1
|
Martelo-Vidal L, Vázquez-Mera S, Miguéns-Suárez P, Bravo-López SB, Makrinioti H, Domínguez-Arca V, de-Miguel-Díez J, Gómez-Carballa A, Salas A, González-Barcala FJ, Salgado FJ, Nieto-Fontarigo JJ. Urinary Proteome and Exosome Analysis Protocol for the Discovery of Respiratory Diseases Biomarkers. Biomolecules 2025; 15:60. [PMID: 39858454 PMCID: PMC11762655 DOI: 10.3390/biom15010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/04/2024] [Accepted: 12/31/2024] [Indexed: 01/27/2025] Open
Abstract
This study aims to develop a protocol for respiratory disease-associated biomarker discovery by combining urine proteome studies with urinary exosome components analysis (i.e., miRNAs). To achieve this, urine was DTT treated to decrease uromodulin, then concentrated and ultracentrifuged. Proteomic analyses of exosome-free urine were performed using LC-MS/MS. Simultaneously, miRNA expression from urine exosomes was measured using either RTqPCR (pre-amplification) or nCounter Nanostring (non-amplication) analyses. We detected 548 different proteins in exosome-free urine samples (N = 5) with high confidence (FDR < 1%), many of them being expressed in different non-renal tissues. Specifically, lung-related proteins were overrepresented (Fold enrichment = 1.31; FDR = 0.0335) compared to whole human proteome, and 10-15% were already described as protein biomarkers for several pulmonary diseases. Urine proteins identified belong to several functional categories important in respiratory pathology. We could confirm the expression of miRNAs previously connected to respiratory diseases (i.e., miR-16-5p, miR-21-5p, miR-146a-5p, and miR-215-5p) in urine exosomes by RTqPCR. Finally, we detected 333 miRNAs using Nanostring, 15 of them up-regulated in T2high asthma (N = 4) compared to T2low asthma (N = 4) and healthy subjects (N = 4). Therefore, this protocol combining the urinary proteome (exosome free) with the study of urinary exosome components (i.e., miRNAs) holds great potential for molecular biomarker discovery of non-renal and particularly respiratory pathologies.
Collapse
Affiliation(s)
- Laura Martelo-Vidal
- BioLympho Research Group, Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (L.M.-V.); (S.V.-M.); (P.M.-S.); (F.J.G.-B.); (J.J.N.-F.)
- Translational Research in Airway Diseases Group (TRIAD), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Sara Vázquez-Mera
- BioLympho Research Group, Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (L.M.-V.); (S.V.-M.); (P.M.-S.); (F.J.G.-B.); (J.J.N.-F.)
- Translational Research in Airway Diseases Group (TRIAD), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Pablo Miguéns-Suárez
- BioLympho Research Group, Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (L.M.-V.); (S.V.-M.); (P.M.-S.); (F.J.G.-B.); (J.J.N.-F.)
- Translational Research in Airway Diseases Group (TRIAD), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Susana Belén Bravo-López
- Proteomic Service, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain;
| | - Heidi Makrinioti
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA;
| | - Vicente Domínguez-Arca
- Grupo de Física de Coloides y Polímeros, Departamento de Física de Partículas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
- Bioprocess Engineering Group, Instituto de Investigacións Mariñas (IIM-CSIC), 36208 Vigo, Spain
| | - Javier de-Miguel-Díez
- Respiratory Department, Hospital General Universitario Gregorio Marañón, 28009 Madrid, Spain;
- Health Research Institute Gregorio Marañón (IISGM), 28009 Madrid, Spain
- Faculty of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Alberto Gómez-Carballa
- Genetics, Vaccines and Infections Research Group (GenViP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (A.G.-C.); (A.S.)
- Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Genética de Poblaciones en Biomedicina (GenPoB) Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), 15706 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), 28029 Madrid, Spain
| | - Antonio Salas
- Genetics, Vaccines and Infections Research Group (GenViP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (A.G.-C.); (A.S.)
- Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Genética de Poblaciones en Biomedicina (GenPoB) Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), 15706 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), 28029 Madrid, Spain
| | - Francisco Javier González-Barcala
- BioLympho Research Group, Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (L.M.-V.); (S.V.-M.); (P.M.-S.); (F.J.G.-B.); (J.J.N.-F.)
- Translational Research in Airway Diseases Group (TRIAD), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Department of Respiratory Medicine, University Hospital Complex of Santiago de Compostela, 15706 Santiago de Compostela, Spain
- Department of Medicine, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Francisco Javier Salgado
- BioLympho Research Group, Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (L.M.-V.); (S.V.-M.); (P.M.-S.); (F.J.G.-B.); (J.J.N.-F.)
- Translational Research in Airway Diseases Group (TRIAD), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Juan José Nieto-Fontarigo
- BioLympho Research Group, Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (L.M.-V.); (S.V.-M.); (P.M.-S.); (F.J.G.-B.); (J.J.N.-F.)
- Translational Research in Airway Diseases Group (TRIAD), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| |
Collapse
|
2
|
Yu J, Yuan J, Liu Z, Ye H, Lin M, Ma L, Liu R, Ding W, Li L, Ma T, Tang S, Pang Y. Combined urine proteomics and metabolomics analysis for the diagnosis of pulmonary tuberculosis. Clin Proteomics 2024; 21:66. [PMID: 39695396 DOI: 10.1186/s12014-024-09514-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/14/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Tuberculosis (TB) diagnostic monitoring is paramount to clinical decision-making and the host biomarkers appears to play a significant role. The currently available diagnostic technology for TB detection is inadequate. In the present study, we aimed to identify biomarkers for diagnosis of pulmonary tuberculosis (PTB) using urinary metabolomic and proteomic analysis. METHODS In the study, urine from 40 PTB, 40 lung cancer (LCA), 40 community-acquired pneumonia (CAP) patients and 40 healthy controls (HC) was collected. Biomarker panels were selected based on random forest (RF) analysis. RESULTS A total of 3,868 proteins and 1,272 annotated metabolic features were detected using pairwise comparisons. Using AUC ≥ 0.80 as a cutoff value, we picked up five protein biomarkers for PTB diagnosis. The five-protein panel yielded an AUC for PTB/HC, PTB/CAP and PTB/LCA of 0.9840, 0.9680 and 0.9310, respectively. Additionally, five metabolism biomarkers were selected for differential diagnosis purpose. By employment of the five-metabolism panel, we could differentiate PTB/HC at an AUC of 0.9940, PTB/CAP of 0.8920, and PTB/LCA of 0.8570. CONCLUSION Our data demonstrate that metabolomic and proteomic analysis can identify a novel urine biomarker panel to diagnose PTB with high sensitivity and specificity. The receiver operating characteristic curve analysis showed that it is possible to perform non-invasive clinical diagnoses of PTB through these urine biomarkers.
Collapse
Affiliation(s)
- Jiajia Yu
- Department of Infectious Diseases and Clinical Microbiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Jinfeng Yuan
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Zhidong Liu
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Huan Ye
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Minggui Lin
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, 102218, China
| | - Liping Ma
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Rongmei Liu
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Weimin Ding
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Li Li
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, 102218, China
| | - Tianyu Ma
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Shenjie Tang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Yu Pang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China.
| |
Collapse
|
3
|
Pandey D, Ghosh D. Proteomics-based host-specific biomarkers for tuberculosis: The future of TB diagnosis. J Proteomics 2024; 305:105245. [PMID: 38942234 DOI: 10.1016/j.jprot.2024.105245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Tuberculosis (TB) is an infectious disease that remains one of the major global public health concerns. Early detection of Active Pulmonary TB is therefore of utmost importance for controlling lethality and disease spreading. Currently available TB diagnostics can be broadly categorized into microscopy, culture-based, and molecular approaches, all of which come with compromised sensitivity, limited efficacy, and high expenses. Hence, rapid, sensitive, and affordable diagnostic methods for TB is the current prerequisite for disease management. This review summarizes the proteomics investigations for host-specific biomarkers from serum, sputum, saliva, and urine samples of TB patients, along with patients having comorbidity. Thorough data mining from available literature led us to conclude that the host-specific proteins involved in immunity and defense, metabolic regulation, cellular adhesion, and motility, inflammatory responses, and tissue remodelling have shown significant deregulation upon Mycobacterium tuberculosis (Mtb) infection. Notably, the immunoregulatory protein orosomucoid (ORM) was up-regulated in active TB compared to non-TB individuals, as observed in multiple studies from diverse sample types. Mannose receptor C type 2 (MRC2) was identified as an upregulated, treatment response biomarker in two independent serum proteomics investigations. Thorough mechanistic investigation on these candidate proteins would be fascinating to dig into potential drug targets and customized therapeutics for TB patients, along with their diagnostic potentials.
Collapse
Affiliation(s)
- Divya Pandey
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, UPES, Dehradun 248007, Uttarakhand, India
| | - Dipanjana Ghosh
- School of Biomolecular Engineering & Biotechnology, Rajiv Gandhi Technological University, Airport Bypass Road, Bhopal 462033, India.
| |
Collapse
|
4
|
Joshi N, Garapati K, Ghose V, Kandasamy RK, Pandey A. Recent progress in mass spectrometry-based urinary proteomics. Clin Proteomics 2024; 21:14. [PMID: 38389064 PMCID: PMC10885485 DOI: 10.1186/s12014-024-09462-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024] Open
Abstract
Serum or plasma is frequently utilized in biomedical research; however, its application is impeded by the requirement for invasive sample collection. The non-invasive nature of urine collection makes it an attractive alternative for disease characterization and biomarker discovery. Mass spectrometry-based protein profiling of urine has led to the discovery of several disease-associated biomarkers. Proteomic analysis of urine has not only been applied to disorders of the kidney and urinary bladder but also to conditions affecting distant organs because proteins excreted in the urine originate from multiple organs. This review provides a progress update on urinary proteomics carried out over the past decade. Studies summarized in this review have expanded the catalog of proteins detected in the urine in a variety of clinical conditions. The wide range of applications of urine analysis-from characterizing diseases to discovering predictive, diagnostic and prognostic markers-continues to drive investigations of the urinary proteome.
Collapse
Affiliation(s)
- Neha Joshi
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Kishore Garapati
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Vivek Ghose
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
| | - Richard K Kandasamy
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, 55905, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Akhilesh Pandey
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India.
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, 55905, USA.
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
5
|
Mousavian Z, Källenius G, Sundling C. From simple to complex: Protein-based biomarker discovery in tuberculosis. Eur J Immunol 2023; 53:e2350485. [PMID: 37740950 DOI: 10.1002/eji.202350485] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/15/2023] [Accepted: 09/22/2023] [Indexed: 09/25/2023]
Abstract
Tuberculosis (TB) is a deadly infectious disease that affects millions of people globally. TB proteomics signature discovery has been a rapidly growing area of research that aims to identify protein biomarkers for the early detection, diagnosis, and treatment monitoring of TB. In this review, we have highlighted recent advances in this field and how it is moving from the study of single proteins to high-throughput profiling and from only using proteomics to include additional types of data in multi-omics studies. We have further covered the different sample types and experimental technologies used in TB proteomics signature discovery, focusing on studies of HIV-negative adults. The published signatures were defined as either coming from hypothesis-based protein targeting or from unbiased discovery approaches. The methodological approaches influenced the type of proteins identified and were associated with the circulating protein abundance. However, both approaches largely identified proteins involved in similar biological pathways, including acute-phase responses and T-helper type 1 and type 17 responses. By analysing the frequency of proteins in the different signatures, we could also highlight potential robust biomarker candidates. Finally, we discuss the potential value of integration of multi-omics data and the importance of control cohorts and signature validation.
Collapse
Affiliation(s)
- Zaynab Mousavian
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Gunilla Källenius
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Christopher Sundling
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
6
|
Chin KL, Anibarro L, Sarmiento ME, Acosta A. Challenges and the Way forward in Diagnosis and Treatment of Tuberculosis Infection. Trop Med Infect Dis 2023; 8:tropicalmed8020089. [PMID: 36828505 PMCID: PMC9960903 DOI: 10.3390/tropicalmed8020089] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 02/03/2023] Open
Abstract
Globally, it is estimated that one-quarter of the world's population is latently infected with Mycobacterium tuberculosis (Mtb), also known as latent tuberculosis infection (LTBI). Recently, this condition has been referred to as tuberculosis infection (TBI), considering the dynamic spectrum of the infection, as 5-10% of the latently infected population will develop active TB (ATB). The chances of TBI development increase due to close contact with index TB patients. The emergence of multidrug-resistant TB (MDR-TB) and the risk of development of latent MDR-TB has further complicated the situation. Detection of TBI is challenging as the infected individual does not present symptoms. Currently, there is no gold standard for TBI diagnosis, and the only screening tests are tuberculin skin test (TST) and interferon gamma release assays (IGRAs). However, these tests have several limitations, including the inability to differentiate between ATB and TBI, false-positive results in BCG-vaccinated individuals (only for TST), false-negative results in children, elderly, and immunocompromised patients, and the inability to predict the progression to ATB, among others. Thus, new host markers and Mtb-specific antigens are being tested to develop new diagnostic methods. Besides screening, TBI therapy is a key intervention for TB control. However, the long-course treatment and associated side effects result in non-adherence to the treatment. Additionally, the latent MDR strains are not susceptible to the current TBI treatments, which add an additional challenge. This review discusses the current situation of TBI, as well as the challenges and efforts involved in its control.
Collapse
Affiliation(s)
- Kai Ling Chin
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
- Borneo Medical and Health Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
- Correspondence: (K.L.C.); (L.A.); (A.A.)
| | - Luis Anibarro
- Tuberculosis Unit, Infectious Diseases and Internal Medicine Department, Complexo Hospitalario Universitario de Pontevedra, 36071 Pontevedra, Spain
- Immunology Research Group, Galicia Sur Health Research Institute (IIS-GS), 36312 Vigo, Spain
- Correspondence: (K.L.C.); (L.A.); (A.A.)
| | - Maria E. Sarmiento
- School of Health Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Malaysia
| | - Armando Acosta
- School of Health Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Malaysia
- Correspondence: (K.L.C.); (L.A.); (A.A.)
| |
Collapse
|
7
|
Chen H, Li S, Zhao W, Deng J, Yan Z, Zhang T, Wen SA, Guo H, Li L, Yuan J, Zhang H, Ma L, Zheng J, Gao M, Pang Y. A Peptidomic Approach to Identify Novel Antigen Biomarkers for the Diagnosis of Tuberculosis. Infect Drug Resist 2022; 15:4617-4626. [PMID: 36003990 PMCID: PMC9394730 DOI: 10.2147/idr.s373652] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/01/2022] [Indexed: 11/23/2022] Open
Abstract
Background Here, we conducted a peptidomic study in murine model to identify novel antigen biomarkers for the diagnosis of tuberculosis (TB) with improved performance. Methods Four recombinant proteins, including Mycobacterium tuberculosis protein 32 (MPT32), Mycobacterium tuberculosis protein 64 (MPT64), culture filtrate protein 10 (CFP10), and phosphate ABC transporter substrate-binding lipoprotein (PstS1) were expressed and intravenously injected into BALB/c mice. The serum were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The concentrations of candidate peptides in serum of suspected TB patients were determined using competitive enzyme-linked immunosorbent assay. Results A total of 65 peptides from 4 MTB precursor recombinant proteins were identified in mouse serum by LC-MS/MS, of which 5 peptides were selected as candidates for serological analysis. The concentrations of peptides MPT64-2, CFP10-2 and PstS1-2 in TB patients were significantly higher than those in non-TB patients. MPT64-2 exhibited the most promising sensitivity (81.4%), followed by PstS1-2 and CFP10-2. In addition, PstS1-2 had the highest specificity (93.3%), followed by CFP10-2 and MPT64-2. According to the area under the curve (AUC), MPT64-2 (AUC = 0.863), PstS1-2 (AUC = 0.812) and CFP10-2 (AUC = 0.809) exhibited better diagnostic validity. Conclusion We develop an effective approach to identify new antigen biomarkers via LC-MS/MS-based peptidomics. Multiple peptides exhibit promising efficacy in diagnosis of active TB patients.
Collapse
Affiliation(s)
- Hongmei Chen
- Department of Tuberculosis, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, People's Republic of China
| | - Shanshan Li
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, People's Republic of China
| | - Weijie Zhao
- Clinical Trial Agency Office, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, People's Republic of China
| | - Jiaheng Deng
- Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Zhuohong Yan
- Department of Central Laboratory, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, People's Republic of China
| | - Tingting Zhang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, People's Republic of China
| | - Shu' An Wen
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, People's Republic of China
| | - Haiping Guo
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, People's Republic of China
| | - Lei Li
- Electral Safety Research & Development Center, Beijing Normal University, Zhuhai, People's Republic of China
| | - Jianfeng Yuan
- Electral Safety Research & Development Center, Beijing Normal University, Zhuhai, People's Republic of China
| | - Hongtao Zhang
- Department of Central Laboratory, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, People's Republic of China
| | - Liping Ma
- Department of Tuberculosis, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, People's Republic of China
| | - Jianhua Zheng
- Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Mengqiu Gao
- Department of Tuberculosis, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, People's Republic of China
| | - Yu Pang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, People's Republic of China
| |
Collapse
|
8
|
Khimova E, Gonzalo X, Popova Y, Eliseev P, Andrey M, Nikolayevskyy V, Broda A, Drobniewski F. Urine biomarkers of pulmonary tuberculosis. Expert Rev Respir Med 2022; 16:615-621. [PMID: 35702997 DOI: 10.1080/17476348.2022.2090341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Sputum-based tuberculosis diagnosis does not address the needs of certain categories of patients. Active development of a noninvasive urine-based diagnosis could provide an alternative approach. We reviewed publications covering more than 30 urine biomarkers proposed as significant for TB diagnosis. Analytical approaches were heterogeneous in design and methods; few studies on diagnostic outcome prediction described a formal specificity and sensitivity analysis. AREAS COVERED This review describes studies of non-sputum diagnostic approaches of pulmonary TB based on urine using specific TB biomarkers. The search was performed until December 2021, using terms [Tuberculosis] + [urine] + [biomarkers] in PubMed and Cochrane databases. Publications concerning LAM urine diagnostics were excluded as they have been described elsewhere. EXPERT OPINION Microbiological culture of sputum is considered to be the 'gold standard' diagnostic for pulmonary TB but the methodology is slow due to the slow growth of the TB bacteria. Urine provides a large volume of sample. Investigators have evaluated urine for either TB pathogen biomarkers or host biomarkers with some success as the review demonstrates. Detection sensitivity remains a significant problem. In future, combination of host and pathogen biomarkers could increase the sensitivity and specificity of TB diagnosis.
Collapse
Affiliation(s)
- Elena Khimova
- Department of Phthisiopulmonology, Northern State Medical University, Arkhangelsk, Russia
| | - Ximena Gonzalo
- Department of Infectious Diseases, Imperial College London, London, UK
| | - Yulia Popova
- Department of Phthisiopulmonology, Northern State Medical University, Arkhangelsk, Russia
| | - Platon Eliseev
- Department of Phthisiopulmonology, Northern State Medical University, Arkhangelsk, Russia
| | - Maryandyshev Andrey
- Department of Phthisiopulmonology, Northern State Medical University, Arkhangelsk, Russia
| | | | - Agnieszka Broda
- Department of Infectious Diseases, Imperial College London, London, UK
| | | |
Collapse
|
9
|
Kaushik A, Bandyopadhyay S, Porwal C, Srinivasan A, Rukmangadachar LA, Hariprasad G, Kola S, Kataria J, Singh UB. 2D-DIGE based urinary proteomics and functional enrichment studies to reveal novel Mycobacterium tuberculosis and human protein biomarker candidates for pulmonary tuberculosis. Biochem Biophys Res Commun 2022; 619:15-21. [PMID: 35728279 DOI: 10.1016/j.bbrc.2022.06.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 11/30/2022]
Abstract
In the absence of a sensitive and specific diagnostic modality capable of detecting all forms of tuberculosis (TB), proteomics may identify specific Mycobacterium tuberculosis (M.tb) proteins in urine, with a potential as biomarkers. To identify candidate biomarkers for TB, proteome profile of urine from pulmonary TB patients was compared with non-disease controls (NDC) and disease controls (DC, Streptococcus pneumonia infected patients) using a combination of two-dimensional difference gel electrophoresis (2D-DIGE) and liquid chromatography tandem mass spectrometry (LCMS/MS). Eleven differentially expressed host proteins and Eighteen high abundant M.tb proteins were identified. Protein-protein interactome (PPI) and functional enrichment analyses like Gene Ontologies, Reactome pathway etc. demonstrated that the human proteins mainly belong to extracellular space and show physiological pathways for immune response and hematological disorders. Whereas, M.tb proteins belong to the cell periphery, plasma membrane and cell wall, and demonstrated catalytic, nucleotide binding and ATPase activities along with other functional processes. The study findings provide valuable inputs about the biomarkers of TB and shed light on the probable disease consequences as an outcome of the bacterial pathogenicity.
Collapse
Affiliation(s)
- Amit Kaushik
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | | | - Chhavi Porwal
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Alagiri Srinivasan
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | | | - Gururao Hariprasad
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Srujana Kola
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Jitender Kataria
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Urvashi B Singh
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
10
|
Guo J, Zhang X, Chen X, Cai Y. Proteomics in Biomarker Discovery for Tuberculosis: Current Status and Future Perspectives. Front Microbiol 2022; 13:845229. [PMID: 35558124 PMCID: PMC9087271 DOI: 10.3389/fmicb.2022.845229] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Abstract
Tuberculosis (TB) continues to threaten many peoples' health worldwide, regardless of their country of residence or age. The current diagnosis of TB still uses mainly traditional, time-consuming, and/or culture-based techniques. Efforts have focused on discovering new biomarkers with higher efficiency and accuracy for TB diagnosis. Proteomics-the systematic study of protein diversity-is being applied to the discovery of novel protein biomarkers for different types of diseases. Mass spectrometry (MS) technology plays a revolutionary role in proteomics, and its applicability benefits from the development of other technologies, such as matrix-based and immune-based methods. MS and derivative strategies continuously contribute to disease-related discoveries, and some promising proteomic biomarkers for efficient TB diagnosis have been identified, but challenges still exist. For example, there are discrepancies in the biomarkers identified among different reports and the diagnostic accuracy of clinically applied proteomic biomarkers. The present review summarizes the current status and future perspectives of proteomics in the field of TB biomarker discovery and aims to elicit more promising findings for rapid and accurate TB diagnosis.
Collapse
Affiliation(s)
- Jiubiao Guo
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China.,Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Ximeng Zhang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Xinchun Chen
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Yi Cai
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, School of Medicine, Shenzhen University, Shenzhen, China
| |
Collapse
|
11
|
Issue Highlights. IUBMB Life 2021. [DOI: 10.1002/iub.2533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|