surgery, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315000, PR China.
| |
Collapse
|
27
|
Mousavi SM, Derakhshan M, Baharloii F, Dashti F, Mirazimi SMA, Mahjoubin-Tehran M, Hosseindoost S, Goleij P, Rahimian N, Hamblin MR, Mirzaei H. Non-coding RNAs and glioblastoma: Insight into their roles in metastasis. Mol Ther Oncolytics 2022; 24:262-287. [PMID: 35071748 PMCID: PMC8762369 DOI: 10.1016/j.omto.2021.12.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Glioma, also known as glioblastoma multiforme (GBM), is the most prevalent and most lethal primary brain tumor in adults. Gliomas are highly invasive tumors with the highest death rate among all primary brain malignancies. Metastasis occurs as the tumor cells spread from the site of origin to another site in the brain. Metastasis is a multifactorial process, which depends on alterations in metabolism, genetic mutations, and the cancer microenvironment. During recent years, the scientific study of non-coding RNAs (ncRNAs) has led to new insight into the molecular mechanisms involved in glioma. Many studies have reported that ncRNAs play major roles in many biological procedures connected with the development and progression of glioma. Long ncRNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs) are all types of ncRNAs, which are commonly dysregulated in GBM. Dysregulation of ncRNAs can facilitate the invasion and metastasis of glioma. The present review highlights some ncRNAs that have been associated with metastasis in GBM. miRNAs, circRNAs, and lncRNAs are discussed in detail with respect to their relevant signaling pathways involved in metastasis.
Collapse
Affiliation(s)
- Seyed Mojtaba Mousavi
- Department of Neurosciences and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Derakhshan
- Department of Pathology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatereh Baharloii
- Department of Cardiology, Chamran Cardiovascular Research Education Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Mahjoubin-Tehran
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saereh Hosseindoost
- Brain and Spinal Cord Research Center, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Pouya Goleij
- Department of Genetics, Faculty of Biology, Sana Institute of Higher Education, Sari, Iran
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Internal Medicine, Firoozgar Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
28
|
Qi A, Ru W, Yang H, Yang Y, Tang J, Yang S, Lan X, Lei C, Sun X, Chen H. Circular RNA ACTA1 Acts as a Sponge for miR-199a-5p and miR-433 to Regulate Bovine Myoblast Development through the MAP3K11/MAP2K7/JNK Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3357-3373. [PMID: 35234473 DOI: 10.1021/acs.jafc.1c07762] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Circular RNAs (circRNAs) are a special class of noncoding RNA molecules that regulate many different biological processes. Myogenesis, a complex process, is primarily regulated by myogenic regulatory factors (MRFs) and various noncoding RNAs. However, the functions and regulatory mechanisms of circRNAs in myoblast development are unclear. In this study, we analyzed circRNA sequencing data of bovine myocyte tissues and identified circACTA1. Functional assays showed that circACTA1 could inhibit bovine myocyte proliferation and promote cell apoptosis and cytodifferentiation. In addition, circACTA1 could promote muscle repair in vivo. Mechanistically, luciferase assay and RNA immunoprecipitation were used to examine the interaction between circACTA1, miR-199a-5p, miR-433, and the target genes MAP3K11 and MAPK8. Meanwhile, we found that miR-199a-5p and miR-433 could suppress the expression of MAP3K11 and MAPK8, respectively. However, circACTA1 could mitigate this effect and activate the JNK signaling pathway. In conclusion, our results suggest that circACTA1 regulates the multiplication, apoptosis, and cytodifferentiation of bovine myocytes by competitively combining with miR-199a-5p and miR-433 to activate the mitogen-activated protein kinase kinase kinase 11 (MAP3K11)/mitogen-activated protein kinase kinase 7 (MAP2K7)/JNK signaling pathway.
Collapse
Affiliation(s)
- Ao Qi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, Shaanxi 712100, China
| | - Wenxiu Ru
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, Shaanxi 712100, China
| | - Haiyan Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, Shaanxi 712100, China
| | - Yu Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, Shaanxi 712100, China
| | - Jia Tang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, Shaanxi 712100, China
| | - Shuling Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, Shaanxi 712100, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, Shaanxi 712100, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, Shaanxi 712100, China
| | - Xiuzhu Sun
- College of Grassland Agriculture, Northwest A&F University, Yangling, Xianyang, Shaanxi 712100, China
| | - Hong Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, Shaanxi 712100, China
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| |
Collapse
|
29
|
Peng J, Liang Q, Xu Z, Cai Y, Peng B, Li J, Zhang W, Kang F, Hong Q, Yan Y, Zhang M. Current Understanding of Exosomal MicroRNAs in Glioma Immune Regulation and Therapeutic Responses. Front Immunol 2022; 12:813747. [PMID: 35095909 PMCID: PMC8796999 DOI: 10.3389/fimmu.2021.813747] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/27/2021] [Indexed: 02/05/2023] Open
Abstract
Exosomes, the small extracellular vesicles, are released by multiple cell types, including tumor cells, and represent a novel avenue for intercellular communication via transferring diverse biomolecules. Recently, microRNAs (miRNAs) were demonstrated to be enclosed in exosomes and therefore was protected from degradation. Such exosomal miRNAs can be transmitted to recipient cells where they could regulate multiple cancer-associated biological processes. Accumulative evidence suggests that exosomal miRNAs serve essential roles in modifying the glioma immune microenvironment and potentially affecting the malignant behaviors and therapeutic responses. As exosomal miRNAs are detectable in almost all kinds of biofluids and correlated with clinicopathological characteristics of glioma, they might be served as promising biomarkers for gliomas. We reviewed the novel findings regarding the biological functions of exosomal miRNAs during glioma pathogenesis and immune regulation. Furthermore, we elaborated on their potential clinical applications as biomarkers in glioma diagnosis, prognosis and treatment response prediction. Finally, we summarized the accessible databases that can be employed for exosome-associated miRNAs identification and functional exploration of cancers, including glioma.
Collapse
Affiliation(s)
- Jinwu Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Department of Pathology, Xiangya Changde Hospital, Changde, China
| | - Qiuju Liang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Department of Pathology, Xiangya Changde Hospital, Changde, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yuan Cai
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Bi Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Jianbo Li
- Department of Pathology, Xiangya Changde Hospital, Changde, China
| | - Wenqin Zhang
- Department of Pathology, Xiangya Changde Hospital, Changde, China
| | - Fanhua Kang
- Department of Pathology, Xiangya Changde Hospital, Changde, China
| | - Qianhui Hong
- Department of Pathology, Xiangya Changde Hospital, Changde, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Mingyu Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
30
|
Li P, Xu Z, Liu T, Liu Q, Zhou H, Meng S, Feng Z, Tang Y, Liu C, Feng J, Fu H, Liu Q, Wu M. Circular RNA Sequencing Reveals Serum Exosome Circular RNA Panel for High-Grade Astrocytoma Diagnosis. Clin Chem 2021; 68:332-343. [PMID: 34942001 DOI: 10.1093/clinchem/hvab254] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 11/05/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Although major advances have been made in the histopathological diagnosis of high-grade astrocytoma (HGA), methods for effective and noninvasive diagnosis remain largely unknown. Exosomes can cross the blood-brain barrier and are readily accessible in human biofluids, making them promising biomarkers for HGA. Circular RNAs (circRNAs) have potential as tumor biomarkers owing to their stability, conservation, and tissue specificity. However, the landscape and characteristics of exosome circRNAs in HGA remain to be studied. METHODS CircRNA deep sequencing and bioinformatics approaches were used to generate a circRNA profiling database and analyze the features of HGA cell circRNAs and HGA cell-derived exosome circRNAs. Exosome circRNA expression in the serum and tissues of healthy individuals and patients with HGA was detected using reverse transcription-quantitative PCR. Additionally, the receiver operating characteristic curve and overall survival curves were analyzed. RESULTS By investigating the characteristics of HGA cell-derived exosome circRNAs and HGA cell circRNAs, we observed that exosomes were more likely to enrich short-exon and suppressor circRNAs than HGA cells. Moreover, a serum exosome circRNA panel including hsa_circ_0075828, hsa_circ_0003828, and hsa_circ_0002976 could be used to screen for HGA, whereas a good prognosis panel comprised high concentrations of hsa_circ_0005019, hsa_circ_0000880, hsa_circ_0051680, and hsa_circ_0006365. CONCLUSIONS This study revealed a comprehensive circRNA landscape in HGA exosomes and cells. The serum exosome circexosome circRNA panel and tissue circRNAs are potentially useful for HGA liquid biopsy and prognosis monitoring. Exosome circRNAs as novel targets should facilitate further biomarker discovery and aid in HGA diagnosis and therapy monitoring.
Collapse
Affiliation(s)
- Peiyao Li
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, China, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
| | - Zihao Xu
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, China, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
| | - Tao Liu
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, China, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
| | - Qing Liu
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Hecheng Zhou
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, China, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
| | - Shujuan Meng
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, China, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
| | - Ziyang Feng
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, China, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
| | - Ying Tang
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, China, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
| | - Changhong Liu
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, China, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China.,Institute of Medical Sciences, The Second Hospital of Shandong University, Jinan, Shandon 250033, China
| | - Jianbo Feng
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, China, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
| | - Haijuan Fu
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, China, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
| | - Qiang Liu
- The Third Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Minghua Wu
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, China, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
31
|
Current landscape of tumor-derived exosomal ncRNAs in glioma progression, detection, and drug resistance. Cell Death Dis 2021; 12:1145. [PMID: 34887381 PMCID: PMC8660802 DOI: 10.1038/s41419-021-04430-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/11/2021] [Accepted: 11/19/2021] [Indexed: 02/07/2023]
Abstract
Glioma is the most common and fatal tumor of the central nervous system in humans. Despite advances in surgery, radiotherapy, and chemotherapeutic agents, glioma still has a poor prognosis. The tumor microenvironment (TME) of glioma is of highly complex heterogeneity, which relies on a network-based communication between glioma cells and other stromal cell types. Exosomes are the most common type of naturally occurring extracellular vesicles, ranging in size from 40 to 160 nm, and can serve as carriers for proteins, RNAs, and other biologically active molecules. Recent evidence has shown that glioma-derived exosomes (GDEs) can be integrally detected in the local tissue and circulatory blood samples, and also can be transferred to recipient cells to mediate transmission of genetic information. Non-coding RNAs (ncRNAs) mainly including microRNA, long non-coding RNA, and circular RNA, account for a large portion of the human transcriptome. A broad range of ncRNAs encapsulated in GDEs is reported to exert regulatory functions in various pathophysiological processes of glioma. Herein, this review summarizes the latest findings on the fundamental roles of GDE ncRNAs that have been implicated in glioma behaviors, immunological regulation, diagnosis potential, and treatment resistance, as well as the current limitations and perspectives. Undoubtedly, a thorough understanding of this area will provide comprehensive insights into GDE-based clinical applications for combating gliomas.
Collapse
|
32
|
Zhang K, Wang Q, Zhao D, Liu Z. Circular RNA circMMP1 Contributes to the Progression of Glioma Through Regulating TGIF2 Expression by Sponging miR-195-5p. Biochem Genet 2021; 60:770-789. [PMID: 34471941 DOI: 10.1007/s10528-021-10119-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/02/2021] [Indexed: 10/20/2022]
Abstract
Glioma is characterized by high morbidity and mortality worldwide. Circular RNA (circRNA) matrix metallopeptidase 1 (circMMP1, hsa_circ_0024108) was reported to be increased in glioma. This study is designed to explore the role and mechanism of circMMP1 in glioma progression. CircMMP1, linear MMP1, microRNA-195-5p (miR-195-5p), and transforming growth factor-beta-induced 2 (TGIF2) level were detected by real-time quantitative polymerase chain reaction (RT-qPCR). The protein levels of TGIF2, Beclin1, and p62 were examined by Western blot assay. Colony number, migration, invasion, and apoptosis were detected by Colony formation, transwell, and flow cytometry assays, severally. The binding relationship between miR-195-5p and circMMP1 or TGIF2 was predicted by starbase or Targetscan and then verified by a dual-luciferase reporter and RNA Immunoprecipitation (RIP) assays. The biological role of circMMP1 on glioma cell growth was examined by the xenograft tumor model in vivo. CircMMP1 and TGIF2 expression were upregulated, and miR-195-5p expression was downregulated in glioma tissues and cells. And the knockdown of circMMP1 could block colony formation, migration, and invasion and expedite apoptosis and autophagy in glioma cells. The mechanical analysis discovered that circMMP1 acted as a sponge of miR-195-5p to regulate TGIF2 expression. CircMMP1 knockdown suppressed cell growth of glioma in vivo. CircMMP1 boosted glioma progression partly by targeting the miR-195-5p/TGIF2 axis, suggesting a promising circRNA-targeted therapy for glioma treatment.
Collapse
Affiliation(s)
- Kuiming Zhang
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qi Wang
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Dehao Zhao
- Department of Neurosurgery, Baoshan People's Hospital, Baoshan, Yunnan, China
| | - Zhen Liu
- Department of Neurosurgery, Nanyang Second General Hospital, No. 66 Jianshe East Road, Nanyang City, 473012, Henan Province, China.
| |
Collapse
|
33
|
MiR-379-5p targets microsomal glutathione transferase 1 (MGST1) to regulate human glioma in cell proliferation, migration and invasion and epithelial-mesenchymal transition (EMT). Biochem Biophys Res Commun 2021; 568:8-14. [PMID: 34171541 DOI: 10.1016/j.bbrc.2021.05.099] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 05/29/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Glioma is one of the most malignant tumors worldwide. This study was aimed to study the effect of miR-379-5p/MGST1 on cell proliferation, migration, invasion and EMT in glioma. METHODS RT-qPCR detected the expression of miR-379-5p and MGST1 in RNA level in glioma cell lines. Bioinformatic analysis was made to explore the associations between miR-379-5p and MGST1 while survival analysis was made with regards to MGST1 expression in glioma patients. Western blot analysis was applied to measure the EMT changes. MTT examined the cell viability. Transwell was used to detect the cellular invasion and migration. The binding sites between miR-379-5p and MGST1 were validated by luciferase reporter assays. RESULTS miR-379-5p expression was lower in glioma cells. MiR-379-5p increase inhibited the viability, migration, invasion and EMT while inhibition of miR-379-5p showed a reverse effect. MGST1 inhibition curbed the cell functions. MiR-379-5p targeted and regulated MGST1 expression. Lower MGST1 is related to higher survival rate. CONCLUSION miR-379-5p could regulate glioma cell viability, migration, invasion and EMT through MGST1, suggesting that miR-379-5p/MGST1 axis might function in the regulation of glioma progression.
Collapse
|
34
|
He X, Xu T, Hu W, Tan Y, Wang D, Wang Y, Zhao C, Yi Y, Xiong M, Lv W, Wu M, Li X, Wu Y, Zhang Q. Circular RNAs: Their Role in the Pathogenesis and Orchestration of Breast Cancer. Front Cell Dev Biol 2021; 9:647736. [PMID: 33777954 PMCID: PMC7991790 DOI: 10.3389/fcell.2021.647736] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/11/2021] [Indexed: 12/12/2022] Open
Abstract
As one of the most frequently occurring malignancies in women, breast cancer (BC) is still an enormous threat to women all over the world. The high mortality rates in BC patients are associated with BC recurrence, metastatic progression to distant organs, and therapeutic resistance. Circular RNAs (circRNAs), belonging to the non-coding RNAs (ncRNAs), are connected end to end to form covalently closed single-chain circular molecules. CircRNAs are widely found in different species and a variety of human cells, with the features of diversity, evolutionary conservation, stability, and specificity. CircRNAs are emerging important participators in multiple diseases, including cardiovascular disease, inflammation, and cancer. Recent studies have shown that circRNAs are involved in BC progress by regulating gene expression at the transcriptional or post-transcriptional level via binding to miRNAs then inhibiting their function, suggesting that circRNAs may be potential targets for early diagnosis, treatment, and prognosis of BC. Herein, in this article, we have reviewed and summarized the current studies about the biogenesis, features, and functions of circRNAs. More importantly, we emphatically elucidate the pivotal functions and mechanisms of circRNAs in BC growth, metastasis, diagnosis, and drug resistance. Deciphering the complex networks, especially the circRNA-miRNA target gene axis, will endow huge potentials in developing therapeutic strategies for combating BC.
Collapse
Affiliation(s)
- Xiao He
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Xu
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weijie Hu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yufang Tan
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dawei Wang
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yichen Wang
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chongru Zhao
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Yi
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingchen Xiong
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenchang Lv
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Wu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingrui Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiping Wu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Zhang
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
35
|
Exosomal circRNAs: A new star in cancer. Life Sci 2021; 269:119039. [PMID: 33454367 DOI: 10.1016/j.lfs.2021.119039] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/20/2020] [Accepted: 01/01/2021] [Indexed: 12/13/2022]
Abstract
As a disease that seriously endangers human health, cancer still lacks effective treatment because of its complicated mechanism of action. Currently, an emerging class of RNAs, named circular RNAs (circRNAs), has been found to be closely related to cancer. CircRNAs have a stable closed loop structure which would be hardly degraded in blood or body fluids. Exosomes are found naturally in a variety of cells, mediating cell-to-cell communication, or participating in multiple processes of tumor development. Researchers have found that abnormally expressed circRNAs may be associated with the occurrence and development of malignancies. As a kind of exosome-derived non-coding RNAs, exosomal circRNAs have also played important roles in cancer progression and acted as diagnostic and prognostic biomarkers for cancer, and thus arousing more and more attention. This article reviews the functions, mechanisms and values of the exosomal circRNAs in tumors in order to provide new ideas and novel biomarkers for the diagnosis and treatment of cancer.
Collapse
|
36
|
Wen B, Wei YT, Zhao K. The role of high mobility group protein B3 (HMGB3) in tumor proliferation and drug resistance. Mol Cell Biochem 2021; 476:1729-1739. [PMID: 33428061 DOI: 10.1007/s11010-020-04015-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023]
Abstract
The high mobility group protein B (HMGB) family (including HMGB1, HMGB2, HMGB3, and HMGB4) can regulate the mechanisms of DNA replication, transcription, recombination, and repair, and act as cytokines to mediate responses to infection, injury, and inflammation. HMGB1/2/3 has a high similarity in sequence and structure, while HMGB4 has no acidic C-terminal tail. Among them, HMGB3 can regulate the self-renewal and differentiation of normal hematopoietic stem cell population, but the decrease of its expression is easy to induce leukemia. Up-regulation of its expression promotes tumor development and chemotherapy resistance through a variety of mechanisms, and non-coding RNA can regulate to promote tumor cell proliferation, invasion, and migration and inhibit cancer cell apoptosis.
Collapse
Affiliation(s)
- Bin Wen
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563003, Guizhou, P. R. China
| | - Ying-Ting Wei
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563003, Guizhou, P. R. China
| | - Kui Zhao
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563003, Guizhou, P. R. China.
| |
Collapse
|