1
|
Chen S, Yu W, Shen Y, Lu L, Meng X, Liu J. Unraveling the mechanisms underlying air pollution-induced dysfunction of the oral-gut-brain axis: implications for human health and well-being. ASIAN BIOMED 2025; 19:21-35. [PMID: 40231163 PMCID: PMC11994223 DOI: 10.2478/abm-2025-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Air pollution exposure has become an international health issue that poses many risks to life and health. The bidirectional regulatory network, known as the oral-gut-brain axis connects the oral cavity, intestine, and central nervous system, as well as its influence on health outcomes from exposure to air pollution is receiving increased attention. This article systematically details the epidemiological evidence linking air pollutants to diseases affecting the oral, respiratory, intestinal, and nervous systems, while also explaining the route of air pollutants via the oral-gut-brain axis. The oral-gut-brain axis anomalies resulting from air pollution and their underlying molecular processes are also covered. The study provides a fresh viewpoint on how exposure to air pollution affects health and investigates cutting-edge preventative and therapeutic techniques.
Collapse
Affiliation(s)
- Sisi Chen
- Department of Stomatology, Huzhou Wuxing District People's Hospital, Huzhou Wuxing District Maternal and Child Health Hospital,Huzhou, 313008, China
| | - Wenlei Yu
- Department of Stomatology, Huzhou Wuxing District People's Hospital, Huzhou Wuxing District Maternal and Child Health Hospital,Huzhou, 313008, China
| | - Yiwen Shen
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, 210009, China
| | - Linjie Lu
- Department of Stomatology, Haining Hospital of Traditional Chinese Medicine,Jiaxing, 314400, China
| | - Xiangyong Meng
- Department of Stomatology, Medical School, Huzhou University, Huzhou, 313000, China
- Department of Stomatology, The First Affiliated Hospital of Huzhou University, Huzhou, 313099, China
| | - Jun Liu
- Department of Stomatology, Medical School, Huzhou University, Huzhou, 313000, China
- Department of Stomatology, The First Affiliated Hospital of Huzhou University, Huzhou, 313099, China
| |
Collapse
|
2
|
Chen G, Huang T, Dai Y, Huo X, Xu X. Effects of POPs-induced SIRT6 alteration on intestinal mucosal barrier function: A comprehensive review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117705. [PMID: 39805197 DOI: 10.1016/j.ecoenv.2025.117705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/05/2025] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
Persistent organic pollutants (POPs) are pervasive organic chemicals with significant environmental and ecological ramifications, extending to adverse human health effects due to their toxicity and persistence. The intestinal mucosal barrier, a sophisticated defense mechanism comprising the epithelial layer, mucosal chemistry, and cellular immunity, shields the host from external threats and fosters a symbiotic relationship with intestinal bacteria. Sirtuin 6 (SIRT6), a sirtuin family member, is pivotal in genome and telomere stability, inflammation regulation, and metabolic processes. Result shows POPs have been implicated in the intestinal diseases, particularly in intestinal barrier dysfunction, through mechanisms such as cellular damage, epigenetic alterations, inflammation, microbiota changes, and metabolic disruptions. While the impact of SIRT6 expression changes on intestinal barrier functions has been reviewed, the mechanisms linking POPs to SIRT6 remain elusive. This review summarized the latest research results on the effects of POPs on intestinal barrier, discussed the role of SIRT6 from multiple mechanism perspectives, proposed new research directions on POPs, SIRT6 and intestinal health, and explored the therapeutic potential of SIRT6.
Collapse
Affiliation(s)
- Guangcan Chen
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, Guangdong 515041, China; Department of Digestive Surgery, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515000, China
| | - Tengyang Huang
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, Guangdong 515041, China; Department of Digestive Surgery, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515000, China
| | - Yifeng Dai
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, Guangdong 515041, China; Department of Global Public Health and Bioethics, Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, the Netherlands
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangdong, Guangzhou 511443, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, Guangdong 515041, China; Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041, China.
| |
Collapse
|
3
|
Intharuksa A, Arunotayanun W, Takuathung MN, Boongla Y, Chaichit S, Khamnuan S, Prasansuklab A. Therapeutic Potential of Herbal Medicines in Combating Particulate Matter (PM)-Induced Health Effects: Insights from Recent Studies. Antioxidants (Basel) 2024; 14:23. [PMID: 39857357 PMCID: PMC11762796 DOI: 10.3390/antiox14010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
Particulate matter (PM), particularly fine (PM2.5) and ultrafine (PM0.1) particles, originates from both natural and anthropogenic sources, such as biomass burning and vehicle emissions. These particles contain harmful compounds that pose significant health risks. Upon inhalation, ingestion, or dermal contact, PM can penetrate biological systems, inducing oxidative stress, inflammation, and DNA damage, which contribute to a range of health complications. This review comprehensively examines the protective potential of natural products against PM-induced health issues across various physiological systems, including the respiratory, cardiovascular, skin, neurological, gastrointestinal, and ocular systems. It provides valuable insights into the health risks associated with PM exposure and highlights the therapeutic promise of herbal medicines by focusing on the natural products that have demonstrated protective properties in both in vitro and in vivo PM2.5-induced models. Numerous herbal medicines and phytochemicals have shown efficacy in mitigating PM-induced cellular damage through their ability to counteract oxidative stress, suppress pro-inflammatory responses, and enhance cellular defense mechanisms. These combined actions collectively protect tissues from PM-related damage and dysfunction. This review establishes a foundation for future research and the development of effective interventions to combat PM-related health issues. However, further studies, including in vivo and clinical trials, are essential to evaluate the safety, optimal dosages, and long-term effectiveness of herbal treatments for patients under chronic PM exposure.
Collapse
Affiliation(s)
- Aekkhaluck Intharuksa
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (A.I.); (S.C.)
| | - Warunya Arunotayanun
- Kanchanabhishek Institute of Medical and Public Health Technology, Faculty of Public Health and Allied Health Science, Praboromarajchanok Institute, Nonthaburi 11150, Thailand
| | - Mingkwan Na Takuathung
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
- Clinical Research Center for Food and Herbal Product Trials and Development (CR-FAH), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Yaowatat Boongla
- Department of Sustainable Development Technology, Faculty of Science and Technology, Thammasat University, Pathum Thani 12120, Thailand;
| | - Siripat Chaichit
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (A.I.); (S.C.)
| | - Suthiwat Khamnuan
- Faculty of Pharmacy, Western University, Pathum Thani 12150, Thailand;
| | - Anchalee Prasansuklab
- College of Public Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
- Center of Excellence on Natural Products for Neuroprotection and Anti-Ageing, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
4
|
Gou Z, Wu H, Li S, Liu Z, Zhang Y. Airborne micro- and nanoplastics: emerging causes of respiratory diseases. Part Fibre Toxicol 2024; 21:50. [PMID: 39633457 PMCID: PMC11616207 DOI: 10.1186/s12989-024-00613-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
Airborne micro- and nanoplastics (AMNPs) are ubiquitously present in human living environments and pose significant threats to respiratory health. Currently, much research has been conducted on the relationship between micro- and nanoplastics (MNPs) and cardiovascular and gastrointestinal diseases, yet there is a clear lack of understanding regarding the link between AMNPs and respiratory diseases. Therefore, it is imperative to explore the relationship between the two. Recent extensive studies by numerous scholars on the characteristics of AMNPs and their relationship with respiratory diseases have robustly demonstrated that AMNPs from various sources significantly influence the onset and progression of respiratory conditions. Thus, investigating the intrinsic mechanisms involved and finding necessary preventive and therapeutic measures are crucial. In this review, we primarily describe the fundamental characteristics of AMNPs, their impact on the respiratory system, and the intrinsic toxic mechanisms that facilitate disease development. It is hoped that this article will provide new insights for further research and contribute to the advancement of human health.
Collapse
Affiliation(s)
- Zixuan Gou
- Department of Pediateic Respiration, Children's Medical Center, The First Hospital of Jilin University, Changchun, China
| | - Haonan Wu
- Department of Pediateic Respiration, Children's Medical Center, The First Hospital of Jilin University, Changchun, China
| | - Shanyu Li
- Department of Pediateic Respiration, Children's Medical Center, The First Hospital of Jilin University, Changchun, China
| | - Ziyu Liu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China.
| | - Ying Zhang
- Department of Pediateic Respiration, Children's Medical Center, The First Hospital of Jilin University, Changchun, China.
- Clinical Research Center for Child Health, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
5
|
Zhan ZQ, Li JX, Chen YX, Fang JY. The effects of air and transportation noise pollution-related altered blood gene expression, DNA methylation, and protein abundance levels on gastrointestinal diseases risk. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175633. [PMID: 39163931 DOI: 10.1016/j.scitotenv.2024.175633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/03/2024] [Accepted: 08/17/2024] [Indexed: 08/22/2024]
Abstract
INTRODUCTION Air pollution and transportation noise pollution has been linked to gastrointestinal (GI) diseases, but their relationship remains unclear. METHODS We extracted the significantly modulated genes and CpG sites related to air pollution (PM2.5, PM10, and NOx) and transportation noise pollution (aircraft, railway, and traffic road noise) from previous published studies. Genome-wide methylation analysis and colocalization analysis with these CpG sites and GWAS data of GI diseases were performed to disentangle the relationship between pollution-related blood DNA methylation (DNAm) alterations and GI diseases risk. Summary-based Mendelian randomization (SMR) analysis assessed the impact of pollution-related genes on GI diseases risk across methylation, gene expression, and protein levels. Enrichment analysis investigated the implicated biological pathways and immune cell types. RESULTS DNAm at cg00227781 [CD300A] (modulated by NOx exposure) and cg19215199 [ZMIZ1] (modulated by PM2.5 exposure) was significantly linked to increased noninfective enteritis and colitis risk, while cg08500171 [BAT2] (modulated by NOx exposure) is significantly associated with an increased gastroesophageal reflux disease (GERD) risk. Colocalization analysis provides strong evidence supporting a shared causal variant between these associations. Multi-omics levels SMR analysis revealed that pollution-modulated lower DNAm at 5 specific CpG sites were associated with increased expression of 4 genes (IL21R, EVPL, SYNGR1, and WDR46), subsequently increasing the risk of GERD, ulcerative colitis, and gastric ulcer. 7 circulating proteins coded by pollution-modulated genes were observed to be associated with 6 GI diseases risk. Enrichment analysis implicates immune and inflammatory responses, MAPK signaling, and telomere maintenance in these pollution-induced effects. CONCLUSION We identified potential links between air and transportation noise pollution-related gene methylation, expression, and protein abundance with GI diseases risk, possibly revealing new therapeutic targets.
Collapse
Affiliation(s)
- Zhi-Qing Zhan
- Division of Gastroenterology and Hepatology; Shanghai Institute of Digestive Disease; NHC Key Laboratory of Digestive Diseases; State Key Laboratory for Oncogenes and Related Genes; Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jia-Xin Li
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, China
| | - Ying-Xuan Chen
- Division of Gastroenterology and Hepatology; Shanghai Institute of Digestive Disease; NHC Key Laboratory of Digestive Diseases; State Key Laboratory for Oncogenes and Related Genes; Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Jing-Yuan Fang
- Division of Gastroenterology and Hepatology; Shanghai Institute of Digestive Disease; NHC Key Laboratory of Digestive Diseases; State Key Laboratory for Oncogenes and Related Genes; Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
6
|
Go J, Farhat N, Leingartner K, Insel EI, Momoli F, Carrier R, Krewski D. Review of epidemiological and toxicological studies on health effects from ingestion of asbestos in drinking water. Crit Rev Toxicol 2024; 54:856-894. [PMID: 39436319 DOI: 10.1080/10408444.2024.2399840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 10/23/2024]
Abstract
Asbestos is a group of naturally occurring fibrous minerals that were commonly used in the construction of cement pipes for drinking water distribution systems. These pipes deteriorate and can release asbestos fibers into drinking water, raising concerns about potential risk to human health. The objective of this work was to synthesize human, animal, and in vitro evidence on potential health risks due to ingested asbestos in drinking water and evaluate the weight of evidence (WoE) of human health risk. A systematic review of epidemiological evidence was conducted, along with critical review of animal and in vitro evidence, followed by WoE evaluation that integrated human, animal, and in vitro evidence. The systematic review included 17 human studies with health outcomes mostly related to various cancer sites, with the majority focusing on the gastrointestinal system. The WoE evaluation resulted in very low levels of confidence or insufficient evidence of a health effect for cancers in 15 organ systems and for three non-cancer endpoints. While eight studies reported possible associations with stomach cancer in males, few high-quality studies were available to verify a causal relationship. Based on high-quality animal studies, an increased risk for cancer or non-cancer endpoints was not supported, aligning with findings from human studies. Overall, the currently available body of evidence is insufficient to establish a clear link between asbestos contamination in drinking water and adverse health effects. Due to the lack of both high-quality epidemiological studies and a validated kinetic model for ingested asbestos, additional research on this association is warranted.
Collapse
Affiliation(s)
- Jennifer Go
- Chemical and Product Safety, Risk Sciences International, Ottawa, ON, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
| | - Nawal Farhat
- Chemical and Product Safety, Risk Sciences International, Ottawa, ON, Canada
- School of Mathematics and Statistics, Carleton University, Ottawa, ON, Canada
| | | | - Elvin Iscan Insel
- Chemical and Product Safety, Risk Sciences International, Ottawa, ON, Canada
| | - Franco Momoli
- Chemical and Product Safety, Risk Sciences International, Ottawa, ON, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
| | - Richard Carrier
- Water and Air Quality Bureau, Health Canada, Ottawa, ON, Canada
| | - Daniel Krewski
- Chemical and Product Safety, Risk Sciences International, Ottawa, ON, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
- School of Mathematics and Statistics, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
7
|
Imdad S, Kim JH, So B, Jang J, Park J, Lim W, Lee YK, Shin WS, Hillyer T, Kang C. Effect of aerobic exercise and particulate matter exposure duration on the diversity of gut microbiota. Anim Cells Syst (Seoul) 2024; 28:137-151. [PMID: 38601060 PMCID: PMC11005883 DOI: 10.1080/19768354.2024.2338855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/31/2024] [Indexed: 04/12/2024] Open
Abstract
Inhalation of ambient particulate matter (PM) can disrupt the gut microbiome, while exercise independently influences the gut microbiome by promoting beneficial bacteria. In this study, we analyzed changes in gut microbial diversity and composition in response to combined interventions of PM exposure and aerobic exercise, extending up to 12 weeks. This investigation was conducted using mice, categorized into five groups: control group (Con), exercise group (EXE), exercise group followed by 3-day exposure to PM (EXE + 3-day PM), particulate matter exposure (PM), and PM exposure with concurrent treadmill exercise (PME). Notably, the PM group exhibited markedly lower alpha diversity and richness compared to the Con group and our analysis of beta diversity revealed significant variations among the intervention groups. Members of the Lachnospiraceae family showed significant enhancement in the exercise intervention groups (EXE and PME) compared to the Con and PM groups. The biomarker Lactobacillus, Coriobacteraceae, and Anaerofustis were enriched in the EXE group, while Desulfovibrionaceae, Mucispirillum schaedleri, Lactococcus and Anaeroplasma were highly enriched in the PM group. Differential abundance analysis revealed that Paraprevotella, Bacteroides, and Blautia were less abundant in the 12-week PM exposure group than in the 3-day PM exposure group. Moreover, both the 3-day and 12-week PM exposure groups exhibited a reduced relative abundance of Bacteroides uniformis, SMB53, and Staphylococcus compared to non-PM exposure groups. These findings will help delineate the possible roles and associations of altered microbiota resulting from the studied interventions, paving the way for future mechanistic research.
Collapse
Affiliation(s)
- Saba Imdad
- Laboratory of Molecular Metabolism in Health & Disease, Sport Science Research Institute, Inha University, Incheon, South Korea
- Department of Biomedical Laboratory Science, College of Health Science, Cheongju University, Cheongju, South Korea
| | - Jin-Hee Kim
- Department of Biomedical Laboratory Science, College of Health Science, Cheongju University, Cheongju, South Korea
| | - Byunghun So
- Laboratory of Molecular Metabolism in Health & Disease, Sport Science Research Institute, Inha University, Incheon, South Korea
| | - Junho Jang
- Laboratory of Molecular Metabolism in Health & Disease, Sport Science Research Institute, Inha University, Incheon, South Korea
| | - Jinhan Park
- Laboratory of Molecular Metabolism in Health & Disease, Sport Science Research Institute, Inha University, Incheon, South Korea
| | - Wonchung Lim
- Department of Sports Medicine, College of Health Science, Cheongju University, Cheongju, South Korea
| | - Yoon-Kwang Lee
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Woo Shik Shin
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Trae Hillyer
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Chounghun Kang
- Laboratory of Molecular Metabolism in Health & Disease, Sport Science Research Institute, Inha University, Incheon, South Korea
- Department of Physical Education, College of Education, Inha University, Incheon, South Korea
| |
Collapse
|
8
|
Varvara RA, Vodnar DC. Probiotic-driven advancement: Exploring the intricacies of mineral absorption in the human body. Food Chem X 2024; 21:101067. [PMID: 38187950 PMCID: PMC10767166 DOI: 10.1016/j.fochx.2023.101067] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 01/09/2024] Open
Abstract
The interplay between probiotics and mineral absorption is a topic of growing interest due to its great potential for human well-being. Minerals are vital in various physiological processes, and deficiencies can lead to significant health problems. Probiotics, beneficial microorganisms residing in the gut, have recently gained attention for their ability to modulate mineral absorption and mitigate deficiencies. The aim of the present review is to investigate the intricate connection between probiotics and the absorption of key minerals such as calcium, selenium, zinc, magnesium, and potassium. However, variability in probiotic strains, and dosages, alongside the unique composition of individuals in gut microbiota, pose challenges in establishing universal guidelines. An improved understanding of these mechanisms will enable the development of targeted probiotic interventions to optimize mineral absorption and promote human health.
Collapse
Affiliation(s)
- Rodica-Anita Varvara
- Department of Food Science and Technology, Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Calea Mănăștur 3-5, 400372, Romania
| | - Dan Cristian Vodnar
- Department of Food Science and Technology, Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Calea Mănăștur 3-5, 400372, Romania
| |
Collapse
|
9
|
Ferrara F, Pecorelli A, Pambianchi E, White S, Choudhary H, Casoni A, Valacchi G. Vitamin C compounds mixture prevents skin barrier alterations and inflammatory responses upon real life multi pollutant exposure. Exp Dermatol 2024; 33:e15000. [PMID: 38284201 DOI: 10.1111/exd.15000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/10/2023] [Accepted: 12/15/2023] [Indexed: 01/30/2024]
Abstract
Cutaneous tissues is among the main target of outdoor stressors such as ozone (O3 ), particulate matter (PM), and ultraviolet radiation (UV) all involved in inducing extrinsic skin aging. Only a few reports have studied the multipollutant interaction and its effect on skin damage. In the present work, we intended to evaluate the ability of pollutants such as O3 and PM to further aggravate cutaneous UV damage. In addition, the preventive properties of a cosmeceutical formulation mixture (AOX mix) containing 15% vitamin C (L-ascorbic acid), 1% vitamin E (α-tocopherol) and 0.5% ferulic acid was also investigated. Skin explants obtained from three different subjects were exposed to 200 mJ UV light, 0.25 ppm O3 for 2 h, and 30 min of diesel engine exhaust (DEE), alone or in combination for 4 days (time point D1 and D4). The results showed a clear additive effect of O3 and DEE in combination with UV in terms of keratin 10, Desmocollin and Claudin loss. In addition, the multipollutant exposure significantly induced the inflammatory response measured as NLRP1/ASC co-localization suggesting the activation of the inflammasome machinery. Finally, the loss of Aquaporin3 was also affected by the combined outdoor stressors. Furthermore, daily topical pre-treatment with the AOX Mix significantly prevented the cutaneous changes induced by the multipollutants. In conclusion, this study is among the first to investigate the combined effects of three of the most harmful outdoor stressors on human skin and confirms that daily topical of an antioxidant application may prevent pollution-induced skin damage.
Collapse
Affiliation(s)
- Francesca Ferrara
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Alessandra Pecorelli
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Erika Pambianchi
- Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, North Carolina, USA
| | | | | | - Alice Casoni
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Giuseppe Valacchi
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
- Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, North Carolina, USA
- Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
10
|
Kim JH, Woo HD, Lee JJ, Song DS, Lee K. Association between short-term exposure to ambient air pollutants and biomarkers indicative of inflammation and oxidative stress: a cross-sectional study using KoGES-HEXA data. Environ Health Prev Med 2024; 29:17. [PMID: 38494707 PMCID: PMC10957338 DOI: 10.1265/ehpm.23-00199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/20/2024] [Indexed: 03/19/2024] Open
Abstract
BACKGROUND Air pollution-induced systemic inflammation and oxidative stress are hypothesized to be the major biological mechanisms underlying pathological outcomes. We examined the association between short-term exposure to ambient air pollutants and biomarkers of inflammation and oxidative stress in 2199 general middle-aged Korean population residing in metropolitan areas. METHODS Serum levels of inflammatory cytokines (interleukin [IL]-1β, IL-6, IL-8, IL-10, and tumor necrosis factor [TNF]-α) and urinary levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG) were measured. Daily concentrations of a series of air pollutants (particulate matter [PM]10, PM2.5, SO2, NO2, CO, and O3) were predicted using the Community Multiscale Air Quality modeling system, and participant-level pollutant exposure was determined using geocoded residential addresses. Short-term exposure was defined as the 1- to 7-day moving averages. RESULTS The multivariable-adjusted linear models controlling for the sociodemographic, lifestyle, temporal, and meteorological factors identified positive associations of PM with IL-1β, IL-8, IL-10, TNF-α, and 8-OHdG levels; SO2 with IL-10 levels, CO with IL-1β, IL-10, and TNF-α levels; and O3 with IL-1β, IL-8, and 8-OHdG levels. O3 levels were inversely associated with IL-10 levels. For each pollutant, the strongest associations were observed for the 7-day average PM and CO with IL-1β (per 10-µg/m3 increase in PM10: 2.7%, 95% confidence interval [CI] = 0.6-4.8; per 10-µg/m3 increase in PM2.5: 6.4%, 95% CI = 2.4-10.5; per 0.1-ppm increase in CO: 3.3%, 95% CI = 0.3-6.5); the 2-day average SO2 with IL-10 levels (per 1-ppb increase in SO2: 1.1%, 95% CI = 0.1-2.1); and the 7-day average O3 with IL-8 levels (per 1-ppb increase in O3: 1.3%, 95% CI = 0.7-1.9). CONCLUSIONS Short-term exposure to ambient air pollutants may induce oxidative damage and pro-inflammatory roles, together with counter-regulatory anti-inflammatory response.
Collapse
Affiliation(s)
- Ji Hyun Kim
- Division of Population Health Research, Department of Precision Medicine, Korea National Institute of Health, Korea Disease Control and Prevention Agency, 200 Osongsaengmyeong2-ro, Osong-eup, Heungdeok-gu, Cheongju-si 28160, Chungcheongbuk-do, Republic of Korea
| | - Hae Dong Woo
- Division of Population Health Research, Department of Precision Medicine, Korea National Institute of Health, Korea Disease Control and Prevention Agency, 200 Osongsaengmyeong2-ro, Osong-eup, Heungdeok-gu, Cheongju-si 28160, Chungcheongbuk-do, Republic of Korea
| | - Jane J Lee
- Division of Population Health Research, Department of Precision Medicine, Korea National Institute of Health, Korea Disease Control and Prevention Agency, 200 Osongsaengmyeong2-ro, Osong-eup, Heungdeok-gu, Cheongju-si 28160, Chungcheongbuk-do, Republic of Korea
| | - Dae Sub Song
- Division of Population Health Research, Department of Precision Medicine, Korea National Institute of Health, Korea Disease Control and Prevention Agency, 200 Osongsaengmyeong2-ro, Osong-eup, Heungdeok-gu, Cheongju-si 28160, Chungcheongbuk-do, Republic of Korea
| | - Kyoungho Lee
- Division of Population Health Research, Department of Precision Medicine, Korea National Institute of Health, Korea Disease Control and Prevention Agency, 200 Osongsaengmyeong2-ro, Osong-eup, Heungdeok-gu, Cheongju-si 28160, Chungcheongbuk-do, Republic of Korea
| |
Collapse
|
11
|
Xuan L, Xu Z, Luo J, Wang Y, Yan Y, Qu C, Xie Z, Skonieczna M, Zhou PK, Huang R. Lactate exacerbates lung damage induced by nanomicroplastic through the gut microbiota-HIF1a/PTBP1 pathway. Exp Mol Med 2023; 55:2596-2607. [PMID: 38036735 PMCID: PMC10766629 DOI: 10.1038/s12276-023-01129-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 12/02/2023] Open
Abstract
Exposure to nanomicroplastics (nano-MPs) can induce lung damage. The gut microbiota is a critical modulator of the gut-lung axis. However, the mechanisms underlying these interactions have not been elucidated. This study explored the role of lactate, a key metabolite of the microbiota, in the development of lung damage induced by nano-MPs (LDMP). After 28 days of exposure to nano-MPs (50-100 nm), mice mainly exhibited damage to the lungs and intestinal mucosa and dysbiosis of the gut microbiota. Lactate accumulation was observed in the lungs, intestines and serum and was strongly associated with the imbalance in lactic acid bacteria in the gut. Furthermore, no lactate accumulation was observed in germ-free mice, while the depletion of the gut microbiota using a cocktail of antibiotics produced similar results, suggesting that lactate accumulation in the lungs may have been due to changes in the gut microbiota components. Mechanistically, elevated lactate triggers activation of the HIF1a/PTBP1 pathway, exacerbating nano-MP-induced lung damage through modulation of the epithelial-mesenchymal transition (EMT). Conversely, mice with conditional knockout of Ptbp1 in the lungs (Ptbp1flfl) and PTBP1-knockout (PTBP1-KO) human bronchial epithelial (HBE) cells showed reversal of the effects of lactate through modulation of the HIF1a/PTBP1 signaling pathway. These findings indicate that lactate is a potential target for preventing and treating LDMP.
Collapse
Affiliation(s)
- Lihui Xuan
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province, 410078, China
| | - Zheng Xu
- Translational Medicine Research Center, Naval Medical University, 800, Xiangyin Road, 200433, Shanghai, People's Republic of China
| | - Jinhua Luo
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province, 410078, China
| | - Yin Wang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province, 410078, China
| | - Yuhui Yan
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province, 410078, China
| | - Can Qu
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province, 410078, China
| | - Zuozhong Xie
- Department of Otolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
| | - Magdalena Skonieczna
- Department of Systems Biology and Engineering, Silesian University of Technology, Institute of Automatic Control, Akademicka 16, Gliwice, 44-100, Poland
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, Gliwice, 44-100, Poland
| | - Ping-Kun Zhou
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| | - Ruixue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province, 410078, China.
| |
Collapse
|
12
|
Amakom CM, Orji CE, Okeoma KB, Echendu OK. Radiological Analysis of Cassava Samples From a Coal Mining Area in Enugu State Nigeria. ENVIRONMENTAL HEALTH INSIGHTS 2023; 17:11786302231199836. [PMID: 37786614 PMCID: PMC10541741 DOI: 10.1177/11786302231199836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 08/22/2023] [Indexed: 10/04/2023]
Abstract
Cassava holds a vital position as a staple food in Nigeria, forming a significant portion of the daily diet for the population. Unfortunately, food intake can serve as a pathway for radiological contamination in humans and animals. In this study conducted in an old coal mining area in Enugu State, Nigeria, cassava samples from the area were analyzed using gamma ray spectroscopy. The results revealed significant mean activity concentrations of the radionuclides 40K, 226Ra, and 232Th in camp 1, camp 2, and Pottery areas. The activity concentration ranged from 193.68 to 300.92 Bq/kg for 40 K, 23.03 to 37.24 Bq/kg for 226Ra, and 135.33 to 158.43 Bq/kg for 232Th, respectively. Of concern is the total mean annual effective dose resulting from exposure to these 3 observed radionuclides that was calculated to be 2.03 mSv/yr. This value exceeds the recommended limit of 1 mSv/yr, indicating potential health risks associated with the radiological contamination from cassava consumption in this region. In summary, the study shows that cassava samples from the investigated area exhibited elevated levels of radiotoxicity, raising concerns about the safety of consuming cassava from this region as a food source.
Collapse
Affiliation(s)
- Chijioke M Amakom
- Department of Physics, Federal University of Technology, Owerri, Imo, Nigeria
| | - Chikwendu E Orji
- Department of Physics, Federal University of Technology, Owerri, Imo, Nigeria
| | - Kelechukwu B Okeoma
- Department of Physics, Federal University of Technology, Owerri, Imo, Nigeria
| | - Obi K Echendu
- Department of Physics, Federal University of Technology, Owerri, Imo, Nigeria
| |
Collapse
|
13
|
Park EJ, Yang MJ, Kang MS, Jo YM, Yoon C, Kim HB, Kim DW, Lee GH, Kwon IH, Park HJ, Kim JB. Subway station dust-induced pulmonary inflammation may be due to the dysfunction of alveolar macrophages: Possible contribution of bound elements. Toxicology 2023; 496:153618. [PMID: 37611816 DOI: 10.1016/j.tox.2023.153618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/09/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023]
Abstract
With its increasing value as a means of public transportation, the health effects of the air in subway stations have attracted public concern. In the current study, we investigated the pulmonary toxicity of dust collected from an air purifier installed on the platform of the busiest subway station in Seoul. We found that the dust contained various elements which are attributable to the facilities and equipment used to operate the subway system. Particularly, iron (Fe), chromium (Cr), zirconium (Zr), barium (Ba), and molybdenum (Mo) levels were more notable in comparison with those in dust collected from the ventilation chamber of a subway station. To explore the health effects of inhaled dust, we first instilled via the trachea in ICR mice for 13 weeks. The total number of pulmonary macrophages increased significantly with the dose, accompanying hematological changes. Dust-laden alveolar macrophages and inflammatory cells accumulated in the perivascular regions in the lungs of the treated mice, and pulmonary levels of CXCL-1, TNF-α, and TGF-β increased clearly compared with the control. The CCR5 and CD54 level expressed on BAL cell membranes was also enhanced following exposure to dust, whereas the CXCR2 level tended to decrease in the same samples. In addition, we treated the dust to alveolar macrophages (known as dust cells), lysosomal and mitochondrial function decreased, accompanied by cell death, and NO production was rapidly elevated with concentration. Moreover, the expression of autophagy- (p62) and anti-oxidant (SOD-2)-related proteins increased, and the expression of inflammation-related genes was dramatically up-regulated in the dust-treated cells. Therefore, we suggest that dysfunction of alveolar macrophages may importantly contribute to dust-induced inflammatory responses and that the exposure concentrations of Cr, Fe, Mo, Zr, and Ba should be considered carefully when assessing the health risks associated with subway dust. We also hypothesize that the bound elements may contribute to dust-induced macrophage dysfunction by inhibiting viability.
Collapse
Affiliation(s)
- Eun-Jung Park
- College of Medicine, Graduate School, Kyung Hee University, 02447, Republic of Korea; Human Health and Environmental Toxins Research Center, Kyung Hee University, 02447, Republic of Korea.
| | - Mi-Jin Yang
- Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeongup 56212, Republic of Korea
| | - Min-Sung Kang
- Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeongup 56212, Republic of Korea; Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, 02447, Republic of Korea
| | - Young-Min Jo
- Department of Environmental Science and Engineering, Global Campus, Kyung Hee University, 17104, Republic of Korea
| | - Cheolho Yoon
- Ochang Center, Korea Basic Science Institute, 28119, Republic of Korea
| | - Hyun-Bin Kim
- College of Medicine, Graduate School, Kyung Hee University, 02447, Republic of Korea
| | - Dong-Wan Kim
- School of Civil, Environmental and Architectural Engineering, Korea University, 02841, Republic of Korea
| | - Gwang-Hee Lee
- School of Civil, Environmental and Architectural Engineering, Korea University, 02841, Republic of Korea
| | - Ik-Hwan Kwon
- Safety Measurement Institute, Korea Research Institute of Standards and Science, 34113, Republic of Korea
| | - Hee-Jin Park
- Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeongup 56212, Republic of Korea
| | - Jin-Bae Kim
- Division of Cardiology, Department of Internal Medicine, Kyung-Hee University Hospital, Kyung Hee University, 02447, Republic of Korea.
| |
Collapse
|
14
|
Zhang Y, Li M, Pu Z, Chi X, Yang J. Multi-omics data reveals the disturbance of glycerophospholipid metabolism and linoleic acid metabolism caused by disordered gut microbiota in PM2.5 gastrointestinal exposed rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115182. [PMID: 37379664 DOI: 10.1016/j.ecoenv.2023.115182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 06/30/2023]
Abstract
The relationships between fine particulate matter (PM2.5) exposure and health effects are complex and incompletely understood. Evidence suggests that PM2.5 exposure alters gut microbiota composition and metabolites, but the connections between these changes remain unclear. The aim of our study was to investigate how gut microbiota are involved in the systemic metabolic changes following PM2.5 gastrointestinal exposure. We used multi-omics approaches, including 16S rRNA sequencing and serum metabolomics, to identify alterations in gut microbes and metabolites of PM2.5-exposed rats. We then explored correlations between perturbed gut microbiota and metabolic changes, and conducted pathway analyses to determine critical metabolic pathways impacted by PM2.5 exposure. To verify links between gut microbiome and metabolome disruptions, we performed fecal microbiota transplantation (FMT) experiment. A total of 30 differential gut microbe taxa were identified between PM2.5 and control groups, primarily in Firmicutes, Acidobacteria, and Proteobacteria phyla. We also identified 30 differential metabolites, including glycerophospholipids, fatty acyls, amino acids and others. Pathway analysis revealed disruptions in glycerophospholipid metabolism, steroid hormone biosynthesis, and linoleic acid metabolism. Through FMT, we confirmed PM2.5 altered phosphatidylcholine and linoleic acid metabolism by changing specific gut bacteria. Our results suggest that PM2.5 gastrointestinal exposure triggers systemic metabolic changes by disrupting the gut microbiome, especially glycerophospholipid and linoleic acid metabolism pathways.
Collapse
Affiliation(s)
- Yannan Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Ningxia Medical University, Yinchuan 750004, PR China; Ningxia Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan 750004, PR China.
| | - Mengyao Li
- Department of Nutrition and Food Hygiene, School of Public Health, Ningxia Medical University, Yinchuan 750004, PR China; Ningxia Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan 750004, PR China
| | - Zhiyu Pu
- Department of Nutrition and Food Hygiene, School of Public Health, Ningxia Medical University, Yinchuan 750004, PR China; Ningxia Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan 750004, PR China
| | - Xi Chi
- Department of Nutrition and Food Hygiene, School of Public Health, Ningxia Medical University, Yinchuan 750004, PR China; Ningxia Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan 750004, PR China
| | - Jianjun Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Ningxia Medical University, Yinchuan 750004, PR China; Ningxia Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan 750004, PR China.
| |
Collapse
|
15
|
Hüftlein F, Seidenath D, Mittereder A, Hillenbrand T, Brüggemann D, Otti O, Feldhaar H, Laforsch C, Schott M. Effects of diesel exhaust particles on the health and survival of the buff-tailed bumblebee Bombus terrestris after acute and chronic oral exposure. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131905. [PMID: 37421857 DOI: 10.1016/j.jhazmat.2023.131905] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/05/2023] [Accepted: 06/19/2023] [Indexed: 07/10/2023]
Abstract
The diesel-powered transportation sector is a major producer of environmental pollution in the form of micro- and nanoscale diesel exhaust particles (DEP). Pollinators, such as wild bees, may inhale DEP or ingest it orally through plant nectar. However, if these insects are adversely affected by DEP is largely unknown. To investigate potential health threats of DEP to pollinators, we exposed individuals of Bombus terrestris to different concentrations of DEP. We analysed the polycyclic aromatic hydrocarbons (PAH) content of DEP since these are known to elicit adverse effects on invertebrates. We investigated the dose-dependent effects of those well-characterized DEP on survival and fat body content, as a proxy for the insects' health condition, in acute and chronic oral exposure experiments. Acute oral exposure to DEP showed no dose-dependent effects on survival or fat body content of B. terrestris. However, we could show dose-dependent effects after chronic oral exposure with high doses of DEP where significantly increased mortality was observed. Further, there was no dose-dependent effect of DEP on the fat body content after exposure. Our results give insights into how the accumulation of high concentrations of DEP e.g., near heavily trafficked sites, can influence insect pollinators' health and survival.
Collapse
Affiliation(s)
| | - Dimitri Seidenath
- Department of Animal Population Ecology, University of Bayreuth, Germany
| | - Andreas Mittereder
- Department of Engineering Thermodynamics and Transport Processes, University of Bayreuth, Germany
| | - Thomas Hillenbrand
- Department of Engineering Thermodynamics and Transport Processes, University of Bayreuth, Germany
| | - Dieter Brüggemann
- Department of Engineering Thermodynamics and Transport Processes, University of Bayreuth, Germany
| | - Oliver Otti
- Department of Animal Population Ecology, University of Bayreuth, Germany; BayCEER, University of Bayreuth, Germany
| | - Heike Feldhaar
- Department of Animal Population Ecology, University of Bayreuth, Germany; BayCEER, University of Bayreuth, Germany
| | - Christian Laforsch
- Department of Animal Ecology I, University of Bayreuth, Germany; BayCEER, University of Bayreuth, Germany.
| | - Matthias Schott
- Department of Animal Ecology I, University of Bayreuth, Germany; BayCEER, University of Bayreuth, Germany.
| |
Collapse
|
16
|
Ji J, Wu X, Li X, Zhu Y. Effects of microplastics in aquatic environments on inflammatory bowel disease. ENVIRONMENTAL RESEARCH 2023; 229:115974. [PMID: 37088319 DOI: 10.1016/j.envres.2023.115974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/03/2023] [Accepted: 04/20/2023] [Indexed: 05/03/2023]
Abstract
The incidence of inflammatory bowel disease (IBD) has been increasing in recent years, particularly in newly industrialized nations. Environmental factors have been identified as playing a crucial role in IBD pathogenesis. Microplastics (MPs), a novel class of environmental pollutants, are a significant global pollution concern. MPs are found in almost all aquatic environments. MPs in the environment may pose health risks, specifically concerning the intestinal system, due to prolonged exposure through the consumption of aquatic foods and drinking water. In this review, we aimed to provide a comprehensive overview of the current knowledge on the impact of MPs in water resources on the occurrence and progression of IBD. Our systematic analysis of in vitro and in vivo studies found that MPs induce intestinal barrier dysfunction, imbalance in the intestinal microbiome, and metabolic abnormalities, ultimately leading to IBD. In addition, MP exposure causes greater harm to individuals with preexisting gastrointestinal disorders than those without them. Our analysis of this literature review highlights the need for further research to improve the understanding of the complex relationship between MP exposure and IBD.
Collapse
Affiliation(s)
- Jiali Ji
- The Affiliated Kangning Hospital, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xinyue Wu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Xi Li
- The Affiliated Kangning Hospital, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
| | - Ya Zhu
- The Affiliated Kangning Hospital, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
17
|
Li JJ, Li YL, Chu W, Li GQ, Zhang M, Dong JJ, Li L, Li CH, Zhang JB, Li JW, Jin XJ, Liu YQ. Astragaloside IV alleviates cytarabine-induced intestinal mucositis by remodeling macrophage polarization through AKT signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154605. [PMID: 36610133 DOI: 10.1016/j.phymed.2022.154605] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/18/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Intestinal mucositis (IM) is one of the common side effects of chemotherapy with Cytarabine (Ara-C) and contributes to the major dose-limiting factor of chemotherapy, while the effective drug for IM is little. Astragalus, one of the main active components extrated from the roots of Astragalus membranaceus (AS-IV), is a common Chinese herbal medicine used in gastrointestinal diseases. However, the effect and mechanism of AS-IV on IM is unclear. Accumulating evidence suggests that M1 macrophages play a pivotal role in IM progression. PURPOSE The purpose of the study was to explore the protection of AS-IV and its potential molecular mechanism on intestinal mucositis injury induced by Ara-C. METHOD The protective effect of AS-IV was investigated in LPS-induced macrophages and Ara-C-induced intestinal mucositis mouse model. H&E, immunofluorescence and western blotting were used to evaluate the damage in different doses of Ara-C. Silencing AKT targeted by siRNA was performed to explore the potential mechanisms regulating macrophage polarization effect of Ara-C, which was investigated by CCK-8, immunofluorescence and western blotting. Flow cytometry, immunofluorescence and Western blotting were used to detect macrophage surface marker proteins and inflammatory genes to explore the potential molecular mechanism of AS-IV regulating macrophage polarization. RESULTS The Cytarabine intervention at dose of 100mg/kg significantly induced IM in mice, with the ileum the most obvious site of injury, accompanied by decreased intestinal barrier, intestinal macrophage polarization to M1 and inflammation response. The administration of AS-IV improved weight loss, food intake, ileal morphological damage, intestinal barrier destruction and inflammatory factor release in mice induced by Ara-c, and also suppressed macrophage polarization to M1, regulating in phenotypic changes in macrophages. In vitro, the expression of M1 macrophage surface marker protein was markedly decreased in LPS-induced macrophages after silencing AKT. Similarly, the western blotting of intestinal tissues and molecular docking indicated that the key mechanisms of AS-IV were remodel AKT signaling, and finally regulating M1 macrophages and decrease inflammation response. CONCLUSION Our study highlights that AS-IV exerts protective effect in Ara-C-induced IM through inhibit polarization to M1 macrophages based on AKT, and AS-IV may serve as a novel AKT inhibitor to counteract the intestinal adverse effects of chemotherapeutic agents.
Collapse
Affiliation(s)
- Jun-Jie Li
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, China
| | - Ya-Ling Li
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, China
| | - Wei Chu
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, China
| | - Gao-Qin Li
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, China
| | - Min Zhang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Juan-Juan Dong
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, China
| | - Ling Li
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, China
| | - Cheng-Hao Li
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jin-Bao Zhang
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, China; College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jia-Wei Li
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xiao-Jie Jin
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, China; College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yong-Qi Liu
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, China; Key Laboratory of Dun Huang Medical and Transformation, Ministry of Education of The People's Republic of China, Gansu University of Chinese Medicine, Lanzhou, China.
| |
Collapse
|
18
|
Pryor JT, Cowley LO, Simonds SE. The Physiological Effects of Air Pollution: Particulate Matter, Physiology and Disease. Front Public Health 2022; 10:882569. [PMID: 35910891 PMCID: PMC9329703 DOI: 10.3389/fpubh.2022.882569] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/15/2022] [Indexed: 01/19/2023] Open
Abstract
Nine out of 10 people breathe air that does not meet World Health Organization pollution limits. Air pollutants include gasses and particulate matter and collectively are responsible for ~8 million annual deaths. Particulate matter is the most dangerous form of air pollution, causing inflammatory and oxidative tissue damage. A deeper understanding of the physiological effects of particulate matter is needed for effective disease prevention and treatment. This review will summarize the impact of particulate matter on physiological systems, and where possible will refer to apposite epidemiological and toxicological studies. By discussing a broad cross-section of available data, we hope this review appeals to a wide readership and provides some insight on the impacts of particulate matter on human health.
Collapse
Affiliation(s)
- Jack T. Pryor
- Metabolism, Diabetes and Obesity Programme, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Woodrudge LTD, London, United Kingdom
| | - Lachlan O. Cowley
- Metabolism, Diabetes and Obesity Programme, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Stephanie E. Simonds
- Metabolism, Diabetes and Obesity Programme, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- *Correspondence: Stephanie E. Simonds
| |
Collapse
|