1
|
Zheng Q, Wang X. Alzheimer's disease: insights into pathology, molecular mechanisms, and therapy. Protein Cell 2025; 16:83-120. [PMID: 38733347 PMCID: PMC11786724 DOI: 10.1093/procel/pwae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024] Open
Abstract
Alzheimer's disease (AD), the leading cause of dementia, is characterized by the accumulation of amyloid plaques and neurofibrillary tangles in the brain. This condition casts a significant shadow on global health due to its complex and multifactorial nature. In addition to genetic predispositions, the development of AD is influenced by a myriad of risk factors, including aging, systemic inflammation, chronic health conditions, lifestyle, and environmental exposures. Recent advancements in understanding the complex pathophysiology of AD are paving the way for enhanced diagnostic techniques, improved risk assessment, and potentially effective prevention strategies. These discoveries are crucial in the quest to unravel the complexities of AD, offering a beacon of hope for improved management and treatment options for the millions affected by this debilitating disease.
Collapse
Affiliation(s)
- Qiuyang Zheng
- Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Xin Wang
- Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China
| |
Collapse
|
2
|
Żukowska J, Moss SJ, Subramanian V, Acharya KR. Molecular basis of selective amyloid-β degrading enzymes in Alzheimer's disease. FEBS J 2024; 291:2999-3029. [PMID: 37622248 DOI: 10.1111/febs.16939] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/31/2023] [Accepted: 08/22/2023] [Indexed: 08/26/2023]
Abstract
The accumulation of the small 42-residue long peptide amyloid-β (Aβ) has been proposed as a major trigger for the development of Alzheimer's disease (AD). Within the brain, the concentration of Aβ peptide is tightly controlled through production and clearance mechanisms. Substantial experimental evidence now shows that reduced levels of Aβ clearance are present in individuals living with AD. This accumulation of Aβ can lead to the formation of large aggregated amyloid plaques-one of two detectable hallmarks of the disease. Aβ-degrading enzymes (ADEs) are major players in the clearance of Aβ. Stimulating ADE activity or expression, in order to compensate for the decreased clearance in the AD phenotype, provides a promising therapeutic target. It has been reported in mice that upregulation of ADEs can reduce the levels of Aβ peptide and amyloid plaques-in some cases, this led to improved cognitive function. Among several known ADEs, neprilysin (NEP), endothelin-converting enzyme-1 (ECE-1), insulin degrading enzyme (IDE) and angiotensin-1 converting enzyme (ACE) from the zinc metalloprotease family have been identified as important. These ADEs have the capacity to digest soluble Aβ which, in turn, cannot form the toxic oligomeric species. While they are known for their amyloid degradation, they exhibit complexity through promiscuous nature and a broad range of substrates that they can degrade. This review highlights current structural and functional understanding of these key ADEs, giving some insight into the molecular interactions that leads to the hydrolysis of peptide substrates, the crucial tasks performed by them and the potential for therapeutic use in the future.
Collapse
|
3
|
Zimmer VC, Lauer AA, Haupenthal V, Stahlmann CP, Mett J, Grösgen S, Hundsdörfer B, Rothhaar T, Endres K, Eckhardt M, Hartmann T, Grimm HS, Grimm MOW. A bidirectional link between sulfatide and Alzheimer's disease. Cell Chem Biol 2024; 31:265-283.e7. [PMID: 37972592 DOI: 10.1016/j.chembiol.2023.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 09/05/2023] [Accepted: 10/27/2023] [Indexed: 11/19/2023]
Abstract
Reduced sulfatide level is found in Alzheimer's disease (AD) patients. Here, we demonstrate that amyloid precursor protein (APP) processing regulates sulfatide synthesis and vice versa. Different cell culture models and transgenic mice models devoid of APP processing or in particular the APP intracellular domain (AICD) reveal that AICD decreases Gal3st1/CST expression and subsequently sulfatide synthesis. In return, sulfatide supplementation decreases Aβ generation by reducing β-secretase (BACE1) and γ-secretase processing of APP. Increased BACE1 lysosomal degradation leads to reduced BACE1 protein level in endosomes. Reduced γ-secretase activity is caused by a direct effect on γ-secretase activity and reduced amounts of γ-secretase components in lipid rafts. Similar changes were observed by analyzing cells and mice brain samples deficient of arylsulfatase A responsible for sulfatide degradation or knocked down in Gal3st1/CST. In line with these findings, addition of sulfatides to brain homogenates of AD patients resulted in reduced γ-secretase activity. Human brain APP level shows a significant negative correlation with GAL3ST1/CST expression underlining the in vivo relevance of sulfatide homeostasis in AD.
Collapse
Affiliation(s)
- Valerie Christin Zimmer
- Deutsches Institut für Demenzprävention (DIDP), Neurodegeneration and Neurobiology and Experimental Neurology, Saarland University, 66424 Homburg/Saar, Germany
| | - Anna Andrea Lauer
- Deutsches Institut für Demenzprävention (DIDP), Neurodegeneration and Neurobiology and Experimental Neurology, Saarland University, 66424 Homburg/Saar, Germany; Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany
| | - Viola Haupenthal
- Deutsches Institut für Demenzprävention (DIDP), Neurodegeneration and Neurobiology and Experimental Neurology, Saarland University, 66424 Homburg/Saar, Germany
| | - Christoph Peter Stahlmann
- Deutsches Institut für Demenzprävention (DIDP), Neurodegeneration and Neurobiology and Experimental Neurology, Saarland University, 66424 Homburg/Saar, Germany
| | - Janine Mett
- Deutsches Institut für Demenzprävention (DIDP), Neurodegeneration and Neurobiology and Experimental Neurology, Saarland University, 66424 Homburg/Saar, Germany; Biosciences Zoology/Physiology-Neurobiology, ZHMB (Center of Human and Molecular Biology), Faculty NT-Natural Science and Technology, Saarland University, 66123 Saarbrücken, Germany
| | - Sven Grösgen
- Deutsches Institut für Demenzprävention (DIDP), Neurodegeneration and Neurobiology and Experimental Neurology, Saarland University, 66424 Homburg/Saar, Germany
| | - Benjamin Hundsdörfer
- Deutsches Institut für Demenzprävention (DIDP), Neurodegeneration and Neurobiology and Experimental Neurology, Saarland University, 66424 Homburg/Saar, Germany
| | - Tatjana Rothhaar
- Deutsches Institut für Demenzprävention (DIDP), Neurodegeneration and Neurobiology and Experimental Neurology, Saarland University, 66424 Homburg/Saar, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center Johannes Gutenberg-University, 55099 Mainz, Germany
| | - Matthias Eckhardt
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, 53115 Bonn, Germany
| | - Tobias Hartmann
- Deutsches Institut für Demenzprävention (DIDP), Neurodegeneration and Neurobiology and Experimental Neurology, Saarland University, 66424 Homburg/Saar, Germany
| | - Heike Sabine Grimm
- Deutsches Institut für Demenzprävention (DIDP), Neurodegeneration and Neurobiology and Experimental Neurology, Saarland University, 66424 Homburg/Saar, Germany; Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany
| | - Marcus Otto Walter Grimm
- Deutsches Institut für Demenzprävention (DIDP), Neurodegeneration and Neurobiology and Experimental Neurology, Saarland University, 66424 Homburg/Saar, Germany; Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany.
| |
Collapse
|
4
|
Davra V, Benzeroual KE. Flavonoids and fibrate modulate apoE4-induced processing of amyloid precursor protein in neuroblastoma cells. Front Neurosci 2023; 17:1245895. [PMID: 38204816 PMCID: PMC10777729 DOI: 10.3389/fnins.2023.1245895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/28/2023] [Indexed: 01/12/2024] Open
Abstract
Introduction Apolipoprotein (apo) E4, being a major genetic risk factor for Alzheimer's disease (AD), is actively involved in the proteolytic processing of amyloid precursor protein (APP) to amyloid β (Aβ) peptide, the principle constituent of amyloid plaques in Alzheimer Disease (AD) patients. ApoE4 is believed to affect APP processing through intracellular cholesterol homeostasis, whereas lowering the cholesterol level by pharmacological agents has been suggested to reduce Aβ production. This study has investigated the effects of hypolipidemic agents fenofibrate, and the flavonoids-naringenin and diosmetin-on apoE4-induced APP processing in rat neuroblastoma cells stably transfected with human wild-type APP 695 (B103-hAPP695wt). Results B103-hAPP695wt cells were pretreated with different doses of flavonoids and fenofibrate for 1 h prior to apoE4 exposure for 24 h. ApoE4-induced production of intra- and extracellular Aβ peptides has been reduced with fenofibrate, naringenin, and diosmetin treatments. Pretreatment with diosmetin has significantly reduced apoE4-induced full-length APP (fl- APP) expression, whereas naringenin and fenofibrate had no effect on it. In addition, the increase in the apoE4-induced secretion of sAPPtotal and sAPPα has been dose-dependently reduced with drug pretreatment. On the other hand, the decrease in the expression of both APP-carboxy terminal fragments (CTF)-α and -β (generated by the α- or β-secretase cleavage of APP) by apoE4 was dose-dependently increased in cells pretreated with fenofibrate and naringenin but not diosmetin. Conclusion Thus, we suggest that fenofibrate, naringenin, and diosmetin treatments can reduce apoE4- induced Aβ production by distinct mechanisms that may prove useful in developing drugs for AD patients.
Collapse
Affiliation(s)
| | - Kenza E. Benzeroual
- Department of Pharmaceutical Sciences, Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, United States
| |
Collapse
|
5
|
Ferrer-Raventós P, Puertollano-Martín D, Querol-Vilaseca M, Sánchez-Aced É, Valle-Tamayo N, Cervantes-Gonzalez A, Nuñez-Llaves R, Pegueroles J, Dols-Icardo O, Iulita MF, Aldecoa I, Molina-Porcel L, Sánchez-Valle R, Fortea J, Belbin O, Sirisi S, Lleó A. Amyloid precursor protein 𝛽CTF accumulates in synapses in sporadic and genetic forms of Alzheimer's disease. Neuropathol Appl Neurobiol 2023; 49:e12879. [PMID: 36702749 DOI: 10.1111/nan.12879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 12/21/2022] [Accepted: 01/21/2023] [Indexed: 01/28/2023]
Abstract
AIMS Amyloid precursor protein (APP) 𝛽-C-terminal fragment (𝛽CTF) may have a neurotoxic role in Alzheimer's disease (AD). 𝛽CTF accumulates in the brains of patients with sporadic (SAD) and genetic forms of AD. Synapses degenerate early during the pathogenesis of AD. We studied whether the 𝛽CTF accumulates in synapses in SAD, autosomal dominant AD (ADAD) and Down syndrome (DS). METHODS We used array tomography to determine APP at synapses in human AD tissue. We measured 𝛽CTF, A𝛽40, A𝛽42 and phosphorylated tau181 (p-tau181) concentrations in brain homogenates and synaptosomes of frontal and temporal cortex of SAD, ADAD, DS and controls. RESULTS APP colocalised with pre- and post-synaptic markers in human AD brains. APP 𝛽CTF was enriched in AD synaptosomes. CONCLUSIONS We demonstrate that 𝛽CTF accumulates in synapses in SAD, ADAD and DS. This finding might suggest a role for 𝛽CTF in synapse degeneration. Therapies aimed at mitigating 𝛽CTF accumulation could be potentially beneficial in AD.
Collapse
Affiliation(s)
- Paula Ferrer-Raventós
- Department of Neurology, Sant Pau Memory Unit, Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - David Puertollano-Martín
- Department of Neurology, Sant Pau Memory Unit, Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marta Querol-Vilaseca
- Department of Neurology, Sant Pau Memory Unit, Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Érika Sánchez-Aced
- Department of Neurology, Sant Pau Memory Unit, Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Natalia Valle-Tamayo
- Department of Neurology, Sant Pau Memory Unit, Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alba Cervantes-Gonzalez
- Department of Neurology, Sant Pau Memory Unit, Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Raúl Nuñez-Llaves
- Department of Neurology, Sant Pau Memory Unit, Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Jordi Pegueroles
- Department of Neurology, Sant Pau Memory Unit, Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Oriol Dols-Icardo
- Department of Neurology, Sant Pau Memory Unit, Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria Florencia Iulita
- Department of Neurology, Sant Pau Memory Unit, Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Iban Aldecoa
- Neurological Tissue Bank of the Biobanc-Hospital Clinic-IDIBAPS, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain.,Department of Pathology, Biomedical Diagnostic Center, Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain
| | - Laura Molina-Porcel
- Neurological Tissue Bank of the Biobanc-Hospital Clinic-IDIBAPS, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain.,Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, IDIBAPS, Barcelona, Spain
| | - Raquel Sánchez-Valle
- Neurological Tissue Bank of the Biobanc-Hospital Clinic-IDIBAPS, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain.,Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, IDIBAPS, Barcelona, Spain
| | - Juan Fortea
- Department of Neurology, Sant Pau Memory Unit, Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Olivia Belbin
- Department of Neurology, Sant Pau Memory Unit, Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Sònia Sirisi
- Department of Neurology, Sant Pau Memory Unit, Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Alberto Lleó
- Department of Neurology, Sant Pau Memory Unit, Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| |
Collapse
|
6
|
de Lima IB, Ribeiro FM. The Implication of Glial Metabotropic Glutamate Receptors in Alzheimer's Disease. Curr Neuropharmacol 2023; 21:164-182. [PMID: 34951388 PMCID: PMC10190153 DOI: 10.2174/1570159x20666211223140303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/05/2021] [Accepted: 12/16/2021] [Indexed: 11/22/2022] Open
Abstract
Alzheimer's disease (AD) was first identified more than 100 years ago, yet aspects pertaining to its origin and the mechanisms underlying disease progression are not well known. To this date, there is no therapeutic approach or disease-modifying drug that could halt or at least delay disease progression. Until recently, glial cells were seen as secondary actors in brain homeostasis. Although this view was gradually refuted and the relevance of glial cells for the most diverse brain functions such as synaptic plasticity and neurotransmission was vastly proved, many aspects of its functioning, as well as its role in pathological conditions, remain poorly understood. Metabotropic glutamate receptors (mGluRs) in glial cells were shown to be involved in neuroinflammation and neurotoxicity. Besides its relevance for glial function, glutamatergic receptors are also central in the pathology of AD, and recent studies have shown that glial mGluRs play a role in the establishment and progression of AD. AD-related alterations in Ca2+ signalling, APP processing, and Aβ load, as well as AD-related neurodegeneration, are influenced by glial mGluRs. However, different types of mGluRs play different roles, depending on the cell type and brain region that is being analysed. Therefore, in this review, we focus on the current understanding of glial mGluRs and their implication in AD, providing an insight for future therapeutics and identifying existing research gaps worth investigating.
Collapse
Affiliation(s)
- Izabella B.Q. de Lima
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fabíola M. Ribeiro
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
7
|
Ablinger I, Dressel K, Rott T, Lauer AA, Tiemann M, Batista JP, Taddey T, Grimm HS, Grimm MOW. Interdisciplinary Approaches to Deal with Alzheimer's Disease-From Bench to Bedside: What Feasible Options Do Already Exist Today? Biomedicines 2022; 10:2922. [PMID: 36428494 PMCID: PMC9687885 DOI: 10.3390/biomedicines10112922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease is one of the most common neurodegenerative diseases in the western population. The incidence of this disease increases with age. Rising life expectancy and the resulting increase in the ratio of elderly in the population are likely to exacerbate socioeconomic problems. Alzheimer's disease is a multifactorial disease. In addition to amyloidogenic processing leading to plaques, and tau pathology, but also other molecular causes such as oxidative stress or inflammation play a crucial role. We summarize the molecular mechanisms leading to Alzheimer's disease and which potential interventions are known to interfere with these mechanisms, focusing on nutritional approaches and physical activity but also the beneficial effects of cognition-oriented treatments with a focus on language and communication. Interestingly, recent findings also suggest a causal link between oral conditions, such as periodontitis or edentulism, and Alzheimer's disease, raising the question of whether dental intervention in Alzheimer's patients can be beneficial as well. Unfortunately, all previous single-domain interventions have been shown to have limited benefit to patients. However, the latest studies indicate that combining these efforts into multidomain approaches may have increased preventive or therapeutic potential. Therefore, as another emphasis in this review, we provide an overview of current literature dealing with studies combining the above-mentioned approaches and discuss potential advantages compared to monotherapies. Considering current literature and intervention options, we also propose a multidomain interdisciplinary approach for the treatment of Alzheimer's disease patients that synergistically links the individual approaches. In conclusion, this review highlights the need to combine different approaches in an interdisciplinary manner, to address the future challenges of Alzheimer's disease.
Collapse
Affiliation(s)
- Irene Ablinger
- Speech and Language Therapy, Campus Bonn, SRH University of Applied Health Sciences, 53111 Bonn, Germany
| | - Katharina Dressel
- Speech and Language Therapy, Campus Düsseldorf, SRH University of Applied Health Sciences, 40210 Düsseldorf, Germany
| | - Thea Rott
- Interdisciplinary Periodontology and Prevention, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany
| | - Anna Andrea Lauer
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany
- Experimental Neurology, Saarland University, 66424 Homburg, Germany
| | - Michael Tiemann
- Sport Science, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany
| | - João Pedro Batista
- Sport Science and Physiotherapy, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany
| | - Tim Taddey
- Physiotherapy, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany
| | - Heike Sabine Grimm
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany
- Experimental Neurology, Saarland University, 66424 Homburg, Germany
| | - Marcus Otto Walter Grimm
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany
- Experimental Neurology, Saarland University, 66424 Homburg, Germany
| |
Collapse
|
8
|
Golde TE. Alzheimer’s disease – the journey of a healthy brain into organ failure. Mol Neurodegener 2022; 17:18. [PMID: 35248124 PMCID: PMC8898417 DOI: 10.1186/s13024-022-00523-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/17/2022] [Indexed: 12/19/2022] Open
Abstract
As the most common dementia, Alzheimer’s disease (AD) exacts an immense personal, societal, and economic toll. AD was first described at the neuropathological level in the early 1900s. Today, we have mechanistic insight into select aspects of AD pathogenesis and have the ability to clinically detect and diagnose AD and underlying AD pathologies in living patients. These insights demonstrate that AD is a complex, insidious, degenerative proteinopathy triggered by Aβ aggregate formation. Over time Aβ pathology drives neurofibrillary tangle (NFT) pathology, dysfunction of virtually all cell types in the brain, and ultimately, overt neurodegeneration. Yet, large gaps in our knowledge of AD pathophysiology and huge unmet medical need remain. Though we largely conceptualize AD as a disease of aging, heritable and non-heritable factors impact brain physiology, either continuously or at specific time points during the lifespan, and thereby alter risk for devolvement of AD. Herein, I describe the lifelong journey of a healthy brain from birth to death with AD, while acknowledging the many knowledge gaps that remain regarding our understanding of AD pathogenesis. To ensure the current lexicon surrounding AD changes from inevitable, incurable, and poorly manageable to a lexicon of preventable, curable, and manageable we must address these knowledge gaps, develop therapies that have a bigger impact on clinical symptoms or progression of disease and use these interventions at the appropriate stage of disease.
Collapse
|
9
|
Lauer AA, Grimm HS, Apel B, Golobrodska N, Kruse L, Ratanski E, Schulten N, Schwarze L, Slawik T, Sperlich S, Vohla A, Grimm MOW. Mechanistic Link between Vitamin B12 and Alzheimer's Disease. Biomolecules 2022; 12:129. [PMID: 35053277 PMCID: PMC8774227 DOI: 10.3390/biom12010129] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 01/27/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia in the elderly population, affecting over 55 million people worldwide. Histopathological hallmarks of this multifactorial disease are an increased plaque burden and tangles in the brains of affected individuals. Several lines of evidence indicate that B12 hypovitaminosis is linked to AD. In this review, the biochemical pathways involved in AD that are affected by vitamin B12, focusing on APP processing, Aβ fibrillization, Aβ-induced oxidative damage as well as tau hyperphosphorylation and tau aggregation, are summarized. Besides the mechanistic link, an overview of clinical studies utilizing vitamin B supplementation are given, and a potential link between diseases and medication resulting in a reduced vitamin B12 level and AD are discussed. Besides the disease-mediated B12 hypovitaminosis, the reduction in vitamin B12 levels caused by an increasing change in dietary preferences has been gaining in relevance. In particular, vegetarian and vegan diets are associated with vitamin B12 deficiency, and therefore might have potential implications for AD. In conclusion, our review emphasizes the important role of vitamin B12 in AD, which is particularly important, as even in industrialized countries a large proportion of the population might not be sufficiently supplied with vitamin B12.
Collapse
Affiliation(s)
- Anna Andrea Lauer
- Experimental Neurology, Saarland University, 66424 Homburg, Germany; (A.A.L.); (H.S.G.)
| | - Heike Sabine Grimm
- Experimental Neurology, Saarland University, 66424 Homburg, Germany; (A.A.L.); (H.S.G.)
| | - Birgit Apel
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany; (B.A.); (N.G.); (L.K.); (E.R.); (N.S.); (L.S.); (T.S.); (S.S.); (A.V.)
| | - Nataliya Golobrodska
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany; (B.A.); (N.G.); (L.K.); (E.R.); (N.S.); (L.S.); (T.S.); (S.S.); (A.V.)
| | - Lara Kruse
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany; (B.A.); (N.G.); (L.K.); (E.R.); (N.S.); (L.S.); (T.S.); (S.S.); (A.V.)
| | - Elina Ratanski
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany; (B.A.); (N.G.); (L.K.); (E.R.); (N.S.); (L.S.); (T.S.); (S.S.); (A.V.)
| | - Noemi Schulten
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany; (B.A.); (N.G.); (L.K.); (E.R.); (N.S.); (L.S.); (T.S.); (S.S.); (A.V.)
| | - Laura Schwarze
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany; (B.A.); (N.G.); (L.K.); (E.R.); (N.S.); (L.S.); (T.S.); (S.S.); (A.V.)
| | - Thomas Slawik
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany; (B.A.); (N.G.); (L.K.); (E.R.); (N.S.); (L.S.); (T.S.); (S.S.); (A.V.)
| | - Saskia Sperlich
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany; (B.A.); (N.G.); (L.K.); (E.R.); (N.S.); (L.S.); (T.S.); (S.S.); (A.V.)
| | - Antonia Vohla
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany; (B.A.); (N.G.); (L.K.); (E.R.); (N.S.); (L.S.); (T.S.); (S.S.); (A.V.)
| | - Marcus Otto Walter Grimm
- Experimental Neurology, Saarland University, 66424 Homburg, Germany; (A.A.L.); (H.S.G.)
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany; (B.A.); (N.G.); (L.K.); (E.R.); (N.S.); (L.S.); (T.S.); (S.S.); (A.V.)
- Deutsches Institut für DemenzPrävention, Saarland University, 66424 Homburg, Germany
| |
Collapse
|
10
|
Paasila PJ, Aramideh JA, Sutherland GT, Graeber MB. Synapses, Microglia, and Lipids in Alzheimer's Disease. Front Neurosci 2022; 15:778822. [PMID: 35095394 PMCID: PMC8789683 DOI: 10.3389/fnins.2021.778822] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/06/2021] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's disease (AD) is characterised by synaptic dysfunction accompanied by the microscopically visible accumulation of pathological protein deposits and cellular dystrophy involving both neurons and glia. Late-stage AD shows pronounced loss of synapses and neurons across several differentially affected brain regions. Recent studies of advanced AD using post-mortem brain samples have demonstrated the direct involvement of microglia in synaptic changes. Variants of the Apolipoprotein E and Triggering Receptors Expressed on Myeloid Cells gene represent important determinants of microglial activity but also of lipid metabolism in cells of the central nervous system. Here we review evidence that may help to explain how abnormal lipid metabolism, microglial activation, and synaptic pathophysiology are inter-related in AD.
Collapse
Affiliation(s)
- Patrick J. Paasila
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Jason A. Aramideh
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Greg T. Sutherland
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Manuel B. Graeber
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
11
|
Lauer AA, Griebsch LV, Pilz SM, Janitschke D, Theiss EL, Reichrath J, Herr C, Beisswenger C, Bals R, Valencak TG, Portius D, Grimm HS, Hartmann T, Grimm MOW. Impact of Vitamin D 3 Deficiency on Phosphatidylcholine-/Ethanolamine, Plasmalogen-, Lyso-Phosphatidylcholine-/Ethanolamine, Carnitine- and Triacyl Glyceride-Homeostasis in Neuroblastoma Cells and Murine Brain. Biomolecules 2021; 11:1699. [PMID: 34827697 PMCID: PMC8615687 DOI: 10.3390/biom11111699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/08/2021] [Accepted: 11/12/2021] [Indexed: 11/16/2022] Open
Abstract
Vitamin D3 hypovitaminosis is associated with several neurological diseases such as Alzheimer's disease, Parkinson's disease or multiple sclerosis but also with other diseases such as cancer, diabetes or diseases linked to inflammatory processes. Importantly, in all of these diseases lipids have at least a disease modifying effect. Besides its well-known property to modulate gene-expression via the VDR-receptor, less is known if vitamin D hypovitaminosis influences lipid homeostasis and if these potential changes contribute to the pathology of the diseases themselves. Therefore, we analyzed mouse brain with a mild vitamin D hypovitaminosis via a targeted shotgun lipidomic approach, including phosphatidylcholine, plasmalogens, lyso-phosphatidylcholine, (acyl-/acetyl-) carnitines and triglycerides. Alterations were compared with neuroblastoma cells cultivated in the presence and with decreased levels of vitamin D. Both in cell culture and in vivo, decreased vitamin D level resulted in changed lipid levels. While triglycerides were decreased, carnitines were increased under vitamin D hypovitaminosis suggesting an impact of vitamin D on energy metabolism. Additionally, lyso-phosphatidylcholines in particular saturated phosphatidylcholine (e.g., PC aa 48:0) and plasmalogen species (e.g., PC ae 42:0) tended to be increased. Our results suggest that vitamin D hypovitaminosis not only may affect gene expression but also may directly influence cellular lipid homeostasis and affect lipid turnover in disease states that are known for vitamin D hypovitaminosis.
Collapse
Affiliation(s)
- Anna Andrea Lauer
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (A.A.L.); (L.V.G.); (S.M.P.); (D.J.); (E.L.T.); (H.S.G.)
| | - Lea Victoria Griebsch
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (A.A.L.); (L.V.G.); (S.M.P.); (D.J.); (E.L.T.); (H.S.G.)
| | - Sabrina Melanie Pilz
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (A.A.L.); (L.V.G.); (S.M.P.); (D.J.); (E.L.T.); (H.S.G.)
| | - Daniel Janitschke
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (A.A.L.); (L.V.G.); (S.M.P.); (D.J.); (E.L.T.); (H.S.G.)
| | - Elena Leoni Theiss
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (A.A.L.); (L.V.G.); (S.M.P.); (D.J.); (E.L.T.); (H.S.G.)
| | - Jörg Reichrath
- Department of Dermatology, Saarland University Hospital, 66421 Homburg, Germany;
| | - Christian Herr
- Department of Internal Medicine V-Pulmonology, Allergology, Respiratory Intensive Care Medicine, Saarland University Hospital, 66421 Homburg, Germany; (C.H.); (C.B.); (R.B.)
| | - Christoph Beisswenger
- Department of Internal Medicine V-Pulmonology, Allergology, Respiratory Intensive Care Medicine, Saarland University Hospital, 66421 Homburg, Germany; (C.H.); (C.B.); (R.B.)
| | - Robert Bals
- Department of Internal Medicine V-Pulmonology, Allergology, Respiratory Intensive Care Medicine, Saarland University Hospital, 66421 Homburg, Germany; (C.H.); (C.B.); (R.B.)
| | - Teresa Giovanna Valencak
- Department of Biosciences, Paris Lodron University Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Germany;
- College of Animal Sciences, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Dorothea Portius
- Nutrition Therapy and Counseling, Campus Gera, SRH University of Applied Health Science, 07548 Gera, Germany;
| | - Heike Sabine Grimm
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (A.A.L.); (L.V.G.); (S.M.P.); (D.J.); (E.L.T.); (H.S.G.)
| | - Tobias Hartmann
- Deutsches Institut für Demenzprävention, Saarland University, 66421 Homburg, Germany;
| | - Marcus Otto Walter Grimm
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (A.A.L.); (L.V.G.); (S.M.P.); (D.J.); (E.L.T.); (H.S.G.)
- Deutsches Institut für Demenzprävention, Saarland University, 66421 Homburg, Germany;
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Science, 51377 Leverkusen, Germany
| |
Collapse
|
12
|
Caspase Activation and Caspase-Mediated Cleavage of APP Is Associated with Amyloid β-Protein-Induced Synapse Loss in Alzheimer's Disease. Cell Rep 2021; 31:107839. [PMID: 32610140 DOI: 10.1016/j.celrep.2020.107839] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 01/29/2020] [Accepted: 06/08/2020] [Indexed: 01/09/2023] Open
Abstract
Amyloid β-protein (Aβ) toxicity is hypothesized to play a seminal role in Alzheimer's disease (AD) pathogenesis. However, it remains unclear how Aβ causes synaptic dysfunction and synapse loss. We hypothesize that one mechanism of Aβ-induced synaptic injury is related to the cleavage of amyloid β precursor protein (APP) at position D664 by caspases that release the putatively cytotoxic C31 peptide. In organotypic slice cultures derived from mice with a knock-in mutation in the APP gene (APP D664A) to inhibit caspase cleavage, Aβ-induced synaptic injury is markedly reduced in two models of Aβ toxicity. Loss of dendritic spines is also attenuated in mice treated with caspase inhibitors. Importantly, the time-dependent dendritic spine loss is correlated with localized activation of caspase-3 but is absent in APP D664A cultures. We propose that the APP cytosolic domain plays an essential role in Aβ-induced synaptic damage in the injury pathway mediated by localized caspase activation.
Collapse
|
13
|
Randez-Gil F, Bojunga L, Estruch F, Winderickx J, Del Poeta M, Prieto JA. Sphingolipids and Inositol Phosphates Regulate the Tau Protein Phosphorylation Status in Humanized Yeast. Front Cell Dev Biol 2020; 8:592159. [PMID: 33282871 PMCID: PMC7705114 DOI: 10.3389/fcell.2020.592159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/21/2020] [Indexed: 01/08/2023] Open
Abstract
Hyperphosphorylation of protein tau is a hallmark of Alzheimer's disease (AD). Changes in energy and lipid metabolism have been correlated with the late onset of this neurological disorder. However, it is uncertain if metabolic dysregulation is a consequence of AD or one of the initiating factors of AD pathophysiology. Also, it is unclear whether variations in lipid metabolism regulate the phosphorylation state of tau. Here, we show that in humanized yeast, tau hyperphosphorylation is stimulated by glucose starvation in coincidence with the downregulation of Pho85, the yeast ortholog of CDK5. Changes in inositol phosphate (IP) signaling, which has a central role in energy metabolism, altered tau phosphorylation. Lack of inositol hexakisphosphate kinases Kcs1 and Vip1 (IP6 and IP7 kinases in mammals) increased tau hyperphosphorylation. Similar effects were found by mutation of IPK2 (inositol polyphosphate multikinase), or PLC1, the yeast phospholipase C gene. These effects may be explained by IP-mediated regulation of Pho85. Indeed, this appeared to be the case for plc1, ipk2, and kcs1. However, the effects of Vip1 on tau phosphorylation were independent of the presence of Pho85, suggesting additional mechanisms. Interestingly, kcs1 and vip1 strains, like pho85, displayed dysregulated sphingolipid (SL) metabolism. Moreover, genetic and pharmacological inhibition of SL biosynthesis stimulated the appearance of hyperphosphorylated forms of tau, while increased flux through the pathway reduced its abundance. Finally, we demonstrated that Sit4, the yeast ortholog of human PP2A protein phosphatase, is a downstream effector of SL signaling in mediating the tau phosphorylation state. Altogether, our results add new knowledge on the molecular effectors involved in tauopathies and identify new targets for pharmacological intervention.
Collapse
Affiliation(s)
- Francisca Randez-Gil
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Lino Bojunga
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Francisco Estruch
- Departament of Biochemistry and Molecular Biology, Universitat de València, Valencia, Spain
| | | | - Maurizio Del Poeta
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, United States
- Veterans Administration Medical Center, Northport, NY, United States
| | - Jose A. Prieto
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| |
Collapse
|
14
|
Grimm MOW, Blümel T, Lauer AA, Janitschke D, Stahlmann C, Mett J, Haupenthal VJ, Miederer AM, Niemeyer BA, Grimm HS, Hartmann T. The impact of capsaicinoids on APP processing in Alzheimer's disease in SH-SY5Y cells. Sci Rep 2020; 10:9164. [PMID: 32514053 PMCID: PMC7280252 DOI: 10.1038/s41598-020-66009-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 05/11/2020] [Indexed: 11/08/2022] Open
Abstract
The vanilloid capsaicin is a widely consumed spice, known for its burning and "hot" sensation through activation of TRPV1 ion-channels, but also known to decrease oxidative stress, inflammation and influence tau-pathology. Beside these positive effects, little is known about its effects on amyloid-precursor-protein (APP) processing leading to amyloid-β (Aβ), the major component of senile plaques. Treatment of neuroblastoma cells with capsaicinoids (24 hours, 10 µM) resulted in enhanced Aβ-production and reduced Aβ-degradation, leading to increased Aβ-levels. In detailed analysis of the amyloidogenic-pathway, both BACE1 gene-expression as well as protein-levels were found to be elevated, leading to increased β-secretase-activity. Additionally, γ-secretase gene-expression as well as activity was enhanced, accompanied by a shift of presenilin from non-raft to raft membrane-domains where amyloidogenic processing takes place. Furthermore, impaired Aβ-degradation in presence of capsaicinoids is dependent on the insulin-degrading-enzyme, one of the major Aβ-degrading-enzymes. Regarding Aβ-homeostasis, no differences were found between the major capsaicinoids, capsaicin and dihydrocapsaicin, and a mixture of naturally derived capsaicinoids; effects on Ca2+-homeostasis were ruled out. Our results show that in respect to Alzheimer's disease, besides the known positive effects of capsaicinoids, pro-amyloidogenic properties also exist, enhancing Aβ-levels, likely restricting the potential use of capsaicinoids as therapeutic substances in Alzheimer's disease.
Collapse
Affiliation(s)
- Marcus O W Grimm
- Experimental Neurology, Saarland University, Homburg, Saar, Germany.
- Neurodegeneration and Neurobiology, Saarland University, Homburg, Saar, Germany.
| | - Tamara Blümel
- Experimental Neurology, Saarland University, Homburg, Saar, Germany
| | - Anna A Lauer
- Experimental Neurology, Saarland University, Homburg, Saar, Germany
| | | | | | - Janine Mett
- Experimental Neurology, Saarland University, Homburg, Saar, Germany
- Biosciences Zoology/Physiology-Neurobiology, Faculty NT - Natural Science and Technology, Saarland University, Saarbrücken, Germany
| | | | | | - Barbara A Niemeyer
- Molecular Biophysics, CIPMM, Saarland University, Homburg, Saar, Germany
| | - Heike S Grimm
- Experimental Neurology, Saarland University, Homburg, Saar, Germany
| | - Tobias Hartmann
- Experimental Neurology, Saarland University, Homburg, Saar, Germany
- Neurodegeneration and Neurobiology, Saarland University, Homburg, Saar, Germany
- Deutsches Institut für DemenzPrävention (DIDP), Saarland University, Homburg, Saar, Germany
| |
Collapse
|
15
|
Funamoto S, Tagami S, Okochi M, Morishima-Kawashima M. Successive cleavage of β-amyloid precursor protein by γ-secretase. Semin Cell Dev Biol 2020; 105:64-74. [PMID: 32354467 DOI: 10.1016/j.semcdb.2020.04.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 12/12/2022]
Abstract
γ-Secretase is a multimeric aspartyl protease that cleaves the membrane-spanning region of the β-carboxyl terminal fragment (βCTF) generated from β-amyloid precursor protein. γ-Secretase defines the generated molecular species of amyloid β-protein (Aβ), a critical molecule in the pathogenesis of Alzheimer's disease (AD). Many therapeutic trials for AD have targeted γ-secretase. However, in contrast to the great efforts in drug discovery, the enzymatic features and cleavage mechanism of γ-secretase are poorly understood. Here we review our protein-chemical analyses of the cleavage products generated from βCTF by γ-secretase, which revealed that Aβ was produced by γ-secretase through successive cleavages of βCTF, mainly at three-residue intervals. Two representative product lines were identified. ε-Cleavages occur first at Leu49-Val50 and Thr48-Leu49 of βCTF (in accordance with Aβ numbering). Longer generated Aβs, Aβ49 and Aβ48, are precursors to the majority of Aβ40 and Aβ42, concomitantly releasing the tripeptides, ITL, VIV, and IAT; and VIT and TVI, respectively. A portion of Aβ42 is processed further to Aβ38, releasing a tetrapeptide, VVIA. The presence of additional multiple minor pathways may reflect labile cleavage activities derived from the conformational flexibility of γ-secretase through molecular interactions. Because these peptide byproducts are not secreted and remain within the cells, they may serve as an indicator that reflects γ-secretase activity more directly than secreted Aβ.
Collapse
Affiliation(s)
- Satoru Funamoto
- Department of Neuropathology, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Shinji Tagami
- Neuropsychiatry, Department of Integrated Medicine, Division of Internal Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Masayasu Okochi
- Neuropsychiatry, Department of Integrated Medicine, Division of Internal Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Maho Morishima-Kawashima
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
16
|
PAQR9 Modulates BAG6-mediated protein quality control of mislocalized membrane proteins. Biochem J 2020; 477:477-489. [PMID: 31904842 DOI: 10.1042/bcj20190620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/24/2019] [Accepted: 01/06/2020] [Indexed: 11/17/2022]
Abstract
Protein quality control is crucial for maintaining cellular homeostasis and its dysfunction is closely linked to human diseases. The post-translational protein quality control machinery mainly composed of BCL-2-associated athanogene 6 (BAG6) is responsible for triage of mislocalized membrane proteins (MLPs). However, it is unknown how the BAG6-mediated degradation of MLPs is regulated. We report here that PAQR9, a member of the Progesterone and AdipoQ receptor (PAQR) family, is able to modulate BAG6-mediated triage of MLPs. Analysis with mass spectrometry identified that BAG6 is one of the major proteins interacting with PAQR9 and such interaction is confirmed by co-immunoprecipitation and co-localization assays. The protein degradation rate of representative MLPs is accelerated by PAQR9 knockdown. Consistently, the polyubiquitination of MLPs is enhanced by PAQR9 knockdown. PAQR9 binds to the DUF3538 domain within the proline-rich stretch of BAG6. PAQR9 reduces the binding of MLPs to BAG6 in a DUF3538 domain-dependent manner. Taken together, our results indicate that PAQR9 plays a role in the regulation of protein quality control of MLPs via affecting the interaction of BAG6 with membrane proteins.
Collapse
|
17
|
Menon PK, Koistinen NA, Iverfeldt K, Ström AL. Phosphorylation of the amyloid precursor protein (APP) at Ser-675 promotes APP processing involving meprin β. J Biol Chem 2019; 294:17768-17776. [PMID: 31604820 PMCID: PMC6879340 DOI: 10.1074/jbc.ra119.008310] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 10/02/2019] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by abnormal deposition of β-amyloid (Aβ) peptides. Aβ is a cleavage product of the amyloid precursor protein (APP), and aberrant posttranslational modifications of APP can alter APP processing and increase Aβ generation. In the AD brain, seven different residues, including Ser-675 (APP695 numbering) in the APP cytoplasmic domain has been found to be phosphorylated. Here, we show that expression of a phosphomimetic variant of Ser-675 in APP (APP-S675E), in human neuroblastoma SK-N-AS cells, reduces secretion of the soluble APP ectodomain (sAPPα), even though the total plasma membrane level of APP was unchanged compared with APP levels in cells expressing APPwt or APP-S675A. Moreover, the level of an alternative larger C-terminal fragment (CTF) increased in the APP-S675E cells, whereas the CTF form that was most abundant in cells expressing APPwt or APP-S675A decreased in the APP-S675E cells. Upon siRNA-mediated knockdown of the astacin metalloprotease meprin β, the levels of the alternative CTF decreased and the CTF ratio was restored back to APPwt levels. Our findings suggest that APP-Ser-675 phosphorylation alters the balance of APP processing, increasing meprin β-mediated and decreasing α-secretase-mediated processing of APP at the plasma membrane. As meprin β cleavage of APP has been shown to result in formation of highly aggregation-prone, truncated Aβ2-40/42 peptides, enhanced APP processing by this enzyme could contribute to AD pathology. We propose that it would be of interest to clarify in future studies how APP-Ser-675 phosphorylation promotes meprin β-mediated APP cleavage.
Collapse
Affiliation(s)
- Preeti Kumaran Menon
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden
| | - Niina Anneli Koistinen
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden
| | - Kerstin Iverfeldt
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden
| | - Anna-Lena Ström
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
18
|
Hillen H. The Beta Amyloid Dysfunction (BAD) Hypothesis for Alzheimer's Disease. Front Neurosci 2019; 13:1154. [PMID: 31787864 PMCID: PMC6853841 DOI: 10.3389/fnins.2019.01154] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/14/2019] [Indexed: 02/05/2023] Open
Abstract
Beta amyloid, Aβ 1–42, originally named as Amyloid A4 protein, is one of the most investigated peptides in neuroscience and has attracted substantial interest since its discovery as the main insoluble fibril-type protein in cerebrovascular amyloid angiopathy (Glenner and Wong, 1984; Masters et al., 1985) of Alzheimer’s disease (AD). From the very beginning, Aβ was regarded per se as a “bad molecule,” triggering the so-called “beta amyloid cascade hypothesis” (Hardy and Higgins, 1992). This hypothesis ignored any physiological function for in situ generated Aβ monomer with normal production and turnover rate (Bateman et al., 2006). Accordingly, pan-Aβ-related therapeutic approaches were designed to eliminate or lower the three structural isoforms in parallel: (1) the pre-amyloid monomer, (2) the misfolded oligomer, and (3) the final fibril. While we already knew about poor correlations between plaques and cognitive decline quite early (Terry et al., 1991), data for an essential benign physiological role for Aβ monomer at low concentrations were also not considered to be relevant. Here, a different Beta Amyloid hypothesis is described, the so-called “Beta Amyloid Dysfunction hypothesis,” which, in contrast to the “Beta Amyloid Cascade hypothesis,” builds on the homeostasis of essential Aβ monomer in the synaptic vesicle cycle (SVC). Disease-relevant early pathology emerges through disturbance of the Aβ homeostasis by so far unknown factors leading to the formation of misfolded Aβ oligomers. These early species interfere with the synaptic physiological Aβ monomer regulation and exert their neurotoxicity via various receptors for sticky oligomer-type Aβ aggregates. The Beta Amyloid Dysfunction (BAD) hypothesis is introduced and shown to explain negative clinical results of Gamma-secretase and Beta-secretase (BACE) inhibitors as well as pan-Aβ isotype unselective immunotherapies. This hypothesis gives guidance to what needs to be done therapeutically to revive successful clinical testing in AD for this highly validated target. The BAD hypothesis will need further refinement in particular through more detailed exploration for the role of physiological Aβ monomer.
Collapse
|
19
|
Janitschke D, Nelke C, Lauer AA, Regner L, Winkler J, Thiel A, Grimm HS, Hartmann T, Grimm MOW. Effect of Caffeine and Other Methylxanthines on Aβ-Homeostasis in SH-SY5Y Cells. Biomolecules 2019; 9:E689. [PMID: 31684105 PMCID: PMC6920871 DOI: 10.3390/biom9110689] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/25/2019] [Accepted: 10/30/2019] [Indexed: 02/07/2023] Open
Abstract
Methylxanthines (MTX) are alkaloids derived from the purine-base xanthine. Whereas especially caffeine, the most prominent known MTX, has been formerly assessed to be detrimental, this point of view has changed substantially. MTXs are discussed to have beneficial properties in neurodegenerative diseases, however, the mechanisms of action are not completely understood. Here we investigate the effect of the naturally occurring caffeine, theobromine and theophylline and the synthetic propentofylline and pentoxifylline on processes involved in Alzheimer's disease (AD). All MTXs decreased amyloid-β (Aβ) level by shifting the amyloid precursor protein (APP) processing from the Aβ-producing amyloidogenic to the non-amyloidogenic pathway. The α-secretase activity was elevated whereas β-secretase activity was decreased. Breaking down the molecular mechanism, caffeine increased protein stability of the major α-secretase ADAM10, downregulated BACE1 expression and directly decreased β-secretase activity. Additionally, APP expression was reduced. In line with literature, MTXs reduced oxidative stress, decreased cholesterol and a decreased in Aβ1-42 aggregation. In conclusion, all MTXs act via the pleiotropic mechanism resulting in decreased Aβ and show beneficial properties with respect to AD in neuroblastoma cells. However, the observed effect strength was moderate, suggesting that MTXs should be integrated in a healthy diet rather than be used exclusively to treat or prevent AD.
Collapse
Affiliation(s)
- Daniel Janitschke
- Experimental Neurology, Saarland University, 66424 Homburg/Saar, Germany.
| | - Christopher Nelke
- Experimental Neurology, Saarland University, 66424 Homburg/Saar, Germany.
| | - Anna Andrea Lauer
- Experimental Neurology, Saarland University, 66424 Homburg/Saar, Germany.
| | - Liesa Regner
- Experimental Neurology, Saarland University, 66424 Homburg/Saar, Germany.
| | - Jakob Winkler
- Experimental Neurology, Saarland University, 66424 Homburg/Saar, Germany.
| | - Andrea Thiel
- Experimental Neurology, Saarland University, 66424 Homburg/Saar, Germany.
| | - Heike Sabine Grimm
- Experimental Neurology, Saarland University, 66424 Homburg/Saar, Germany.
| | - Tobias Hartmann
- Experimental Neurology, Saarland University, 66424 Homburg/Saar, Germany.
- Deutsches Institut für DemenzPrävention (DIDP), Saarland University, 66424 Homburg/Saar, Germany.
| | - Marcus Otto Walter Grimm
- Experimental Neurology, Saarland University, 66424 Homburg/Saar, Germany.
- Deutsches Institut für DemenzPrävention (DIDP), Saarland University, 66424 Homburg/Saar, Germany.
| |
Collapse
|
20
|
APLP2 Modulates JNK-Dependent Cell Migration in Drosophila. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7469714. [PMID: 30155482 PMCID: PMC6093063 DOI: 10.1155/2018/7469714] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/30/2018] [Accepted: 05/23/2018] [Indexed: 01/03/2023]
Abstract
Amyloid precursor-like protein 2 (APLP2) belongs to the APP family and is widely expressed in human cells. Though previous studies have suggested a role of APLP2 in cancer progression, the exact role of APLP2 in cell migration remains elusive. Here in this report, we show that ectopic expression of APLP2 in Drosophila induces cell migration which is mediated by JNK signaling, as loss of JNK suppresses while gain of JNK enhances such phenotype. APLP2 is able to activate JNK signaling by phosphorylation of JNK, which triggers the expression of matrix metalloproteinase MMP1 required for basement membranes degradation to promote cell migration. The data presented here unraveled an in vivo role of APLP2 in JNK-mediated cell migration.
Collapse
|
21
|
Chang JL, Hinrich AJ, Roman B, Norrbom M, Rigo F, Marr RA, Norstrom EM, Hastings ML. Targeting Amyloid-β Precursor Protein, APP, Splicing with Antisense Oligonucleotides Reduces Toxic Amyloid-β Production. Mol Ther 2018; 26:1539-1551. [PMID: 29628304 DOI: 10.1016/j.ymthe.2018.02.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/21/2018] [Accepted: 02/27/2018] [Indexed: 12/22/2022] Open
Abstract
Alterations in amyloid beta precursor protein (APP) have been implicated in cognitive decline in Alzheimer's disease (AD), which is accelerated in Down syndrome/Trisomy 21 (DS/TS21), likely due to the extra copy of the APP gene, located on chromosome 21. Proteolytic cleavage of APP generates amyloid-β (Aβ) peptide, the primary component of senile plaques associated with AD. Reducing Aβ production is predicted to lower plaque burden and mitigate AD symptoms. Here, we designed a splice-switching antisense oligonucleotide (SSO) that causes skipping of the APP exon that encodes proteolytic cleavage sites required for Aβ peptide production. The SSO induced exon skipping in Down syndrome cell lines, resulting in a reduction of Aβ. Treatment of mice with the SSO resulted in widespread distribution in the brain accompanied by APP exon skipping and a reduction of Aβ. Overall, we show that an alternatively spliced isoform of APP encodes a cleavage-incompetent protein that does not produce Aβ peptide and that promoting the production of this isoform with an SSO can reduce Aβ in vivo. These findings demonstrate the utility of using SSOs to induce a spliced isoform of APP to reduce Aβ as a potential approach for treating AD.
Collapse
Affiliation(s)
- Jennifer L Chang
- Department of Cell Biology and Anatomy, Center for Genetic Diseases, Chicago Medical School and School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Anthony J Hinrich
- Department of Cell Biology and Anatomy, Center for Genetic Diseases, Chicago Medical School and School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Brandon Roman
- Department of Biological Sciences, DePaul University, Chicago, IL 60614, USA
| | | | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, CA 92010, USA
| | - Robert A Marr
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Eric M Norstrom
- Department of Biological Sciences, DePaul University, Chicago, IL 60614, USA
| | - Michelle L Hastings
- Department of Cell Biology and Anatomy, Center for Genetic Diseases, Chicago Medical School and School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA.
| |
Collapse
|
22
|
Amyloid precursor protein and amyloid precursor-like protein 2 in cancer. Oncotarget 2017; 7:19430-44. [PMID: 26840089 PMCID: PMC4991393 DOI: 10.18632/oncotarget.7103] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 01/23/2016] [Indexed: 12/22/2022] Open
Abstract
Amyloid precursor protein (APP) and its family members amyloid precursor-like protein 1 (APLP1) and amyloid precursor-like protein 2 (APLP2) are type 1 transmembrane glycoproteins that are highly conserved across species. The transcriptional regulation of APP and APLP2 is similar but not identical, and the cleavage of both proteins is regulated by phosphorylation. APP has been implicated in Alzheimer's disease causation, and in addition to its importance in neurology, APP is deregulated in cancer cells. APLP2 is likewise overexpressed in cancer cells, and APLP2 and APP are linked to increased tumor cell proliferation, migration, and invasion. In this present review, we discuss the unfolding account of these APP family members’ roles in cancer progression and metastasis.
Collapse
|
23
|
Grimm MOW, Michaelson DM, Hartmann T. Omega-3 fatty acids, lipids, and apoE lipidation in Alzheimer's disease: a rationale for multi-nutrient dementia prevention. J Lipid Res 2017; 58:2083-2101. [PMID: 28528321 PMCID: PMC5665674 DOI: 10.1194/jlr.r076331] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/09/2017] [Indexed: 12/14/2022] Open
Abstract
In the last decade, it has become obvious that Alzheimer's disease (AD) is closely linked to changes in lipids or lipid metabolism. One of the main pathological hallmarks of AD is amyloid-β (Aβ) deposition. Aβ is derived from sequential proteolytic processing of the amyloid precursor protein (APP). Interestingly, both, the APP and all APP secretases are transmembrane proteins that cleave APP close to and in the lipid bilayer. Moreover, apoE4 has been identified as the most prevalent genetic risk factor for AD. ApoE is the main lipoprotein in the brain, which has an abundant role in the transport of lipids and brain lipid metabolism. Several lipidomic approaches revealed changes in the lipid levels of cerebrospinal fluid or in post mortem AD brains. Here, we review the impact of apoE and lipids in AD, focusing on the major brain lipid classes, sphingomyelin, plasmalogens, gangliosides, sulfatides, DHA, and EPA, as well as on lipid signaling molecules, like ceramide and sphingosine-1-phosphate. As nutritional approaches showed limited beneficial effects in clinical studies, the opportunities of combining different supplements in multi-nutritional approaches are discussed and summarized.
Collapse
Affiliation(s)
- Marcus O W Grimm
- Department of Experimental Neurology and Department of Neurodegeneration and Neurobiology, and Deutsches Institut für DemenzPrävention (DIDP), Saarland University, Homburg/Saar, Germany
| | - Daniel M Michaelson
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Tobias Hartmann
- Department of Experimental Neurology and Department of Neurodegeneration and Neurobiology, and Deutsches Institut für DemenzPrävention (DIDP), Saarland University, Homburg/Saar, Germany
| |
Collapse
|
24
|
Ludewig S, Korte M. Novel Insights into the Physiological Function of the APP (Gene) Family and Its Proteolytic Fragments in Synaptic Plasticity. Front Mol Neurosci 2017; 9:161. [PMID: 28163673 PMCID: PMC5247455 DOI: 10.3389/fnmol.2016.00161] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 12/14/2016] [Indexed: 12/31/2022] Open
Abstract
The amyloid precursor protein (APP) is well known to be involved in the pathophysiology of Alzheimer's disease (AD) via its cleavage product amyloid ß (Aß). However, the physiological role of APP, its various proteolytic products and the amyloid precursor-like proteins 1 and 2 (APLP1/2) are still not fully clarified. Interestingly, it has been shown that learning and memory processes represented by functional and structural changes at synapses are altered in different APP and APLP1/2 mouse mutants. In addition, APP and its fragments are implicated in regulating synaptic strength further reinforcing their modulatory role at the synapse. While APLP2 and APP are functionally redundant, the exclusively CNS expressed APLP1, might have individual roles within the synaptic network. The proteolytic product of non-amyloidogenic APP processing, APPsα, emerged as a neurotrophic peptide that facilitates long-term potentiation (LTP) and restores impairments occurring with age. Interestingly, the newly discovered η-secretase cleavage product, An-α acts in the opposite direction, namely decreasing LTP. In this review we summarize recent findings with emphasis on the physiological role of the APP gene family and its proteolytic products on synaptic function and plasticity, especially during processes of hippocampal LTP. Therefore, we focus on literature that provide electrophysiological data by using different mutant mouse strains either lacking full-length or parts of the APP proteins or that utilized secretase inhibitors as well as secreted APP fragments.
Collapse
Affiliation(s)
- Susann Ludewig
- Division of Cellular Neurobiology, Zoological Institute, TU Braunschweig Braunschweig, Germany
| | - Martin Korte
- Division of Cellular Neurobiology, Zoological Institute, TU BraunschweigBraunschweig, Germany; Helmholtz Centre for Infection Research, AG NINDBraunschweig, Germany
| |
Collapse
|
25
|
Does any drug to treat cancer target mTOR and iron hemostasis in neurodegenerative disorders? Biometals 2016; 30:1-16. [PMID: 27853903 DOI: 10.1007/s10534-016-9981-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/08/2016] [Indexed: 12/23/2022]
Abstract
The prevalence of neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease and Huntington's disease are increased by age. Alleviation of their symptoms and protection of normal neurons against degeneration are the main aspects of the research to establish novel therapeutic strategies. Iron as the one of most important cation not only play important role in the structure of electron transport chain proteins but also has pivotal duties in cellular activities. But disruption in iron hemostasis can make it toxin to neurons which causes lipid peroxidation, DNA damage and etc. In patients with Alzheimer and Parkinson misbalancing in iron homeostasis accelerate neurodegeneration and cause neuroinflmmation. mTOR as the common signaling pathway between cancer and neurodegenerative disorders controls iron uptake and it is in active form in both diseases. Anti-cancer drugs which target mTOR causes iron deficiency and dual effects of mTOR inhibitors can candidate them as a therapeutic strategy to alleviate neurodegeneration/inflammation because of iron overloading.
Collapse
|
26
|
The Impact of Vitamin E and Other Fat-Soluble Vitamins on Alzheimer´s Disease. Int J Mol Sci 2016; 17:ijms17111785. [PMID: 27792188 PMCID: PMC5133786 DOI: 10.3390/ijms17111785] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 10/14/2016] [Accepted: 10/20/2016] [Indexed: 12/25/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common cause of dementia in the elderly population, currently affecting 46 million people worldwide. Histopathologically, the disease is characterized by the occurrence of extracellular amyloid plaques composed of aggregated amyloid-β (Aβ) peptides and intracellular neurofibrillary tangles containing the microtubule-associated protein tau. Aβ peptides are derived from the sequential processing of the amyloid precursor protein (APP) by enzymes called secretases, which are strongly influenced by the lipid environment. Several vitamins have been reported to be reduced in the plasma/serum of AD-affected individuals indicating they have an impact on AD pathogenesis. In this review we focus on vitamin E and the other lipophilic vitamins A, D, and K, and summarize the current knowledge about their status in AD patients, their impact on cognitive functions and AD risk, as well as their influence on the molecular mechanisms of AD. The vitamins might affect the generation and clearance of Aβ both by direct effects and indirectly by altering the cellular lipid homeostasis. Additionally, vitamins A, D, E, and K are reported to influence further mechanisms discussed to be involved in AD pathogenesis, e.g., Aβ-aggregation, Aβ-induced neurotoxicity, oxidative stress, and inflammatory processes, as summarized in this article.
Collapse
|
27
|
Stevenson JW, Conaty EA, Walsh RB, Poidomani PJ, Samoriski CM, Scollins BJ, DeGiorgis JA. The Amyloid Precursor Protein of Alzheimer's Disease Clusters at the Organelle/Microtubule Interface on Organelles that Bind Microtubules in an ATP Dependent Manner. PLoS One 2016; 11:e0147808. [PMID: 26814888 PMCID: PMC4729464 DOI: 10.1371/journal.pone.0147808] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 01/08/2016] [Indexed: 11/18/2022] Open
Abstract
The amyloid precursor protein (APP) is a causal agent in the pathogenesis of Alzheimer's disease and is a transmembrane protein that associates with membrane-limited organelles. APP has been shown to co-purify through immunoprecipitation with a kinesin light chain suggesting that APP may act as a trailer hitch linking kinesin to its intercellular cargo, however this hypothesis has been challenged. Previously, we identified an mRNA transcript that encodes a squid homolog of human APP770. The human and squid isoforms share 60% sequence identity and 76% sequence similarity within the cytoplasmic domain and share 15 of the final 19 amino acids at the C-terminus establishing this highly conserved domain as a functionally import segment of the APP molecule. Here, we study the distribution of squid APP in extruded axoplasm as well as in a well-characterized reconstituted organelle/microtubule preparation from the squid giant axon in which organelles bind microtubules and move towards the microtubule plus-ends. We find that APP associates with microtubules by confocal microscopy and co-purifies with KI-washed axoplasmic organelles by sucrose density gradient fractionation. By electron microscopy, APP clusters at a single focal point on the surfaces of organelles and localizes to the organelle/microtubule interface. In addition, the association of APP-organelles with microtubules is an ATP dependent process suggesting that the APP-organelles contain a microtubule-based motor protein. Although a direct kinesin/APP association remains controversial, the distribution of APP at the organelle/microtubule interface strongly suggests that APP-organelles have an orientation and that APP like the Alzheimer's protein tau has a microtubule-based function.
Collapse
Affiliation(s)
- James W. Stevenson
- Biology Department, Providence College, Providence, Rhode Island, United States of America
- Bell Center, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | - Eliza A. Conaty
- Biology Department, Providence College, Providence, Rhode Island, United States of America
- Bell Center, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | - Rylie B. Walsh
- Biology Department, Providence College, Providence, Rhode Island, United States of America
- Bell Center, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | - Paul J. Poidomani
- Biology Department, Providence College, Providence, Rhode Island, United States of America
- Bell Center, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | - Colin M. Samoriski
- Biology Department, Providence College, Providence, Rhode Island, United States of America
- Bell Center, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | - Brianne J. Scollins
- Biology Department, Providence College, Providence, Rhode Island, United States of America
- Bell Center, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | - Joseph A. DeGiorgis
- Biology Department, Providence College, Providence, Rhode Island, United States of America
- Bell Center, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| |
Collapse
|
28
|
Delta-secretase cleaves amyloid precursor protein and regulates the pathogenesis in Alzheimer's disease. Nat Commun 2015; 6:8762. [PMID: 26549211 PMCID: PMC4659940 DOI: 10.1038/ncomms9762] [Citation(s) in RCA: 209] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 09/25/2015] [Indexed: 01/15/2023] Open
Abstract
The age-dependent deposition of amyloid-β peptides, derived from amyloid precursor protein (APP), is a neuropathological hallmark of Alzheimer's disease (AD). Despite age being the greatest risk factor for AD, the molecular mechanisms linking ageing to APP processing are unknown. Here we show that asparagine endopeptidase (AEP), a pH-controlled cysteine proteinase, is activated during ageing and mediates APP proteolytic processing. AEP cleaves APP at N373 and N585 residues, selectively influencing the amyloidogenic fragmentation of APP. AEP is activated in normal mice in an age-dependent manner, and is strongly activated in 5XFAD transgenic mouse model and human AD brains. Deletion of AEP from 5XFAD or APP/PS1 mice decreases senile plaque formation, ameliorates synapse loss, elevates long-term potentiation and protects memory. Blockade of APP cleavage by AEP in mice alleviates pathological and behavioural deficits. Thus, AEP acts as a δ-secretase, contributing to the age-dependent pathogenic mechanisms in AD.
Collapse
|
29
|
Clark JK, Furgerson M, Crystal JD, Fechheimer M, Furukawa R, Wagner JJ. Alterations in synaptic plasticity coincide with deficits in spatial working memory in presymptomatic 3xTg-AD mice. Neurobiol Learn Mem 2015; 125:152-162. [PMID: 26385257 DOI: 10.1016/j.nlm.2015.09.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 08/08/2015] [Accepted: 09/01/2015] [Indexed: 10/23/2022]
Abstract
Alzheimer's disease is a neurodegenerative condition believed to be initiated by production of amyloid-beta peptide, which leads to synaptic dysfunction and progressive memory loss. Using a mouse model of Alzheimer's disease (3xTg-AD), an 8-arm radial maze was employed to assess spatial working memory. Unexpectedly, the younger (3month old) 3xTg-AD mice were as impaired in the spatial working memory task as the older (8month old) 3xTg-AD mice when compared with age-matched NonTg control animals. Field potential recordings from the CA1 region of slices prepared from the ventral hippocampus were obtained to assess synaptic transmission and capability for synaptic plasticity. At 3months of age, the NMDA receptor-dependent component of LTP was reduced in 3xTg-AD mice. However, the magnitude of the non-NMDA receptor-dependent component of LTP was concomitantly increased, resulting in a similar amount of total LTP in 3xTg-AD and NonTg mice. At 8months of age, the NMDA receptor-dependent LTP was again reduced in 3xTg-AD mice, but now the non-NMDA receptor-dependent component was decreased as well, resulting in a significantly reduced total amount of LTP in 3xTg-AD compared with NonTg mice. Both 3 and 8month old 3xTg-AD mice exhibited reductions in paired-pulse facilitation and NMDA receptor-dependent LTP that coincided with the deficit in spatial working memory. The early presence of this cognitive impairment and the associated alterations in synaptic plasticity demonstrate that the onset of some behavioral and neurophysiological consequences can occur before the detectable presence of plaques and tangles in the 3xTg-AD mouse model of Alzheimer's disease.
Collapse
Affiliation(s)
- Jason K Clark
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602 U.S.A
| | - Matthew Furgerson
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602 U.S.A.,Department of Cellular Biology, University of Georgia, Athens, GA 30602 U.S.A
| | - Jonathon D Crystal
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405 U.S.A
| | - Marcus Fechheimer
- Department of Cellular Biology, University of Georgia, Athens, GA 30602 U.S.A
| | - Ruth Furukawa
- Department of Cellular Biology, University of Georgia, Athens, GA 30602 U.S.A
| | - John J Wagner
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602 U.S.A
| |
Collapse
|
30
|
Breimer LH, Nilsson TK. Shedded cell membrane proteins in plasma: Pure waste, or informative biomarkers of pathophysiological processes? Scandinavian Journal of Clinical and Laboratory Investigation 2015. [PMID: 26205294 DOI: 10.3109/00365513.2015.1057763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Lars H Breimer
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University , USÖ , Örebro
| | | |
Collapse
|
31
|
Jensen LL, Banner J, Ulhøi BP, Byard RW. β-Amyloid precursor protein staining of the brain in sudden infant and early childhood death. Neuropathol Appl Neurobiol 2014; 40:385-97. [DOI: 10.1111/nan.12109] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 12/13/2013] [Indexed: 11/26/2022]
Affiliation(s)
- Lisbeth Lund Jensen
- Discipline of Anatomy and Pathology; The University of Adelaide; Adelaide Australia
- The Department of Pathology; Aarhus University Hospital; Aarhus Denmark
- Department of Forensic Medicine; Aarhus University; Aarhus Denmark
| | - Jytte Banner
- Department of Forensic Medicine; University of Copenhagen; Copenhagen Denmark
| | | | - Roger W Byard
- Discipline of Anatomy and Pathology; The University of Adelaide; Adelaide Australia
| |
Collapse
|
32
|
Abstract
Numerous proteins, including cytokines and chemokines, enzymes and enzyme inhibitors, extracellular matrix proteins, and membrane receptors, bind heparin. Although they are traditionally classified as heparin-binding proteins, under normal physiological conditions these proteins actually interact with the heparan sulfate chains of one or more membrane or extracellular proteoglycans. Thus, they are more appropriately classified as heparan sulfate-binding proteins (HSBPs). This review provides an overview of the various modes of interaction between heparan sulfate and HSBPs, emphasizing biochemical and structural insights that improve our understanding of the many biological functions of heparan sulfate.
Collapse
Affiliation(s)
- Ding Xu
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California 92093; ,
| | | |
Collapse
|
33
|
The impact of cholesterol, DHA, and sphingolipids on Alzheimer's disease. BIOMED RESEARCH INTERNATIONAL 2014; 2013:814390. [PMID: 24575399 PMCID: PMC3929518 DOI: 10.1155/2013/814390] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/13/2013] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder currently affecting over 35 million people worldwide. Pathological hallmarks of AD are massive amyloidosis, extracellular senile plaques, and intracellular neurofibrillary tangles accompanied by an excessive loss of synapses. Major constituents of senile plaques are 40–42 amino acid long peptides termed β-amyloid (Aβ). Aβ is produced by sequential proteolytic processing of the amyloid precursor protein (APP). APP processing and Aβ production have been one of the central scopes in AD research in the past. In the last years, lipids and lipid-related issues are more frequently discussed to contribute to the AD pathogenesis. This review summarizes lipid alterations found in AD postmortem brains, AD transgenic mouse models, and the current understanding of how lipids influence the molecular mechanisms leading to AD and Aβ generation, focusing especially on cholesterol, docosahexaenoic acid (DHA), and sphingolipids/glycosphingolipids.
Collapse
|
34
|
Lee GS, Jeong YW, Kim JJ, Park SW, Ko KH, Kang M, Kim YK, Jung EM, Moon C, Hyun SH, Hwang KC, Kim NH, Shin T, Jeung EB, Hwang WS. A canine model of Alzheimer's disease generated by overexpressing a mutated human amyloid precursor protein. Int J Mol Med 2014; 33:1003-12. [PMID: 24481173 DOI: 10.3892/ijmm.2014.1636] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 01/22/2014] [Indexed: 11/06/2022] Open
Abstract
Canines are considered the most authentic model for studying multifactorial human diseases, as these animals typically share a common environment with man. Somatic cell nuclear transfer (SCNT) technology along with genetic engineering of nuclear donor cells provides a unique opportunity for examining human diseases using transgenic canines. In the present study, we generated transgenic canines that overexpressed the human amyloid precursor protein (APP) gene containing well-characterized familial Alzheimer's disease (AD) mutations. We successfully obtained five out of six live puppies by SCNT. This was confirmed by observing the expression of green fluorescence protein in the body as a visual transgenic marker and the overexpression of the mutated APP gene in the brain. The transgenic canines developed AD-like symptoms, such as enlarged ventricles, an atrophied hippocampus, and β-amyloid plaques in the brain. Thus, the transgenic canines we created can serve as a novel animal model for studying human AD.
Collapse
Affiliation(s)
- Geun-Shik Lee
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chucheon, Gangwon 200‑701, Republic of Korea
| | - Yeon Woo Jeong
- SooAm Biotech Research Foundation, Seoul 152-904, Republic of Korea
| | - Joung Joo Kim
- SooAm Biotech Research Foundation, Seoul 152-904, Republic of Korea
| | - Sun Woo Park
- SooAm Biotech Research Foundation, Seoul 152-904, Republic of Korea
| | - Kyeong Hee Ko
- SooAm Biotech Research Foundation, Seoul 152-904, Republic of Korea
| | - Mina Kang
- SooAm Biotech Research Foundation, Seoul 152-904, Republic of Korea
| | - Yu Kyung Kim
- SooAm Biotech Research Foundation, Seoul 152-904, Republic of Korea
| | - Eui-Man Jung
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Changjong Moon
- Department of Veterinary Anatomy, College of Veterinary Medical Institute, Chonnam National University, Gwangju, Gyeonggi 500-757, Republic of Korea
| | - Sang Hwan Hyun
- Laboratory of Veterinary Embryology and Biotechnology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Kyu-Chan Hwang
- SooAm Biotech Research Foundation, Seoul 152-904, Republic of Korea
| | - Nam-Hyung Kim
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Taeyoung Shin
- SooAm Biotech Research Foundation, Seoul 152-904, Republic of Korea
| | - Eui-Bae Jeung
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Woo Suk Hwang
- SooAm Biotech Research Foundation, Seoul 152-904, Republic of Korea
| |
Collapse
|
35
|
Matsumura N, Takami M, Okochi M, Wada-Kakuda S, Fujiwara H, Tagami S, Funamoto S, Ihara Y, Morishima-Kawashima M. γ-Secretase associated with lipid rafts: multiple interactive pathways in the stepwise processing of β-carboxyl-terminal fragment. J Biol Chem 2013; 289:5109-21. [PMID: 24375443 DOI: 10.1074/jbc.m113.510131] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
γ-Secretase generates amyloid β-protein (Aβ), a pathogenic molecule in Alzheimer disease, through the intramembrane cleavage of the β-carboxyl-terminal fragment (βCTF) of β-amyloid precursor protein. We previously showed the framework of the γ-secretase cleavage, i.e. the stepwise successive processing of βCTF at every three (or four) amino acids. However, the membrane integrity of γ-secretase was not taken into consideration because of the use of the 3-[(3-cholamidopropyl)dimethylammonio]-2-hydroxy-1-propanesulfonic acid-solubilized reconstituted γ-secretase system. Here, we sought to address how the membrane-integrated γ-secretase cleaves βCTF by using γ-secretase associated with lipid rafts. Quantitative analyses using liquid chromatography-tandem mass spectrometry of the βCTF transmembrane domain-derived peptides released along with Aβ generation revealed that the raft-associated γ-secretase cleaves βCTF in a stepwise sequential manner, but novel penta- and hexapeptides as well as tri- and tetrapeptides are released. The cropping of these peptides links the two major tripeptide-cleaving pathways generating Aβ40 and Aβ42 at several points, implying that there are multiple interactive pathways for the stepwise cleavages of βCTF. It should be noted that Aβ38 and Aβ43 are generated through three routes, and γ-secretase modulator 1 enhances all the three routes generating Aβ38, which results in decreases in Aβ42 and Aβ43 and an increase in Aβ38. These observations indicate that multiple interactive pathways for stepwise successive processing by γ-secretase define the species and quantity of Aβ produced.
Collapse
Affiliation(s)
- Nobutaka Matsumura
- From the Department of Molecular Neuropathology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Whiley L, Sen A, Heaton J, Proitsi P, García-Gómez D, Leung R, Smith N, Thambisetty M, Kloszewska I, Mecocci P, Soininen H, Tsolaki M, Vellas B, Lovestone S, Legido-Quigley C. Evidence of altered phosphatidylcholine metabolism in Alzheimer's disease. Neurobiol Aging 2013; 35:271-8. [PMID: 24041970 DOI: 10.1016/j.neurobiolaging.2013.08.001] [Citation(s) in RCA: 212] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 08/03/2013] [Indexed: 01/31/2023]
Abstract
Abberant lipid metabolism is implicated in Alzheimer's disease (AD) pathophysiology, but the connections between AD and lipid metabolic pathways are not fully understood. To investigate plasma lipids in AD, a multiplatform screen (n = 35 by liquid chromatography-mass spectrometry and n = 35 by nuclear magnetic resonance) was developed, which enabled the comprehensive analysis of plasma from 3 groups (individuals with AD, individuals with mild cognitive impairment (MCI), and age-matched controls). This screen identified 3 phosphatidylcholine (PC) molecules that were significantly diminished in AD cases. In a subsequent validation study (n = 141), PC variation in a bigger sample set was investigated, and the same 3 PCs were found to be significantly lower in AD patients: PC 16:0/20:5 (p < 0.001), 16:0/22:6 (p < 0.05), and 18:0/22:6 (p < 0.01). A receiver operating characteristic (ROC) analysis of the PCs, combined with apolipoprotein E (ApoE) data, produced an area under the curve predictive value of 0.828. Confirmatory investigations into the background biochemistry indiciated no significant change in plasma levels of 3 additional PCs of similar structure, total choline containing compounds or total plasma omega fatty acids, adding to the evidence that specific PCs play a role in AD pathology.
Collapse
Affiliation(s)
- Luke Whiley
- Institute of Pharmaceutical Science and Institute of Psychiatry, Kings's College London, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Effect of Different Phospholipids on α-Secretase Activity in the Non-Amyloidogenic Pathway of Alzheimer's Disease. Int J Mol Sci 2013; 14:5879-98. [PMID: 23485990 PMCID: PMC3634454 DOI: 10.3390/ijms14035879] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 01/19/2013] [Accepted: 03/01/2013] [Indexed: 12/29/2022] Open
Abstract
Alzheimer’s disease (AD) is characterized by extracellular accumulation of amyloid-β peptide (Aβ), generated by proteolytic processing of the amyloid precursor protein (APP) by β- and γ-secretase. Aβ generation is inhibited when the initial ectodomain shedding is caused by α-secretase, cleaving APP within the Aβ domain. Therefore, an increase in α-secretase activity is an attractive therapeutic target for AD treatment. APP and the APP-cleaving secretases are all transmembrane proteins, thus local membrane lipid composition is proposed to influence APP processing. Although several studies have focused on γ-secretase, the effect of the membrane lipid microenvironment on α-secretase is poorly understood. In the present study, we systematically investigated the effect of fatty acid (FA) acyl chain length (10:0, 12:0, 14:0, 16:0, 18:0, 20:0, 22:0, 24:0), membrane polar lipid headgroup (phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine), saturation grade and the FA double-bond position on α-secretase activity. We found that α-secretase activity is significantly elevated in the presence of FAs with short chain length and in the presence of polyunsaturated FAs, whereas variations in the phospholipid headgroups, as well as the double-bond position, have little or no effect on α-secretase activity. Overall, our study shows that local lipid membrane composition can influence α-secretase activity and might have beneficial effects for AD.
Collapse
|
38
|
Puig KL, Combs CK. Expression and function of APP and its metabolites outside the central nervous system. Exp Gerontol 2012; 48:608-11. [PMID: 22846461 DOI: 10.1016/j.exger.2012.07.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 07/12/2012] [Accepted: 07/13/2012] [Indexed: 11/24/2022]
Abstract
Amyloid precursor protein (APP) derived amyloid beta (Aβ) peptides have been extensively investigated in Alzheimer's disease pathology of the brain. However, the function of full length APP in the central nervous system remains unclear. Even less is known about the function of this ubiquitously expressed protein and its metabolites outside of the central nervous system. This review summarizes key aspects of the current understanding of the expression and function of APP and its proteolytic fragments in specific non-neuronal tissues.
Collapse
Affiliation(s)
- Kendra L Puig
- Department of Pharmacology, Physiology and Therapeutics, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA
| | | |
Collapse
|
39
|
Dehvari N, Mahmud T, Persson J, Bengtsson T, Graff C, Winblad B, Rönnbäck A, Behbahani H. Amyloid precursor protein accumulates in aggresomes in response to proteasome inhibitor. Neurochem Int 2012; 60:533-42. [PMID: 22366649 DOI: 10.1016/j.neuint.2012.02.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 02/06/2012] [Accepted: 02/08/2012] [Indexed: 10/28/2022]
Abstract
Aggresomes are cytoplasmic inclusions which are localized at the microtubule organizing center (MTOC) as a result of induced proteasome inhibition, stress or over-expression of certain proteins. Aggresomes are linked to the pathogenesis of many neurodegenerative diseases. Here we studied whether amyloid precursor protein (APP), a type-I transmembrane glycoprotein, is localized in aggresomes after exposure to stress condition. Using confocal microscopy we found that APP is located in aggresomes and co-localized with vimentin, γ-tubulin, 20S and ubiquitin at the MTOC in response to proteasome dysfunction. An interaction between vimentin and APP was found after proteasome inhibition suggesting that APP is an additional protein constituent of aggresomes. Suppression of the proteasome system in APP-HEK293 cells overexpressing APP or transfected with APP Swedish mutation caused an accumulation of stable, detergent-insoluble forms of APP containing poly-ubiquitinated proteins. In addition, brain homogenates from transgenic mice expressing human APP with the Arctic mutation demonstrated an interaction between APP and the aggresomal-marker vimentin. These data suggest that malfunctioning of the proteasome system caused by mutation or overexpression of pathological or non-pathological proteins may lead to the accumulation of stable aggresomes, perhaps contributing to the neurodegeneration.
Collapse
Affiliation(s)
- Nodi Dehvari
- Department of Physiology, The Wenner-Gren Institute Arrhenius Laboratories F3, Stockholm University, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Eggert S, Midthune B, Cottrell B, Koo EH. Induced dimerization of the amyloid precursor protein leads to decreased amyloid-beta protein production. J Biol Chem 2009; 284:28943-52. [PMID: 19596858 DOI: 10.1074/jbc.m109.038646] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The amyloid precursor protein (APP) plays a central role in Alzheimer disease (AD) pathogenesis because sequential cleavages by beta- and gamma-secretase lead to the generation of the amyloid-beta (Abeta) peptide, a key constituent in the amyloid plaques present in brains of AD individuals. In several studies APP has recently been shown to form homodimers, and this event appears to influence Abeta generation. However, these studies have relied on APP mutations within the Abeta sequence itself that may affect APP processing by interfering with secretase cleavages independent of dimerization. Therefore, the impact of APP dimerization on Abeta production remains unclear. To address this question, we compared the approach of constitutive cysteine-induced APP dimerization with a regulatable dimerization system that does not require the introduction of mutations within the Abeta sequence. To this end we generated an APP chimeric molecule by fusing a domain of the FK506-binding protein (FKBP) to the C terminus of APP. The addition of the synthetic membrane-permeant drug AP20187 induces rapid dimerization of the APP-FKBP chimera. Using this system we were able to induce up to 70% APP dimers. Our results showed that controlled homodimerization of APP-FKBP leads to a 50% reduction in total Abeta levels in transfected N2a cells. Similar results were obtained with the direct precursor of beta-secretase cleavage, C99/SPA4CT-FKBP. Furthermore, there was no modulation of different Abeta peptide species after APP dimerization in this system. Taken together, our results suggest that APP dimerization can directly affect gamma-secretase processing and that dimerization is not required for Abeta production.
Collapse
Affiliation(s)
- Simone Eggert
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | |
Collapse
|
41
|
Jacobsen KT, Iverfeldt K. Amyloid precursor protein and its homologues: a family of proteolysis-dependent receptors. Cell Mol Life Sci 2009; 66:2299-318. [PMID: 19333550 PMCID: PMC11115575 DOI: 10.1007/s00018-009-0020-8] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 02/18/2009] [Accepted: 03/11/2009] [Indexed: 10/20/2022]
Abstract
The Alzheimer's amyloid precursor protein (APP) belongs to a conserved gene family that also includes the mammalian APLP1 and APLP2, the Drosophila APPL, and the C. elegans APL-1. The biological function of APP is still not fully clear. However, it is known that the APP family proteins have redundant and partly overlapping functions, which demonstrates the importance of studying all APP family members to gain a more complete picture. When APP was first cloned, it was speculated that it could function as a receptor. This theory has been further substantiated by studies showing that APP and its homologues bind both extracellular ligands and intracellular adaptor proteins. The APP family proteins undergo regulated intramembrane proteolysis (RIP), generating secreted and cytoplasmic fragments that have been ascribed different functions. In this review, we will discuss the APP family with focus on biological functions, binding partners, and regulated processing.
Collapse
Affiliation(s)
| | - Kerstin Iverfeldt
- Department of Neurochemistry, Stockholm University, 10691 Stockholm, Sweden
| |
Collapse
|
42
|
Manzoni C, Colombo L, Messa M, Cagnotto A, Cantù L, Del Favero E, Salmona M. Overcoming synthetic Abeta peptide aging: a new approach to an age-old problem. Amyloid 2009; 16:71-80. [PMID: 20536398 DOI: 10.1080/13506120902879848] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Investigations of amyloidogenic diseases use synthetic peptides for cell-free and in vitro studies. However, amyloidogenic peptides often show intrinsic variability that markedly affects the reproducibility of experiments. Proof of physicochemical and biological variability with different batches of amyloidogenic peptides have been reported in literature. Here, we show that differences can be observed even within the same batch of Abeta1-42 peptide after storing lyophilised samples at -20 degrees C. This change (referred to as 'peptide aging') was reproduced with Abeta1-40 peptide samples by using a series of lyophilisation cycles, showing that lyophilisation, rather than preserving the physicochemical and biological features of Abeta peptides, introduces wide variability. To counteract synthetic peptide aging, we set up a procedure involving the sequential use of trifluoroacetic acid, formic acid and sodium hydroxide solutions that disaggregate preformed seeds and enriched Abeta peptide solutions into monomers and low-molecular-weight oligomers. This procedure enabled us to obtain reproducible physicochemical and biological features of Abeta peptides, irrespective of their age.
Collapse
Affiliation(s)
- Claudia Manzoni
- Department of Biochemistry and Molecular Pharmacology, Mario Negri Institute for Pharmacological Research, Milan, Italy.
| | | | | | | | | | | | | |
Collapse
|
43
|
Jaen JC, Hays SJ. Patent Update Central & Peripheral Nervous System: Alzheimer's disease and β-amyloid: patent activity between May 1993 and June 1994. Expert Opin Ther Pat 2008. [DOI: 10.1517/13543776.4.10.1207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
44
|
Wang SSS, Wu JW, Yamamoto S, Liu HS. Diseases of protein aggregation and the hunt for potential pharmacological agents. Biotechnol J 2008; 3:165-92. [DOI: 10.1002/biot.200700065] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
45
|
Wischik CM, Harrington CR, Mukaetova-Ladinska EB, Novak M, Edwards PC, McArthur FK. Molecular characterization and measurement of Alzheimer's disease pathology: implications for genetic and environmental aetiology. CIBA FOUNDATION SYMPOSIUM 2007; 169:268-93; discussion 293-302. [PMID: 1490426 DOI: 10.1002/9780470514306.ch16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The neuropathological changes seen in Alzheimer's disease represent an interaction between the ageing process in which normal intellectual function is retained, and changes which are specifically associated with severe cognitive deterioration. Molecular analysis of these changes has tended to emphasize the distinction between neurofibrillary pathology, which is intracellular and highly correlated with cognitive deterioration, and the changes associated with the deposition of extracellular amyloid, which appears to be widespread in normal ageing. Extracellular amyloid deposits consist of fibrils composed of a short 42 amino acid peptide (beta/A4) derived by abnormal proteolysis from a much larger precursor molecule (APP). The recent demonstration of a mutation associated with APP in rare cases with familial dementia, neurofibrillary pathology in the hippocampus and atypical cortical Lewy body pathology raises the possibility that abnormal processing of APP could be linked directly with neurofibrillary pathology. Neurofibrillary tangles and neuritic plaques are sites of dense accumulation of pathological paired helical filaments (PHFs) which are composed in part of an antigenically modified form of the microtubule-associated protein tau. The average brain tissue content of PHFs measured biochemically does not increase in the course of normal ageing but increases 10-fold relative to age-matched controls in patients with Alzheimer's disease. There is also a substantial (three-fold) disease-related decline in normal soluble tau protein relative to age-matched controls. This intracellular redistribution of a protein essential for microtubule stability in cortico-cortical association circuits may play an important part in the molecular pathogenesis of dementia in Alzheimer's disease. The role of abnormal proteolysis of APP in this process remains to be elucidated. Immunohistochemical studies on renal dialysis cases have failed to detect evidence of neurofibrillary pathology related to aluminium accumulation in brain tissue. Nevertheless it needs to be seen whether more sensitive biochemical assays of neurofibrillary pathology can demonstrate evidence of an association with aluminium.
Collapse
Affiliation(s)
- C M Wischik
- University of Cambridge Clinical School, Department of Psychiatry, UK
| | | | | | | | | | | |
Collapse
|
46
|
Hortobágyi T, Wise S, Hunt N, Cary N, Djurovic V, Fegan-Earl A, Shorrock K, Rouse D, Al-Sarraj S. Traumatic axonal damage in the brain can be detected using beta-APP immunohistochemistry within 35 min after head injury to human adults. Neuropathol Appl Neurobiol 2007; 33:226-37. [PMID: 17359363 DOI: 10.1111/j.1365-2990.2006.00794.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Immunohistochemistry staining for beta-amyloid precursor protein (beta-APP) is a sensitive method to detect early axonal damage in traumatic brain injury, which was previously estimated to be of minimum 60-90 min after head injury. We present seven cases of well-documented posttraumatic survival of 35-60 min where beta-APP detects early axonal damage. Cases were selected from routine work where documentation about survival is judged to be accurate. These are divided into three groups: group 1: severe head injury (n = 7) with documented survival between 35 and 60 min. Group 2: severe head injury (n = 4) with documented survival of less than 30 min. Group 3: cases (n = 4) where death was not due to head injury but survival is documented between 45 and 109 min. The brains were fixed in formalin for 4 weeks and six regions (frontal lobe with anterior corpus callosum, parietal lobe with deep white matter, basal ganglia with posterior limb of internal capsule, cerebellum with white matter and middle cerebellar peduncle and pons with basis pontis and superior cerebellar peduncle) were sampled. All blocks were stained for haematoxylin and eosin and beta-APP and selected ones for CD68, using antigen retrieval method. In group 1 sections revealed beta-APP immunoreactivity in forms of small globules and granules and occasionally as thin and short filaments. These were detected in the pons, corpus callosum, internal capsule and cerebral white matter, with some variation in localization and intensity. In groups 2 and 3 all the sections were negative for beta-APP staining. None of the cases showed evidence of severe brain swelling, increased intracranial pressure, ischaemia or infection. Using the antigen retrieval method, beta-APP immunohistochemistry can detect axonal damage within 35 min after severe head injury. These results may have an implication in the consideration of minimal survival time after traumatic head injury in medico-legal practice.
Collapse
Affiliation(s)
- T Hortobágyi
- Department of Clinical Neuropathology, King's College Hospital, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Folkesson R, Malkiewicz K, Kloskowska E, Nilsson T, Popova E, Bogdanovic N, Ganten U, Ganten D, Bader M, Winblad B, Benedikz E. A transgenic rat expressing human APP with the Swedish Alzheimer's disease mutation. Biochem Biophys Res Commun 2007; 358:777-82. [PMID: 17506994 DOI: 10.1016/j.bbrc.2007.04.195] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Accepted: 04/28/2007] [Indexed: 01/18/2023]
Abstract
In recent years, transgenic mice have become valuable tools for studying mechanisms of Alzheimer's disease (AD). With the aim of developing an animal model better for memory and neurobehavioural testing, we have generated a transgenic rat model of AD. These animals express human amyloid precursor protein (APP) containing the Swedish AD mutation. The highest level of expression in the brain is found in the cortex, hippocampus, and cerebellum. Starting after the age of 15 months, the rats show increased tau phosphorylation and extracellular Abeta staining. The Abeta is found predominantly in cerebrovascular blood vessels with very rare diffuse plaques. We believe that crossing these animals with mutant PS1 transgenic rats will result in accelerated plaque formation similar to that seen in transgenic mice.
Collapse
Affiliation(s)
- Ronnie Folkesson
- Karolinska Institutet, Department of Neurobiology, Caring Sciences and Society, Novum, 141 86 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Adlerz L, Holback S, Multhaup G, Iverfeldt K. IGF-1-induced Processing of the Amyloid Precursor Protein Family Is Mediated by Different Signaling Pathways. J Biol Chem 2007; 282:10203-9. [PMID: 17301053 DOI: 10.1074/jbc.m611183200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mammalian amyloid precursor protein (APP) protein family consists of the APP and the amyloid precursor-like proteins 1 and 2 (APLP1 and APLP2). The neurotoxic amyloid beta-peptide (Abeta) originates from APP, which is the only member of this protein family implicated in Alzheimer disease. However, the three homologous proteins have been proposed to be processed in similar ways and to have essential and overlapping functions. Therefore, it is also important to take into account the effects on the processing and function of the APP-like proteins in the development of therapeutic drugs aimed at decreasing the production of Abeta. Insulin and insulin-like growth factor-1 (IGF-1) have been shown to regulate APP processing and the levels of Abeta in the brain. In the present study, we show that IGF-1 increases alpha-secretase processing of endogenous APP and also increases ectodomain shedding of APLP1 and APLP2 in human SH-SY5Y neuroblastoma cells. We also investigated the role of different IGF-1-induced signaling pathways, using specific inhibitors for phosphatidylinositol 3-kinase and mitogen-activated protein kinase (MAPK). Our results indicate that phosphatidylinositol 3-kinase is involved in ectodomain shedding of APP and APLP1, but not APLP2, and that MAPK is involved only in the ectodomain shedding of APLP1.
Collapse
Affiliation(s)
- Linda Adlerz
- Department of Neurochemistry, Stockholm University, SE-10691 Stockholm, Sweden
| | | | | | | |
Collapse
|
49
|
Abstract
As part of the hippocampus, the dentate gyrus is considered to play a crucial role in associative memory. The reviewed data suggest that the dentate gyrus withstands the formation of plaques, tangles and neuronal death until late stages of Alzheimer's disease (AD). However, changes related to a disconnecting process, and more subtle intrinsic alterations, may contribute to disturbances in memory and learning observed in early stages of AD.
Collapse
Affiliation(s)
- Thomas G Ohm
- Institute of Integrative Neuroanatomy, Department of Clinical Cell and Neurobiology, Charité CCM, 10098 Berlin, Germany.
| |
Collapse
|
50
|
Abstract
Alzheimer's disease (AD) is the most common form of dementia in industrialized nations. If more effective therapies are not developed that either prevent AD or block progression of the disease in its very early stages, the economic and societal cost of caring for AD patients will be devastating. Only two types of drugs are currently approved for the treatment of AD: inhibitors of acetyl cholinesterase, which symptomatically enhance cognitive state to some degree but are not disease modifying; and the adamantane derivative, memantine. Memantine preferentially blocks excessive NMDA receptor activity without disrupting normal receptor activity and is thought to be a neuroprotective agent that blocks excitotoxicty. Memantine therefore may have a potentially disease modifying effect in multiple neurodegenerative conditions. An improved understanding of the pathogeneses of AD has now led to the identification of numerous therapeutic targets designed to alter amyloid beta protein (Abeta) or tau accumulation. Therapies that alter Abeta and tau through these various targets are likely to have significant disease modifying effects. Many of these targets have been validated in proof of concept studies in preclinical animal models, and some potentially disease modifying therapies targeting Abeta or tau are being tested in the clinic. This review will highlight both the promise of and the obstacles to developing such disease modifying AD therapies.
Collapse
Affiliation(s)
- Todd E Golde
- Mayo Clinic College of Medicine, Department of Neuroscience, Mayo Clinic Jacksonville 4500 San Pablo Road., Jacksonville, Florida 32224, USA.
| |
Collapse
|